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Abstract

Lattice-based cryptographic primitives are believed to offer resilience against attacks by quantum
computers. We demonstrate the practicality of post-quantum key exchange by constructing ciphersuites
for the Transport Layer Security (TLS) protocol that provide key exchange based on the ring learning
with errors (R-LWE) problem; we accompany these ciphersuites with a rigorous proof of security. Our
approach ties lattice-based key exchange together with traditional authentication using RSA or elliptic
curve digital signatures: the post-quantum key exchange provides forward secrecy against future quantum
attackers, while authentication can be provided using RSA keys that are issued by today’s commercial
certificate authorities, smoothing the path to adoption.

Our cryptographically secure implementation, aimed at the 128-bit security level, reveals that the
performance price when switching from non-quantum-safe key exchange is not too high. With our R-LWE
ciphersuites integrated into the OpenSSL library and using the Apache web server on a 2-core desktop
computer, we could serve 506 RLWE-ECDSA-AES128-GCM-SHA256 HTTPS connections per second for a 10 KiB
payload. Compared to elliptic curve Diffie–Hellman, this means an 8 KiB increased handshake size and a
reduction in throughput of only 21%. This demonstrates that post-quantum key-exchange can already be
considered practical.
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1 Introduction

While lattice-based primitives [Reg05, Reg06] have been used to achieve exciting new cryptographic function-
alities like fully homomorphic encryption [Gen09] and multilinear maps [GGH13], there has also been a great
deal of work on instantiating traditional cryptographic functionalities using lattices. One of the catalysts for
this direction of research is that, unlike other number-theoretic primitives such as RSA [RSA78] and elliptic
curve cryptography (ECC) [Mil85, Kob87], lattices are currently believed to offer resilience against attacks
using quantum computers. Motivated by such post-quantum security, in this work we replace the traditional
number-theoretic key exchange in the widely deployed Transport Layer Security (TLS) protocol [DR08]
with one based on the ring learning with errors (R-LWE) problem [LPR10], which is related to hard lattice
problems.

Our basic key exchange protocol is simple—similar to the unauthenticated Diffie–Hellman protocol [DH76]—
and comes with a rigorous proof of security based on the R-LWE problem. We put it in the context of TLS by
(i) constructing a TLS ciphersuite that uses R-LWE key exchange rather than elliptic curve Diffie–Hellman
(ECDH), (ii) providing a proof in a suitable security model [JKSS12] that this new TLS ciphersuite is a
secure channel, and (iii) integrating our software implementation into the OpenSSL library to benchmark its
performance against elliptic curve Diffie–Hellman key exchange. This analysis gives practitioners an idea
of the price one would pay for using R-LWE to cure post-quantum paranoia today. We focus our work on
the key exchange component, not authentication: we assume that a quantum computer does not currently
exist so that the standard RSA-based authentication in TLS is secure for now. However, using R-LWE as a
current key exchange mechanism would assure us that if a quantum computer is realized at some stage in the
future, the ephemeral session keys we establish today will remain secure so long as the corresponding R-LWE
problem does.

R-LWE at the 128-bit security level. The implementation we describe in this work is intended to
serve as a drop-in replacement for traditional forward-secret key exchange mechanisms targeting the 128-bit
security level, e.g. in place of the standardized elliptic curve nistp256, which is the most widely used elliptic
curve in TLS [BHH+13] and provides much faster key exchange than finite-field Diffie–Hellman. While the
complexities of the best known attacks against these traditional primitives are widely agreed upon, the
state of affairs for attacks against R-LWE is altogether different: for one, there are more parameters that
affect the security level in the realm of ideal lattices, so many papers differ significantly in their suggested
combinations of parameter sizes for particular security levels. In addition, the majority of authors giving
concrete parameters in the (R-)LWE setting have done so at the 80-bit security level. Thus, in this work we
have always opted for the conservative approach, making security parameters larger or smaller than they
might need to be at stages where the actual attack complexity is unclear. The upshot is that our performance
timings could be viewed as somewhat of an upper bound for R-LWE key exchange at the 128-bit level.

Implementation and performance. We implemented the R-LWE algorithms in C. As it has become
mandatory to guard cryptographic implementations against physical attacks, such as the leakage of secret
material over side channels [Koc96], we have implemented an important counter-measure against such attacks
by ensuring our implementation has constant run-time: the execution time of the implementation does not
depend on the input. In practice this is usually realized by eliminating all code that contains data-dependent
branches, however this often incurs a performance penalty, so we also provide performance of our variable-time
implementation in order to highlight the price one pays in practice when guarding against physical attacks in
the context of R-LWE. The most expensive R-LWE operation is sampling from the error distribution, which
takes slightly over one million cycles, and has to be performed once by the client and twice by the server
during key exchange.

We integrated our R-LWE algorithm into the OpenSSL library. Whereas OpenSSL’s implementation of
ECDH using the nistp256 curve takes about 0.8 ms total (here we are referring to just the ECDH point
operations, no other signing or encryption operations), the R-LWE operations take about 1.4 ms for the
client’s operations and 2.1 ms for the server’s operations (on a standard desktop computer; see Section 6.2):
our constant-time R-LWE implementation is a factor of 1.8–2.6 times slower than ECDH. However, our
implementation is entirely in C, so further performance improvements could be achieved through assembly-
level optimizations or architecture specific optimization like using the vector instruction set, as well as through
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Figure 1: HTTPS connections per second supported by the server at 128-bit security level. All ciphersuites
use AES-128-GCM and SHA256.

a more aggressive parameter selection.
While this is a significant performance difference in terms of raw cryptographic operations, the penalty of

using R-LWE becomes less pronounced when used in the context of TLS, as seen in Fig. 1. We did performance
testing with our modified OpenSSL in the context of the Apache web server. Using a 3072-bit RSA certificate for
authentication (we chose RSA for authentication because the vast majority of commercial certificate authorities
only support RSA, and we chose 3072-bit RSA keys to match the desired 128-bit security level [NIS12]), our
2-core web server (serving 10 KiB web pages) could handle 177 ECDHE-RSA-AES128-GCM-SHA256 connections
per second, compared to 164 RLWE-RSA connections per second, a factor of about 1.08 difference. Switching
to ECDSA-based authentication, we can serve 642 ECDHE-ECDSA versus 506 RLWE-ECDSA connections per
second, which is a larger gap, but which shows that RLWE-ECDSA is still highly competitive. Even for hybrid
ciphersuites, which use both ECDH and R-LWE key exchange (for users who worry about the potential
of quantum computers but still need to use ECDH for reasons such as FIPS compliance1), performance is
reasonable. It should be noted that using R-LWE instead of ECDH increases the handshake by about 8 KiB.

Our performance data demonstrates that R-LWE is a plausible candidate for providing post-quantum
key exchange security in TLS. There is a performance penalty for web servers compared to elliptic curve
cryptography—a factor of between 1.08–1.27 in our portable C implementation—but this is not too bad.
Moreover, performance improvements in the context of R-LWE can be expected as future research is done on
parameter choices and scheme designs, new optimizations are developed, and CPU speeds increase.

Related work. A simple unauthenticated key exchange protocol based on the learning with errors (LWE)
problem seems to have been folklore for some time. Ding et al. [DL12, §3] present a DH-like protocol based
on LWE and give a security proof. Blazy et al. [BCDP13, Fig. 1, 2] describe a similar DH-like protocol based
on LWE but without a detailed analysis. Katz and Vaikuntanathan [KV09] build a password-authenticated
key exchange protocol from the LWE problem. Whereas the hardness of LWE is related to the shortest vector
problem (SVP) on lattices, the R-LWE problem is related to the SVP on ideal lattices, allowing for shorter
parameter sizes. Three existing works present key exchange protocols based on R-LWE: Ding et al. [DL12, §4],
Fujioka et al. [FSXY13, §5.2], and Peikert [Pei14, §4.1]. All three bear similarities, although differ somewhat in
the error correction of the shared secret. Fujioka et al. and Peikert phrase their protocols as key encapsulation
mechanisms (KEMs) which have passive (IND-CPA) security. To achieve a fully post-quantum authenticated
key exchange protocol, Fujioka et al. use standard techniques [FO99] to compile a passively secure KEM

1From the FIPS perspective, non-FIPS keying material when XORed or combined in a PRF (like we are doing) is treated as
a “constant” that does not negatively affect security or compliance.
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into an actively secure KEM which is used to provide authentication in a KEM-KEM approach [FSXY12],
whereas Peikert uses a SIGMA-like design [Kra03]. Our unauthenticated DH-like protocol is similar as well,
in fact based directly on Peikert’s passively secure KEM, but phrased in a DH-like fashion. One of our main
differences is that we integrate the R-LWE key exchange directly into TLS, and provide an implementation
with performance measurements.

2 Background on ring learning with errors

This section introduces notation and presents the basic background for cryptographic schemes based on the
ring learning with errors (R-LWE) problem, which was introduced in [LPR10] (see also [LPR13, Pei14]).
Terminology is mostly as in [Pei14].

2.1 Notation

Let Z be the ring of rational integers, and let R = Z[X]/(Φm(X)) be the ring of integers of the m-th
cyclotomic number field, i.e. Φm ∈ Z[X] is the m-th cyclotomic polynomial. In this paper, we restrict to
the case of m being a power of 2. This means that Φm(X) = Xn + 1 for n = 2l, l > 0 and m = 2n. Let
q be an integer modulus and define Rq = R/qR ∼= Zq[X]/(Xn + 1) with Zq = Z/qZ. If χ is a probability

distribution over R, then x
$← χ denotes sampling x ∈ R according to χ. If S is a set, then U(S) denotes the

uniform distribution on S, and we denote sampling x uniformly at random from S either with x
$← U(S) or

sometimes x
$← S. If A is a probabilistic algorithm, y

$← A(x) denotes running A on input x with randomly
chosen coins and assigning the output to y. Different typefaces and cases are used to represent different types
of objects: Algorithms (also A,B, . . . ); Queries; Protocols, Schemes, and ProtocolMessages; variables;
security-notions; and constants. Advxxx

Y (A) denotes the advantage of algorithm A in breaking security notion
xxx of scheme or protocol Y.

