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ABSTRACT
Diversity in training data density and environment locality is in-
trinsic in the real-world deployment of indoor localization system-
s and has a major impact on the performance of existing local-
ization approaches. In this paper, through micro-benchmarks, we
find that fingerprint-based approaches are preferable in scenarios
where a dense database is available; while model-based approaches
are the method of choice in the case of sparse data. It should be
noted, however, that practical situations are complex. A single
deployment often features both sparse and dense sampled areas.
Furthermore, the internal layout affects the propagation of radio
signals and exhibits environmental impacts. A certain number of
measurement samples may be sufficient for one part of the build-
ing, but entirely insufficient for another. Thus, finding the right
indoor localization algorithm for a given large-scale deployment is
challenging, if not impossible; there is no one-size-fits-all indoor
localization approach.

Realizing the fundamental fact that the quality of the location
database capturing the actual radio map dictates localization accu-
racy, in this paper, we propose Modellet, an algorithmic approach
that optimally approximates the actual radio map by unifying model-
based and fingerprint-based approaches. Modellet represents the
radio map using a fingerprint-cloud that incorporates both mea-
sured real fingerprints and virtual fingerprints, which are computed
from models with a local support, based on the key concept of the
supporting set. We evaluate Modellet with data collected from an
office building as well as 13 large-scale deployment venues (shop-
ping malls and airports), located across China, U.S., and Germany.
Comparing Modellet with two representative baseline approach-
es, RADAR and EZPerfect, demonstrates that Modellet effective-
ly adapts to different data densities and environmental conditions,
substantially outperforming existing approaches.
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1. INTRODUCTION
In recent years, indoor localization has been one of the most

deeply and frequently studied problems both in the mobile com-
puting research community, and in industry (over 90 companies
now in the indoor localization alliance [3]). WiFi-based indoor
localization approaches have been the center of attention, due to
their low deployment cost, potential for reasonable accuracy and
readiness to be applied to mobile devices. Existing WiFi-based
solutions usually fall into one of two categories: fingerprint-based
[5, 20, 40] and model-based approaches [9, 11, 15, 23]. The former
fingerprints locations in the area of interest and then searches for
the best matching location, while the latter trains a signal propa-
gation model using training/calibration data and then applies tri-
lateration for localization. While these methods have been shown
to achieve promising localization accuracy (below 10 meters at
90%tile) under lab conditions, large-scale accurate indoor localiza-
tion systems have yet to be developed. For example, given real-
world fingerprint sampling conditions, the localization accuracy
of existing approaches in large venues like shopping malls and
airports can still be up to 20∼30m at 90%tile; similar results are
reported by Google [2].

One reason for this well-known and frequently-lamented dis-
crepancy is that academic research has so far mostly focused on
only one part of the problem: location inference, i.e., resolving the
position for a given WiFi signal. However, for any given location
inference algorithm, it is how well the location database captures
the actual radio map that dictates localization accuracy. Thus, it is
crucial to acquire (and maintain) a high-quality database.

In our experience with over 13 large-scale industrial deployments,
we have found that the challenges lie in both data density and
environmental conditions. It is often difficult, if even possible, to
obtain an equally dense set of high-quality samples across an entire
building complex. And even if it was possible to get a spatially
uniform sample database (in some subareas), the different local
environments (room layout, AP deployment, etc) imply that the
sampled fingerprints may yield high-accuracy localization in one
location, while being entirely insufficient in others. Such reali-
ty poses a fundamental challenge to existing WiFi-based indoor
localization approaches, partially explaining their inadequate per-
formance in practice. A key insight suggested by this study is
that different localization approaches are preferably applied un-
der different conditions (data density, environment); for a given
approach, parameters should be fine-tuned for different locations
within the same deployment. In other words, there is no one-size-



fit-all solution among existing localization algorithms, even for a
single deployment. Such a conclusion is also implicitly supported
by observations from [6, 12], in which the authors did extensive
measurements and experiments in a lab setting.

In this paper, we set out to attack the challenges of nonuniform
data density and environmental impact by designing a systematic
and unified way to better approximate the actual radio map using
whatever data samples are available. We propose Modellet, an
algorithmic approach that optimally approximates the actual radio
map by unifying a model-based and fingerprint-based approach.

Inspired by the practice of visualizing a surface through meshing
neighboring vortexes in computer graphics, in Modellet, we try to
approximate the possibly irregular radio map by ‘meshing’ neigh-
boring fingerprints. In particular, Modellet adapts to the specific
local data density and environmental conditions by fusing informa-
tion from both measured fingerprints and signal propagation mod-
els, based on the key concepts of the supporting set. A supporting
set is a set of real fingerprints from which a derived model can
best approximate the local radio map. Borrowing from the practice
of using point cloud to represent arbitrary object in 3D modelling,
we propose a fingerprint-cloud notion to approximate the actual
radio map, i.e., representing arbitrary shaped radio map from dense
fingerprints. A fingerprint-cloud incorporates both real and virtual
fingerprints, where virtual fingerprints are spatially uniformly sam-
pled across areas of interest and computed via the signal propaga-
tion model obtained from the supporting set.

The combination of fingerprint-cloud and supporting set enables
Modellet to always adjust to the locally optimal trade-off between
model-based and fingerprint-based approaches, and to optimally
fine-tune the algorithm parameters. An effective device gain es-
timation method is also proposed to address device diversity. As a
result, Modellet performs well under real-world noisy and nonuni-
form datasets, and in different environmental conditions. We are
aware that several previous studies have examined localization ac-
curacy against various data densities and environmental conditions,
like [5, 6, 12, 17, 26] among others. However, to the best of our
knowledge, we are the first to try designing a systematic approach
that automatically adapts to data density, which may change as
more data flows in.

In summary, we make the following major contributions:

• We establish how different families of localization algorithms
perform differently under different data densities and environ-
mental conditions. To the best of our knowledge, this is the first
in-depth study in this field.
• We design a unifying localization framework called Modellet,

which addresses the challenges of nonuniform data density and
environmental impacts from a database construction aspect. Us-
ing the concept of fingerprint-cloud and supporting set, Modellet
ensures an optimal use of available sample data in the vicinity
of the location in question. An effective device gain estimation
method is also proposed.
• We conduct extensive experiments based on real data collected

from an office building and over 13 large venues, located in Chi-
na, US, and Germany. Such large-scale evaluations for indoor
localization using realistic databases have rarely been published.

