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ABSTRACT

Social networks serve as important platforms for users to ex-
press, exchange and form opinions on various topics. Sev-
eral opinion dynamics models have been proposed to char-
acterize how a user iteratively updates her expressed opinion
based on her innate opinion and the opinion of her neigh-
bors. The extent to how much a user is influenced by her
neighboring opinions, as opposed to her own innate opin-
ion, is governed by a measure of her “conformity’ parameter.
Characterizing this degree of conformity for users of a social
network is critical for several applications such as debiasing
online surveys and finding social influencers. In this paper,
we address the problem of estimating these conformity val-
ues for users, using only the expressed opinions and the so-
cial graph. We pose this problem in a constrained optimiza-
tion framework and design efficient algorithms, which we
validate on both synthetic and real-world Twitter data. Us-
ing these estimated conformity values, we then address the
problem of identifying the smallest subset of users in a so-
cial graph that, when seeded initially with some non-neutral
opinions, can accurately explain the current opinion values
of users in the entire social graph. We call this problem seed
recovery. Using ideas from compressed sensing, we analyze
and design algorithms for both conformity estimation and
seed recovery, and validate them on real and synthetic data.

1. INTRODUCTION

The widespread use of online social networks has a
very direct bearing on how users form and express opin-
ions on various issues such as politics, technology, con-
sumer products, healthcare etc. Though users are in-
creasingly spending more time on these networks, not
all of them adopt and propagate ideas and opinions in
a homogeneous way. Understanding how users in an
online social network shape and influence each other’s
opinions is important in the context of viral marketing,
behavioral targeting and information dissemination of
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users in the network.

There has been a plethora of work on modeling opin-
ion dynamics in social networks [7, 10, 29, 21] in the
sociology and economics literature. Specifically, these
works model how an individual user updates her opinion
in the context of information learned from her neighbors
in her social network, and then use the model to charac-
terize the evolution of opinions in the network in terms
of equilibria, convergence time, and the emergence of a
consensus or polarization.

More recent models [11, 1, 20] explicitly incorporate
the notion of an innate opinion — i.e., an endogenous
opinion of each user about a certain topic — as opposed
to her expressed opinion, which is a result of a social
process. These models describe how the opinion of each
user in a social network evolves (i.e. how she changes
her opinion over time) based on the following: (i) her
innate opinion, which is an immutable property of the
user, (ii) the expressed opinion of users in her social
circle and (iii) internal parameters of the model. In the
case of the Friedkin and Johnsen [11] model, the model
parameters correspond to a real quantity for each user
which measures her conformity, i.e., the likelihood of
this user adopting the opinions of her neighbors in the
network.

While the expressed opinion of users are readily ob-
servable in the social network (e.g. from a user’s tweets
or Facebook posts), both the innate opinion and confor-
mity parameter of users are hidden and can only be in-
ferred by reverse engineering the opinion dynamics pro-
cess. In particular, identifying these endogenous con-
formity values of users are a critical component toward
enabling several interesting applications that leverage
opinion dynamics processes. Salient examples include
efficient sampling of innate user opinions [4], seeding
opinions to maximize opinion adoption [12], and iden-
tifying candidates for viral marketing or targeting.

Inferring the conformity parameter for each user by



simply analyzing the history of opinions emitted by the
user is not practical largely due to lack of availability
of a reasonable amount of historical opinion formation
data for each user. Therefore, we ask the following ques-
tion, that we call CONFORMITYEXTRACTION : Can we
reliably estimate conformity parameters of users in a
social network from a single snapshot of the stationary
state of the opinion dynamic?

Mathematically this is an under-determined problem
since it involves n constraints (the fact that the dynamic
is in a stationary state for each user) and 2n variables
(the innate opinion and conformity parameter for each
user). We overcome this problem by relying on two
natural assumptions, viz.,

e homophily: we assume that if two users are close
in the social network, then their innate opinions
are likely to be also close.

e access to a coarse conformity distribution: we as-
sume that we have access to a coarse-grained esti-
mate of the distribution of conformity parameters
in the entire network.

We next define a novel problem, which we call SEE-
DRECOVERY , that is fundamentally different from the
well-studied problem of influence maximization [23, 28].
While the motivating application for both the problems
is finding influencers, the influencers from SEEDRECOV-
ERY are a small set of users whose early adoption (in
the past) of an opinion has been critical in shaping the
current snapshot of opinions in the network. On the
other hand, the users computed via influence maximiza-
tion are individual who, when currently seeded with the
opinion, will be critical in shaping (or maximizing) the
future spread of the opinion in the network, agnostic to
any historical opinion dynamics.

We note that the study of SEEDRECOVERY is enabled
by our estimates of the conformity parameters. More
formally, we are given the current state of expressed
opinions in the social network and we want to identify
if there is a sparse set of innate opinions in the network
that can explain the current expressed opinions. This
enables us to distinguish opinions that might have been
seeded, i.e., are the result of a small number of planted
opinions (say by means of a viral market campaign)
from opinions that arise naturally. It also helps capture
a measure of the “heterogeneity” or “richness” of the
opinion dynamics process in a social network. In fact,
we identify this problem as a special case of the sparse
recovery problem that is commonly studied in the com-
pressed sensing and signal processing literature [2, 8,
32] and for which greedy strategies are known to work
well'. We apply a similar GREEDY algorithm for the

"We note here that unlike the influence maximization prob-
lem, the sparse recovery objective is not submodular

SEEDRECOVERY problem, and validate it for a special
case analytically and more general, using experimental
analysis on synthetic and Twitter data.

