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ABSTRACT
We present game-theoretic models of opinion formation in
social networks where opinions themselves co-evolve with
friendships. In these models, nodes form their opinions by
maximizing agreements with friends weighted by the strength
of the relationships, which in turn depend on difference in
opinion with the respective friends. We define a social cost
of this process by generalizing recent work of Bindel et al.,
FOCS 2011. We tightly bound the price of anarchy of the re-
sulting dynamics via local smoothness arguments, and char-
acterize it as a function of how much nodes value their own
(intrinsic) opinion, as well as how strongly they weigh links
to friends with whom they agree more.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems; J.4 [Computer Applications]: [Social and
Behavioral Sciences]

General Terms
Algorithms, Economics, Theory

Keywords
Price of Anarchy, Games, Opinions

1. INTRODUCTION
The exponential growth in the popularity of the online

social networks such as Facebook, Twitter has led to a lot
of renewed research in understanding basic sociological phe-
nomena such as opinion and consensus formation. The earli-
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est work in this domain comes from the sociology literature.
One notable example in this setting is the DeGroot model [6]
which studies, in a fixed network, how consensus is formed
when individual opinions are updated using the average of
the neighborhood. These models were enriched in subse-
quent work to capture bias agents have for similar opinions.
In the popular bounded confidence model of Hegselmann and
Krause [11] (HK model), opinions lie on a real line. Suppose
agent i has opinion zi. For fixed ε, the confidence region of
an agent is captured by the set

Si(~z) = {j | |zj − zi| ≤ ε}

Each agent i iteratively updates its opinion by averaging the
opinions of agents in Si(~z). In the DW model of Weisbuch
et al. [21], two random nodes i and j meet and update their
opinions zi and zj to the average of the two opinions if these
originally satisfied |zi−zj | ≤ ε. (See also Dandekar et al. [5]
for a related model that they term “biased assimilation”.)
The key difference in these two models is that the updates
in the DW model are more symmetric compared to the HK
model in terms of how pairs of agents impact each other’s
opinions.

Recent work [13, 12, 7] extends these models to define
stochastic processes over social networks, where opinions
and friendships evolve dynamically. Holme and Newman [13]
term these processes coevolution of opinions and friendships.
In their model, opinions are discrete (usually binary). At
each step, with probability α, a node breaks an existing
link chosen at random and forms a link to a node chosen
uniformly at random from the nodes of same opinion; with
probability 1−α, the node changes the opinion of the other
end-point of a randomly chosen edge to that of its own. This
entire line of work characterizes the conditions under which
the network either reaches consensus or partitions into com-
ponents with disparate opinions.

In a departure from this entire line of work, other studies
focused on the importance of going beyond understanding
when absolute consensus happens, and studying the social
cost of the outcomes that emerge [15, 10, 3]. The social cost
of an outcome is the sum of the cost of disagreement for
all participating agents. Generally, these studies note that
consensus rarely emerges in reality, and even if it does, dif-
ferent consensus outcomes have different levels of “desirabil-
ity” given that the cost of disagreement for different agents
can vary. (This point is also implicit in the recent work of
Golub and Jackson [9] and Acemoglu et al. [1].) For in-
stance, Bindel, Kleinberg, and Oren [3] adopt a model orig-
inally proposed by Friedkin and Johnsen [8], who extended



the DeGroot model to include both disagreement and con-
sensus by associating with each node i an innate opinion si
in addition to its expressed opinion. In this model, given a
fixed social network, players choose an expressed opinion to
minimize the cost of disagreement with their intrinsic opin-
ion and expressed opinions of their neighbors. The cost of
disagreement is modeled as a quadratic function. In con-
trast with bounded confidence models, the space of equi-
librium outcomes in the Bindel et al. model is richer due
to the diversity of intrinsic opinions. Bindel et al. analyze
the quality of equilibria by considering the Price of Anar-
chy(PoA) which compares the social cost of the equilibrium
with the optimal social cost.

1.1 Our Contributions
The question we ask is the following: If agents with fixed

intrinsic opinions prefer other agents based on their opin-
ions and confidence therein (so that the social network is not
fixed, but is itself weighted by opinions), how does the social
cost at equilibrium behave? In effect, we study bounded con-
fidence type models in the framework introduced by Bindel
et al. and characterize the price of anarchy of the resulting
equilibria. This helps us understand how the social outcomes
that emerge are influenced by not only intrinsic opinions and
the social graph but also by the confidence agents place in
close by opinions in weighting friendships. We study the
resulting coevolutionary games on opinions and friendships
in the presence of both symmetric and asymmetric influence
models and provide price of anarchy bounds for both models.
A well-known example of a symmetric network is Facebook
wherein actions (e.g., friendship request, liking a user ac-
tion, etc.) are observed by all participating agents whereas
activities in Twitter (e.g., following a user, re-tweeting a
user’s tweet, etc.) illustrate the asymmetric nature of the
underlying network.

