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ABSTRACT

Signals captured by microphone arrays provide spatial diversity that
can be exploited by multichannel processing algorithms to suppress
noise and reverberation. Beamforming is a class of approaches that
treats the problem with respect to the spatial location of wanted and
competing sources, leveraging properties of propagation of waves
in free space. A related class of algorithms is channel equalization
that exploits knowledge of the acoustic impulse response between a
source and microphones with a view to near-perfect dereverberation.
Beamforming has been shown to be a very powerful and practical
tool in a number of domains, whereas channel equalizers are noto-
riously sensitive to noise and channel mismatch leading to limited
practical applicability. This paper investigates some of the common
properties of these algorithms and presents a solution incorporating
approaches from both disciplines.

Index Terms— Beamforming, channel equalization, derever-
beration

1. INTRODUCTION

Speech signals captured by hands-free devices are typically cor-
rupted by noise and reverberation that impair the perceived quality
and intelligibility of the received speech. Microphone arrays are at-
tractive because the signals they receive exhibit spatial diversity that
can be exploited to suppress components that are not spatially collo-
cated with the source. Processing of multichannel signals can be di-
vided into two broad classes: beamforming [1], which is largely mo-
tivated by the propagation of waves in free space and/or the spatial
correlation of noise signals, and channel equalization [2], motivated
by the acoustic impulse response between the source and receivers
in a reverberant environment.

Beamformer design often operates under certain common as-
sumptions: that all sources lie in the farfield, all sensors are om-
nidirectional, and propagation from a source to the array is charac-
terized by a pure delay. This is particularly true in the design of
non-adaptive superdirective beamformers [3]. Some assumptions
are circumvented with adaptive (data-dependent) solutions, how-
ever both adaptive and non-adaptive approaches often incorporate
distortionless constraints to ensure that waves propagating in the
wanted direction are left undistorted under the assumption that the
source-receiver transfer function is a pure delay. Conversely, chan-
nel equalizers such as the Multichannel Input-Output Inverse The-
orem (MINT) [2] use prior knowledge of the reverberant impulse
responses from source to receivers with a view to near-perfect equal-
ization, but without explicit constraints for spatial selectivity. Chan-
nel inversion techniques are notoriously sensitive to errors in chan-

nel estimates and can often increase the level of reverberation under
channel mismatch, for example due to a different source location, the
relocation of furniture, or a change in the ambient temperature [4, 5].
To this end, channel shortening/reshaping techniques [6, 7] have
been proposed to improve robustness.

Both beamforming and channel inversion can be viewed as filter-
and-sum operations with different optimization criteria. The con-
cept of MINTForming [8] was introduced to combine both concepts
into a single algorithm that controls the tradeoff between the chan-
nel inversion provided by the MINT algorithm and the spatial and
noise performance of an optimal filter-and-sum beamformer. The ap-
proach was to formulate both MINT and beamforming as frequency
domain design problems, to combine their respective cost functions,
and to evaluate the performance as a channel equalizer.

In order to apply frequency domain designs to real world signals
it is necessary to obtain a finite impulse response (FIR) approxima-
tion [9] to the frequency domain filter. This approximation inher-
ently introduces error into the design, producing suboptimal behav-
ior. Several works have proposed time-domain beamformer designs
to circumvent this issue [9, 10, 11]. Conversely, channel equaliza-
tion algorithms such as MINT are also usually posed as time-domain
problems [2, 4, 7] so no approximation is required.

This paper considers MINT and non-adaptive superdirective
beamforming purely as both time domain design problems. As a
reference, a third hybrid case is considered whereby a beamformer
is designed using knowledge of the reverberant impulse response for
sources in several locations. The performance is evaluated both in
terms of channel equalization in the wanted direction and in terms of
spatial selectivity.

The remainder of this paper is organized as follows. The equal-
ization and beamforming problems are formulated in Sec. 2. In Sec-
tion 3, MINT, an optimal filter-and-sum beamformer and a hybrid
reference algorithm are formulated in the time domain. The algo-
rithms are evaluated in Section 4 and conclusions are drawn in Sec-
tion 5.