Contributions of this study

Our contributions in the study are three-fold:

e We address the CONFORMITYEXTRACTION prob-
lem of recovering the conformity values of users in
a social network, using only the stationary snap-
shot of the opinion dynamics, along with assump-
tions on homophily and a coarse-grained empirical
distribution of user conformity.

e We formulate the problem of SEEDRECOVERY in
a social network, show that it is related to the
well-studied sparse recovery problem, and propose
a GREEDY algorithm for recovering the seed set of
users for the opinion dynamics.

e We perform extensive experiments on both syn-
thetic graphs and a large set of real-world Twit-
ter data to validate the performance of our al-
gorithms for both CONFORMITYEXTRACTION and
SEEDRECOVERY .

2. RELATED WORK

The broad research area of opinion formation is quite
classical, and we refer the interested reader to [21] for
a survey. The earliest work in this domain comes from
the sociology and statistics literature [29, 7, 10].

Several models for opinion formation and consensus
have been studied in the sociology community. One no-
table example is the work by DeGroot [7] which studies
how consensus is formed and reached when individual
opinions are updated using the average of the neigh-
borhood opinions in a network. The work of Friedkin
and Johnsen (FJ) [11], is perhaps the first study to ex-
tend the DeGroot model to include both disagreement
and consensus, by associating with each node an innate
opinion in addition to her expressed opinion. In their
model, a user adheres to her initial opinion with a cer-
tain weight «;, while she is socially influenced by others
in her network with a weight 1 — .

On the subject of conformity, recent work [31] fo-
cused on computing conformity parameters under three
different notions of individual, peer, and group confor-
mities. We differ from this line of work in that our focus
is on leveraging the underlying opinion dynamics in a
social network to estimate user specific conformity pa-
rameters. Further, estimating conformity values in the
context of opinion dynamics also allows us to identify
sparse seeded opinions (SEEDRECOVERY ).

There has been a large body of work on modeling the
adoption or spread of ideas, rumors or content among
online users. Well known models in this domain include



Threshold [18], Cascade models [14], and conformity-
aware cascade models [25] that specify how a node adopts
a particular idea or product based on the adoption pat-
tern prevalent in its neighborhood. Subsequently, sev-
eral papers studied, both theoretically [23] and empiri-
cally [13, 16, 27], the phenomenon of diffusion of ideas
or content in a social network and the related problem
of identifying influential nodes to seed, in order to max-
imize adoption rates. Several of these papers are mainly
concerned with binary-valued propagation of an idea or
products where a user decides to either adopt or not
adopt the idea, instead of a more continuous opinion
dynamics model where a user opinion is influenced by
her neighboring opinions to varying degrees. However
a recent paper by Terzi et al. [12] considers influence
maximization in the context of opinion adoption based
on the Friedkin-Johnsen model. They pose the prob-
lem of selecting a small set of nodes and seeding them
with a single positive opinion to maximize the adoption
of the overall positive opinion in the network. They
show that the resulting problem is submodular and can
hence be maximized efficiently. However, they assume
knowledge of the user conformity values in the opinion
dynamics model and do not address the problem of how
to estimate these parameters.

As mentioned previously, the SEEDRECOVERY prob-
lem that we introduce is fundamentally different from
the above influence maximization problems, since the
goal is not to seed users with products or opinions to
maximize adoption, but rather to understand if the cur-
rent state of expressed opinions in the social network
can be explained (from the opinion dynamics process)
using the opinions of a small set of seed nodes, and if
S0, to recover these seed nodes. Several results in the
sparse recovery literature have shown [2, 8, 32, 5] that
greedy and Li-relaxation techniques can recover the lin-
ear combination efliciently as long as the matrix formed
by taking the vectors z; as columns is well-conditioned
and k is sufficiently small. However, we are not aware
of any prior application of sparse recovery techniques
for opinion formation problems.

In other related work, Das et al [4] addresses the prob-
lem of sampling users in a social graph to estimate the
average innate opinion of users, using only the expressed
opinion of the sampled nodes. However, they too re-
quire knowledge of the per-user conformity values for
their sampling algorithms.

For the cascade-based models for diffusion of an idea
or product-adoption, the problem of estimating the adop-
tion probabilities of a user has been studied in [17],
[9] and [30]. Most of these papers use a probabilistic
model, along with historical data of user adoption ac-
tivity, to estimate adoption probabilities for each edge
in the social graph. However, for the case of social opin-
ion dynamics, to the best of our knowledge, we are not

aware of any related work for estimating the user con-
formity parameters for applications that use opinion dy-
namics models.

3. OPINION MODEL

We consider a (possibly directed) social network graph
G = (V,E) withnodes V = {1,2,...,n}, corresponding
to individuals and edges E corresponding to social in-
teractions. We will say that (i,7) € E if ¢ is influenced
by j. We will denote by N; = {j;(i,j) € E}, the set
of neighbors of node i and d; = |N;|, the out-degree of
node 1.

It will be convenient to express the graph in terms of
its adjacency matrix A, which corresponds to an n x n
matrix such that A;; = 1 if (i,j) € E and A;; = 0
otherwise. We will also use I to represent the n x n
identity matrix, 1 to represent the vector in R"™ with
all components 1 and given a vector v € R", we will
represent by dg(v) the matrix with the components of
v in the diagonal and zero elsewhere.

We are interested in studying opinion formation pro-
cesses in social networks. We will distinguish between
an agent’s innate opinion, which reflects the agent’s in-
terval belief, and the agent’s expressed opinion, which is
the opinion an agent chooses to express in the network
as a result of a social influence process. Here we encode
the opinions as a single real quantity. Let y! € R be the
opinion ezpressed by node ¢ on time t. We express by
z; the innate opinion of agent 4.