Symmetric Coevolutionary Games.
In Section 3, we first consider the case where the net-

work is fixed and undirected and the cost of any agent has
two contributing factors, viz., the difference in the expressed
opinions along all incidence edges, i.e., the agents neighbor-
hood, and the difference between the expressed and the in-
trinsic opinion of the agent. In other words, if (si, zi) denote
the intrinsic and expressed opinions of agent i and N(i) de-
notes the neighbors of i in the network, the cost to agent i
is
∑
j∈N(i) fij(zi − zj) + wigi(zi − si). The weighting func-

tions f and g capture different costs of disagreement. More-
over, they can also capture the setting where the network is
formed probabilistically and the link (i, j) is formed based
on the difference in the expressed opinions of the agents.
This is similar in spirit to the DW model [21], where nodes
average close by opinions.

We present a tight PoA bound for all strictly convex weight-
ing functions (Section 3.1). This yields a PoA of at most 2
for all convex functions (which also hold for correlated equi-
libria; see below). We also provide a general lower bound
construction that has PoA matching the upper bound (see
Section 3.2). The technically interesting aspect is that for
most weighting functions, the upper bound we obtain in-
volves a set of inequalities capturing the worst case behav-
ior of the derivatives of the weighting functions, and this,
though simple to state, often does not have a closed form.
Despite this difficulty, we show that the functional form of

the inequalities themselves can be used to carefully construct
a tight example. For the special class of weighting functions
f(x) = g(x) = |x|α with α > 1, we obtain a closed form
bound.

Since the bounds we obtain are tight, they allow us to
explore how inefficiency of equilibria varies as the weight-
ing functions are varied. We show that as nodes give more
weight to having neighbors with close by expressed opinions,
i.e., the weighting functions become less convex, the PoA in-
creases and equilibria with worse social cost are possible.

We finally show in Section 3.4 that in the limiting case
when the weighting functions are not strictly convex, the
PoA can be unbounded. This happens even for linear func-
tions which correspond to node i expressing the median of
{zj |j ∈ N(i)}, and its own intrinsic opinion si (weighted by
wi). Our observations are reminiscent of the classic Schelling
segregation [20] which shows that even when the social graph
and intrinsic opinions start with only a slight bias, the am-
plification of this bias results in an unbounded polarization
at equilibrium.

Asymmetric K-NN Games.
In a natural extension, we study the case where the net-

work is not fixed (see Section 4). Each agent i gets connected
to set N(i) of K other agents whose expressed opinions zj
are closest to its intrinsic opinion si. The node then ex-
presses opinion zi to minimize its cost

∑
j∈N(i)(zi − zj)

2 +

ρK(zi − si)2. Clearly, this results in an asymmetric game
whose underlying model is similar to the bounded confidence
HK model [11] or the Holme-Newman model [13]. We term
this game as the K-NN game; it is a special case of a more
general class of games where the weight that agent i puts
on agent j’s opinion in its averaging process is fij(si, z−i),
where fij is non-increasing in |zj − si|, and non-decreasing
in |zk − si| for k 6= j (see Section 4.3).

We show that for ρ > 1, the PoA of the K-NN game is at
most a constant, where the constant improves as ρ increases.
In other words, the social outcomes become better when
nodes are “narrow minded” and give larger weight to their
own opinion. Though this is a trivial statement in the limit
as ρ → ∞, the interesting point we show is that the PoA
is in fact bounded even when agents place roughly equal
weight on their own opinion and the combined opinion of
their neighbors.

The constant PoA bound is in contrast to the unbounded
PoA results in Bindel et al. for the directed graph case. In
fact, we show that if nodes can choose their neighbors based
on closeness of opinions, the PoA can indeed be bounded.
We complete the picture by showing that for small ρ, the
PoA is at least 1/ρ2, so the PoA does indeed deteriorate as
nodes become more “broad minded”.

Bounds on correlated equilibria.
All of our bounds for both the symmetric and the asym-

metric models are established using the local smoothness
framework of Roughgarden and Schoppman [19]. The frame-
work implies that our bounds extend to the PoA of mixed
Nash and correlated equilibria [2], which are always guar-
anteed to exist. This is useful since we show that for the
asymmetric K-NN game, a pure Nash equilibrium is not
guaranteed to exist.

Furthermore, correlated equilibria have a natural inter-



pretation in this context: There is a common medium (such
as news sources) that all players are exposed to. A strat-
egy describes the opinion expressed by each player for each
possible signal of the medium. Thus the players actions
are correlated through the common signal. In a correlated
equilibrium, the strategies of the players are individually
optimal for any common signal. Finally, we note the local
smoothness framework was introduced to prove exact price
of anarchy bounds for atomic splittable congestion games.
Our work describes another model where the framework can
be used to obtain tight bounds.

1.2 Related Work
The closest related work to our paper is that of Bindel

et al. [3]. They study the symmetric coevolutionary model
when functions f, g are quadratic. Their PoA bound of 9/8
can be obtained as a corollary of our results. We note that
their analysis was specific for quadratic functions, and did
not extend in any natural way to our setting. In contrast,
our local smoothness approach is simpler and easy to gen-
eralize. It also implies the same PoA bound for correlated
equilibria as well.

We refer the reader to the excellent text of Jackson [14] for
a treatment of various opinion formation models, in particu-
lar variants of the bounded confidence models. There is also
a large body of work (see [4, 16] and references therein) that
has focused on characterizing the convergence of bounded
confidence dynamics to either absolute consensus or some
clustering (polarization). These works show in various set-
tings a sharp transition between absolute consensus and
clustering as the value of the confidence bound is varied.
Most of these results are obtained by simulation, since the
models are complex to analyze due to their non-linear na-
ture (a fact acknowledged early on in [11]). Recent work by
Chazelle [4] frames these processes as a special case of what
they term “one-dimensional influence systems”, and presents
a technique for analyzing convergence time.