2. PROBLEM FORMULATION

Consider an array of M microphones placed in a reverberant envi-
ronment. Let

ȟp,m = [ȟp,m(0) . . . ȟp,m(L− 1)]T ∈ RL×1 (1)

~hp,m = [~hp,m(0) . . . ~hp,m(L− 1)]T ∈ RL×1 (2)

be the impulse responses of length L samples between a source with
position index p ∈ {1, 2, . . . , P} and receiver m ∈ {1, 2, . . . ,M}



in the reverberant and anechoic cases respectively1. The source at
index p0 is considered to be a wanted source and all other values of
p are considered to be unwanted noise sources. It is assumed that
ȟp,m and ~hp,m contain all propagation delays and have not been
truncated. Additionally, let

ȟp = [(ȟp,1)T . . . (ȟp,M )T ]T ∈ RML×1 (3)

~hp = [(~hp,1)T . . . (~hp,M )T ]T ∈ RML×1 (4)

contain stacked impulse responses between source at p and all M
microphones. The aim for both filter-and-sum beamformer and
channel equalizer design is to synthesize filters

gm = [gm(0) . . . gm(Li − 1)]T ∈ RLi×1 (5)

that produce a desired response at the system output, which will be
referred to in this paper as equalization filters irrespective of whether
they were designed for beamforming or equalization. Their stacked
representation over all microphones is defined in a similar way to (3)

g = [gT1 . . .g
T
M ]T ∈ RMLi×1. (6)

Now let Ȟp,m ∈ R(L+Li−1)×Li be a convolution matrix derived
from ȟp,m so that Ȟp,mgm and hp,m(n) ∗ gm(n), where ∗ denotes
linear convolution, are equivalent:

Ȟp,m =



hp,m(0) 0 · · · 0
hp,m(1) hp,m(0) · · · 0

...
. . .

. . .
...

hp,m(L− 1) · · ·
...

...

0 hp,m(L− 1)
. . .

...
...

...
. . .

...
0 . . . 0 hp,m(L− 1)


.

(7)
A similar formulation is used for ~Hp,m. Convolution matrices can
be stacked for all M channels,

Ȟp = [Ȟp,1 · · · Ȟp,M ] ∈ R(L+Li−1)×MLi (8)

~Hp = [~Hp,1 · · · ~Hp,M ] ∈ R(L+Li−1)×MLi , (9)

then further stacked over all P source positions to form universal
convolution matrices

Ȟ = [ȞT
1 . . . Ȟ

T
P ]T ∈ RP (L+Li−1)×MLi (10)

~H = [~HT
1 . . . ~H

T
P ]T ∈ RP (L+Li−1)×MLi . (11)

The equalization filters g are then synthesized in such a way that the
response of the equalized system in direction p is found by a filter-
and-sum operation:

yp =
M∑
m=1

Ȟp,mgm = Ȟpg ∈ R(L+Li−1)×1, (12)

where yp = [yp(0) . . . yp(L + Li − 2)]T . For notational conve-
nience, the equalized output can be found for all P directions in a
single operation

y = Ȟg ∈ RP (L+Li−1)×1 ∈ RP (L+Li−1)×1, (13)

where y = [yT1 yT2 . . .y
T
P ]T .

1Accents (̌·) and ~(·) depict a reflection and the direct path.

3. ALGORITHMS

3.1. MINT

The Multichannel Input-Output Inverse Theorem (MINT) algo-
rithm [2] was proposed as a means of providing exact inverse fil-
tering of room acoustics from multichannel observations. A stable,
causal inverse of a single-channel system does not generally exist
due to the nonminimum phase characteristic of room transfer func-
tions. In the multichannel case, it was shown that under certain con-
ditions a stable, finite, causal and exact inverse always exists.