The classic model due to Friedkin and Johnsen [11]
proposes a dynamic governing the opinion formation
process. In their model, each agent is associated with
conformity parameter «; in the [0, 1] range, which mea-
sures how strong her innate opinions are, and how likely
will she be influenced by her neighborhood opinions.
An «; value close to 1 implies that the individual is
highly opinionated, and her expressed opinion is similar
to her innate opinion. While a value close to 0 implies
that the individual has a very weak innate opinion and
consequently her expressed opinion is largely governed
by the opinions of neighbors around her. According to
their model, in every timestep, each agent updates her
expressed opinion to a convex combination between her
innate opinion and the average of expressed opinions of
her neighbors in the previous timestep. The weight of
each term in the

1
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In matrix form, we can re-write it as:
y'*t =dgla) -2+ (I-dg(a)) - dg(d)"Ay"  (2)

It has been shown in [4] that the above opinion for-
mation dynamics converge to an equilibrium that de-
pends only on the innate opinions and the structure of



the network and not on the original opinions, as long as
a; > 0foralli € V, i.e., each individual holds an innate
opinion that has some impact on what they express.

The equilibrium can be obtained as the unique fixed
point of equation (2), i.e.:

y=(I—(I-dg(a)) dg(d)"'A)"dg(a) - = (3)

We will denote by F the matrix governing the Friedkin-

Johnsen dynamic, i.e., F = (I-(I-dg(c))-dg(d) "' A)~ldg(a).

Also, given any matrix M of size m x n and a subset
S C [n], we denote by Mg the matrix of size m x |5
corresponding to the columns of M with indices in S.
Similarly, given a vector z € R"™, we will denote by xg
the vector in R® corresponding to the components of z
with indices on S.

4. CONFORMITY EXTRACTION

Based on the Friedkin-Johnsen opinion dynamics model

described in the previous section, we now address the
problem of estimating the conformity parameter «; of a
user in a social network. Since we expect that these per-
user conformity parameters depend on the topic that is
being opined, in the remainder of this section we formu-
late the conformity extraction problem in the context of
a particular topic. We then present a Linear Program-
ming based approach for this problem.

We only assume knowledge of the current steady state
expressed opinions of users in the social network. In
practice, these opinions cam be obtained from opinion
mining [26] of recent content posted by the user on
the social network, for example, her recent tweets on
Twitter or posts on Facebook. We are also given the
directed social graph among these users, which could
correspond to, say, the Twitter follow graph or Face-
book friend graph.

Using these two pieces of information, we would like
to estimate each user’s «; value. Clearly, as seen from
Equation 1, if we knew the user’s innate opinion z;,
we could directly calculate her «; based on how far is
her expressed opinion compared to her innate opinion
and the mean of her neighboring expressed opinions.
However, in practice, it is very hard to glean informa-
tion about an individual user’s innate opinions. Hence,
the main technical challenge is that we have an under-
determined system of equations where we have two un-
knowns per user: «; and z; while the opinion dynamics
model only gives us one equation per user.

To overcome the underdeterminacy of this system, we
devise two score functions and pick the candidate («, 2)
pair that optimizes a combination of such scores:

Homophily score: We assume that users that are
"close’ in the social network are also likely to have innate
opinions that are close. This leads to the following score

function on the innate opinions:

H(z)= Y |z — 2] (1 - Dyj/n)

i,jEV

where D;; is the distance from node ¢ to node j in the
social graph.

Conformity distribution score: We bucket the
range of «; into three categories: low By = [0,1/3],
medium By = (1/3,2/3] and high By = (2/3,1] and
assume that we have a coarse-grained estimate of the
empirical distribution of the conformity values across
buckets: let A; be the estimate of what fraction of the
a; values fall in bucket j. Then, given a vector « of con-
formity parameters, the log-likelihood that this vector
was generated by a distribution with bucket estimates
()\1, /\27 /\3) is given by:

L(a) = Bi() -log Ay + Ba(a) - log A2 + B5(a) - log A3

where 3;(a) = 2;21 Bij and B;; = 1 if a; € B; and
zero otherwise.

Note that the assumption about knowledge of the
coarse-grained conformity distribution across the three
buckets is much weaker than an assumption about the
exact distribution of the «; values. Furthermore, in
practice this is not an unrealistic assumption, since one
can manually go through a small set of users who have
tweeted or created a post about the topic, peruse their
past postings and use human judgment to infer what
fraction of them are likely to be highly conforming,
moderately conforming, or stubborn.

4.1 Mathematical Program for Identifying Con-
formity

Based on the score functions identified, we propose
identifying conformity via the following Mathematical
Program:

MINIMIZE, . H(z) —c- L(a)
S.T

y = dg(a) - 2+ (I - dg(a))dg(d) "' Ay
a; € (0,1), VieV
where ¢ is a regularization constant that adjust the
trade-off between the score functions, and that is set
in our experiments using cross validation. By rearrang-
ing the update rule of the Friedkin-Johnsen model and
denoting the average opinion of neighbors of node i by
m; = d% ZjeNi yi, we can write:



MINIMIZE, ., H(z) —c- L(c)

S.T
ai(zi —my) =y —m;, YieV
a; € (0,1), VieV

Observe that this is not a Linear Program since both
terms «; and z; are variables and the product «; - z;
appears in the constraints. Now we describe how to
change the program to get rid of the product. We note
that the objective function doesn’t depend on «; di-
rectly, but rather on ;; which are indicators of the
event a; € B;. Therefore, we propose to substitute the
constraint «;(z; —m;) = y; —m; by
6ij:1:>7yz mZGBj

Zg — My

and enforce integrality constraints on 3;; as well as
Zj-:l Bij = 1. We note that this doesn’t affect the
value of the mathematical program, since for any solu-
tion of the program on (z, (), it is possible to recover a
solution (z, ) with the same objective simply by taking
a; = (yi —mq)/(zi —mi).