The paper is organized as follows: Section 2 describes the motivat-
ing observations regarding data density and environmental condi-
tions. We provide the overview of Modellet in Section 3, followed
by details on its core concepts in Sections 4 and 5. We further
present a way to address the device gain diversity in 6. We evaluate
Modellet in Section 7. We discuss practical issues and possible

extensions in Section 8 and provide an overview of existing the
state-of-the-art indoor localization methods in Section 9. Section
10 concludes this paper.

2. MOTIVATION

2.1 Properties of Real Service Data
We conduct real world deployments of indoor localization ser-

vices at multiple large shopping malls, airports and enterprise build-
ings. The large scale real world training data collected during such
deployments reveals two features that do not stand out from those
collected in a lab environment in early research papers.
Nonuniform Data Density: The data we obtained, through both
war-walking and tap-and-point methods of data collection by third-
party vendors, are of different density across different subareas
of various indoor environments. For example, the pathway ar-
eas usually have much denser training data than the inner parts
of the shops in a mall. There are many reasons for the survey-
or cannot perform long time data collection inside shops without
getting consent from the shop owner; it is more challenging to
figure out precise positions within shops than on the pathways as
the maps contain little information about inner shops; pathways
can be surveyed by regular walking while inside shops have to be
collected point by point. The situation will not change substantially
for crowdsourcing-based data collection (e.g., [22, 31, 33, 38]) as
popular places and pathways will always have more chances to be
visited and hence enjoy more frequent data collection. In addition,
the WiFi infrastructure may be updated with APs removed, relocat-
ed or added. Thus, it is unlikely to obtain a location database that
has all indoor areas sampled dense enough and up to date.
Environmental Impact: Indoor environments are typically di-
vided into many smaller functional areas such as corridors, rooms
and shops, among others. They are usually separated using cement,
wood or glass walls that cause different penetrations and reflections
of radio signal. Unlike office or campus building environments,
shopping malls and airports are usually constructed very differ-
ently. Their internal layouts are much less regular and may be
arbitrarily divided to meet different functional requirement. In par-
ticular, shopping malls and airports often contain large atria. This
renders them very challenging environments for indoor positioning.
Signals from multiple floors can be heard at locations near the
atrium. It is difficult even to locate user’s correct floor.

2.2 Impact on Localization
To understand how training data density and environmental con-

ditions may affect localization accuracy, we carry out several mi-
crobenchmarks to understand their impact. In our experiments, we
consider RADAR [5] and EZPerfect [9, 28], which are represen-
tative fingerprint-based and model-based localization approaches,
respectively.

• RADAR first collects fingerprints from various known locations
to build up a fingerprint database. It then determines the posi-
tion of an incoming fingerprint by comparing it against all fin-
gerprints in the database, and averages the locations of a few
fingerprints nearest in signal space.
• EZPerfect adopts the log-distance path loss (LDPL) model [28]

and trains model parameters from fingerprints with known loca-
tions. Model parameters instead of fingerprints are stored in the
location database. Trilateration or multilateration is applied to
estimate the location for an incoming fingerprint.



Figure 1: A 75m×40m office area for data collection. Each red
dot represents a sampling location. One fingerprint is collected
for each location.

Horus [40], a proven approach that outperforms RADAR, was
not considered here. Horus achieves excellent performance by ex-
ploring temporal diversity (i.e., repeated sampling at the same lo-
cation) to iron out random errors in signal readings. However,
the data collection time is prohibitive in real world deployment.
Even with war-walking based data collection, venues like large
shopping malls in our evaluation in Section 7 still require a whole
day (around 8 hours) to fill each 10 × 10m2 grid only 20 ∼ 30
fingerprints, far below the number of samples (100) per 1 ∼ 2m
apart adopted in [40].

The data for our benchmarks was densely collected along the
corridors in an office building, as shown in Fig. 1. Fingerprints
are collected ∼ 0.6m apart, producing a total of 329 fingerprints.
The high data density allows us to emulate sparser data collection
via downsampling. As corridors have much simpler structure than
other areas such as inner shops, we expect the findings below would
be more severe for other indoor areas.
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Figure 2: Localization errors at different data densities, for
RADAR and EZPerfect. ‘3m’ and ‘5m’ are the grid size for
downsampling, and ‘all’ means using all the data.

Impact of Data Density: We first split the whole dataset into
training (80%) and testing (20%) data. Then, we vary the density
of the training data by uniform downsampling. Fig. 2 shows the
comparisons between RADAR and EZPerfect under various data
densities. In the figure, ‘3m’, ‘5m’ and ‘all’ means retaining one
sample every 3 meters, one sample every 5 meters and using al-
l samples, respectively. We can see that EZPerfect outperforms
RADAR on downsampled data, while RADAR achieves better ac-
curacy with full data. Thus we make the following observation:

Observation 1: Fingerprint- and model-based approaches are more
suitable for different densities. With dense training data, fingerprint-

based schemes yields better accuracy; whereas with sparse training
data, model-based ones are better.

As indoor location services may obtain new training data over
time, e.g., through additional surveys or contributions of real users,
the density of training data may vary. The above observation im-
plies that the location service should be able to automatically adapt
to and make best use of all available training data. A similar obser-
vation is made in [6], where the authors experiment with different
number of sniffers (called landmarks) to locate one transmitter and
found different sniffer densities favor different localization meth-
ods. The difference with our observation lies in that ours is made
from varying densities of collected fingerprints.
Impact of Environmental Conditions: To show how the physical
layout of indoor environment affects indoor localization, we high-
light in Fig. 3 the measured RSSs and the model fitness errors for a
randomly picked AP. Here, the fitness error refers to the difference
between the measured and model-calculated RSSs. In the left fig-
ure, a bubble stands for an observation. The size and color of the
bubble represent the magnitude of RSS: the larger and the redder
the bubble, the higher the RSS, and vise versa. We can see that the
signal attenuates at very different speed along different corridors.
For instance, positions A and B are the same distance from the
AP, but their RSSs differ by 10dB. In the right figure, bubble size
indicates the magnitude of fitness error, and the green or blue color
stands for a positive or negative error. From the figures, we make
the follow observation:

Observation 2: The internal layout of an environment significantly
impacts radio signal propagation. Applying a single omni-model
to all observations always yields large fitness errors. Yet nearby
positions tend to see a similar fitness error, which indicates the
existence of environmental locality.