Considering only the wanted direction p0, equalization filters are
defined using MINT to produce the equalized output

dp0(l) =

{
1 if l = τ ;
0 otherwise, (14)

where τ is an arbitrary integer delay with vector representation

dp0 = [dp0(0) · · · dp0(L+ Li − 2)]T ∈ R(L+Li−1)×1. (15)

The equalizer design can then be stated as a least-squares convex
optimization problem

ĝ = arg min
g
‖Ȟp0g − dp0‖

2
2, (16)

yielding theoretically exact equalization providing the filters ȟm,p0
are known, that there are no common zeros between ȟm,p0(n) and
ȟm+1,p0(n), and

Li ≥
⌈
L− 1

M − 1

⌉
(17)

is satisfied [2].

3.2. Optimal Filter-and-Sum Beamformer (FSB)

In a typical superdirective beamforming application, it is desirable
to have a response y yielding unit gain in the look direction p0 and
minimized gain elsewhere. Capture vectors describing the array be-
havior for a source in look direction p are usually defined in terms
of pure delays of the direct-path signal. In the time domain the filter
design can be stated as the convex optimization problem with distor-
tionless constraint

ĝ = arg min
g
‖~Hg − d‖22 subject to ~Hp0g = dp0 , (18)

where the desired spatial desired response d is

d = [0 . . .dTp0 . . .0]T ∈ RP (L+Li−1)×1. (19)

Other desired responses such as a tapering towards the look direction
can help to reduce the amplitude of sidelobes. Time domain formu-
lations for filter-and-sum beamformers are not common; it is derived
in this way to make this and MINT mutually compatible.

3.3. Oracle Case

Using a similar approach to the optimal beamformer, the prob-
lem can be restated assuming knowledge of reverberant impulse re-
sponses ȟp in all P directions, thereby using all available informa-
tion:

ĝ = arg min
g
‖Ȟg − d‖22 subject to Ȟp0g = dp0 . (20)
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Fig. 1. Microphone array (green ×), evaluation points (blue ◦) and
look direction (red ×).

Notice the constraint in (20) is identical to the MINT requirement
in (16). In the case that the filter length requirement (17) is just sat-
isfied, it is clear that the constraint in (20) consumes every available
degree of freedom so that (20) and (16) will yield the same filter. In
order to introduce spatial selectivity, either the equalizer length Li
should be increased to increase the available degrees of freedom, or
an inequality introduced to the constraint as

ĝ = arg min
g
‖Ȟg − d‖22 subject to ‖Ȟp0g − dp0‖

2
2 < ε, (21)

where ε is an arbitrary constant.

4. EVALUATION

The aim of this experiment is to evaluate the algorithms under test in
ideal conditions, i.e. when the impulse responses are known exactly
and no robustness constraints are applied. This was chosen to pro-
vide insight into shortcomings that limit their ultimate performance.
Defining all three cases as time domain problems also helps to makes
informed comparisons.

4.1. Metrics

White noise gain measures the sensitivity of the approaches to sensor
noise. Assuming the distortionless constraint is met,

WNG = −10 log10

(
g(k)Hg(k)

)
, (22)

where g(k) = [g1(k) . . . gM (k)]T ∈ CM×1 is a vector of discrete
Fourier transforms of gm(n) and (·)H is a Hermitian (conjugate)
transpose. The algorithms under test should be evaluated both as
channel equalizers and a beamformers since they draw upon ideas
from both fields. To this end, the equalized impulse response (EIR)
is first calculated for all look directions under reverberant conditions:

y = Ȟĝ. (23)

Ideally ‖yp0 − dp0‖22 = 0 and ‖yp6=p0‖22 ' 0. There are several
measures derived from (23) for a single source [12]. Here we shall
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Fig. 2. White noise gains.

use the Direct to Reverberant Ratio (DRR)

DRRp = 10 log10

(
y2p(τ)∑τ−1

n=0 y
2
p(n) +

∑L+Li−2
n=τ+1 y2p(n)