2. PRELIMINARIES

2.1 Coevolutionary Games
There are n players each with an intrinsic opinion si. Each

player expresses an opinion zi which is not necessarily equal
to si. The player’s goal is to minimize its cost Ci(z) which
is a function of the players intrinsic opinion si and expressed
opinions of all players (denoted z). The social cost denoted
C(z) is sum of the players costs

∑
i Ci(z).

We consider two different fairly general manifestations of
this model termed the symmetric co-evolutionary game and
the K-nearest neighbor (K-NN) game. In the symmetric
coevolutionary game, a player i’s cost function is given by

Ci(zi, z−i) =
∑
j 6=i

fij(zi − zj) + wigi(zi − si)

Here, z−i denotes the opinions expressed by all of the other
players. Functions fij and gi are real valued functions and
remain fixed. We assume fij = fji which makes the game
symmetric in the pairs of players. A simple realization of this
is the class of games studied by Bindel et al. [3]. In their
game gi(z) = z2 and fij(z) = wijz

2 where wij indicates the
weight put on the edge connecting players i and j.

In the K-NN game, each agent forms exactly K friends.
Given expressed opinion vector z, each node i forms directed

links to the K nodes with smallest |zj − si| (breaking ties in
a consistent fashion). Denote this set of friends S(z, i) The
cost of i is:

Ci(zi, z−i) =
∑

j∈S(z,i)

(zj − zi)2 + αK(zi − si)2

2.2 Equilibria and Local Smoothness
We analyze the equilibrium outcomes of these games. The

quality of the equilibrium outcomes is assessed in compari-
son with the outcome that minimizes social cost. Suppose
each player’s intrinsic opinion is fixed. The optimal social
cost in this case is well-defined. We consider three different
solution concepts each one progressively weaker than the
previous. The PoA with respect to these solution concepts
is the ratio of the cost of the worst equilibrium outcome to
the optimal social outcome.

Notions of Equilibria.
In a pure Nash equilibrium (NE), each player’s strategy is

a zi so that for any other z, we have Ci(zi, z−i) ≤ Ci(z, z−i).
In a mixed NE, a player’s strategy is a distribution σi over ex-
pressed opinions, so that for each zi in the support of σi, we
have: Ez−i∼σ−i [Ci(zi, z−i)] ≤ Ez−i∼σ−i [Ci(z, z−i)] . Here
σ−i denotes the joint distribution of other players strate-
gies.

A correlated equilibrium σ is a distribution such that
for each player i and each opinion zi in the support of
σ, Ez−i∼σ−i|zi [Ci(zi, z−i)] ≤ Ez−i∼σ−i|zi [Ci(z, z−i)] . Here
σ−i|zi denoting the distribution σ conditioned on zi.

Since a pure Nash equilibrium is a mixed Nash equilib-
rium, and any mixed Nash equilibrium is a correlated equi-
librium, an upper bound on the PoA of correlated equilibria
also bounds the pure PoA and mixed PoA. Additionally any
lower bound example with a bad pure Nash equilibrium also
has a bad mixed and correlated equilibrium.

Local Smoothness.
We use the local smoothness technique developed by Rough-

garden and Schoppmann [19] to prove Price of Anarchy
bounds.1 This technique can be applied only when the
cost function Ci is continuously differentiable with respect
to player i’s strategy (in our case zi).

One has to prove an inequality of the following form. For
fixed profile o and values µ < 1, λ > 0; for every z,∑
i

Ci(zi, z−i) + (oi − zi)
∂

∂zi
Ci(zi, z−i) ≤ λC(o) + µC(z). (1)

An extension theorem from [19] gives us the following.

Theorem 2.1. Let σ denote a correlated equilibrium. If
equation (1) holds for any outcome z with respect to a fixed
outcome o, then the ratio of Ez∼σ[C(z)] to C(o) is at most
λ/(1 − µ). In particular, when o denotes the optimal out-
come, the correlated PoA is at most λ/(1− µ).

A PoA bound obtained using the local smoothness technique
is referred as robust PoA.

1Note that the local smoothness technique is slightly differ-
ent from the smoothness technique of [18]. We apply the
local smoothness technique here since the smoothness tech-
nique does not yield tight bounds.



3. THE SYMMETRIC GAME
In this section, we consider the symmetric coevolutionary

game. Recall that an agent i’s cost function is given by

Ci(zi, z−i) =
∑
j 6=i

fij(zi − zj) + wigi(zi − si)

Here, z−i denotes the opinions expressed by all of the other
agents.

We assume fij = fji which makes the game symmet-
ric in pairs of players. We further assume that functions
fij and gi are convex and continuously differentiable. We
also assume that they are symmetric i.e. fij(x) = fij(−x),
gi(x) = gi(−x) and gi(0) = 0.