Note that the environmental impact is orthogonal to the training
data density. No matter how dense the data is, the environmental
impact persists.

B

A A

B

Figure 3: The observed RSSs and model fitness errors of a
randomly picked AP along the corridors.

Observation Analysis: The above observations are rooted at the
irregularity of a radio map – a map of signal strengths at different
locations, and the ability to approximate the radio map from train-
ing data. The localization process is actually a process to find the
best match(es) to a given fingerprint from the radio map and return
the position of the best match(es). The better we can approximate
the actual radio map, the better the localization accuracy that can
be achieved.

When the training data are sparse, the radio map cannot be well
approximated with few fingerprints. However, under the assump-
tion of a radio propagation model, the radio map can be better
approximated. The model requires only a few samples to train
the model parameter. On the contrary, when the training data are
dense, distances between fingerprints are close. Thus, direct use
of the fingerprints can well approximate the radio map, whereas an
oversimplified omni-model will lead to a high fitness error.



The second observation is easy to understand. The walls block
or alter the radio signal propagation paths. An overall omni-model
must be a compromise between all observations, and nearby posi-
tions in the area warded by same walls tend to have a similar model
fitness error.

Though our observations are based on two specific localization
schemes, i.e., RADAR and EZPerfect, the above analysis can be
generalized to the whole class of solutions. Fingerprint based ap-
proaches approximate the radio map with nonparametric models.
Thus, they essentially require dense data for better approximation,
due to lack of knowledge in between measurements. On the oth-
er hand, omni-model based solutions use an oversimplified signal
propagation model to fit the measurements, leading to underfitting
under a dense database.

2.3 Simple Hybrid Does Not Work
The above analysis suggests that a simple hybrid of fingerprint-

based and model-based solutions may automatically adapt to var-
ious data densities. There may be different hybrid versions. An
intuitive method could be to switch between the two approach-
es depending on data density. i.e., if the data density is higher
than the threshold, we use a fingerprint-based approach, otherwise,
we choose a model-based approach. However, it is nontrivial, if
not impossible, to find this optimal threshold across various areas.
Motivated by observation 2, a second approach is to apply a fin-
gerprinting approach in complex areas and apply a model-based
approach in large and open areas such as [18,21]. However, they all
rely on the assumption of knowing the exact information of the wall
(material and thickness) and AP (power and position). Unfortu-
nately, such an assumption is generally unrealistic. A third method
is to first apply fingerprinting and obtain a few top candidates with
which a model is then trained from the resulting candidates. This
approach, however, is dictated by the accuracy of the candidates
returned from fingerprinting.

2.4 Challenges Towards Real World Services
Microbenchmarks and analyses reveal that the following chal-

lenges and requirements regarding the best use of training data
ought to be addressed to provide high accuracy indoor localization
services.
• Nonuniform data density. The system should be able to auto-

matically adapt to training data densities, sparse to dense, which
may even be altered over time.
• Environmental locality. The system should explore the environ-

mental localities in an autonomous way, without the assumption
of any priori knowledge of actual layout.

In addition, the well-known RSS fluctuation problem and device
diversity problem (i.e., different devices or the same device at d-
ifferent battery levels may have different receiver gain) have to be
tackled as well.

3. MODELLET OVERVIEW
We set out to attack the challenges of nonuniform data density

and environmental locality through the design of a systematic and
unified way to better approximate the actual radio map. We further
handle the device diversity problem through a dedicated device gain
estimation process.

3.1 Concepts in Modellet
As a thought process, if we think of the radio map as an un-

known, possibly irregular surface, the task of approximating the
radio map is then to reconstruct the surface from observations con-

tained in the training fingerprints. Inspired by the practice of vi-
sualizing a surface by meshing neighboring vortexes in computer
graphics, we may also mesh the neighboring fingerprints to approx-
imate the radio map.
Supporting Set: Directly meshing neighboring fingerprints is
improper as it implies a simple linear interpolation for positions in
between. The radio map produced in this way would be very noisy
due to RSS fluctuations and exhibits of discontinuity across mesh
boundaries. To work around this, we incorporate local models. The
intuition is simple: while one omni-model does not work well for
the entire area under the AP’s coverage, good local models still
exist in smaller subareas. Therefore, if we can properly divide AP’s
coverage into small zones, we can better approximate the radio map
using zonal models.

Clearly, the central task is to identify proper surrounding finger-
prints, termed as a supporting set, in the proximity of any location
of interest. The term location of interest, through out this paper,
is referred to as the location whereas we predict its received signal
strength from surrounding APs. Local models can then be built
from the supporting set. Fig. 4 illustrates the supporting set for
a location of interest (green circle) for a certain AP. While not
showing, we point out that the supporting set for different APs and
different interested positions will be different.

Fingerprint

Virtual Fingerprint

Interested Location

Supporting Set

Figure 4: Conceptional illustration of the key concepts in Mod-
ellet. The supporting set includes only measured fingerprints
(red dots). A virtual fingerprint may be at any position of
interest.

The supporting set concept allows us to effectively explore envi-
ronmental locality. In addition, as the number of parameters of
the model is fixed (e.g., four parameters for LDPL model), the
size of the supporting set is thus also limited, even though we
usually adopt more fingerprints than necessary to iron out RSS
fluctuations. This implies that the supporting set, and hence the
local models and the resulting approximation to the radio map, is
able to adapt to varying training data densities. The denser the
training data, the more local (i.e., smaller spatial coverage) the
supporting set. We elaborate the decision of supporting set and
its adaptation mechanism in Section 4.
Fingerprint Cloud: It is infeasible to represent the radio map
directly using supporting sets or corresponding derived local mod-
els. For any position of interest, a proper supporting set can be
identified and hence a local model can be built for any AP that can
be heard at that position. While the models of nearby positions
will be the same if their supporting sets are identical, the number
of potential supporting sets (hence models) of an AP may still be
large. In addition, a real radio map usable for indoor localization
consists of the maps of all APs. Due to different AP positions and
their intersections with the physical layout, the supporting sets for
different APs at the same position of interest are usually different.