Now, we re-write the newly introduced constraints in
a more amenable form. First, we enforce the constraint
that the ratio (y; — m;)/(z; — m;) is non-negative. Given
this constraint, we can rephrase 3;; = 1= b; < 2= <

b; where B; = [b;,b;] as follows:

bj - sgn(y; — my) - (zs —m4) > Bijlyi — mil

b; -sgn(y; —m;) - (zi —my) < Bijlys —ma| + K - (1 - Bij)
where sgn(z) = 1 if > 0 and sgn(x) = —1 other-
wise and K = c¢i(sgn(y; — m;) - (z; — m;)) where ¢; is
a constant to be chosen later. To see that those are
equivalent, notice that if 3;; = 1, this gives exactly
bj < % < Bj. If 8;; = 0, then both constraints are
trivially satisfied for ¢; > 2/3.

This leads to the following Integer Program:

MINMIZE  H(z) —c- 2?21(21- Bi;)log A;
S.T
(ys —my)(z —ys) >0,V

bj - sgn(y; —my) - (zi — my) > Bijlys — mil, Vi, j

However, since solving an integer program is not feasi-
ble for large instances, we begin with an LP relaxation,
LPRECOVERY , and offer a simple rounding technique
for the solution of LPRECOVERY to obtain the final so-
lution. Our approach consists of relaxing the integrality
constraints to f;; € [0,1], solving the resulting Linear
Program, obtaining z and f3;; and then recovering the
values of «; by setting:

Yi —my
Z; — My

o =

Note that in the LP objective, there are no a;’s. We
assign node ¢ to bucket B; based on its a; value. This
in a way, is a rounding of 3;; based on only o; val-
ues. In the analysis, we show that original 3;; values
from the LP and the rounded f;;’s from «;’s are quite
close. Therefore, the objective value resulting from the
rounding is also close to the objective value of IPRE-
COVERY since the solution to LPRECOVERY is a lower
bound to the objective function. Further, we also show
empirically (see Section 6) our approach performs com-
parably to IPRECOVERY .

Analysis. In the above linear program, we show that
the parameters 8;; and the a; derived using the equa-
tion «; = (y; —m;)/(z; —m;), are closely related.

LEMMA 1. o; € [0, 1].

PRroOF. From the constraint (y; — m;)(z; — y;) > 0,
sgn(y; — m;) = sgn(z; — y;) = sgn(z — my).
Thus y; lies between z; and m;. Hence, |y; — m;| <
|z; — m;]. Thus a; = (y; —my)/(z —my;) < 1.
On the other hand, from the same constraint we get,

(yi —mq)(2i — yi)

> 0
(Zi — mi)Q -
= (yi —my)/(zi —mu) >
= |y —my|/|ze —mi| >
=0 2
O
LEMMA 2. If ﬁil > ¢y then a; < %

PROOF. From b;-sgn(y;—m;)-(zi—m;) > Bijly: — myl,
Tz — mg| = Biylyi — mi| > ealys — myl
= L > lya—mal a;. O

3co lzi—m,| —

COROLLARY 1. If B;1 > 1/2 then a; < 2.

b; - sgn(y; —mi) - (zi — mi) < Bijlys —mal + K - (1= Bi;), Vi, JLemMA 3. If Bis > c3 then o > ¢ — 39=2,

S B =LVYieV

Relaxation and rounding. We refer to the so-
lution of this integer program as the IPRECOVERY .

3cs3
PROOF. From b;-sgn(y;—m;)-(zi—m;) < Bijlys — mq|+
K- (1= Bij),
= 2 < Biz-ai+a(l - Bi).
= (c1— 2) = Bis(cr — ) > ez(er — o)

éai>cl—%. O



COROLLARY 2. If B3 > 1/2 and ¢y = 1 then oy > %.

THEOREM 1. If B;; > 1/2 for some j € {1,2,3} and
derived « € By, then |j — k| < 1.

PrROOF. For j = 2, the theorem is trivially true. For
j = 1, 3 the proof follows from Corollary 1 and Corollary
2. O

In words, Theorem 1 says that if S has reasonable

weight (;1/2) on some bucket Bj, then the derived
bucket By, from « is very close to Bj.

5. SEED RECOVERY

In the previous section, we discussed how to infer the
conformity parameters «; for users in a social network.
The knowledge of those parameters enables various in-
teresting applications. In this section, we discuss one
such application called the SEEDRECOVERY problem.

Consider the scenario where y; represents the opin-
ion about a certain product. By means of a marketing
campaign, a company might try to influence the general
opinions on this product by planting few nodes with
very high innate opinions about such products. This
could be done, for example, by paying celebrities to
tweet about certain products or events. The problem
of how to choose a few nodes to seed an opinion on a
network has been extensively studied [23, 12]. In the
context of SEEDRECOVERY , we ask the following ques-
tion: given the expressed opinions in a network, how
likely it is that those were seeded by a small number of
nodes ?

We assume that opinions are normalized in such a
way that z; = 0 represents a default neutral opinion,
i.e., the node hasn’t heard about that particular prod-
uct or has neither positive nor negative innate opinions
about it. Now, given a certain observed expressed opin-
ions vy, is there a vector z with a small number of innate
non-neutral opinions that could have produced y as an
outcome of the Friedkin-Johnsen dynamic ? In other
words, for a given k, can we estimate:

error, = min|jy — Fz||3 s.t. ||z]o = &
z

This can be cast as an instance of the sparse recovery
problem from compressed sensing. The two main ap-
proaches to solve this problem are convex relaxation
[2, 8] and greedy algorithms [32, 5]. We take the lat-
ter route and apply the well-known Forward Regression
algorithm that was analyzed in [5]. Davis et al. [6]
showed that the problem of minimizing error; admits
no multiplicative approximation, by showing that it is
NP-hard to check for a given instance if errory = 0. As
a result, approximation guarantees for this problem are
usually given in terms of the squared multiple correla-
tion or R? objective (R? = 1—errory/||y||3), which is a
well known measure of goodness-of-fit in statistics [22].