Under these assumptions, we provide an exact robust PoA
bound for this model. The upper bound will be obtained
by an application of the local smoothness inequalities (Sec-
tion 3.1). We show that this bound is always at most 2.
However, this bound will not have a closed form for most
functions. The challenge then is to show a matching lower
bound example. We use the functional form of the inequali-
ties in the upper bound to argue the existence of exact equa-
tions of a certain type, which we use to carefully construct
our lower bound example (Section 3.2). We finally show
that for f(x) = g(x) = |x|α, we can compute a closed form
expression that is exact (Section 3.3). We use this closed
form to develop an interpretation for how the PoA varies as
α varies, and finally show that if f, g are either not convex
or not differentiable, the PoA is unbounded (Section 3.4).

As a first step, we briefly understand when a pure Nash
equilibrium can be guaranteed to exist in this model.

Equilibrium existence.
In this game, when the cost functions are convex we can

easily prove that a pure Nash equilibrium exists. This fol-
lows from the fact this is a potential game with the following
potential function φ(z) =

∑
i wigi(zi − si)+

∑
i<j fij(zi − zj),

and the fact that all the weighting functions are convex and
bounded from below. Further, the pure Nash equilibrium in
this game is unique. Moreover, since each player always has
a unique best response any mixed Nash equilibrium is also
a pure Nash equilibrium.

3.1 Robust PoA Upper Bound
We obtain a general characterization of the PoA in terms

of the weighting functions. Suppose we are given sets F
and G from which the weighing function fij and gi for each
i, j are chosen. We present a functional form for the PoA
upper bound; this form does not require f, g to be convex.
We first identify a set of tuples of constants (λ, µ) for which
inequality (1) can be proved.

For a fixed triple (x, y, f) of reals x, y ≥ 0 and func-
tion f ∈ F , let Hx,y,f denote the set of (λ, µ) satisfying

f(x) + (y−x)
2

f ′(x) ≤ λf(y) + µf(x). Note that this is a
half-plane in the (λ, µ) space. The boundary of this half-
plane, denoted ∂Hx,y,f , is the set of (λ, µ) satisfying f(x) +
(y − x)/2·f ′(x) = λf(y)+µf(x). Similarly for triple (u, v, g)
of reals u, v ≥ 0 and function g ∈ G, we denote by Hu,v,g the
set of (λ, µ) satisfying g(u) + (v − u)g′(u) ≤ λg(v) + µg(u).
The boundary of this half-plane is denoted ∂Hu,v,g.

To compute the PoA upper bound, we define the following

sets.

A1 := {(λ, µ) : (λ, µ) ∈ Hx,y,f∀f ∈ F , x, y ≥ 0} (2)

A2 := {(λ, µ) : (λ, µ) ∈ Hu,v,g∀g ∈ G, u, v ≥ 0} (3)

The setsA1,A2 are convex regions in the (λ, µ) plane formed
from the intersection of many half-planes. We next prove
the local smoothness inequality (1) for λ, µ that lie in sets
A1,A2. The inequality is proved by breaking it up into many
inequalities each of which is of the form of the constraints
that define sets A1,A2.

Lemma 3.1. Let (λ, µ) in A1 ∩A2. Then for a fixed out-
come o and any z,∑

i

Ci(zi, z−i) + (oi − zi)
∂

∂zi
Ci(zi, z−i)

≤ λC(o) + µC(z).

Proof. We begin with the left hand side.∑
i

Ci(zi, z−i) + (oi − zi)
∂

∂zi
Ci(zi, z−i)

=
∑
i

∑
j 6=i

fij(zi − zj) + wigi(zi − si)


+ (oi − zi)

∑
j 6=i

f ′ij(zi − zj) + wig
′
i(zi − si)


Regrouping terms corresponding to each pair (i, j) we ob-
tain,∑
i 6=j

[2fij(zi − zj) + (oi − zi)f ′ij(zi − zj) + (oj − zj)f ′ij(zj − zi)]

+
∑
i

wi
[
gi(zi − si) + (oi − zi)g′i(zi − si)

]
=
∑
i 6=j

2

[
fij(zi − zj) +

1

2
[(oi − oj)− (zi − zj)]f ′ij(zi − zj)

]
+
∑
i

wi[gi(zi − si) + ((oi − si)− (zi − si))g′i(zi − si)]

= 2
∑
i 6=j

Bij +
∑
i

wiAi,

where,
Bij = fij(zi − zj) + 1

2
[(oi − oj)− (zi − zj)]f ′ij(zi − zj), and

Ai = gi(zi − si) + ((oi − si)− (zi − si))g′i(zi − si).
First, let us bound Bij . Recall the definition of the set
A1. For any (λ, µ) in A1,

Bij =fij(zi − zj) +
1

2
[(oi − oj)− (zi − zj)]f ′ij(zi − zj)

≤ λfij(oi − oj) + µfij(zi − zj).

This follows from the fact that (λ, µ) lie in the half-plane
H|zi−zj |,|oi−oj |,fij . Similarly for any (λ, µ) in A2,

Ai =gi(zi − si) + ((oi − si)− (zi − si))g′i(zi − si)
≤ λgi(oi − si) + µgi(zi − si),

which follows from the fact that (λ, µ) lie in the half-plane
H|zi−si|,|oi−si|,gi .