To effectively represent the radio map, we propose the fingerprint-
cloud (FP-Cloud) concept, which is borrowed from the point-cloud



used in 3D modeling. Just like point-cloud represents arbitrary
shaped 3D models directly with dense sampling points, we capture
the irregular radio map using dense fingerprints. As the actually
collected fingerprints may not be dense enough, we create virtual
fingerprints (VFPs) at positions that were not sampled, or more
specifically at the locations of interest. Fig. 4 shows the FP-Cloud
of a subarea where the white circles and red circles indicate the
positions of virtual and real fingerprints, respectively.

Like a real fingerprint, a VFP also consists of a list of BSSID
and RSS pairs annotated with a given location. The difference is the
RSSs in VFP are calculated using the local signal propagation mod-
el (detailed in Section 5) whereas they are derived from real finger-
prints. Evidently, incorporating both real and virtual fingerprints,
FP-Cloud captures information from both real measurements and
local signal propagation knowledge.

3.2 Modellet System Overview
The overall system architecture of Modellet is shown in Fig. 5.

Similar to other indoor position systems, Modellet also consists of
an offline database (FP-Cloud) construction process and an online
location inference process. To generate the FP-Cloud, a venue is
first surveyed by cite survey specialists or crowdsources to obtain
training data. The training data is directly incorporated into the FP-
Cloud as raw fingerprints. The positions of virtual fingerprints (VF-
Ps) are then determined as locations of interest. For each location of
interest, the supporting set is identified. The VFP is then generated
by obtaining and applying the local model from the fingerprints in
the supporting set. VFPs are stored in the FP-Cloud.
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Figure 5: The Modellet system architecture.

In the online phase, upon receiving a query fingerprint, a device
gain estimation process is executed. The estimated device gain
and the user fingerprint are fed to the fingerprint matching engine,
which returns the most likely location for the user query. Note
that many location inference algorithms may be applied here. For
instance, RADAR finds the K nearest neighbours (KNN) based on
the signal strength vector distance, and uses the averaged location.
EZPerfect uses trilateration to calculate one location minimizing
the aggregated error distances to all APs. Even stochastic meth-
ods can be used [20, 40]. In our implementation, we use KNN as
RADAR does.

4. SUPPORTING SET
The primary purpose of identifying the supporting set is to obtain

a local model to better approximate the local surface of the radio
map. A proper supporting set should also adapt to the training
data density, and thus should be data-driven. When more data is
available, the supporting set should be more concentrated.

4.1 Spatial Kernel Function
Rigid schemes (e.g., always selecting a certain number of fin-

gerprints nearest to the position of interest) should be avoided even
though they also adapt to data density. For rigid schemes, if a small
number is set, they are not robust to RSS fluctuations; whereas if a
large number is set, they may fail to identify a valid supporting set
when data is sparse. Also, when the density is high, they may lead
to underfitting.

In Modellet, we avoid hard decisions in identifying the support-
ing set. Instead we allow a large range of fingerprints to contribute
but assign higher weights to fingerprints closer to the location of
interest through a spatial kernel function.

Consider a set of n observations for a certain BSSID

S = {s1, s2, · · · , sn}

The goal is to estimate the RSS at a certain location of interest
based on S through the local model. Let di be the Euclidean dis-
tance from the location of interest to the ith observation si. We
set the weight of si as a function of di, denoted as wi = K(di)
where K(·) is a kernel function which is monotonously decreasing
with di. We compared various kernel functions such as uniform,
tri-cube, and Gaussian, and finally pick the normalized Gaussian
for its robustness over signal fluctuations. Our kernel function thus
looks like

K(d) = e(dmin−d)/k (1)

where k is called bandwidth which controls the impact of local-
ity, and dmin is the distance from the location of interest to the
closest observation among S. When k → ∞, all measurements
are assigned weight 1, which implies no impact from locality. We
decrease the value of k to make it more biased for observations in
proximity. One special case is that all observations in S are far from
the location of interest, leading to small weight for all observations.
We carry out normalization ensuring the weight of the observation
closest to be 1.

In Modellet, we adopt the widely used log-distance path loss
(LDPL) model [9, 15, 23], described as follows:

RSSx,y = P0 − 10γ log dx,y (2)

dx,y =
√

(x0 − x)2 + (y0 − y)2

where P0 and γ are the reference power and path loss constant,
respectively. (x0, y0) is the 2D location of the AP.

The parameters, namelyP0, γ, x0, and y0, are learnt from the ob-
servations in the supporting set, as in [9], with the difference being
the minimizing of the aggregated weighted fitting errors, defined in
the following equation:

E =
∑
i∈[1,n]

wi · |si − ŝi| (3)

where ŝi is the calculated RSS with the the learnt LDPL model.
Optimization is conducted using Gradient Descent in our imple-
mentation to minimize Eq. (3) in order for a set of parameters for a
BSSID.

4.2 Finding The Optimal Kernel Bandwidth
A key parameter of the kernel function is the bandwidth, i.e., k

in Eq. (1). As discussed above, a k that is too large eliminates the
impact of locality, while one that is too small may cause overfitting
to observations. Therefore, the goal of finding the optimal kernel
bandwidth is: if one model fits the signal attenuation well, the
supporting set should be large (i.e., large k), and vice verse (i.e.,
small k).



We develop a modified leave one out cross validation (LOOCV)
for optimal kernel bandwidth selection. LOOCV is widely used
for kernel bandwidth selection, especially with limited training da-
ta size. The process is purely driven by data. The conventional
LOOCV is more suitable for homogeneous data, whereas a global
optimal kernel bandwidth is selected. However, the signal propa-
gation in an indoor environment is actually heterogeneous (hence
the locality). Intuitively, for open areas where the signal attenuates
smoothly, it is better to use larger bandwidth values for robust-
ness against random signal strength fluctuations. In contrast, small
bandwidth values should be used for locations where the signal
strength varies more significantly.

Our modified LOOCV searches an optimal kernel bandwidth for
each location of interest. There are two phases:

• Given a set of n observations si, i ∈ [1, n], we carry out
n rounds. In the ith round, we use si for validation and
the rest n − 1 for training. We iterate ki in a certain range
(like [1, 30]), and find the one that minimizes the validation
error |si − ŝi|. After n rounds, we derive a set of optimal
kernel bandwidths ki, i ∈ [1, n], each corresponding to an
observation.