2.2 The decision R-LWE problem

Using the above notation, we define the decision version of the R-LWE problem as follows.

Definition 1 (Decision R-LWE problem). Let n,R, q and Rq be as above. Let χ be a distribution over R,

and let s
$← χ. Define Oχ,s as the oracle which does the following:

1. Sample a
$← U(Rq), e

$← χ,
2. Return (a, as+ e) ∈ Rq ×Rq.

The decision R-LWE problem for n, q, χ is to distinguish Oχ,s from an oracle that returns uniform random
samples from Rq ×Rq. In particular, if A is an algorithm, define the advantage

Advdrlwe
n,q,χ(A) =

∣∣∣Pr
(
s

$← χ;AOχ,s(·) = 1
)
− Pr

(
AU(Rq×Rq)(·) = 1

)∣∣∣ .
Note that the R-LWE problem presented here is stated in its so-called normal form, which means that

the secret s is chosen from the error distribution instead of the uniform distribution over Rq as originally
defined in [LPR10]. See [LPR13, Lemma 2.24] for a proof of the fact that this problem is as hard as the one
in which s is chosen uniformly at random.

2.3 Rounding and reconciliation functions

The remainder of this section introduces notation and concepts needed for the key exchange protocols below,
mainly following [Pei14]. Let b·e : R → Z be the usual rounding function, i.e. bxe = z for z ∈ Z and
x ∈ [z − 1/2, z + 1/2).

Definition 2. Let q be a positive integer. Define the modular rounding function

b·eq,2 : Zq → Z2, x 7→ bxeq,2 =
⌊

2
qx
⌉

mod 2.

5



and the cross-rounding function

〈·〉q,2 : Zq → Z2, x 7→ 〈x〉q,2 =
⌊

4
qx
⌋

mod 2.

Both functions are extended to elements of Rq coefficient-wise: for f = fn−1X
n−1 + · · ·+ f1X + f0 ∈ Rq,

define

bfeq,2 =
(
bfn−1eq,2 , bfn−2eq,2 , . . . , bf0eq,2

)
,

〈f〉q,2 =
(
〈fn−1〉q,2 , 〈fn−2〉q,2 , . . . , 〈f0〉q,2

)
.

In [Pei14], Peikert defines a reconciliation mechanism using the above functions. If the modulus q is odd,
it requires to work in Z2q instead of Zq to avoid bias in the derived bits. Since we use odd q in this paper, we
need to introduce the randomized doubling function from [Pei14]: let dbl : Zq → Z2q, x 7→ dbl(x) = 2x− e,
where e is sampled from {−1, 0, 1} with probabilities p−1 = p1 = 1

4 and p0 = 1
2 . The following lemma shows

that the rounding of dbl(v) ∈ Z2q for a uniform random element v ∈ Zq is uniform random in Z2q given its
cross-rounding, i.e. 〈dbl(v)〉2q,2 hides bdbl(v)e2q,2.

Lemma 1 ([Pei14, Claim 3.3]). For odd q, if v ∈ Zq is uniformly random and v
$← dbl(v) ∈ Z2q, then bve2q,2

is uniformly random given 〈v〉2q,2.

The randomized doubling function dbl is extended to elements f ∈ Rq by applying it to each of its
coefficients, resulting in a polynomial in R2q, which in turn can be taken as an input to the rounding functions
b·e2q,2 and 〈·〉2q,2.

In [Pei14], a reconciliation function is defined to recover bveq,2 from an element w ∈ Zq close to an element
v ∈ Zq, given only w and the cross-rounding 〈v〉q,2. We recall the definition from [Pei14] working via Z2q

since the modulus q is odd in this paper. Define the sets I0 = {0, 1, . . . ,
⌊
q
2

⌉
− 1} and I1 = {−

⌊
q
2

⌋
, . . . , 1}.

Let E = [− q4 ,
q
4 ), then the reconciliation function rec : Z2q × Z2 → Z2 is defined by

rec(w, b) =

{
0, if w ∈ Ib + E mod 2q,

1, otherwise.

It is shown in the next lemma that one can recover the rounding bdbl(v)e2q,2 of a random element v ∈ Zq
from an element w ∈ Zq close to v and the cross-rounding 〈dbl(v)〉2q,2.

Lemma 2 ([Pei14, Section 3.2]). For odd q, let v = w + e ∈ Zq for w, e ∈ Zq such that 2e± 1 ∈ E (mod q).
Let v = dbl(v). Then rec(2w, 〈v〉2q,2) = bve2q,2.

Again, reconciliation of a polynomial in Rq is done coefficient-wise using the reconciliation function on
Z2q × Z2. Note that Lemma 2 ensures that for two polynomials v, w ∈ Rq which are close to each other, i.e.
v = w + e for a polynomial e, the polynomial w can be exactly reconciled to bve2q,2 given 〈v〉2q,2 whenever
every coefficient ei ∈ Zq of the difference e ∈ Rq satisfies 2ei ± 1 ∈ E (mod q). The rounding functions
in Definition 2 are trivial to implement. They involve a simple precomputed partitioning of Zq into two
(not necessarily connected) subdomains D and Zq \D, and on input of x ∈ Zq, these functions return a bit
depending on whether x ∈ D or not. The time taken by the rounding functions is negligible compared to
the other cryptographic operations while the time of the doubling function is dominated by sampling of the
necessary random bits (see Secton 6.1 for more performance details).

2.4 Discrete Gaussians

The distribution χ referred to in the above definition of the R-LWE problem is usually a discrete Gaussian
distribution on R. Since this paper restricts to the case of m = 2l being a power of 2, sampling from a
discrete Gaussian can be done by sampling each coefficient from a 1-dimensional discrete Gaussian DZ,σ
with parameter σ. The discrete Gaussian (see [DG14]) assigns to each x ∈ Z a probability proportional to

e−x
2/(2σ2), normalized by the factor S = 1 + 2

∑∞
k=1 e

−k2/(2σ2), given by DZ,σ(x) = 1
S e
−x2/(2σ2). The discrete

Gaussian distribution on R is the discrete Gaussian DZn,σ obtained by sampling each coefficient from DZ,σ.
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Public parameters

Decision R-LWE parameters q, n, χ

a
$← U(Rq)

Alice Bob

s, e
$← χ s′, e′

$← χ

b← as+ e ∈ Rq
b−→ b′ ← as′ + e′ ∈ Rq

e′′
$← χ

v ← bs′ + e′′ ∈ Rq
v

$← dbl(v) ∈ R2q

b′,c←− c← 〈v〉2q,2 ∈ {0, 1}
n

kA ← rec(2b′s, c) ∈ {0, 1}n kB ← bve2q,2 ∈ {0, 1}
n

Figure 2: Unauthenticated Diffie–Hellman-like key exchange from R-LWE.

3 Unauthenticated Diffie–Hellman-like key exchange protocol

In this section we describe an unauthenticated Diffie–Hellman-like key exchange protocol based on the
R-LWE problem. In order to have an exact key exchange protocol, we need to apply error correction to
Alice’s computation of the shared secret. We employ Peikert’s error correction mechanisms described in §2.3,
resulting in a key exchange protocol that is effectively a reformulation of Peikert’s KEM [Pei14, §4]. This
protocol, shown in Fig. 2, is a rephrasing of the following computational problem:

Definition 3 (Exact DDH-like problem). Let q, n, χ be R-LWE parameters. The exact decision Diffie–
Hellman-like (e-ddh) problem for q, n, χ is to distinguish DH-like tuples with a real shared secret from those
with a random value, given reconciliation information. If A is an algorithm, define

Adve-ddh
q,n,χ(A) = |Pr (A(a, b, b′, c, k) = 1)− Pr (A(a, b, b′, c, k′) = 1)| ,

where a
$← U(Rq), s, s

′, e, e′, e′′
$← χ, b ← as + e, b′ ← as′ + e′, v ← bs′ + e′′, v

$← dbl(v), c ← 〈v〉2q,2,

k ← bve2q,2, and k′
$← U({0, 1}n).

Theorem 1 (Hardness of exact DDH-like problem). Let q be an odd integer, let n be a parameter, and χ be
a distribution on Rq. If the decision R-LWE problem for q, n, χ is hard, then the exact DDH-like problem for
q, n, χ is also hard. More precisely,

Adve-ddh
n,q,χ(A) ≤ Advdrlwe

n,q,χ(A ◦ B1) + Advdrlwe
n,q,χ(A ◦ B2)

where B1 and B2 are the reduction algorithms given in Fig. 3.

Proof. The proof closely follows Peikert’s proof of IND-CPA security of the related KEM [Pei14, Lemma 4.1].
It proceeds by a sequence of games which are shown in Fig. 3. Let Si be the event that the adversary guesses
the bit b∗ in Game i.

Game 0. This is the original game, where the messages are generated honestly as in Fig. 2. We want to
bound Pr(S0). Note that in Game 0, the R-LWE pairs are: (a, b) (with secret s); and (a, b′) and (b, v) (both
with secret s′). Hence,

Adve-ddh
n,q,χ(A) = |Pr(S0)− 1/2| . (1)

Game 1. In this game, Alice’s ephemeral public key is generated uniformly at random, rather than being
generated as a R-LWE sample from distribution χ and public parameter a. Note that in Game 1, the R-LWE
pairs are: (a, b′) and (b, v) (both with secret s′).
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Game 0.

1: a
$← U(Rq)

2: s, e
$← χ

3: b← as+ e
4: s′, e′

$← χ
5: b′ ← as′ + e′

6: e′′
$← χ

7: v ← bs′ + e′′

8: v
$← dbl(v)

9: c← 〈v〉2q,2
10: k ← bve2q,2
11: k′

$← U({0, 1}n)

12: b∗
$← U({0, 1})

13: if b∗ = 0 then
return
(a, b, b′, c, k)

14: else
return
(a, b, b′, c, k′)

Game 1.