We can then conclude that for any (λ, µ) ∈ A1 ∩ A2,∑
i

Ci(zi, z−i) + (oi − zi)
∂

∂zi
Ci(zi, z−i) ≤ λC(o) + µC(z).

With this lemma and the extension Theorem 2.1 we can
conclude that for any (λ, µ) ∈ A1 ∩ A2, λ/(1 − µ) is an
upper bound on the correlated POA. We pick the best upper
bound and denote it by ζ.

Definition 3.2. For sets of functions F ,G let sets A1,
A2 be defined as in equations 2.

ζ(F ,G) = inf{λ/(1− µ) : (λ, µ) ∈ A1 ∩ A2, µ < 1}. (4)

Theorem 3.3. For weighting function classes (F ,G), the
robust PoA is at most ζ(F ,G) given by Definition 3.2.

We can prove that ζ(F ,G) ≤ 2 when the functions in F
and G are convex and differentiable.

Corollary 3.4. When functions in F and G are convex
and differentiable, the robust POA is at most 2.

Proof. Consider a function f ∈ F . Since f is convex we
have, f(x) + (y − x)f ′(x) ≤ f(y). We then see that

f(x)+(y−x)/2f ′(x) ≤ 1/2f(y)+1/2f(x) ≤ f(y)+1/2f(x)

and the tuple (1, 1/2) belongs toA1. In fact, even (1/2, 1/2) ∈
A1.

Similarly for g ∈ G, convexity implies g(x)+(y−x)g′(x) ≤
g(y). This implies

g(x) + (y − x)g′(x) ≤ g(y) ≤ g(y) + tg(x)

i.e. (1, t) is in A2 for any t ≥ 0. We conclude that (1, 1/2) ∈
A1 ∩ A2. For λ = 1 and µ = 1/2, λ/(1− µ) = 2.

3.2 Tight Lower Bounds
In this section, we provide a PoA lower bound that matches

the upper bound constructed above. This part will require
f, g to be convex, differentiable, and symmetric.

We will provide a lower bound for sets of functions F ,G
that are closed under two operations: scaling i.e., f ∈ F im-
plies αf ∈ F ; and dilation i.e., f(x) ∈ F implies f(αx) ∈ F
for any α. We call a set of functions a functional family if
they are related to each other through scaling and/or dila-
tion. An example of a functional family is polynomials of
degree at most d.

Note that the operations of scaling and dilation do not in-
troduce new constraints in the definitions of sets A1 and A2,
which means the PoA bound will be the same for any func-
tions from a functional family (and hence Definition 3.2 ap-
plies to a family). For illustration, consider function f1(x) =
f(αx) in set F and the half-plane Hx1,y1,f1 :

f1(x1) + (y1 − x1)f ′1(x1) ≤ λf1(y1) + µf1(x1)

Note that if f ′1(x) = αf ′(αx), then the above constraint is
equivalent to:

f(αx1) + (αy1 − αx1)f ′(αx1) ≤ λf(αy1) + µf(αx1).

Setting x = αx1 and y = αy1 gives us the half-plane Hx,y,f .
Also note that y/x = y1/x1. Similar claim follows for scaling
using the property that for f1(x) = αf(x), f ′1(x) = αf ′(x).

We can also verify that no new constraints are introduced
in set A2 if set G is assumed to be closed under dilation.
We consider sets F ,G that contain a countable number of
families of functions.

Next, we will prove the following lower bound theorem.

Theorem 3.5. Let F ,G denote a set of countable families
of functions. Let ζ(F ,G) be a price of anarchy upper bound
as defined in Definition 3.2. Then there exist an instance
using weighing functions from F ,G with price of anarchy
arbitrarily close to the upper bound ζ(F ,G).

Step 1: Tight Equations in A1 ∩ A2.
First step in constructing the lower bound and hence prov-

ing the theorem is analyzing the set of constraints that define
A1, A2 and in turn the upper bound ζ(F ,G). Insights into
the structure of these constraints can be used to construct
the lower bound example. Since the cost functions are con-
tinuous it is sufficient to focus on the case when values of
x, y are rational. Any constraint corresponding to irrational
values of x or y can be arbitrarily closely approximated using
a constraint corresponding to nearby rational values. Since
the set of rational numbers is countable and we assume that
we have a countable set of weighing function families, the
set of constraints that define sets A1, A2 are countable.

We consider an arbitrary order on these constraints. Let
Cn denote the feasible region formed from the first n con-
straints. Let ζn = inf{λ/(1− µ) : (λ, µ) ∈ Cn} and (λn, µn)
denote the values that define ζn. Note that we consider an
infimum over a set that is bounded from below. Hence,
the minimum is attained and further, (λn, µn) are well-
defined. The next lemma establishes a few more properties
of (λn, µn).

Lemma 3.6. For Cn, (λn, µn) and ζn be defined as above.
If ζn > 1 then there exists values x1, y1, x2, y2 and functions
f ∈ F , g ∈ G such that

f(x1) +
(y1 − x1)

2
f ′(x1) = λnf(y1) + µnf(x1) and

g(x2) + (y2 − x2)g′(x2) = λng(y2) + µng(x2).

Moreover if w1 = x1/y1 and w2 = x2/y2 then (w1−1)(w2−
1) ≤ 0.