• For each location of interest, we infer its kernel bandwidth
based on the kernel bandwidths of nearby observations de-
rived from the previous phase. Specifically, we adopt the
mean kernel bandwidth of the top few nearest observations.

An underlying assumption here is that the kernel bandwidths of
nearby locations are similar, which is implied by our observations
in Section 2.

4.3 Effectiveness Verification
So far, we have discussed how to find an appropriate bandwidth

for each location of interest. Figure 6 shows the signal strength
heat map estimated for a certain AP using uniform (i.e., global,
not using supporting set) and locality-aware LDPL models using
supporting set, respectively. For uniform models, we basically set
the weight of all observations to 1. We evaluate the localization
accuracy of using uniform and locality-aware LDPL models with
EZPerfect and RADAR. The results are shown in Fig. 7 and 8.
One can see FP-Cloud with uniform models always outperforms
EZPerfect and RADAR. By using locality-aware models, the gain
further increases. Fig. 9 highlights the gain of using locality-
aware models (2.5m at 90%tile) over with uniform models (3.5m
at 90%tile), which is significant. Hereafter in our experimentation,
Modellet always refers to FP-Cloud with locality-aware models.

10 20 30 40 50 60 70

X (m)

10

15

20

25

30

35

Y
(m

)

−98

−92

−86

−80

−74

−68

−62

−56

−50

−44

10 20 30 40 50 60 70

X (m)

10

15

20

25

30

35

Y
(m

)

−96

−89

−82

−75

−68

−61

−54

−47

−40

Figure 6: The heat map of signal strengths of the AP calculated
with uniform (left) and locality-aware (right) LDPL models.

5. FINGERPRINT CLOUD
In essence, FP-Cloud is to use discrete fingerprint samples to ap-

proximate the continuous radio map. Shaped by the actual physical
layout, the radio map can be highly irregular. Therefore, a certain
density is necessary to ensure approximation accuracy. As the real

collected fingerprints may not be dense enough, virtual fingerprints
are computed to fill in.

In Modellet, we adopt uniform sampling for simplicity. One
example is shown in Fig. 4 where the VFPs distribute uniformly.
The only parameter in generating the FP-Cloud is the sampling
interval. In general, the VFPs should be as dense as possible to
reflect the variation in signal strength. However, due to the possi-
ble imperfection of the signal propagation model (i.e., LDPL), the
calculated virtual fingerprints have errors. Inserting overly dense
virtual fingerprints may incur the side-effect of reduced robustness
in searching for multiple nearest neighbours during the fingerprint
matching phase. We will evaluate various sampling intervals in
Section 7.2.

Through Section 4, we have discussed how to obtain a local
model for any specific location of interest. Intuitively, we compute
a radio map for each AP as shown in Fig. 6 (right). The final radio
map is a union of the radio map of all APs, which is represented
with FP-Cloud in Modellet. Having decided the positions of virtual
fingerprints, their RSSs are calculated with local signal propagation
models in the form of Eq. (2), for any particular VFP. Note that the
list of APs in a virtual fingerprint is not necessarily a union of all
the APs appearing in the database, but only those seen by the real
fingerprints in proximity of the VFP.

6. DEVICE DIVERSITY HANDLING
Two collocated devices may receive significantly different signal

strengths from the same AP due to the difference in hardware.
Fig. 10 shows the histogram of RSS offsets measured by two
collocated phones (HTC Titan and Nokia Lumia 900) at various
locations. Specifically, the data is collected in a large shopping
mall, where the two devices are put at various locations to measure
the RSSs from surrounding APs. Fig. 10 is plotted by grouping
the measurements by the two devices at the same location, and
calculating the difference of the RSSs for the same BSSID. Fig.
10 is plotted based on data for all BSSIDs. One can see the offset
value follows a Gaussian-like distribution centered around−20dB.
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Figure 10: Offset between RSSs measured by two different
devices.

Such a large gain offset can lead to bad localization results if
the database is constructed with one device and directly used by
another [13, 14, 29]. One solution is to measure the hardware gain
offset between any pair of devices, which, however, is not scalable
[29]. Authors in [13] evaluate existing methods, and concluded that
the effectiveness of using RSS differences between observed APs
in each fingerprint, instead of the absolute RSSs, which however
significantly enlarges the dimension of fingerprints. In Modellet,
we employ a light-weighted scheme during fingerprint matching as
shown in Fig. 5. The idea is somewhat similar to [14] where Expec-
tation Maximization (EM) is used to jointly estimate the location
as well as device power level. However, the system architecture
in [14] is different from ours where sniffers are deployed to locate
a mobile client.
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Figure 7: Comparisons of EZPerfect,
RADAR, and Uniform.
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Figure 8: Comparison result of EZPerfect,
RADAR, and Locality.
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Figure 9: Comparison result of Uniform
and Locality with full dataset.

Our scheme is detailed as follows. The conventional way of cal-
culating the signal space distance ∆ij between a pair of fingerprints
fi = (r1, r2, · · · , rn) and fj = (s1, s2, · · · , sn) is

∆ij =

n∑
k

|rk − sk| (4)

We modify the calculation by adding a constant δ, such that ∆ij =∑n
k |rk − sk + δ|. We vary δ in a certain range, and the gain

offset oij between the two devices is estimated in Eq. (5) and
the corresponding signal space distance ∆′ij between fi and fj is
calculated in Eq. (6).

oij = arg min
δ

∆′ij (5)

∆′ij =

n∑
k

|rk − sk + oij | (6)

In the offset estimation above, we simplify the transformation
between a pair of devices (A and B) as a constant, i.e., RSSA =
a · RSSB + δ where a = 1. Actually, the measurement study
in [29] found a is close to 1. It is therefore rare that two fingerprints
measured at different locations by the same device have a constant
offset between the RSSs of each observed AP, given APs deployed
in various locations. We evaluate our solution with data collected
by the two devices. The result is presented in Section 7.4.

7. EVALUATION
In this section, we evaluate the localization accuracy of Modellet,

as well as other representative localization methods, with data col-
lected from real, large scale deployments. We hope to reestablish
a sense of achievable indoor localization accuracy using WiFi. Our
key insights and understanding are summarized as follows:

• Modellet consistently outperforms the two baselines, RADAR
and EZPerfect, in a small-scale office environment as well as
large shopping malls and airports. The localization perfor-
mance in office areas is consistent with what is reported in
existing literature, while that in large venues is more contra-
dictory. Possible reasons include uneven and inconsistent (on
and off irregularly) AP deployment, with high transmission
power (even could be heard several hundred of meters away).