We note that since 0 < errory < |y||3, the R*-
objective is in the [0,1] range, where R? = 1 corre-
sponds to a solution of error; = 0. We will say that a
solution z is an a-approximation if R?*(z) > o - R*(2')
for any 2z’ € R™ with ||2/|o = k.

Now we describe the Forward Regression algorithm
and derive its approximation guarantees for the SEE-
DRECOVERY problem. First, we note that the problem
can be re-written as:

error; = min
S:|S

min |jy — Fszs||3
zs

For a fixed S C [n], it is a classic result in Linear Alge-
bra (see [15] for example) that ||y—Fszs||3 is minimized
by the vector zg = (FLFg) 'FLy, therefore the error
can be written as:

errory, = min fly - Fs(FsFs) ' Fyl3

. 2 T T 1T
m —y ' Fg(FcF F
S:‘é}lgkny”z y Fs( S s) sY

since Fg(FLFg) 'FLy and y — Fg(FLFgs) 'FLy are
perpendicular vectors. This transformation allows us
to write the problem in terms of the R? objective as:

R? = gmax, f(8) where f(S) = j'Fs(F5Fs) 'Fsj

and § = y/|ly|l2. The Forward Regression algorithm
builds a family of sets incrementally by adding the ele-
ment that provides the maximum increase in value for
f. The algorithm is initialized with Sy = () and for
each k = 1...,n, we define Sy = S U {i} for some
i € argmax;gg, f(Sk U{j})-

We will provide a two-fold validation for the Forward
Regression algorithm for the Seed Recovery problem:
the first is theoretical. We will use a result due to Das
and Kempe [5] to give a theoretical approximation guar-
antee for this problem for a special case. The Forward
Regression algorithm notoriously performs much better
in practice than its theoretical bounds [5], however the
theoretical guarantee is useful to highlight the depen-
dency of the algorithm on parameters of the instance.
In particular, we will show that the approximation guar-
antee improves for higher values of ;. In Section 7,
we also perform experimental validation of this algo-
rithm: we construct synthetic instances of the problem
for which the innate opinions form a sparse vector and
evaluate the outcome of the Forward Regression algo-
rithm against the ground truth.

The theoretical guarantee on the approximation of
the Forward Regression algorithm can be obtained from
spectral properties of the matrix F:

THEOREM 2 (DAs AND KEMPE [5]). For eachk =



1,2,...,n,
7)\k' T
f(Sk) > {1 — exp <“”‘(FF)H -Sflnsjgkf(S)

max; ||F*[|3
where F' is the i-th column of matriz F and \E, (FTF)
is the smallest k-sparse eigenvalue of the matriz FTF,
i-€.; Mpmin(F7F) = mingepn\o,jo o=k | F[3/[3

In what follows, we provide a lower bound on the
exponent \¥. (FTF)/max; ||[F?||3 for the special case
of regular undirected graphs and uniform «; values, i.e.,
we will assume that «; is the same for all ¢ and that the
graph is undirected and all nodes have the same degree.
Since «; is the same and d; is the same for all nodes,
we drop the subscript i for the rest of the section. The
Friedkin-Johnsen matrix F in this case is symmetric and

can be written as:

l—a N\ ' & 10\"
— _ _ k
F—a-(I—d-A> —aZ(l—a) (dA>
k=0
using the matrix identity (I-M)~! = 32/ M*. From
this we can observe that the entries of F are non-negative.
We use this fact to show the following result:

LEMMA 4. If F is the Friedkin-Johnsen matriz as-
sociated with an undirected regular graph with degree d
and uniform values a; = a(> 0), then all columns of
the matriz F have their norm bounded by 1.

PROOF. Let 1 be the vector with all components equal
to 1. Then if A is the matrix associated with the reg-
ular graph, then clearly éAl = 1. Therefore F1 =
ad i (1—a)* (1A 1 = 1a Y7 (1—a)® = 1. There-
fore, for all rows ¢, Zj F;; = 1. Since the entries are
non-negative, it means that all entries are in the [0, 1]
range. Finally, we use the symmetry of F to see that:

[F5 =) F} <) Fi; =1
j j
O

The remaining term in Theorem 2is \* . (FTF), which

min

we bound by the smallest eigenvalue of FTF:

Frl2
A in(FTF) > Apyin (F7F) = min | 33@2
a0 [lz]2

In the subsequent proof, we use the concept of the op-
erator norm of a matrix. Given a square matrix M, we

define its operator norm || M||z = max,ecrn\ (o} [|[Mz|[2/| 2|2

and use the following matrix inequalities:

M1 + Moz < [|[My|lz + [[Mz|2 (4)

My - Mgl < [[Myl2 - | Ma]|2 (5)

We refer to [15] for an extensive exposition on matrix
norms and spectral properties of matrices.