1: a
$← U(Rq)

2: b
$← U(Rq)

3: s′, e′
$← χ

4: b′ ← as′ + e′

5: e′′
$← χ

6: v ← bs′ + e′′

7: v
$← dbl(v)

8: c← 〈v〉2q,2
9: k ← bve2q,2

10: k′
$← U({0, 1}n)

11: b∗
$← ({0, 1})

12: if b∗ = 0 then
return
(a, b, b′, c, k)

13: else
return
(a, b, b′, c, k′)

Game 2.

1: a
$← U(Rq)

2: b
$← U(Rq)

3: b′
$← U(Rq)

4: v
$← U(Rq)

5: v
$← dbl(v)

6: c← 〈v〉2q,2
7: k ← bve2q,2
8: k′

$← U({0, 1}n)

9: b∗
$← U({0, 1}

10: if b∗ = 0 then
return
(a, b, b′, c, k)

11: else
return
(a, b, b′, c, k′)

B1(a, b)

1: s′, e′
$← χ

2: b′ ← as′ + e′

3: e′′
$← χ

4: v ← bs′ + e′′

5: v
$← dbl(v)

6: c← 〈v〉2q,2
7: k ← bve2q,2
8: k′

$← U({0, 1}n)

9: b∗
$← U({0, 1})

10: if b∗ = 0 then
return
(a, b, b′, c, k)

11: else
return
(a, b, b′, c, k′)

B2((a, b′), (b, v))

1: v
$← dbl(v)

2: c← 〈v〉2q,2
3: k ← bve2q,2
4: k′

$← U({0, 1}n)

5: b∗
$← U({0, 1})

6: if b∗ = 0 then
return
(a, b, b′, c, k)

7: else
return
(a, b, b′, c, k′)

Figure 3: Sequence of games and reductions B1 and B2 for proof of Theorem 1.

Difference between Game 0 and Game 1. In Game 0, (a, b) is a sample from Oχ,s. In Game 1, (a, b)
is a sample from U(R2

q). Under the decision ring learning with errors assumption (Definition 1), these two
distributions are indistinguishable.

More explicitly, let B1 be the algorithm shown in Fig. 3 that takes as input a pair (a, b). When (a, b) is a

sample from Oχ,s where s
$← χ, then the output of B1 is distributed exactly as in Game 0. When (a, b) is a

sample from U(R2
q), then the output of B1 is distributed exactly as in Game 1. Thus, if A can distinguish

Game 0 from Game 1, then A ◦ B1 can distinguish samples from Oχ,s from samples from U(R2
q). Thus,

|Pr(S0)− Pr(S1)| ≤ Advdrlwe
n,q,χ(A ◦ B1) . (2)

Game 2. In this game, the shared secret key k is generated uniformly at random, rather than being
generated via a combination of Alice and Bob’s ephemeral keys. Note that in Game 2, there are no R-LWE
pairs.

Difference between Game 1 and Game 2. In Game 1, (a, b′) and (b′, v) are two samples from Oχ,s′ .
In Game 2, (a, b′) and (b′, v) are two samples from U(R2

q). Under the decision ring learning with errors
assumption (Definition 1), these two distributions are indistinguishable.

More explicitly, let B2 be the algorithm shown in Fig. 3 that takes as input two pairs ((a, b′), (b, v)). When

(a, b′) and (b, v) are samples from Oχ,s′ where s′
$← χ, then the output of B2 is distributed exactly as in Game

1. When (a, b′) and (b, v) are samples from U(R2
q), then the output of B2 is distributed exactly as in Game

2. Thus, if A can distinguish Game 1 from Game 2, then A ◦ B2 can distinguish samples from Oχ,s from
samples from U(R2

q). Thus,

|Pr(S1)− Pr(S2)| ≤ Advdrlwe
n,q,χ(A ◦ B2) . (3)

Analysis of Game 2. In Game 2, the adversary is asked to guess b∗ and thereby distinguish between k

and k′. Since k is computed as k ← bve2q,2 where v is chosen uniformly at random from Rq and v
$← dbl(v),

we have from Lemma 1 that k is distributed uniformly on {0, 1}n, even given c = 〈v〉2q,2. As well, k′ is chosen
uniformly at random from {0, 1}n. Note that k and k′ are independent of the values a, b, b′, c provided to the
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adversary. Thus, the adversary has no information about b∗, and hence

Pr(S2) = 1/2 . (4)

Conclusion. Combining equations (1)–(4), we obtain the result in the theorem.

4 Implementing R-LWE

In this section we describe two implementations of the R-LWE key exchange protocol. The difference between
the two implementations arises from the fact that one takes additional measures to ensure that the routine
runs in constant-time, meaning that there is no data flow from secret material to branch conditions.

4.1 Parameter selection

For our implementation, we chose the following parameters: n = 1024, q = 232 − 1, σ = 8/
√

2π ≈
3.192. These parameters provide a security of at least 128 bits against the distinguishing attack described
in [MR09, LP11, vdPS13, LN14] with distinguishing advantage less than 2−128. To achieve a certain advantage
requires the adversary to find a short vector of a certain length in a corresponding lattice. We evaluated the
parameters with the analysis from [LN14], which uses the BKZ-2.0 simulation algorithm according to [CN11].
Based on the simulation results, the parameters guarantee that an adversary running BKZ 2.0 cannot obtain
a vector of the required size in 2128 steps, keeping the distinguishing advantage below 2−128.

Previous works on implementing lattice-based cryptographic primitives typically use smaller dimension
(usually n = 512, provided the schemes are not used for homomorphic encryption for which dimensions
are much larger). By increasing the dimension to 1024 we are particularly conservative against progress in
lattice-basis reduction algorithms. The size of the modulus q provides a large margin for correctness and
could possibly be reduced. Note that according to [BLP+13], the form of the modulus does not have an
influence on the security of the LWE problem. Assuming that this also holds for R-LWE, we allow the
modulus to be composite.

4.2 Sampling from the Gaussian

In this subsection we describe how to sample small elements in the ring Rq; this corresponds to the operations

denoted as
$← χ in Fig. 2. We use a simple adaptation of the inversion method, which independently samples

each of the n = 1024 coefficients of an Rq-element from a one-dimensional discrete Gaussian. For more details
on inversion sampling, and on (R-)LWE-style sampling in general, see [DG14].

For a one-dimensional, discrete Gaussian distribution DZ,σ centred at µ = 0 with standard deviation σ,
recall from §2.4 the probability of a random variable taking the value x ∈ Z is

DZ,σ(x) =
1

S
e−x

2/(2σ2),

where S =
∑∞
k=−∞ e−k

2/(2σ2); in our case, when σ = 8/
√

2π, we have S = 8.
Our adaptation of inversion sampling uses a precomputed lookup table T = [T [0], . . . T [51]] of size 52,

where T [0] = b2192 · 1
S c, where

T [i] =

⌊
2192 ·

(
1

S
+ 2

i∑
x=1

DZ,σ(x)

)⌋
for i = 1, . . . , 50, and where T [51] = 2192. Since S = 8, note that all table elements are integers in

[2189, 2192], and that T [i+ 1] > T [i] for i = 0, . . . , 50. The sampling of an element s ∈ Rq, denoted s
$← χ,

is performed as follows. Write s =
∑1023
j=0 sjX

j . For each j = 0, . . . , 1023, we independently generate a
192-bit integer vj uniformly at random, and compute the unique integer index indj ∈ [0, 50] such that
T [indj ] ≤ vj < T [indj + 1]. We then generate one additional random bit to decide the sign signj ∈ {−1, 1},
and return the j-th coefficient as sj ← signj · indj . Note that since every operation of the form s

$← χ
requires 1024 random strings of length 192, in total we need 196,608 bits of randomness for each execution
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of the operation
$← χ. Since the 1024 coefficients of s are sampled independently, the sampling routine is

embarassingly parallelizable.
As outlined above, our implementation needs a large amount of random data (e.g. we need 24 KiB of

random data each time we sample a small ring element). Provided there is enough entropy, this data could be
obtained from a true random number generator, such as OpenSSL’s RAND bytes function. Obtaining these
truly random bytes is slow and unnecessary (from a security perspective). Instead, one can use a pseudo
random number generator (PRNG) which is seeded with truly random data whose size is determined by the
security parameter. We use this approach conservatively: for each small ring element we need to sample,
we re-seed the PRNG by sampling sufficient truly random data (16 bytes for the 128-bit security level) and
obtain the subsequent 24 KiB of random data with the help of the PRNG. In our implementation we use
AES in counter mode as the PRNG function.

The security (proof) of our protocol requires that the statistical difference of our sampling algorithm and
the theoretical distribution is less than 2−128. The proposition below shows that this is indeed the case; the
accompanying proof uses two lemmas (and the associated notation) from [DG14].

Proposition 1. Let D′′ be the distribution corresponding to the sampling routine described above and let
DZn,σ be the true discrete Gaussian distribution on Zn. The statistical difference ∆(D′′, DZn,σ) of the two
distributions is bounded by

∆(D′′, DZn,σ) < 2−128.

Proof. In [DG14, Lemma 1], we use k = 129, m = 1024, σ = 8 and c = 1.30872 to get Pr(||v|| > 42σ) < 2−129

for v ← DZn,σ. Subsequently, we take t = 42 and ε = 2−192 in [DG14, Lemma 2] to get ∆(D′′, DZn,σ) <
2−k + 2mtσε = 2−129 + 2 · 210 · 42 · (8/

√
2π) · 2−192 < 2−128. Finally, for all x ∈ Z with |x| > 51, the true

probabilities DZ,σ(x) in [DG14, Lemma 2] (where they are denoted ρx) are such that DZ,σ(x) < 2−192,
meaning that we can zero the approximate probabilities px and maintain |px −DZ,σ(x)| = |DZ,σ(x)| < ε; this
allows the individual samples to be instead taken from [−51, 51], provided we set T [51] is set as 2192 so that∑51
x=−51 px = 1.