• Generating dense VFPs for the FP-Cloud increases compu-
tation cost, but does not imply high localization accuracy.
In fact, dense VFPs eliminate the robustness of fingerprint
matching by finding the top few nearest neighbors. Thus,
there is an optimal density which should be learnt offline.

• Modellet is not restricted to the LDPL model, but also others
like the linear model. The LDPL model achieves a higher
localization accuracy than the linear model, especially when
the database is sparse.

• The device diversity problem significantly affects the local-
ization accuracy. The scheme proposed in Section 6 handles
the problem effectively with data collected by two devices
from a large shopping mall.

7.1 Experiments Setup
We collect data with a cell phone from an office building in China

and 13 large venues including shopping malls and airports (in the
U.S. and Germany). The survey plan with a total of 221 fingerprints
for the office building is shown in Fig. 11 where each red dot
represents one fingerprint. Fig. 12 and Fig. 13 show the survey
plan in two shopping malls. In this work, we collect data point by
point for each venue. However, Modellet (as described in Section
3-6) is not tied up with any specific data collection approach. Other
approaches like war-walking or crowdsourcing are also supported.

Table 1 shows the venue names along with the data coverage
area, number of observed BSSIDs, and number of fingerprints.
Most of the venues are in the U.S. with Alexa Shopping Mall locat-
ed in Berlin, Germany. For these large venues, we have denser
data coverage (3 ∼ 5m each) along the corridors and less for
inner shop areas. Typically, for small sized inner shops, we have
only one sample there, and a few scattered samples in large shops.
The data along the corridors and in inner locations are collected
separately. In this dataset, even though only one sample is taken
for each location, data collection still consumes several hours for
venues in Table 1.

We notice that in office buildings (or on a campus where most
APs are deployed by one party), the APs are deployed more reg-
ularly to ensure uniform network coverage, whereas the APs in
shopping malls or airports are placed less coordinated. Moreover,
the APs’ coverage in office areas is typically smaller to mitigate
interference (e.g., 20 ∼ 30m) whereas the APs in those large v-
enues have much larger coverage, some of which can even be heard
hundreds of meters away.

7.2 Evaluation on An Office Area
The purpose of the evaluation on a relatively small office area

(still over 3000m2) is two-fold: first, we want to examine a few
settings like the density of the virtual fingerprints, and the usage
of an LDPL model instead of a linear model; second, we want to
evaluate the performance gain of Modellet against RADAR and



Figure 11: Data collection plan for an
office building in Beijing, China.

Figure 12: Data collection plan for the Alexa
Shopping Mall in Berlin, German.

Figure 13: Data collection plan for the
North Gate Mall in Seattle, U.S.

Venue Name Area (m2) Bssids FPs
Bellevue Square Mall 89216 1349 453
Redmond Town Center 29812 232 171
The Bravern 24244 675 148
Alexa Shopping Mall 35472 260 262
Commons At Federal Way 102172 398 329
Crossroads 129449 227 256
Los Angeles Intl Airport 127893 743 287
Marketplace at Factoria 135596 376 292
Northgate Mall 94810 749 403
Pacific Place 8619 258 97
South Hill Mall 237028 506 202
Supermall-Great Northwest 231188 440 632
Tacoma Mall 157491 749 455

Table 1: Basic statistics (spatial coverage, AP number and
fingerprints collected) of the 13 venues and the survey data used
in our evaluations.

EZPerfect in an office environment, which is the most common
environment used by previous works.
Virtual fingerprint density: We vary the FP-Cloud VFP density
from one per 1 × 1m2 to one per 10 × 10m2, and use all data
from the small office area for experiments. To evaluate localization
accuracy, we randomly partition the data into training (80%) and
testing (20%). We conduct five batches and obtain the average
performance, which is the default setting applied to all experiments
hereafter.

We plot the localization error at 90%tile under various densities
in Fig. 14. The error is defined as the 2D distance between the
localization result and the groundtruth. Interestingly, we see that
5m (i.e., one sample per 5 × 5m2) achieves the best accuracy.
The reason is when virtual fingerprints becomes too dense, the
robustness introduced by finding the top few nearest neighbours
(in fingerprint matching in Fig.5) is eliminated. Imagine that, once
the virtual fingerprints become extremely dense, the search process
implicitly fallbacks to finding the top 1 nearest neighbour. We thus
pick one per 5 × 5m2 as our setting hereafter. Though it is hard
to claim 5m is always the optimal setting, such a density makes
adjacent virtual fingerprints differentiate enough from each other.
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Figure 14: Performance at various VFP densities.

LDPL model vs. Linear model: We choose to use the LDPL
model in Modellet. Modellet is actually not limited to the LDPL
model. Other models like linear model can also be adopted. For
instance, the linear model is defined as

RSSx,y = α · x+ β · y + γ (7)

where α, β, and γ are three AP dependent unknown parameters
which can also be learnt from the calibration data. To implement
the linear model, we simply replace the LDPL model with the
linear model. Here we compare the localization accuracy of the
LDPL model and the linear model at various data densities. For
this purpose, after partitioning the whole dataset for training and
testing, we do grid-based downsampling to emulate sparser data.
Fig. 15 shows the comparison between using LDPL and linear
models with full and downsampled datasets (with 10×10m2 grid),
respectively.
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Figure 15: Localization accuracy comparison between LDPL
and linear models.

In Fig. 15, one can see that the LDPL model outperforms the
linear model at various data densities. The gap between the two
gets larger at the sparse dataset. When the data is dense, filling
in the blank using the LDPL model or the linear model does not
make a significant difference. However, when data gets sparse,
the LDPL model fits signal attenuation better than the linear model
which assumes signal attenuates linearly.
Comparison Results: We carry out experiments comparing Mod-
ellet, RADAR, and EZPerfect in terms of localization accuracy.
The result is shown in Fig. 16. One can see that EZPerfect out-
performs RADAR on the dataset, which however has a long tail
at high percentiles. Modellet achieves the best accuracy compared
with RADAR and EZPerfect. The localization accuracy at 90%tile
for the three are 6.4m, 8.3m, and 8.6m, respectively. The results
presented here, as well as in our microbenchmarks, confirm the
correctness of our implementation of RADAR and EZPerfect, as
we can achieve reasonably good accuracy (sub 10m at 90%tile)
in typical office buildings. The results are consistent with those



Figure 16: Localization accuracy evaluated based on data from
an office building.
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Figure 17: Localization accuracy evaluated based on data from
Alexa Shopping Mall.

reported by most existing WiFi signal strength based indoor local-
ization approaches.