)
dB,

(24)
in which the direct component is defined as a single sample at index
τ . As a measure of beamformer performance, spatial selectivity is
often evaluated with the directivity index (DI) that measures the ratio
of the sensitivity in the look direction to the mean of sensitivity over
the entire space. Letting yp(k) be the discrete Fourier transform of
yp(n), the Reverberant Directivity Index (RDI) is

RDI(k) = 10 log10

(
|yp0(k)|2

1
P

∑P
p=1 |yp(k)|2

)
dB. (25)

4.2. Experimental Setup

A 3-channel ULA with inter-mic spacing 1 cm centered at
[2.4, 2.4, 2.4] m was placed in a 5×5×5 m room with reverberation
time T60 = 300 ms as shown in Fig. 1. Impulse responses were sim-
ulated using the the source-image method [13] for P = 16 angles on
the horizontal plane at radius 1 m from the centre of the array. The
look direction was chosen as the endfire steering angle (p0 = 180◦).
The following parameters were used: sampling frequency fs = 8
kHz, L = 256 samples, Li = L samples. The target response dp0
was a perfect impulse with delay τ = L/2 samples. The design was
solved for the three algorithms under test, then evaluated with (23).
The inequality constraint ε was set to −20 dB.

4.3. Results and Discussion

The results in Fig. 2 show that MINT introduces the least white noise
gain and is therefore least sensitive to sensor noise; this is an intu-
itive result as the MINT optimization problem is unconstrained and
therefore better conditioned than the constrained cases. The FSB re-
sult introduces the greatest WNG at all frequencies, with the oracle
solution lying in between; this is most likely due to the constant ε
relaxing the distortionless constraint.

Figs. 3 and 5 show equalized impulse responses stacked across
angles and the corresponding DRRs respectively. They reveal that
robustness to sensor noise is not correlated with spatial robustness as
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Fig. 3. Equalized impulse responses.
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Fig. 4. Reverberant directivity patterns.

the MINT solution provides perfect equalization in the look direction
and a very poor DRR elsewhere. The oracle solution provides a
similar spatial DRR to the FSB but with a 12 dB improvement in the
look direction.

Fig. 4 shows the reverberant directivity patterns: the magnitude
responses of the equalized systems as a function of frequency and
angle under reverberant conditions. The results for the FSB and
oracle cases are similar to a classic (anechoic) directivity pattern,
showing a main lobe in the look direction but with added distortions
due to reverberation. The reverberant directivity pattern is highly
chaotic in the MINT case but close inspection reveals unit gain in a
thin horizontal stop corresponding to the look direction only. Fig. 6
shows the corresponding reverberant directivity index, highlighting
the poor performance of MINT and revealing that the oracle case
provides a ∼ 1.5 dB improvement over FSB.

These preliminary results suggest that the FSB and MINT
paradigms can be combined into a single oracle case that provides
the performance in the look direction of MINT and the spatial ro-
bustness of a FSB without increasing WNG. The close spacing of the
array microphones was chosen to exaggerate WNG; a practical array
would most likely have much high inter-microphone spacing with
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Fig. 5. Direct-to-reverberant ratios.
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Fig. 6. Reverberant directivity indices.

accordingly reduced WNG. These results motivate a deeper investi-
gation into WNG constraints, a wider range of geometries and con-
ditions, the introduction of channel mismatch, variable numbers of
control points and comparisons with frequency domain approaches.

5. CONCLUSIONS

Multichannel equalization and optimal beamforming can be formu-
lated as filter and sum operations with differing optimization crite-
ria. Deriving both cases in the time domain, an additional oracle
case was proposed that exploits known impulse responses in multi-
ple directions. Under simulated reverberant conditions, it was shown
that MINT performs well in the designed look direction but lacks the
spatial robustness of the optimal beamformer. Conversely the opti-
mal beamformer lacks channel equalization performance in the look
direction. The oracle cases exhibits good properties from both cases
without increased sensitivity to sensor noise. This work motivates a
deeper investigation under a wider range of conditions.
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