Also, given the adjacency matrix A of a regular graph
of degree d. We will use the fact [3] that the operator
norm of the adjacency matrix is at most the maximum
degree of its vertices, hence,

1
|5l <1 (6)

LEMMA 5. If F is the Friedkin-Johnsen matriz asso-
ciated with an undirected reqular graph d and uniform
values a; = a(> 0), then

2
)\min(FTF) Z az
PROOF. Since a > 0 then F is invertible, therefore:

F 2 2
el ol
v£0 [F1yll3
Flyl,]77
_ |:HlaX || y||2:| _ HF71||2—2
v#20  |lyll2
By the definition of F we have that:

Amin (FTF) = min
a0 |23

- _ 1
F'l=qa 1~(If(1fo<)~&A)

Therefore:

IF 2 <o ([Tl + (1 - a)[gAll2) o™ (1+1-a) <207

Here the first inequality follows from the matrix inequal-

ities 4 and 5 and the second inequality follows from in-
2

equality 6. Thus, Ay, (FTF) > e O

Thus from Theorem 2, Lemma 4 and 5, we get the
following theorem:

THEOREM 3. For each k =1,2,...,n,
> [1— —a? . )
f(8k) 2 [1 ~exp (=a?/4)] - max f(5)

6. CONFORMITY EXTRACTION EXPER-
IMENTS

In this section, we present the results for our exper-
iments for the CONFORMITYEXTRACTION problem on
both real world Twitter data and synthetic data.

6.1 Conformity in Synthetic Data

We first conduct synthetic experiments (where we
have complete access to ground truth and can there-
fore obtain fine-grained validation) to show that our al-
gorithms described in Section 4 can extract conformity
values with high accuracy. Toward this end, we gen-
erated graphs having regular, random and power law
degree distributions. The number of nodes in the graph
was varied from 100 to 1000. The degree in the regular
graph case was set to 20 while the maximum degree in
the power-law and random graph was set to 100.

Every node was assigned one of 10 innate opinions in
{0,1,2,...,9}. To capture a homophily effect on the



innate opinions, we imposed a Lipschitz constraint on
the assignment of innate opinions to nodes, such that
for 85% of the graph edges, the difference in opinions
between the nodes forming the edge is at most 1.

For assigning « values to nodes, we used three dif-
ferent distributions: « values distributed uniformly in
[0, 1], v values taken from a power-law distribution with
most of the values close to 0, and a bimodal Gaussian
distribution with peaks close to 0 and 0.5. Finally, we
note that all results are averaged over 10 runs.

Using the a distribution and innate opinions of nodes
in the graph, we ran 5000 rounds of the Friedkin-Johnsen
opinion dynamics, and considered the final opinions of
the nodes as their expressed opinions.

Based on these expressed opinions and the graph struc-
ture, we then estimated the « values of all nodes in the
graph, using our LPRECOVERY and IPRECOVERY al-
gorithms for CONFORMITYEXTRACTION described in
Section 4. For all our experiments, we used a commer-
cial optimization solver [19] to run LPRECOVERY and
IPRECOVERY . To measure the effectiveness of our al-
gorithms, we compared the estimated o values with
the ground-truth o parameters. We first categorized
the nodes into three buckets based on their ground
truth a values: low, medium, and high corresponding to
the ranges [0,1/3], (1/3,2/3], and (2/3, 1] respectively.
Then, we plotted the performance of our algorithms
(separately for each bucket and also for for the overall
set of nodes) using two metrics: 1) a fine-grained mea-
sure corresponding to the absolute error between the
ground truth « and the estimated «; 2) a coarse-grained
measure corresponding to the accuracy or percentage of
nodes for which we estimated their buckets correctly.

Figure 1 illustrates the results for random graphs us-
ing the LPRECOVERY algorithm. We varied the num-
ber of nodes in {100, 250, 500, 750,1000} and ran the
experiments with the three different types of o distribu-
tions. In almost all the cases, the absolute error in esti-
mating the conformity parameters was less then 0.12. In
general, we observe that the accuracy of our algorithm
is slightly better for the sparse « distribution where
most of the nodes have low « values, than with other
distributions. We also note that the estimation error
for the « values is lower for large graphs than for small
graphs. This is likely due to the fact that as we increase
the number of nodes in the random graph, the expected
degree of a node increases, which then strengthens the
homophily assumptions used by the linear program to
prune its feasible solution space.

The results for the accuracy measure are qualitatively
similar. As seen from the figure, we recover at least 80%
of the values in each bucket. Again, in the natural case
of sparse « distribution, this number increases to 90%.

We observe that we obtained qualitatively similar re-
sults for the case of regular and power-law graphs and

for the case where we used the IPRECOVERY algorithm
instead of LPRECOVERY . The results are omitted due
to lack of space.

6.2 Conformity in Twitter Data

Next, we ran our algorithms for CONFORMITYEX-
TRACTION on real world social network data from Twit-
ter. Our data set comprised of user opinions extracted
from a large set of tweets corresponding to one of three
topics, namely: organic food, weight loss and electric
cars. We considered all tweets related to these top-
ics (using simple keyword-based classifiers) within a 6-
month timeline from 12/1/2012 to 5/31/2013. The
total number of tweets in each topic varied between
100000 and 2000000. We then ran each tweet through
a commercial sentiment analyzer [24] to obtain senti-
ment values ranging from —1 (corresponding to negative
sentiment) to 1 (corresponding to positive sentiment),
which was then smoothed into one of 10 opinion buck-
ets. We treated the median of a user’s last three opinion
values as her expressed opinion. Using the Twitter fol-
low graph, we obtained the induced subgraph over the
nodes (across all topics) with around 1 million nodes
and 100 million edges. As before, our goal is to extract
« values of the users using the expressed opinions and
graph structure.