Proof. Recall that ζn is the minimum value of λ/(1−µ)
over (λ, µ) ∈ Cn. The set Cn is a convex region formed from
the intersection of a number of half-planes. It is easy to see
that the minimum must be on the boundary of this region.

Consider a constraint corresponding to function f ∈ F .
We can rewrite the constraint as

λ

1− µ ≥
f(x)

f(y)
+

(y − x)f ′(x)

2(1− µ)f(y)
.

The function f is non-decreasing on the positive domain.
Hence, f ′(x) ≥ 0. Note that along the boundary, the way
λ/(1 − µ) varies as µ increases is governed by the sign on
(y − x). In particular, the value of λ/(1 − µ) is minimized
as µ approaches 0 if y > x and as µ approaches 1 if y < x.
Moreover, as noted in the proof of Corollary 3.4 (1/2, 1/2)
lies in this half-plane. This in particular implies that the
minimum value of λ/(1− µ) on this half-plane boundary is
less than 1. Also since any other half-plane corresponding
to f2 ∈ F also contains (1/2, 1/2), the two half-planes must
intersect at a point (λ, µ) such that λ/(1− µ) < 1.



Similarly, consider a constraint corresponding to a func-
tion g ∈ G. We can rewrite that constraint as,

λ

(1− µ)
≥ g(x)

g(y)
+

(y − x)g′(x)

(1− µ)g(y)
.

The value of λ/(1 − µ) is minimized along this half plane’s
boundary as µ approaches 0 if y > x and as µ approaches 1
if y < x. On any single line the value λ/(1−µ) is monotone
in µ. Therefore, the minimum value is obtained at the in-
tersection of two lines. Also from the proof of Corollary 3.4,
(1, 0) lies in this half-plane. We can conclude that on this
half-plane boundary the minimum value of λ/(1 − µ) < 1.
And any two half-planes corresponding to functions in G
intersect in (λ, µ) such that λ/(1− µ) < 1.

Based on the analysis above, we can conclude the fol-
lowing. First, the minimal value of λ/(1 − µ) must occur
either at the intersection of two half-plane boundaries or on
one half-plane boundary as µ approaches 0 or 1. But since
the minimum value of λ/(1 − µ) is less than 1 along any
half-plane boundary and we are considering the case when
ζn > 1, the latter does not happen. We also noted above
that any two half planes corresponding to two functions in F
or two functions in G intersect at a point with λ/(1−µ) < 1.
Thus if ζn > 1, (λn, µn) must lie at the intersection of two
half-planes boundaries that correspond to one function from
set F and one function from set G. Suppose they correspond
to triples x1, y1, f and x2, y2, g, respectively. Note that we
can always scale or dilate the function and change x, y pro-
portionately to represent the same half-plane.

We also noted earlier that for each of the type of con-
straints, if x > y, then the minimum is obtained along the
boundary as µ approaches 1 and is obtained as µ approaches
0 if x < y. Since the minimum value on the set, ζn, is ob-
tained at the intersection of these two half-plane boundaries,
it must be true that for one of them (the left one in partic-
ular) x > y and for other x < y. We set w1 = x1/y1 and
w2 = x2/y2 and conclude (w1 − 1)(w2 − 1) ≤ 0.

Step 2: Lower Bound Instance.
The next step is constructing the lower bound. We will

prove the following theorem, which will complete the proof
of Theorem 3.5.

Theorem 3.7. Let triples x1, y1, f and x2, y2, g with w1 =
x1/y1 and w2 = x2/y2 be such that

f(x1) +
(y1 − x1)

2
f ′(x1) = λnf(y1) + µnf(x1),

g(x2) + (y2 − x2)g′(x2) = λng(y2) + µng(x2),

and (1−w1)(1−w2) ≤ 0. Then we can construct an instance
of the consensus game using just scaled or dilated versions
f and g such that its pure Nash PoA is at least λn/(1−µn).

To prove this theorem we first describe the construction
of the instance and then verify that it has the desired prop-
erties.

Example 3.1. Consider a game with three players having
intrinsic opinions s1 = 0, s2 = 1, s3 = 2, respectively.

The Nash equilibrium outcome z will be as follows,

z1 =
(1− w1)w2

w2 − w1
, z2 = 1, z3 = 2− (1− w1)w2

w2 − w1
. (5)

The optimal outcome is as follows,

o1 =
1− w1

w2 − w1
, o2 = 1, o3 = 2− 1− w1

w2 − w1
. (6)

We will choose functions f1, g1 such that

f1(z2 − z1) + ((z2 − z1)− (o2 − o1))f ′1(z2 − z1)

= λnf1(o2 − o1) + µnf1(z2 − z1)

g1(z1 − s1) + (z1 − o1)g′1(z1 − s1)

= λng1(o1 − s1) + µng1(z1 − s1) (7)

Notice that (z2 − z1)/(o2 − o1) = w1 = y1/x1 and (z1 −
s1)/(o1− s1) = w2 = y2/x2. So we can identify f1, g1 which
will be dilated versions of f, g.

Choose w as follows,

w = g′1

(
(1− w1)w2

w2 − w1

)
/f ′1

(
w1(w2 − 1)

w2 − w1

)
.

Note that as long as g1 and f1 are increasing functions and
(1− w1)(w2 − 1) ≥ 0 then w ≥ 0.