We implemented the above sampling routine in two different ways, based on the way that each index indj
is retrieved from T (on input of the random 192-bit integer vj). The first uses a plain binary search which
(with overwhelmingly high probability) returns the correct value ind using 6 (192-bit) integer comparisons
for each j. While this approach uses the same number of identical steps each time it is called, it is not
constant-time. Accessing elements from different parts of the table might require a variable amount of time
depending on whether or not this data was already loaded into the cache. Attacks which use this type of
information are known as cache-attacks [OST06]. Thus, we also implemented a truly constant-time sampling
routine that loads every table element and creates a mask based on whether each accessed element is smaller
than the input or not. This requires exactly 51 (constant-time) integer comparisons, which explains the
performance difference between these routines (see Section 6).

4.3 Correctness of the scheme

In this subsection we give a brief, heuristic argument as to why the key agreement scheme in Fig. 2 is
indeed exact. We start by discussing the coefficient sizes of a product of two small error polynomials. By
the cyclic nature of reduction modulo Xn + 1, it is straightforward to see that if x =

∑n−1
i=0 xiX

i and

y =
∑n−1
i=0 yiX

i are both sampled from χ, then each coefficient zi of the product x · y =
∑n−1
i=0 ziX

i is of

the form zi =
∑n−1
j=0 signj · xjyj , for some reordering of the yj and where signj ∈ {−1, 1}. Given that

each of the xj and yj are sampled independently from the one-dimensional discrete Gaussian DZ,σ, the
variance of each product is var(xjyj) = var(xj)var(yj) = σ4, so the variance of the i-th coefficient zi is

var(zi) =
∑n−1
j=0 var(xjyj) = nσ4. By the central limit theorem, the individual coefficients of the product xy

become (approximately) normally distributed around zero and with standard deviation σ2
√
n.

Refering back to the key exchange algorithm in Fig. 2, we note that the difference between the two
keys (prior to any doubling, rounding, cross-rounding or reconciliation) is v − b′s = s′e + e′′ − se′, where
e, e′, e′′, s, s′ are all sampled from χ. Using the argument from above, the variance of the i-th coefficient of
this difference, (v − b′s)i, can be written in terms of the variances of the i-th coefficients in the summand as
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var((v−b′s)i) = var((s′e)i)+var((e′′)i)+var((se′)i) = 2σ4n+σ2. Thus, prior to the application of Peikert’s
reconciliation functions, the average differences between each coefficient of the keys is normally distributed
around zero, with standard deviation

√
2σ4n+ σ2 ≈ 460 < 29. Lemma 2 tells us that the reconciliation

function will only fail if the absolute value of one or more of these coefficients exceeds q/8 > 228. So q/8 is
over 219 standard deviations away from the average differences between the coefficients of the unreconciled
keys, from which the probability of the reconciled keys disagreeing anywhere is clearly negligible.

4.4 Polynomial arithmetic

The arithmetic used in the key agreement scheme is polynomial arithmetic in the cyclotomic ring Rq =

Zq[X]/(Φ2l+1(X)) where Zq = Z/qZ and Φ2l+1(X) = X2l + 1 is the 2l+1-th cyclotomic polynomial. We
assume that 2 is invertible in the ring Zq (i.e. q is odd). Multiplying two elements in Rq can be achieved
by computing the discrete Fourier transform via fast Fourier transform (FFT) [CT65] algorithms. More
specifically, we use the approach from Nussbaumer [Nus80] based on recursive negacyclic convolutions (see
[Knu97, Exercise 4.6.4.59] for more details) since this naturally applies to cyclotomic rings for which the
degree is a power of 2.

Nussbaumer observed that for any ring R in which 2 is invertible and whenever 2l = k · r with k | r then

R[X]/(X2l + 1) ∼= (R[Z]/(Zr + 1))[X]/(Z −Xk),

where Zr/k is a 2k-th root of unity in R[Z]/(Zr + 1). Hence, multiplying by powers of the root of unity is
computationally cheap since it boils down to shuffling around the polynomial coefficients. This polynomial
multiplication method requires O(l log l) multiplications in R. Investigation of other asymptotically efficient
polynomial multiplication algorithms, such as Schönhage-Strassen multiplication [SS71], is left as future
research.

We implemented the version of Nussbaumer’s method as outlined by Knuth [Knu97, Exercise 4.6.4.59].
We use q = 232 − 1 to define Zq, note that q is not prime (q = (21 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)). This
choice of the modulus q allows us to compute the modular reduction efficiently. We follow the implementation
strategy for the modular arithmetic in [BCHL13]. If a prime modulus q is required one could use the eighth
Mersenne prime: 231 − 1. This also allows efficient modular reduction but we found that an exponent which
is a multiple of eight outweighs other positive performance aspects.

5 Integration into TLS

In this section we discuss the integration of R-LWE into the Transport Layer Security (TLS) protocol. We
describe how to integrate the R-LWE-based key exchange protocol into the message flow of TLS, discuss our
implementation in the OpenSSL software,2 and demonstrate that the new ciphersuites satisfies the standard
security model for TLS.

5.1 Message flow and operations

The message flow and cryptographic computations for our TLS ciphersuite with signatures for entity
authentication and R-LWE for key exchange are given in Fig. 4. The R-LWE key exchange values from the
basic protocol (Fig. 2) are inserted in the ServerKeyExchange and ClientKeyExchange messages. Notice
that, compared with signed-Diffie–Hellman ciphersuites, the server’s signature is separated out from the
ServerKeyExchange message into a separate CertificateVerify message near the end of the handshake;
for the rationale of this design choice, see Remark 4. We fixed a public parameter a to be used by all parties.
We generated a once at random; for standardization purposes, a single a value should be generated in a
verifiably random, “nothing up my sleeve” manner. The computation of each of the ciphersuite-specific
(highlighted) messages, as well as the premaster key derivation, is given in Fig. 4. Notice that, since the
server sends the first key exchange message, the server plays the role of Alice from the basic unauthenticated
exact Diffie–Hellman-like protocol (Fig. 2) and the client plays the role of Bob.

2http://www.openssl.org/
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Client Server

ClientHello

ServerHello

Certificate

ServerKeyExchange

CertificateRequest∗

ServerHelloDone

Certificate∗

ClientKeyExchange

CertificateVerify∗

[ChangeCipherSpec]

compute keys

Finished

accept

CertificateVerify

[ChangeCipherSpec]

verify signature

accept

compute keys

Finished

application data

ServerKeyExchange:

1: s, e
$← χ

2: b← as+ e
3: return b

ClientKeyExchange:

1: s′, e′
$← χ

2: b′ ← as′ + e′

3: e′′
$← χ

4: v ← bs′ + e′′

5: v
$← dbl(v)

6: c← 〈v〉2q,2
7: return b′, c

Client compute keys:

1: pms← bve2q,2
2: Compute master secret ms and encryption keys

as per TLS specification [DR08, §8.1, §6.3].

Server CertificateVerify:

1: Sign handshake messages to this point as in
client’s CertificateVerify algorithm [DR08,
§7.4.8].

Server compute keys:

1: pms← rec(2b′s, c)
2: Compute master secret ms and encryption keys

as per TLS specification [DR08, §8.1, §6.3].

∗ denotes optional messages for client authentication and [ChangeCipherSpec] denotes the ChangeCipherSpec alert
protocol message, after which all data sent by that party is encrypted and authenticated on the record layer. Single
lines ( ) denote unprotected communication, double lines ( ) denote encrypted/authenticated (record layer)

communication, rectangles highlight messages or steps which have changed for this ciphersuite.

Figure 4: The TLS protocol with a signed R-LWE key exchange ciphersuite. Left: TLS message flow. Right:
R-LWE-specific computations.

5.2 Implementation

We implemented the R-LWE-based ciphersuite described in the previous subsection into OpenSSL. Specif-
ically, we created four new ciphersuites, all designed to achieve a 128-bit security level. The first two,
RLWE-ECDSA-AES128-GCM-SHA256 and RLWE-RSA-AES128-GCM-SHA256, consist of:

• key exchange based on R-LWE key exchange, as described in Section 5.1 and Fig. 4, with parameters
as described in Section 4.1, namely n = 1024, q = 232 − 1, and σ = 8/

√
2π;

• authentication based on ECDSA or RSA digital signatures;3

• authenticated encryption (with associated data) (AEAD) based on AES-128 in GCM (Galois Counter
Mode), which provides confidentiality as well as message integrity without the addition of a separate
MAC; and
• key derivation and hashing based on SHA-256.

We also created two HYBRID ciphersuites that are as above, except the key exchange includes both R-LWE
and ECDH key exchange; the pre-master secret is the concatenation of the ECDH shared secret and the
R-LWE shared secret.

3The ciphersuite does not fix the ECDSA/RSA parameter sizes; to get 128-bit security, we use the nisp256 curve and 3072-bit
RSA signatures.
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All these ciphersuite requires TLSv1.2 because of the use of AES-GCM (which we chose since it provably
satisfies the stateful length-hiding authenticated encryption notion [PRS11]), but TLSv1.0 ciphersuites using
AES in CBC mode are possible.

We integrated our C code implementation of the R-LWE operations described in Section 4 into OpenSSL
v1.0.1f. Specifically, we added the unauthenticated exact-DH-like protocol from Section 3 to OpenSSL’s
libcrypto module, then added the TLS ciphersuite to OpenSSL’s libssl module, and finally extended
various OpenSSL command-line programs (such as openssl speed, s client, and s server) appropriately.
Note that all required randomness is generated using OpenSSL’s RAND bytes function. The resulting libraries
can then be used with OpenSSL-reliant applications with few or no changes. For example, to use our R-LWE
ciphersuite with Apache’s httpd web server,4 it suffices to recompile Apache to link against the new OpenSSL
library, and set the ciphersuite option in Apache’s runtime configuration files. We report on the performance
of the new ciphersuite in Section 6.2.