7.3 Evaluations on Large Venues
We compare the localization accuracy of RADAR, EZPerfect,

and Modellet using data collected from 13 large venues, listed in
Table 1. As we have done before, we use the whole dataset as well
as downsampled data for evaluation. As the original data is already
sparse as shown in Fig. 12 and 13, we use grid size of 20m for
downsampling. Before showing statistic result across all venues,
we first show comparison result between RADAR, EZPerfect, and
Modellet in Fig. 17 and Fig. 18, using data from the two venues
shown in Fig. 12 and Fig. 13, respectively.

The first observation is that Modellet outperforms RADAR and
EZPerfect at various data densities. The improvements are much
larger than what we observed in our microbenchmarks or the small
office area, especially when data is sparse. One reason is that
the data density as well as environment become more diverse in
such scenarios. As Modellet always takes advantage from both
fingerprint-based and model-based approaches, the gain is enlarged
under such conditions. The second observation is that localization
accuracy becomes much worse in large venues than in a small office
area. This contradicts with the results reported in existing literature.
One important reason is that most existing works evaluate based
on a well-maintained dataset collected in a lab area with ideal AP
deployment.

Fig. 19 and Fig. 20 show the performance of RADAR, EZPer-
fect, and Modellet across the 13 venues. The x axis shows the
prefixes of venue names. For each approach, we perform RADAR,
EZPerfect, and Modellet with full and downsampled datasets, re-
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Figure 18: Localization accuracy evaluated based on data from
the North Gate Mall.

spectively. We show the localization errors at 50%tile and 90%tile
in one stacked bar for each approach.

We can see the localization errors vary significantly in different
venues. The venue we show in Fig. 18 achieves the best localiza-
tion accuracy with error at 90% close to 10m, while others range
from 20m to 30m. For most venues, Modellet outperforms both
RADAR and EZPerfect, or is as good as the better of the two. We
do observe in 3 venues, i.e., South Hill Mall, Supermall, and Belle-
vue Square Mall, that EZPerfect or RADAR achieves the best (only
at 90%tile). However, from Fig. 19, we can see the gaps between
Modellet and the better of RADAR and EZPerfect in these 3 venues
are small. On average, Modellet reduces errors at 50%tile and
90%tile by 0.77m and 1.14m, respectively, in comparison with the
best of RADAR and EZPerfect over the 13 venues. Compared with
the worst of the two, the mean reductions are 1.34m and 2.78m,
respectively at 50%tile and 90%tile.

In Fig. 19, we can see that RADAR outperforms EZPerfect in 11
venues at 90%tile, and 12 venues at 50%tile. After downsampling
the dataset with grid size 20m, we find that RADAR still achieves
much better result than EZPerfect in most venues at 90%tile, shown
in Fig. 20. However, at 50%tile, EZPerfect yields better result
than RADAR in 6 venues, and similar result in another 2 venues.
Note that this is partially consistent with our findings in our mi-
crobenchmark in Fig. 2 where EZPerfect works consistently better
than RADAR when data is sparse. The reason is that when data
becomes extremely sparse, the test cases collected in inner stores
can cause bad localization due to a lack of appropriate models. In
contrast, RADAR always maps the localization results to existing
fingerprints, which thus eliminates producing tremendous large er-
rors. Modellet still yields similar comparison results where the gain
is larger than in Fig. 19. Modellet achieves the best performance in
12 venues, except for only one, i.e., The Bravern. Modellet reduces
the errors at 50%tile and 90%tile by 0.9m and 1.44m, respectively,
in comparison with the best in the two baselines, and 1.46m and
4.0m with the worst, respectively.

7.4 Handling Device Diversity Problem
We have discussed handling device diversity problem in Section

6. In our implementation, we set δ ∈ [−20,+20] dB. We col-
lect data from a large shopping mall (i.e., the Pacific Place Mall)
with two devices (i.e., HTC Titan and Nokia Lumia 900). We
compare the localization performance with and without applying
our light-weighted scheme handling the device diversity problem.
The comparison result is shown in Fig. 21. One can see that
as the gain offset between the two devices is as large as 20dB.
, localization result becomes extremely bad without handling the
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Figure 19: Localization accuracy for the 13 venues with full datasets.
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Figure 20: Localization accuracy for the 13 venues downsampled by 20m grid.
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Figure 21: Localization accuracy before and after handling
device diversity.

device diversity problem. In comparison, with our scheme, the
localization accuracy is greatly and consistently improved by 40%.

8. DISCUSSIONS
Data Acquisition: Site survey needs to be done from time to
time to update the database in order for facility changes like re-
moving/replacing old APs and adding new APs. In this work,
we assume the hiring of a site survey specialist to profile each
venue for bootstrapping. With this method, we ensure a reasonably
good initial user experience. Further more, we obtain a database
collected by a standard device, which make it easier to deal with
the device diversity issue as explained in Section 6. After bootstrap-
ping, we adopt crowdsourcing to update the database. In practice,

crowdsourcing can be carried out leveraging people already in the
venue of interest. For instance, shop owners have incentive to help
data collection in order to provide a better in-store user experience.
We thus make the localization database maintainance scalable.
Power Adaptation Reality: Modern APs feature the capability
of adaptive power control, where an AP automatically changes its
power level [1]. If the power changes frequently (e.g., every 10min)
in a random fashion, the existing models will be impaired, leading
to unpredictable localization result for all WiFi RSS based localiza-
tion approaches. However, according to [1], the main purpose for
power adaptation is to ensure coverage while reducing interference
among neighboring APs. Therefore, as long as no neighboring AP
fails, the power level for each AP remains stable after convergence.
We are also aware that this capability is especially designed for
enterprise networks where APs work collaboratively. In large shop-
ping malls or airports, a large fraction of APs are deployed by third
party shop owners. The transmit power of these APs are typically
stable, which is confirmed with our collected data.
Dealing with Large Errors: For a localization service, large
localization errors are harmful to the user experience. In practice,
large errors could be caused by various reasons, e.g., a bad WiFi
scan during site survey or user query. One opportunity to eliminate
large errors is to perform multiple scans at each sampling location
either for site survey or user localization. For localization, the
result averaged over multiple scans typically outperforms that with
a single scan [40]. Another opportunity is to leverage the inertial
sensors to continuously track the user, and thus correct big errors
with filtering such as [22]. However, one drawback of tracking
schemes is the increased battery consumption by sensors.