One significant difference in this experiment is that,
unlike the synthetic experiments, there is no explicit
ground truth « values available for the users. To over-
come this problem, we identified, using tweet histories, a
small set of ground truth consisting of users with high
« and low «. To obtain this ground truth for each
topic, we first extract users with at least 5 tweets on
the topic, and have at least 5 neighbors in the Twitter
graph who have also tweeted about the topic. We cate-
gorize a user’s tweet into a positive, negative or neutral
opinion based on the sentiment value. We then define
a stubborn user (high « bucket) as one whose opinions
differs from her majority neighboring opinion for € frac-
tion of her tweets. Similarly a user is conforming (low
a bucket) if her final opinion is different from her initial
opinion and whose set of opinions is the same as the fi-
nal majority opinion in her neighborhood for v fraction
of her tweets. We ignored the nodes that do not satisfy
these conditions in our analysis. For our experiments
we set € to be 0.7 and v to be 0.3.

Note that the above method to compute the ground
truth cannot be used as a general algorithm to extract
conformity values for all users since only a small set
of users satisfy the aforementioned criteria to reliably
measure their conformity. This necessitates the design
of algorithms such as the ones proposed in this paper.

For each of the topics, we ran our IPRECOVERY and
LPRECOVERY algorithms using the expressed opinions
and the induced graph structure on all Twitter users
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Figure 1: Effectiveness of LPRECOVERY on random graphs

Topic Algorithm Percentage | Percentage
of stub- | of conform-
born nodes | ing nodes
recovered recovered

Electric Car LPRECOVERY 75 65

Electric Car IPRECOVERY]| 77 82.5

Organic Food | LPRECOVERY 87.5 66.7

Organic Food | IPRECOVERY| 89 59

Weight Loss LPRECOVERY 55 65

Weight Loss IPRECOVERY]| 55 61

Table 1: Conformity Extraction on Twitter

who have tweeted about the topic at least 5 times and
have at least 5 neighbors, and estimated their confor-
mity parameter «. This yielded around 2000 to 15000
users for each topic. From among these users, we then
extracted a smaller ground truth set of stubborn users
and conforming users. We considered the estimated «
value for each user in the ground truth set, and used
a threshold of 0.66 and 0.33 on their estimated « to
predict whether these users are stubborn, conforming,
or neither. We then measure the recall with respect
to the stubborn user set (i.e., what fraction of ground
truth stubborn users were correctly recovered by our al-
gorithm) and similarly with respect to the conforming
user set. Table 1 summarizes the results.

As the table shows, our algorithms perform well in
recovering the stubborn users from the ground truth
set for many instances. In particular, for the topic of
organic food, our algorithms recover almost 90% of the
stubborn users, but recover a lesser (60%) fraction of
the conforming user. On the other hand, for weight loss,
the performance of the algorithms in recovering the con-
forming users (65%) is better than that for the stubborn
users (55%). This correlated with the observed skew

toward stubborn users for organic food and conforming
users for weight loss (see Figure 3).

The table above also validates empirically that the
LPRECOVERY algorithm is a good approximation to
the (much slower) IPRECOVERY algorithm, since the
gap in performance between the two algorithms for most
cases is less than 10%.

6.3 Validation of homophily in Twitter

The assumption of homophily in the innate opinions
of users in a social networks is crucial in our LPRE-
COVERY and IPRECOVERY algorithms, since it helps
us solve an under-determined system of equations. To
validate this assumption, we set out to observe the dif-
ference between the innate values of neighbors in the
Twitter follow graph for the three topics. For the ho-
mophily experiments, we define a user’s innate opinion
on a particular topic to be the average of the sentiment
values associated with the first three tweets posted by
the user in the 6 month time period. Recall that the
user’s opinion values as extracted from our sentiment
analyser are bucketed into {0,1,2,...,9}. Table 2 re-
ports the average difference in opinions between every
pair of users connected by an edge in the Twitter graph,
as well as the total fraction of edges in the graph for
which this difference in opinions is less than 1. As seen
in the table for our topics of interest, we observe that for
more than 64% of the users, the difference in opinions
across an edge is less than 1. Furthermore the average
difference between a pair of neighboring users is less
than 1 for all the topics.

7. SEED RECOVERY EXPERIMENTS

In the next set of experiments, we used the a values



Topics Avg gap in | Fraction of
neighboring | edges  with
opinions gap <1

Electric Car 0.75 64%

Weight Loss 0.79 69%

Organic Food 0.60 83%

Table 2: Homophily in Twitter data

from our previous CONFORMITYEXTRACTION experi-
ments to address the SEEDRECOVERY problem for both
synthetic as well as Twitter graphs. Thus, we would like
to compute a small set of nodes with a given innate
opinion (and assuming neutral innate opinion on all
other nodes) that can best explain the current expressed
opinions in the network resulting from Friedkin-Johnsen
dynamics. As described in Section 5, we measure the
discrepancy in the predicted expressed opinions using
this seed set versus the ground truth expressed opinion
across all the nodes in the graph. As mentioned ear-
lier, for measuring this discrepancy, we use the squared
multiple correlation (R?) metric, which lies in [0, 1] and
is essentially equal to 1 — L2Error, where L2Error is
the normalized Ly norm error between the predicted ex-
pressed opinion vector and the ground truth expressed
opinion vector. Our goal is to recover a seed set of k
nodes in the graph that can maximize the R? measure.

We use the GREEDY algorithm (defined in Section
5) to recover the best seed sets of size k (we vary k
from 1 to 20) for both synthetic and Twitter data. We
also report the characteristics of the computed seed set
as we vary its size k. We compare the performance of
the GREEDY algorithm against two natural baselines
that have been used in similar problems ( [23]): select-
ing nodes with the highest a-values and selecting nodes
with the highest degrees in the graph.

7.1 Synthetic Data

Similar to Section 6, we generated synthetic graphs of
1000 nodes with regular, random and power law degree
distributions, and assigned innate opinions in a similar
manner as earlier. We also used the same three dis-
tributions of « values as earlier: uniform, bimodal and
sparse. We only report the result of random graphs (the
regular and power-law graphs had qualitatively simi-
lar results). In Figure 2(a), we plot the R? metric as
a function of k for the various « distributions for the
GREEDY algorithm.