5.3 Security model: authenticated and confidential channel establishment (ACCE)

We now turn to analyzing the security of our new TLS ciphersuite. Jager et al. [JKSS12] introduced the
authenticated and confidential channel establishment (ACCE) security model to prove the security of TLS. It
is based on the Bellare–Rogaway model for authenticated key exchange [BR93], but leaves the key exchange
security property implicit, instead having separate properties for entity authentication and channel security,
where the latter property is based on the stateful length-hiding authenticated encryption notion introduced
by Paterson et al. [PRS11] for the TLS record layer. In this subsection, we present the ACCE security model,
and in the next section we prove security of the ciphersuite in that model. Our model differs slightly from
the original model in that it explicitly includes forward secrecy. Our presentation is based largely on the text
of Dowling et al. [DGK+13].

Parties, long-term keys, and sessions. The execution environment consists of nP parties P1, . . . , PnP ,
each of whom is a potential protocol participant. Each party Pi generates a long-term private key / public key
pair (ski, pki). Each party can execute multiple sessions of the protocol, either concurrently or subsequently.
We denote the s-th session of a protocol at party Pi by πsi , and use nS to denote the maximum number of
sessions per party. Each session within the party has read access to the party’s long-term key, and read/write
access to the per-session variables. We overload notation and use πsi to denote the collection of the following
per-session variables:

• ρ ∈ {init, resp}: The party’s role in this session.
• pid ∈ {1, . . . , nP,⊥}: The identifier of the alleged peer of this session, or ⊥ for an unauthenticated peer.
• α ∈ {inprogress, reject, accept}: The status of the session.
• k: A session key, or ⊥. Note that k consists of two sub-keys: bi-directional authenticated encryption

keys ke and kd, which themselves may consist of encryption and possibly MAC sub-keys.
• sid: A session identifier defined by the protocol.
• stE, stD: State for the stateful authenticated encryption and decryption algorithms (see Definition 9).

• b: A hidden bit (used for a security experiment). On session initialization, b
$← {0, 1}.

• Additional state specific to the security experiment as described in Fig. 5.
• Any additional state specific to the protocol.

Adversary interaction. The adversary controls all communications: it directs parties to initiate sessions,
delivers messages to parties, and can reorder, alter, delete, and create messages. The adversary can also
compromise certain long-term or per-session secrets. The adversary interacts with the parties using the
following queries.

The first query models normal, unencrypted communication of parties during session establishment:

• Send(i, s,m)
$→ m′: The adversary sends message m to session πsi . Party Pi processes message m

according to the protocol specification and its per-session state πsi , updates its per-session state, and
optionally outputs an outgoing message m′. There is a distinguished initialization message which allows
the adversary to initiate the session with the role ρ it is meant to play in the session and optionally the

4http://httpd.apache.org/
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Enc(i, s, `, ad,m0,m1)

1: πsi .u← πsi .u+ 1

2: (C0, πsi .st
0
E)

$← AENC.Enc(πsi .k, `, ad,m0, π
s
i .stE)

3: (C1, πsi .st
1
E)

$← AENC.Enc(πsi .k, `, ad,m1, π
s
i .stE)

4: if C0 = ⊥ or C1 = ⊥ then return ⊥
5: πsi .Cπsi .u ← Cπ

s
i .b, πsi .adπsi .u ← ad, πsi .stE ← st

πsi .b

E

6: return Cπ
s
i .b

Dec(i, s, ad, C)

1: if πsi .b = 0 then return ⊥
2: j ← πsi .pid, t← index of (first) matching session at Pj
3: πsi .v ← πsi .v + 1
4: (m′, πsi .stD)← AENC.Dec(πsi .k, ad, C, π

s
i .stD)

5: if πsi .v > πtj .u or c 6= πtj .Cπsi .v or ad 6= πtj .adπsi .v then
6: πsi .phase← 1
7: end if
8: if πsi .phase = 1 then return m
9: return ⊥

Figure 5: Encrypt and Decrypt oracles for the ACCE security experiment.

identity pid of the intended partner of the session. This query may return error symbol ⊥ if the session
has entered state α = accept and no more protocol messages are transmitted over the unencrypted
channel.

The next two queries model adversarial compromise of long-term and per-session secrets:

• Reveal(i, s)→ k: Returns session key πsi .k.
• Corrupt(i)→ sk: Return party Pi’s long-term secret key ski. Note the adversary does not take control

of the corrupted party or learn state variables, but can impersonate Pi in later sessions by using ski.

The final two queries model communication over the encrypted channel. The adversary can cause plaintexts
to be encrypted as outgoing ciphertexts, and can cause ciphertexts to be decrypted and delivered as incoming
plaintexts. The queries are used to capture the security notion of stateful length-hiding authenticated
encryption as described in Appendix 7.

• Encrypt(i, s,m0,m1)
$→ C: If πsi .k = ⊥, the query returns ⊥. Otherwise, it procceds as in Fig. 5.

• Decrypt(i, s, C)→ m or ⊥: If πsi .k = ⊥, the query returns ⊥. Otherwise, it procceds as in Fig. 5.

The Encrypt/Decrypt oracles, which embody the stateful length-hiding authenticated encryption property,
simultaneously capture four security properties:

• indistinguishability under chosen ciphertext attack : the adversary cannot distinguish whether m0 or m1

is encrypted, even when given access to a decryption oracle;
• integrity of ciphertexts: only ciphertexts generated by legitimate parties successfully decrypt;
• integrity of associated data; and
• stateful delivery of ciphertexts: the adversary cannot deliver ciphertexts out of order.

The hidden bit πsi .b is leaked to the adversary if any of those conditions are violated.

Security experiment. The ACCE security experiment is played between an adversary A and a challenger
C who implements all parties according to the execution environment above. After the challenger initializes
the long-term private key / public key pairs, the adversary receives the public keys and then interacts with
the challenger using the queries above. Finally, the adversary outputs a triple (i, s, b′) and terminates. The
adversary’s goal is to either break authentication (by causing an honest session to accept without a matching
session) or to successfully guess that the bit b used in the Encrypt/Decrypt oracles of session SV owner is
equal to b′. The details of these security goals follow. We begin by defining matching sessions.

Definition 4 (Matching sessions). We say that session πtj matches πsi if πsi .ρ 6= πtj .ρ and πsi .sid prefix-
matches πtj .sid, meaning that (i) if πsi sent the last message in πsi .sid, then πtj .sid is a prefix of πsi .sid, or
(ii) if πtj sent the last message in πsi .sid, then πsi .sid = πtj .sid.
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Correctness is defined in the natural way: in the presence of a benign adversary, two communicating
oracles will (with overwhelming probability) accept, compute equal session keys, and be able to successfully
communicate encrypted application data. For details see [KPW13, full version, Defn. 10].

We can now define server-to-client (a.k.a., server-only) authentication based on the existing of matching
sessions.

Definition 5 (Server-to-client authentication). Let P be a protocol. Let πsi be a session. Let j = πsi .pid. We
say that πsi accepts maliciously if

1. πsi .α = accept;
2. πsi .ρ = init; and
3. no Corrupt(j) query was issued before πsi accepted,

but there is no unique session πtj which matches πsi .

Define Advacce-so-auth
P (A) as the probability that, when A termiantes in the ACCE experiment for P , there

exists a(n initiator) session πsi that has accepted maliciously.

We define channel security based on the adversary’s ability to guess the hidden bit b of an uncompromised
session, thereby breaking one of the four properties of stateful length-hiding authenticated encryption described
above. We focus on channel security in the context of server-only authentication, so the adversary wins if it
guesses the hidden bit at any client session, or at any server session in which it was passive.

Definition 6 (Channel security with forward secrecy in server-only authentication mode). Let P be a protocol.
Let πsi be a session. Let j = πsi .pid. Suppose A outputs (i, s, b′). We say that A answers the encryption
challenge correctly if

1. πsi .α = accept;
2. no Corrupt(i) query was issued before πsi accepted;
3. no Corrupt(j) query was issued before any session πtj which matches πsi accepted;
4. no Reveal(i, s) query was ever issued;
5. no Reveal(j, t) query was ever issued for any session πtj which matches πsi ;
6. πsi .b = b′;
7. and either:

(a) πsi .ρ = init; or
(b) πsi .ρ = resp and there exists a session which matches πsi .

Define Advacce-so-aenc-fs
P (A) as |p − 1/2|, where p is the probability that, in the ACCE experiment for P , A

answers the encryption challenge correctly.

Remark 1 (Mutual authentication). We focus on the case of server-to-client authentication, as that is the
dominant mode in which TLS is used on the Internet. The ACCE framework can deal with the mutual
authentication case as well, by removing item 2 from Definition 5 and item 7 from Definition 6.

5.4 Security result

The following informal theorem summarizes our security result for our R-LWE-based TLS ciphersuite. The
proof is in the standard model, and does not rely on random oracles.

Theorem 2 (TLS signed R-LWE is a secure ACCE (informal)). Let TLS-RLWE-SIG-AENC denote the TLS
protocol with a R-LWE-based ciphersuite as described in Fig. 4, with SIG for the signature scheme and AENC

as the stateful length-hiding authenticated encryption for the record layer. Let PRF denote the pseudorandom
function used by TLS in that ciphersuite.

If the signature scheme SIG is existentially unforgeable under chosen message attack, then TLS-RLWE-SIG-AENC
provides secure server-to-client authentication.

If additionally the exact-DDH-like problem for the R-LWE parameters is hard, PRF is a secure pseudorandom
function, and AENC is a secure stateful length-hiding authenticated encryption scheme, then TLS-RLWE-SIG-AENC
provides channel security, with forward secrecy, in server-only auth. mode.

Moreover, the protocol is correct with high probability.
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Precise statements for the server-to-client authentication property and the channel security property are
given in Lemmas 3 and 4. Precise statements of the correctness property are omitted, as they follow clearly
from Section 4.3. Security definitions of standard cryptographic components appear in Appendix 7.

Lemma 3 (Server-to-client authentication). Let A denote an adversary against the server-only authentication
of TLS-RLWE-SIG-AENC. Then, for the reduction algorithm B2 described in the proof of the lemma,

Advacce-so-auth
TLS-RLWE-SIG-AENC(A) ≤ (nPnS)2

2`rand
+ nPAdveuf-cma

SIG (BA2 ) .