Adding Map Information: A few studies [17, 21] show the po-
tential of adding map information to improve localization accuracy.
While such accurate information is usually missing in reality, Mod-
ellet can easily incorporate the map information, if they are indeed
available, by lowering the weights of real fingerprints intervened
by walls.
Cost of FP-Cloud: The cost we pay is the need to store a large
number of virtual fingerprints in the FP-Cloud. It will lead to
larger storage and memory consumption, and longer downloading
time. As the client can cache the database locally, only incremental
cost need to be paid when the database is updated. Moreover, the
database can be compressed significantly as a large amount of space
is for storing duplicated BSSIDs (∼ 10% of the original size after
compression in zip format in our empirical evaluation). Therefore,
such extra storage cost is still affordable. Generating FP-Cloud also
requires high computation power, especially for large venues. First
of all, the complexity is mainly determined by the density of VFP,
and thus is controllable. Moreover, the models are trained offline
in the cloud which thus is less a concern.
Extension to Multi-story Buildings: Floor detection is a cru-
cial yet non-trivial indoor localization problem, especially in large
shopping malls where large open areas exist. Generally, floor de-
tection is a locality decision problem from a 3D perspective. In this
paper we do not touch floor detection due to space limits. However,
our experiments confirm that Modellet is still very effective for
floor detection. It achieves over 95% accuracy on average.

9. RELATED WORK
Early indoor localization projects use dedicated location devices,

such as Active Badge [36] and Cricket [30]. Later, significant
effort is spent on ubiquitous, less expensive indoor localization
services, including infrastructure independent (Geo-magnetic field,
IMU sensors, etc.) [10, 22, 31, 34], infrastructure dependent which
further consists of leveraging existing infrastructure (WiFi, FM,
etc.) [4, 5, 8, 9, 15, 17, 20, 39–41], and those deploying new infra-
structure (acoustic, LED, etc.) [16, 25, 27, 28, 37]. In this paper, we
focus on WiFi based indoor localization, for its wide availability, no
extra deployment cost, reasonable accuracy, and readiness to apply
to mobile devices.

Among existing work, tremendous effort has been devoted to in-
vestigating better WiFi localization algorithms. Most existing WiFi
based approaches can be divided into two categories: fingerprint-
based and model-based.
Fingerprint-based techniques: The category of fingerprint-based
approaches is pioneered by RADAR [5], and followed by numer-
ous improvement algorithms [20, 40]. By and large, they can be
classified into deterministic approaches (e.g., [5, 7, 12, 19]) or s-
tochastic approaches (e.g., [20,40]). The former directly calculates
the distance between fingerprints and finds the most matched one
or multiple fingerprints. The latter computes the likelihood of a
query fingerprint against those in the database that also contain sta-
tistical information of fingerprints. Interpolation schemes were also
proposed to match the query fingerprint to the database including
interpolated fingerprints [7, 19]. Recent advancement has shown
that sub-meter accuracy can be achieved by exploring physic layer
information [32] or ranging between devices in proximity [24, 28].
In general, a high quality database is required to obtain high local-
ization accuracy, as shown by extensive experiments with multiple
algorithms [6, 12]. Thus, the major drawback of fingerprint-based
approaches is the excessive time and labor it takes to construct
the database via site survey. A few recent studies [22, 31, 33, 38]
demonstrate the possibility of leveraging crowdsourcing to reduce

the burden of site survey. However, designing a sustainable incen-
tive mechanism of crowdsourcing remains a challenge.
Model-based techniques: Schemes in this category use a RF
propagation model to derive RSS at various locations. The log-
distance path loss (LDPL) model is a widely used model [9, 11,
15, 23]. Typically, a few measurements are required to train the
model for each AP. In TIX [15], each AP is assumed to be able to
sense APs nearby, and therefore, no extra calibration is required.
EZ relieves the assumption, [9] requires only minimum labelled
fingerprints along with a large amount of unlabelled fingerprints,
and is able to achieve reasonable accuracy. Later in [28], it is shown
that, by having data all labelled in EZ, the accuracy can further be
improved (this scheme is called EZPerfect). When precise build-
ing structure information is known, it is possible to adopt more
sophisticated ray-tracing techniques, as shown in ARIADNE [17].
Recently, the authors of [35] have evaluated a few model-based
schemes including [11, 15, 23] on a moderate-scaled testbed, and
concluded that the achieved accuracy is much worse than reported
under realistic conditions.
Summary of differences: So far, most effort has been spent on
improving localization accuracy upon a well maintained dataset.
Less attention has been paid to intrinsic properties of practically
collected location databases, which leads to a mismatch between
the reported localization accuracy and reality as implied in [35]. In
this paper, we propose Modellet which augments the radio map
with virtual fingerprints. Our work differentiates from existing
work in several ways. We show that such properties, i.e., data
density and environment diversities, significantly impact localiza-
tion accuracy. We also show that a single approach (fingerprint-
based or model-based) or simple hybrid cannot address such issues.
Finally, we propose Modellet to adapt between fingerprint-based
and model-based approaches, driven by the data density and envi-
ronment diversities.

10. CONCLUSION AND FUTURE WORK
In this paper, we have identified the data density and environment

diversities problems that arise from real-world WiFi-based indoor
localization system deployments. We have designed Modellet that
attacks the problem by constructing a location database that best
approximates the actual radio map based on the new concepts of
the supporting set and fingerprint-cloud. We evaluate and compare
Modellet and existing representative indoor localization systems,
namely RADAR and EZPerfect, with data collected at an office
building and 13 large venues. The results confirm the effectiveness
of Modellet and also reveal the inadequate performance of existing
systems in real-world deployment.

As to future work, we will look into the database maintenance
problem, which is critical to provide long running indoor localiza-
tion services.
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