We define a set of neighbors N(i) for each player i. N(1) =
{2}, N(2) = {1, 3}, N(3) = {2}. Finally the cost functions
for each player would be as follows:

Ci(si, z) = w
∑

j∈N(i)

f1(zi − zj) + g1(zi − si)

In the following lemmas we verify various properties of the
above example.

Lemma 3.8. Outcome z from equation 5 is a pure Nash
equilibrium

Proof. For player 1, its cost in the Nash equilibrium is
wf1(1−z1)+g1(z1) which is minimized when g′1(z1)−wf ′1(1−
z1) = 0. If z1 = (1 − w1)w2/(w2 − w1) then (1 − z1) =
w1(w2 − 1)/(w2 − w1). We see that the condition is then
satisfied by the choice of w.

Similarly for player 3, its cost in the Nash equilibrium
outcome is wf1(z3−1)+g1(2−z3) which is minimized when
wf ′1(z3−1)−g′1(2−z3) = 0. If z3 = 2−(1−w1)w2/(w2−w1)
then z3 − 1 = w1(w2 − 1)/(w2 − w1) and 2 − z3 = (1 −
w1)w2/(w2 − w1). The condition is once more satisfied by
the choice of w.

Before we proceed to player 2, let’s prove that g′1(0) = 0.
Recall that g1 is symmetric i.e. g1(x) = g1(−x). Then
g′1(x) = −g′1(−x). And at 0, g′1(0) = −g′1(0). We conclude
that g′1(0) = 0.

For player 2, the Nash equilibrium cost is wf1(z2 − z1) +
wf1(z3−z2)+g1(z2−1), which is minimized when wf ′1(z2−
z1)−wf ′1(z3− z2) + g′1(z2− 1) = 0. For z2 = 1, g′1(z2− 1) =
g′1(0) = 0. By choice of z1 and z3, z3 − 1 = 1 − z1. Hence,
f ′1(z2 − z1) = f ′1(z3 − z2).

Next we verify that the costs of the two outcomes have the
desired ratio. Since the (real) optimal outcome will have cost
even lower than the reported outcome o, we can conclude
that the PoA is at least λn/(1− µn).

Lemma 3.9. The ratio of cost of the two outcomes z and
o from equations (5) and (6) is λn/(1− µn).

Proof. Recall that we chose f1, g1 to satisfy equations (7).
Note that we have defined z1, z2, z3 such that z2−z1 = z3−z2
and z1 − s1 = s3 − z3. Similarly o1, o2, o3 are such that
o2−o1 = o3−o2 and o1−s1 = o2−s2. Finally, o2 = z2 = s2
hence o2 − s2 = z2 − s2 = 0.

Thus for each pair (1, 2), (2, 3) we have

2f1(zi − zj) + ((oi − oj)− (zi − zj))f ′1(zi − zj)
= λn2f1(oi − oj) + µn2f1(zi − zj).



and for players 1 and 3,

g1(zi − si) + (oi − zi)g′1(zi − si)
= λng1(oi − si) + µng1(zi − si).

On the other hand for player 2, g1(0) + 0g′1(0) = λng1(0) +
µng1(0) since g1(0) = 0. For each player i,

∑
j∈N(i) wf

′
1(zi−

zj) + g′1(zi − si) = 0. Recall that this is what we verified
in the proof of Lemma 3.8. Thus if we combine first expres-
sion multiplied by w for each adjacent pair (i, j) and second
expression for all players i and simplify, we get∑

i

[
∑

j∈N(i)

f1(zi − zj) + wg1(zi − si)]

= λn
∑
i

[
∑

j∈N(i)

f1(oi − oj) + wg1(oi − si)]

+ µn
∑
i

[
∑

j∈N(i)

f1(zi − zj) + wg1(zi − si)],

i.e. c(z) = λnc(o) +µnc(z) and the PoA = c(z)/c(o) is then
λn/(1− µn).

This completes the proof of Theorem 3.7, and hence The-
orem 3.5.

3.3 Some Closed-form Bounds
We consider the case when the functions f(x) and g(x)

are |x|α for α > 1. We calculate numerical price of anarchy
bounds for these cost functions. Instead of computing the
optimal λ, µ, we construct a feasible pair. We prove that the
bound is tight by constructing a lower bound example with
the same price of anarchy.

Lemma 3.10. The price of anarchy in the symmetric co-
evolutionary game when fij(x) = |x|α and gi(x) = |x|α for

all i, j is at most (α−1)(α−1)

αα
· (2

α/(α−1)−1)α

2α/(α−1)−2
.

Proof. Our bounds work over the non-negative domain,
so we pretend f(x) = g(x) = xα. Let us set β = α/(α− 1).
We will show that when both cost functions are xα choosing
λ = β−(α−1) · (2β − 1)α−1/2 and µ = 1− α

2
+ α

2
[1/(2β − 1)],

establishes the desired bound.
The main inequality we use in this proof is 2

(α− 1)Aα +Bα ≥ αB ·Aα−1. (8)

This inequality is tight when A = B. For the function
f(x) = xα, we have to show, xα + (y − x)/2αxα−1 ≤ λyα +
µxα. Recall that β = α/(α−1). Then, for the choice of λ, µ
mentioned earlier, it is equivalent to showing

α(2β−1)yxα−1 ≤ β ·(α−1)xα+β−(α−1) ·(2β−1)α ·yα. (9)

This can be established by choosing A = x · β1/α and B =
y · β−(α−1)/α.(2β − 1) in inequality 8.