Proof. The proof proceeds via a sequence of games. Since we have altered the TLS protocol so that the server
signs the the whole transcript, our proof is simpler than the signed-DH TLS proof of Jager et al. [JKSS12] or
Krawczyk et al. [KPW13]. In particular, our proof follows closely the proof of signed-DH in the Secure Shell
(SSH) protocol of Dowling et al. [DGK+13], in which the server signs the whole handshake transcript.

Let breakδ be the event that occurs when a client session accepts maliciously in Game δ in the sense of
Definition 5.

Game 0 [original experiment]. This game equals the ACCE security experiment described in Section 5.3.
Thus,

Advacce-so-auth
TLS-RLWE-SIG-AENC(A) = Pr(break0) . (5)

Game 1 [exclude colliding nonces]. In this game, we add an abort rule for non-unique nonces rC or rS .
Specifically, the challenger collects a list of all random nonces sampled by the challenger for client or server
sessions during the simulation. If one nonce appears on the list twice, the simulator aborts the simulation.
This is a transition based on a failure event. There are at most nPnS sampled random nonces, each taken
uniformly at random from {0, 1}`rand . Thus,

Pr(break0) ≤ Pr(break1) +
(nPnS)2

2`rand
. (6)

Game 2 [signature forgery]. In this game, we exclude signature forgeries. Technically, we abort the
simulation the first time some session πs

∗

i∗ accepts after receiving a signature that was not the output of a
session with a matching session identifier and the signing peer’s long-term public key was uncorrupted at the
time πs

∗

i∗ accepted; denote this as event abort2. We excluded nonce collisions in the previous game, so in this
game all values signed by honest parties are different. We show that the abort event is related to a signature
forgery.

To demonstrate the signature forgery, we construct an algorithm BA2 which simulates the TLS protocol
execution as in Game 1. B2 interacts with A. B2 receives a public key pk∗ from an euf-cma signature
challenger for SIG and guesses a party j∗. In its simulation of Game 1, B2 uses pk∗ as j∗’s public key and B2

uses the signing oracle from the euf-cma signature challenger for SIG to generate all signatures for j1. Under
the assumption that the abort event abort2 occurs, with probability 1/nP, session πs

∗

i∗ aborted after receiving
a forged signature for party j∗. Moreover, the adversary did not issue a Corrupt(j∗) query. Thus, B2 can
perfectly simulate Game 1: in particular, B2 can answer any Corrupt queries for all parties other than j∗

without knowing the signing key corresponding to pk∗, and Corrupt(j∗) is not asked.
Since we have excluded nonce collisions, the signature received by πs

∗

i∗ on the handshake transcript of πs
∗

i∗

was not output by any instance of j∗ that B2 has simulated. This implies that B did not query the signing
oracle of its euf-cma signature challenger for this transcript. This transcript and signature is thus a valid
forgery.

Thus, if B2 guess j∗ correctly (which happens with probability 1/nP), then A has helped B2 find a valid
forgery for the euf-cma challenger for SIG. Thus,

Pr(abort2) ≤ nPAdveuf-cma
SIG (BA2 ) . (7)

Moreover, games 1 and 2 are indistinguishable as long as the failure event does not occur, so

|Pr(break1)− Pr(break2)| ≤ Pr(abort2) . (8)
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Game 2 only completes if the abort event abort2 does not occur. By definition of the abort event,
this means that no client session accepts without a matching session whenever the peer’s public key was
uncompromised. Thus game 2 cannot be won:

Pr(break2) = 0 . (9)

Combining equations (5)–(9) yields the result.

Lemma 4 (Channel security, server-only auth. mode). Let A denote an adversary against the channel
security (in server-only authentication mode) of TLS-RLWE-SIG-AENC in the sense of Definition 6. Then, for
the reduction algorithms B2 described in the proof of Lemma 3 and D3, . . . ,D6 described in the proof of this
lemma,

Advacce-so-aenc-fs
TLS-RLWE-SIG-AENC(A) ≤ (nPnS)2

2`rand
+ nPAdveuf-cma

SIG (BA2 )

+ nPnS

(
Adve-ddh

q,n,χ(DA3 ) + Advprf
PRF(DA4 ) + Advprf

PRF(DA5 ) + Advslhae
AENC(DA6 )

)
.

where PRF is the pseudorandom function used in TLS-RLWE-SIG-AENC.

Proof. The proof again proceeds via a sequence of games, and follows closely the proofs of signed-DH channel
security of TLS by Jager et al. [JKSS12] and of SSH by Dowling et al. [DGK+13].

The adversary’s goal is to compute that random bit πs
∗

i∗ .b of a client session (where the peer’s long-term
key was uncorrupted at the time the client accepted) or the random bit of a server session (where a matching
anonymous client session exists).

Let guessδ be the event that occurs when A answers the encryption challenge correctly for session π,
namely that A outputs a tuple (i, s, b′) such that π.b = b′ but all freshness conditions in Definition 6 are
satisfied.

Game 0 [original experiment]. This game equals the ACCE security experiment described in Section 5.3.
Thus,

Advacce-so-aenc-fs
TLS-RLWE-SIG-AENC(A) = |Pr(guess0)− 1/2| . (10)

Game 1 [exclude non-matching sessions]. In this game, we exclude sessions that have no matching
session. Technically, we abort the simulation in either of the following cases:

1. if the adversary’s chosen session π is a client session that accepted without a matching session and no
Corrupt(π.pid) query occurred before π accepted; or

2. if the adversary’s chosen session π is a server session that accepted without a matching session.

In the first case, this directly corresponds to a server impersonation, and thus a break in authentication. The
second case is already excluded by Definition 6. Thus,

|Pr(guess0)− Pr(guess1)| ≤ Advacce-so-auth
TLS-RLWE-SIG-AENC(A) . (11)

Game 2 [guess target session]. In this game, we guess which session will be the adversary’s target

session. Technically, we pick (i∗, s∗)
$← [nP]× [nS], then continue as in game 1, and at the end abort if the

adversary’s chosen session (i, s) 6= (i∗, s∗). Our guess is correct with probability 1
nPnS

. Thus,

Pr(guess1) = nPnS Pr(guess2) . (12)

There now exists a unique partner session πt
∗

j∗ for the guessed session πs
∗

i∗ which can be determined by the
simulator by looking for matching client/server nonces.
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Game 3 [replace R-LWE premaster secret]. In this game, we replace the premaster secret pms in
session πs

∗

i∗ and its peer πt
∗

j∗ with a value chosen uniformly at random from {0, 1}n. Any algorithm that can
distinguish game 2 from game 3 can be used to construct an algorithm that can distinguish DH-like R-LWE
tuples with a real shared secret from those with a random value, in the sense of Definition 3.

More explicitly, let DA3 be the following algorithm that receives an exact-DDH-like challenge (â, b̂, b̂′, ĉ, k̂)
for R-LWE parameters q, n, χ. D3 executes just as in game 2 and interacts with A, with the following
exceptions.

• The system uses â as the global R-LWE parameter a.
• When the target server session (whichever of πs

∗

i∗ and πt
∗

j∗ is the server) is generating its ServerKeyExchange

message, the simulator uses the given b̂ value, rather than generating b as in Fig. 4.
• When the target client session (whichever of πs

∗

i∗ and πt
∗

j∗ is the client) is generating its ClientKeyExchange

message, the simulator uses the given b̂′ and ĉ values, rather than generating b′ and c itself as in Fig. 4.
• When the target client and server sessions are computing keys, the simulator uses k̂ as the premaster

secret rather than generating pms itself as in Fig. 4.

When A terminates and outputs (i, s, b′), D3 outputs b′.
When D3 receives an exact DDH-like tuple with a real shared secret, then D3 behaves exactly as in game

2. When D3 receives an DDH-like tuple with a random shared secret, then D3 behaves exactly as in game 3.
Thus, D3 behaves differently on real versus random tuples exactly with the same probability that A behaves
differently on game 2 versus game 3:

|Pr(guess2)− Pr(guess3)| ≤ Adve-ddh
q,n,χ(DA3 ) . (13)

Game 4 [replace master secret]. In this game, we replace the master secret ms in session πs
∗

i∗ and
its peer πt

∗

j∗ with a value chosen uniformly at random from {0, 1}`ms , rather than being computed as
ms = PRF(pms, label1‖rC‖rS), where PRF is the pseudorandom function used in TLS, label1 is a fixed string,
and rC and rS are the client and server random nonces from the ClientHello and ServerHello messages.

Due to the substitution in the previous game, the premaster secret pms input to PRF is chosen uniformly
at random from {0, 1}n. Thus, any algorithm that can distinguish game 3 from game 4 can be used to
construct an algorithm that can distinguish the output of PRF from random, in the sense of Definition 8.

More explicitly, let DA4 be the following algorithm that interacts with a prf challenger for PRF as in
Definition 8. D4 executes just as in game 3 and interacts with A, with the following exceptions.

• When the target client session is computing keys, rather than computing ms itself, the simulator
outputs the string label1‖rC‖rS to the prf challenger, which proceeds as in Definition 8, then activates
the simulator with a real-or-random output K which the simulator uses as ms.

• When the target server session is computing keys, the simulator uses the same ms as the target client
session.

When A terminates and outputs (i, s, b′), D4 outputs b′.
When D4 receives the real PRF result from the prf challenger, D4 behaves exactly as in game 3. When

D4 receives a random value from the prf challenger, D4 behaves exactly as in game 4. Thus, D4 behaves
differently on real versus random PRF values exactly with the same probability that A behaves differently on
game 3 versus game 4:

|Pr(guess3)− Pr(guess4)| ≤ Advprf
PRF(DA4 ) . (14)

Game 5 [replace encryption keys]. In this game, we replace the encryption keys k in session πs
∗

i∗

and its peer πt
∗

j∗ with a value chosen uniformly at random from {0, 1}`k , rather than being computed as
k = PRF(ms, label2‖rC‖rS), where label1 is a fixed string, and rC and rS are the client and server random
nonces from the ClientHello and ServerHello messages.