First, as expected, the R? increases as the size of the
seed set increases. More interestingly, even for as low
as 6 seed nodes, we get an R? value of close to 0.92
indicating a very good agreement between the origi-
nal and predicted expressed opinions. For comparison,
we also plot the corresponding R? values using the two
baseline algorithms (selecting nodes according to the «

10

values and degrees respectively) for each of the « dis-
tributions. Clearly, our GREEDY algorithm performs
significantly better than both the baselines. Secondly,
in terms of the characteristics of the seed set selected
by GREEDY , we observe that the algorithm starts off
by initially selecting high-degree, stubborn nodes, and
then moves to nodes with lower o and degree values
(Figures 2(b) and 2(d)) as the size of the seed set in-
creases. We also measured the difference in the a values
between a node in the seed set and its average neighbor-
ing a. Figure 2(c) indicates that our algorithm favors
selecting seed nodes that have high « but whose neigh-
bors have low a values. These observations agree with
our intuitive expectation that the most likely seed nodes
are ones that are stubborn and have a large number of
conforming neighbors. Interestingly, similar behaviour
has also been observed previously in [4] in the context
of selecting nodes to best estimate the average innate
opinion in the network.

In a more direct experiment (Figures 2(e) and 2(f)),
we “planted” 10 seed nodes in a 1000 node random
graph with a = 0.95 for all the 10 nodes. Further,
these 10 nodes were initialized with non-neutral innate
opinions while those of the remaining nodes had neu-
tral opinions. As before, the a values of the remain-
ing nodes were drawn from three different distributions
— sparse, bimodal, and uniform. The goal of this ex-
periment was to validate if our algorithm can indeed
”recover” the planted seed nodes, purely based on the
expressed opinions and alpha values of all the nodes.
Note that the graph also contained several (based on
the specific « distribution) stubborn nodes that were
not seeds, and hence it is not sufficient to simply pick
nodes with large o values as the seeds. This is corrob-
orated by Figure 2(e) which shows that the R? value of
the seed set obtained by the GREEDY algorithm outper-
forms the a-based algorithm. The a-based algorithm
in turn outperforms the degree-based algorithm, due to
the fact that the seed nodes in this case have high alpha
values.

In particular, Figure 2(e) shows that the GREEDY al-
gorithm finds exactly the right set of 10 seed nodes.
This is because for any size > 10, the R? value is 1.0,
implying that the selected seed set actually contains all
the 10 seed nodes! This observation is further corrobo-
rated by Figure 2(f) where we see that the average value
of o for the seed set of size 10 is precisely 0.95 which
is indeed the a value for each of the planted stubborn
node.

7.2 Twitter Data

Next, we repeated the SEEDRECOVERY experiments
using Twitter data for various topics. The dataset and
resulting social graph are exactly the same as in Sec-
tion 6.2. As earlier, we used the « values generated
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Figure 2: Characteristics of the seed set for synthetic random graphs, with uniform, bimodal, and
power-law a-distributions. Figures 2(e) and 2(f) show results for the “planted” seed set experiment.

from the conformity extraction experiments described
in Section 6.2. Figure 3 shows the distribution of these
« values for different topics. The a distributions for all
the topics resemble either sparse or bimodal distribu-
tions, and we remind the reader that we covered both
of them in our simulations.

0.7 B Electric Car B Organic Food B Weight Loss

0-0.33 0.33-0.66 0.66-1
a value

Figure 3: Distribution of a across the three
buckets

The results are summarized in Figure 4. Qualita-
tively, even for this data, we observe similar results to
the simulations. The R? of the selected seed set is much
larger than the a-based and degree-based baseline algo-
rithms, for all the topics. Similarly, based on the plots
showing the average « value, average degree, and av-
erage neighborhood difference in « values for the seed
set, the GREEDY algorithm shows a clear preference for
selecting seed nodes that are moderately stubborn and
have a large number of conforming neighbors. (Note
that just selecting seed nodes based on high alpha values
alone does not suffice, as shown by the corresponding
baseline performance in 4(a)).
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However, we do see interesting differences in the R?
plots between various topics. For example, while the
squared multiple correlation for Electric cars is around
0.6 for £k = 20, it is only around 0.2 for the case of
Organic food or Weight loss. This suggests that for the
Twitter data, the equilibrium opinions for Electric cars
is much more likely to have been generated by a small
number of seed nodes, as compared to those for organic
food or weight loss. We therefore surmise that the R?
measure of the seed set for a topic might provide insights
into a notion of how “heterogenous” or “diverse” is the
opinion dynamics for that topic in a social network.

8.  CONCLUSIONS

The notion of conformity plays a central role in shap-
ing of users opinions in online social networks. In this
study, we proposed algorithms for estimating confor-
mity of users using only the expressed opinions of users
resulting from the underlying opinion dynamics and the
social graph. Under some natural conditions, we show
using both simulations and Twitter data that our algo-
rithms perform well on extracting the conformity values
of the users.

Further, we propose efficient algorithms to recover
the smallest set of source nodes in the graph that best
explain the current distribution of opinions in the entire
graph. We refer to this problem as seed recovery and
we believe this and similar problems have many appli-
cations in running effective marketing campaigns, un-
derstanding information flow in social networks etc. As
before, we validate our algorithms for this problem us-
ing both simulations and Twitter data. An interesting
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Figure 4: Characteristics of seed set for the three different topics on Twitter

open question is to generalize the conformity extraction
problem to other well-studied opinion dynamics mod-
els.
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