Due to the substitution in the previous game, the master secret ms input to PRF is chosen uniformly
at random from {0, 1}`ms . Thus, any algorithm that can distinguish game 4 from game 5 can be used to
construct an algorithm that can distinguish the output of PRF from random, in the sense of Definition 8.

More explicitly, let DA5 be the following algorithm that interacts with a prf challenger for PRF as in
Definition 8. D5 executes just as in game 4 and interacts with A, with the following exceptions.
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• When the target client session is computing keys, rather than computing k itself, the simulator outputs
the string label2‖rC‖rS to the prf challenger, which proceeds as in Definition 8, then activates the
simulator with a real-or-random output K which the simulator uses as k.

• When the target server session is computing keys, the simulator uses the same k as in the target client
session.

When A terminates and outputs (i, s, b′), D5 outputs b′.
When D5 receives the real PRF result from the prf challenger, D5 behaves exactly as in game 4. When

D5 receives a random value from the prf challenger, D5 behaves exactly as in game 5. Thus, D5 behaves
differently on real versus random PRF values exactly with the same probability that A behaves differently on
game 4 versus game 5:

|Pr(guess4)− Pr(guess5)| ≤ Advprf
PRF(DA5 ) . (15)

Analysis of game 5. In game 5, the encryption key k of the target session is information-theoretically
independent from the key exchange messages. Thus, any adversary that can break the channel security of the
target session can be used to break the underlying stateful length-hiding authenticated encryption scheme
AENC.

More explicitly, let DA6 be the following algorithm that interacts with a slhae challenger for AENC; recalling
Definition 9, this means that the slhae challenger has chosen a secret key, and provides DA6 with oracle access
to Enc and Dec oracles as in Fig. 6. D6 executies just as in game 5 and interacts with A, with the following
exceptions.

• When A makes an Encrypt(i∗, s∗, `, ad,m0,m1) query to D6, D6 makes an Enc(`, ad,m0,m1) query to
its slhae challenger and returns the result to A.

• When A makes a Decrypt(i∗, s∗, ad, C) query to D6, D6 makes a Dec(ad,C) query to its slhae challenger
and returns the result to A.

When A terminates and outputs (i, s, b′), D6 outputs b′. The challenge bit πs
∗

i∗ .b in D6 corresponds to the
challenge bit b in the slhae challenger.

The values generated by D6 are distributed identically as in game 5. Moreover, A’s guess of b′ direcly
corresponds to a guess of b′ in the slhae experiment. Thus,

Pr(guess5) = Advslhae
AENC(DA6 ) . (16)

Combining equations (10)–(16) yields the result.

Remark 2 (Quantum-safe reduction and long-term security). Song [Son14] notes that security proofs of
allegedly post-quantum classical schemes typically assume classical adversaries, and it does not immediately
follow that the proof “lifts” to provide security against quantum adversaries. Song gives conditions under
which a classical proof can be lifted to provide quantum security. Some technical conditions must be met,
including that the reduction is a “straight-line” reduction, meaning that the reduction runs the adversary
from beginning to end, without rewinding or restarting. Our reductions are straight-line reductions. Thus, it
seems that Song’s framework should apply: if all of the other primitives in our ciphersuite are quantum-safe
with proofs against classical adversaries, then they should also be secure against quantum adversaries.

Even if our non-quantum-safe digital signatures are used in our construction (as we do in our implementa-
tion), users still have a long-term security property [MSU13]: a polynomial-time quantum computer built
in the future may be able to break authentication of sessions that occur after it exists, but cannot decrypt
sessions that were executed before it was active.

Remark 3 (Multi-ciphersuite security). Dowling et al. [DGK+13] extend the ACCE definition to consider the
case of multi-ciphersuite security, when long-term public keys are shared across multiple ciphersuites using the
same long-term authentication algorithm but different key exchange or encryption algorithms. Just because a
ciphersuite is ACCE-secure on its own does not mean that ciphersuite is secure in when its long-term public
key is used in other ciphersuites.

Dowling et al. give a framework for proving multi-ciphersuite security. They give a composition theorem
that says many mutually compatible ciphersuites are secure with shared long-term keys provided each
ciphersuite is ACCE-secure with an auxiliary oracle that provides access to operations based on the long-term
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key. One must then prove that the individual ciphersuite remains ACCE-secure even when the auxiliary
oracle provides operations based on the long-term key.

The signed finite field and elliptic Diffie–Hellman ciphersuites in TLS do not satisfy this property because
the data structure that is signed in these ciphersuites consists just of the random nonces and the ephemeral
public key. But Dowling et al. do show that signed-Diffie–Hellman ciphersuites in SSH are multi-ciphersuite
secure.

However, in our TLS-R-LWE ciphersuite, the data structure that is signed consists of the entire transcript,
which uniquely identifies the ciphersuite. This suffices to be able to prove TLS-R-LWE is ACCE-secure with
an auxiliary signing oracle, where the predicate Φ (in Dowling et al.’s framework) is based on the ciphersuite
chosen by the server in the ServerHello message in the transcript; thus our TLS-R-LWE ciphersuite is
multi-ciphersuite secure. It is safe to reuse the same long-term signing with other compatible multi-ciphersuite
secure ACCE protocols, including signed-Diffie–Hellman ciphersuites in SSH and a hypothetical future version
of signed-DH ciphersuites in TLS that sign the entire transcript.

Remark 4 (Oracle assumptions and moving the server signature). The security proofs of signed-DH ciphersuites
in TLS [JKSS12, KPW13] required a new Diffie–Hellman assumption, the PRF-Oracle-Diffie–Hellman
assumption. Instead of the normal decision Diffie–Hellman assumption, which assumes that the adversary
cannot distinguish real DH tuples (g, gu, gv, guv) from random tuples (g, gu, gv, gw), the PRF-ODF assumption

assumes the adversary cannot distinguish tuples of the form (g, gu, gv,F(guv,m)) from (g, gu, gv, z
$← {0, 1}`),

where m is chosen in advance by the adversary and F is a pseudorandom function (see Appendix 7), even
given access to an oracle that outputs F(Xv,m′) for any X 6= gu. While controversial when initially proposed
by Jager et al. [JKSS12], Krawczyk et al. [KPW13, full version, Appendix C] later demonstrated that the
PRF-ODH assumption was in fact necessary, and that a simple PRF assumption would not suffice.

The reason signed-DH ciphersuites in TLS require the PRF-ODH assumption is that the server’s signature
comes very early in the protocol (as part of the ServerKeyExchange). This signature is only over the client
and server nonces and the server’s ephemeral public key value; server-to-client authentication of the full
handshake transcript is done using a MAC under the session key, which was derived from the DH shared
secret. An attacker trying to trick the client into accepting a fake transcript could do so either by forging
a signature early in the handshake or by trying to break the session key and MAC calculation later in the
handshake. This is why the PRF-oracle-DH assumption is required.

In our R-LWE-based ciphersuite in Fig. 4, we move the server’s signature to later in the handshake, so
that server-to-client authentication of the full handshake transcript is done using the signature scheme. This
allows us to prove server-to-client authentication using just signature security, rather than some oracle-DH-like
assumption. Our change however is not just for convenience. As noted by Peikert [Pei14, §5.3], R-LWE
assumptions are not hard in an oracle setting: “the reason is related to the search/decision equivalence for
(ring)-LWE: the adversary can query the [...] oracle on a specially crafted [values] for which the [...] oracle
input is one of only a small number of possibilities (and depends on only a small portion of the secret key),
and can thereby learn the entire secret key very easily.” Technically, the oracle-like assumption used in TLS
would only require security against a single query per secret, whereas the attack discusses the use of multiple
queries. It is an interesting open question to determine whether oracle R-LWE assumptions with a single
query remain secure.

6 Performance

In this section we outline the performance of the separate components used for the cryptographic implemen-
tation, as well as overall performance numbers when integrated within the OpenSSL framework. Timings
reported involved two computers. Our “client” computer had an Intel Core i5 (4570R) processor with 4 cores
running at 2.7 GHz each. Our “server” computer had an Intel Core 2 Duo (E6550) processor with 2 cores
running at 2.33 GHz each. Software was compiled for the x86 64 architecture with -O3 optimizations using
llvm 5.1 (clang 503.0.40) on the client computer and gcc 4.7.2 on the server computer.
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Table 1: Average cycle count of standalone cryptographic operations (on client computer)

Operation
Cycles

constant-time non-constant-time

sample
$← χ 1 042 700 668 000

FFT multiplication 342 800 —
FFT addition 1 660 —
dbl(·) and crossrounding 〈·〉2q,2 23 500 21 300

rounding b·e2q,2 5 500 3,700

reconciliation rec(·, ·) 14 400 6 800

6.1 Standalone cryptographic operations

The average performance numbers, expressed in cycles on the client computer, for the individual components
used in our implementation are summarized in Table 1. We distinguish between operations which have a
constant or variable running time. The operation with the highest running time is the sampling. As outlined
in Section 4.2, our approach requires a significant amount of random data plus as well as a number of
(constant-time) comparison operations to a 52-entry look-up table. Querying this random data consumes most
of the time in the sampling function. Accessing all elements in the sampling table in order – as performed
for the constant-time approach (see Section 4.2) – can be done relatively efficiently, since the total size is
slightly over 1.2 KiB, and this fits in the cache. Although we access 52/6 ≈ 8.7 times more table elements
compared to the binary search approach, the overall slow-down is less than a factor two for the sampling
functionality. The time for computing the polynomial multiplication using the Nussbaumer FFT algorithm
(see Section 4.4) includes the two forward and single inverse FFT transforms. Interestingly, computing the
high-degree polynomial multiplications is (much) faster than sampling.

6.2 Within TLS and HTTPS

In this section we draw a comparison between the performance of RSA-signed elliptic curve Diffie–Hellman
and RSA-signed R-LWE-based TLS ciphersuites within the context of an HTTPS connection. Our approach
for analyzing performance of ECDH versus R-LWE in TLS/HTTPS follows that of Gupta et al. [GSF+04],
who analyzed the performance of RSA versus ECDH. Our comparison takes place at the 128-bit security
level: for elliptic curve operations we used the nistp256 curve [Nat99] and for R-LWE operations we used
the R-LWE parameters as described in Section 4.1 (n = 1024, q = 232 − 1, and σ = 8/

√
2π). For RSA

authentication, the server used a 3072-bit RSA self-signed certificate or a nistp256 ECDSA certificate
depending on the ciphersuite; no client authentication was used. As noted in Section 5.2, the implementation
is based on OpenSSL v1.0.1f.

OpenSSL cryptographic primitive performance. Table 2 shows the runtime of operations within
the context of OpenSSL’s crypto library using the openssl speed command. For R-LWE, we report the
performance of both our constant-time and non-constant-time implementations. OpenSSL’s RSA and
nistp256 code is constant-time.

Table 2 shows that, in the context of R-LWE key exchange, a constant-time implementation only slows the
client and server down by factors 1.4x and 1.2x (respectively) over a non-constant-time implementation; this
presents a strong argument for adopting a sampling routine that is side-channel resistant. When comparing
the total runtime for ephemeral key exchange, it is encouraging to see that, on both the client and the server
sides, the post-quantum R-LWE key exchange incurs less than a factor 2 performance loss over key exchange
using the nistp256 curve: the client is slower by a factor 1.8x, while the server is only slower by a factor 1.5x.

OpenSSL/Apache TLS performance. Table 3 shows the performance of ECDH, R-LWE, and hybrid
ciphersuites within the context of HTTP connections over TLS. For R-LWE, we use the constant-time
implementation. The server was running Apache httpd 2.4.10 with the prefork module for multi-threading.
The client and server computers were connected over a local corporate LAN with less than 1 ms ping time.
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Table 2: Average runtime in milliseconds of cryptographic operations using openssl speed

Operation
Client Server Client Server
constant-time non-constant-time

R-LWE key generation 0.9 1.7 0.6 1.3
R-LWE Bob shared secret 0.5 (1.1) 0.4 (0.9)
R-LWE Alice shared secret (0.1) 0.4 (0.1) 0.4
Total R-LWE runtime 1.4 2.1 1.0 1.7

EC point multiplication, nistp256 0.4 0.7 — —
Total ECDH runtime 0.8 1.4 — —

RSA sign, 3072-bit key (3.7) 8.8 — —
RSA verify, 3072-bit key 0.1 (0.2) — —

Numbers in parentheses are reported for completeness, but do not contribute to the
runtime in the client and server’s role in the TLS protocol.

Table 3: Performance of HTTPS using Apache with OpenSSL

ECDHE RLWE HYBRID

ECDSA RSA ECDSA RSA ECDSA RSA

Connections / second
— 1 B payload 645.9 177.4 507.5 164.2 362.9 145.1
— 1 KiB payload 641.6 177.0 505.9 163.8 361.0 145.0
— 10 KiB payload 630.2 176.2 494.9 161.9 356.2 144.1
— 100 KiB payload 487.6 161.2 397.6 150.2 300.5 134.3

Connection time (ms) 6.0 14.0 45.6 54.0 47.2 54.6

Handshake (bytes) 1 278 2 360 9 469 10 479 9 607 10 690

The first section of Table 3 reports the number of simultaneous connections supported by the server.
Multiple client connections were generated using the http load tool (version 09jul2014),5 which makes many
HTTP connections in parallel using OpenSSL for TLS. The client and network configuration was sufficient to
ensure that the server’s 2 cores had at least 95% utilization during all tests. Session resumption was disabled.
To simulate a variety of web page sizes, we ran separate benchmarks where the HTTP payload was 1 byte,
1 KiB = 1024 bytes, 10 KiB, and 100 KiB. Each test was run for 100 seconds; figures reported are the average
of 5 runs. The second section of Table 3 reports the time required for the client to establish a connection,
measured using Wireshark from when the client opens the TCP connection to the server’s IP address to when
the client starts to receive the first packet of application data. The final section of the table shows the size of
the handshake in each case.

Table 3 shows that, when ECDSA is used as the authentication mechanism, employing R-LWE as the TLS
key exchange mechanism achieves between a factor 1.2–1.3x fewer HTTP connections per second than when
ECDH key exchange is used. On the other hand, when coupled instead with RSA signatures, the relative
difference between the R-LWE and ECDH key exchange components is diluted by the slower authentication,
and the number of connections per second is (relatively speaking) much closer. These is a larger ratio when
comparing the connection times obtained using ECDH key exchange versus R-LWE key exchange, which
may be explained due to the difference in the size of the TLS handshake. In all cases, Table 3 shows that
the hybrid version (which combines R-LWE for post-quantum assurance and ECDH for FIPS compliance)
naturally performs the slowest. Again however, when coupled with RSA signatures, the number of connections
per second is only a factor 1.2x fewer than an ECDH-only connection.

5http://www.acme.com/software/http_load/
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7 Conclusions

The ring learning with errors (R-LWE) problem is a promising cryptographic primitive that is believed to
be resistant to attacks by quantum computers. The decision R-LWE problem naturally leads to a Diffie–
Hellman-like unauthenticated key exchange protocol. We have integrated this key exchange mechanism into
the Transport Layer Security protocol. The resulting provably secure construction provides post-quantum
forward secrecy yet remains practical, both in terms of efficiency and in terms of its integration with the
widely-deployed RSA-based public key authentication infrastructure. Our constant-time C implementation
in the OpenSSL library shows that web servers using R-LWE key exchange incur a small performance
penalty to achieve post-quantum assurance. Even hybrid key exchange—using both R-LWE and elliptic curve
Diffie–Hellman for “best of both worlds” security—provides reasonable performance. With post-quantum
cryptography still in its early days, future work includes optimization of parameter sizes, implementations,
and comparisons between post-quantum primitives.
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A Additional cryptographic definitions

Definition 7 (Digital signature scheme). A digital signature scheme Σ is a typle of algorithms:

• KeyGen()
$→ (sk, pk): A probabilistic key generation that generates a secret signing key sk and public

verification key pk.

• Sign(sk,m)
$→ σ: A probabilistic signing algorithm that takes as input a signing key sk and a message

m ∈ {0, 1}∗, and outputs a signature σ.
• Ver(pk,m, σ)→ {0, 1}: A deterministic verification algorithm that takes as input a verification key pk,

message m, and alleged signature σ, and outputs 0 or 1.

For an adversary A, we define its advantage in the existential unforgeability under chosen message attack
experiment as

Adveuf-cma
Σ (A) = Pr

(
Σ.Ver(pk,m∗, σ∗) = 1 : (sk, pk)

$← Σ.KeyGen() ; (m∗, σ∗)
$← AΣ.Sign(sk,·)(pk)

)
with the restriction that A never queries Σ.Sign(sk, ·) on input m∗.

Our definition of a pseudorandom function and a stateful length-hiding authenticated encryption scheme
follows that of [KPW13, full version, p. 43–45].

Definition 8 (Pseudorandom function). A pseudorandom function F with key space {0, 1}λ1 and input
space {0, 1}∗ is a deterministic algorithm. On input a key k ∈ {0, 1}λ1 and an input string x ∈ {0, 1}∗, the
algorithm outputs a value F(k, x) ∈ {0, 1}λ2 .

For a stateful adversary A, we define the PRF distinguishing advantage for F as

Advprf
F (A) = Pr

(
b′ = b : k

$← {0, 1}λ1 ; x
$← AF(k,·)() ; k0 ← F(k, x) ; k1

$← {0, 1}λ2 ; b
$← {0, 1} ; b′

$← AF(k,·)(kb)
)
.

with the restriction that A never queries F(k, ·) on input x.

Definition 9 (Stateful length-hiding authenticated encryption). A stateful length-hiding authenticated
encryption scheme Π is a tuple of algorithms:

• Gen()
$→ K: A probabilistic key generation algorithm that chooses a key K at random from the keyspace

K and outputs it.
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Expslhae
Π (A)

1: K
$← Π.Gen()

2: (st0E, st
0
D)← Π.Init()

3: i← 0; j ← 0; phase← 0

4: b
$← {0, 1}

5: b′
$← AEnc,Dec()

6: if b′ = b then return 1
7: else return 0

Enc(`, ad,m0,m1)

1: i← i+ 1
2: (C0, st0E)

$← Π.Enc(K, `, ad,m0, stE)

3: (C1, st1E)
$← Π.Enc(K, `, ad,m1, stE)

4: if C0 = ⊥ or C1 = ⊥ then return ⊥
5: Ci ← Cb, adi ← ad, stE ← stbE
6: return Ci

Dec(ad, c)

1: if b = 0 then return ⊥
2: j ← j + 1
3: (m′, stD)← Π.Dec(K, ad,C, stD)
4: if j > i or C 6= Cj or ad 6= adj then phase← 1
5: if phase = 1 then return m
6: return ⊥

Figure 6: Security experiment for stateful length-hiding authenticated encryption of scheme Π.

• Init()→ (stE, stD): A deterministic initialization algorithm that outputs initial encryption and decryp-
tion states stE and stD.
• Enc(K, `, ad,m, stE)

$→ (c, st′E): A probabilistic encryption algorithm that takes as input a key K, length
` ∈ N, associated data ad ∈ {0, 1}∗, message m ∈ {0, 1}∗, and encryption state stE, and outputs a
ciphertext c ∈ {0, 1}∗ or error symbol ⊥ and an updated encryption state st′E, where |c| = ` if c 6= ⊥.
• Dec(K, ad,C, stD) → (m′, st′D): A deterministic decryption algorithm that takes as input a key K,

associated data ad, ciphertext c, and decryption state stD, and outputs a message m′ ∈ {0, 1}∗ or error
symbol ⊥ and an updated decryption state st′D.

Correctness is defined in the natural way and is omitted; see Jager et al. [JKSS12] or Krawczyk et al. [KPW13].
For a stateful adversary A, we define the advantage

Advslhae
Π (A) = Pr

(
Expslhae

Π (A) = 1
)

where Expslhae
Π (A) is the experiment defined in Figure 6.
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