Similarly for the second constraints, we have to show xα+
(y − x)αxα−1 ≤ λyα + µxα, which is equivalent to showing

2α(2β−1)yxα−1 ≤ β ·2β ·(α−1)xα+β−(α−1) ·(2β−1)α ·yα.
(10)

This can be established by choosing A = x · β1/α · 21/(α−1)

and B = y · β−(α−1)/α · (2β − 1) in inequality 8. Thus (λ, µ)
are in the set and the PoA is at most λ/(1− µ).
2This can be easily established for α ≥ 1 using Jensen’s
inequality: for concave function f , δ < 1, δf(x) + (1 −
δ)f(y) ≤ f(δx+ (1− δ)y). We choose f(x) = lnx, x = Aα,
y = Bα, and δ = (α− 1)/α.

See Figure 1 for approximate values of the price of anarchy
for various values of α.

Next we use the construction from Example 3.1 to show
that the upper bound established above is tight.

Lemma 3.11. The upper bound established in Lemma 3.10
is tight.

Proof. We use Theorem 3.7 to prove this result. Recall,
we used β to denote α/(α − 1), which is at least 1 as long
as α ≥ 1. Equation (9) is tight if y = β/(2β − 1)x i.e.
y/x = w1 = β/(2β − 1). Moreover, w1 ≤ 1 as long as β ≥ 1.
Equation (10) is tight if y = β/(2β − 1) · 2β−1 · x. Thus
w2 = β · 2β−1/(2β − 1), which is at least 1 for β ≥ 1.

Thus (w1 − 1)(w2 − 1) ≤ 0 and the construction from
example 3.1 can be used.

3.4 Discussion
The results in the previous section shed light on how the

equilibria behave as nodes give more weight to nodes with
close-by opinions. If the cost function is f(x) = g(x) = |x|α,
this can be written as f(x) = |x|2/|x|2−α. If f(x) = |x|2, at
a pure Nash equilibrium, each node simply takes the average
of the opinions of its neighbors and its intrinsic opinion. If
f(x) = |x|α, this can be interpreted as a node i using the
link to j for averaging with probability |zi − zj |α−2. As α
reduces, node i gives more importance to nodes with close-by
opinions, and we see that this increases the PoA. Therefore,
bad social outcomes are more likely to arise if nodes only
consider opinions of similarly biased nodes.

We also note that if the cost functions f and g are not
strictly convex, the PoA can be unbounded. This occurs
even when f(x) = g(x) = |x|, which corresponds to each
node i expressing the median of the opinions of its neigh-
bors and its own opinion. We present two examples where
consensus and polarization result, and both of these have
high social cost.

1. The graph is a clique; each node has si = 0. All nodes
expressing zi = 1 is a NE with social cost strictly pos-
itive. However, the optimal outcome has zi = 0 with
social cost 0.

2. There are two sets of nodes V1 and V2 of equal size.
The induced graph on V1 (resp. V2) is a d-regular
graph. There is a (d − 2)-regular bipartite graph be-
tween the set V1 and set V2. All intrinsic opinions are
s = 0; again the optimal social cost is 0. It is easy to
check that any outcome where the nodes in V1 express
the same opinion z1 and the nodes in V2 express the
same opinion z2 is a Nash equilibrium. This outcome
is polarized with social cost strictly positive.

The last example above is reminiscent of Schelling seg-
regation [20] - each node only has slightly more neighbors
in V1 than in V2, and simply prefers to express the major-
ity opinion. Even in this setting, the opinions can polarize
dramatically with unbounded PoA.

4. ASYMMETRIC K-NN MODEL
As mentioned earlier, this model allows a node to base

its set of friends on their expressed opinions. In particu-
lar, each agent forms K friends. Given expressed opinion
vector z, each node i forms directed links to the K agents



α POA
1.001 1.986
1.008 1.919
1.062 1.647
1.5 1.188
2 9/8 =1.125
4 1.083
8 1.071
16 1.066
32 1.064

Figure 1: Exact POA bounds in the symmetric model for cost function f(x) = |x|α.

with smallest |zj−si| (breaking ties in a consistent fashion).
Denote this set of friends S(z, i). Where the context of the
expressed opinion is clear, we will denote this set by S(i).
The cost of i is:

Ci(zi, z−i) =
∑
j∈S(i)

(zj − zi)2 + ρK(zi − si)2

Here, the set S(z, i) is fixed given z−i and does not depend
on zi. Note that though the cost Ci(zi, z−i) is discontinuous
in z−i, it is smooth in zi for fixed z−i, which is sufficient for
local smoothness arguments we use below. We also note that
in a pure Nash equilibrium, given a setting of z−i, agent i
sets zi to be the weighted average of the opinions in S(z, i)
and si as follows:

zi =
1

1 + ρ

(∑
j∈S(z,i) zj

K
+ ρsi

)

We show (Section 4.1) that for ρ = 1 + ε where ε > 0, the

robust PoA of this game is at most (7+ε)(2+ε)
ε(1+ε)

. This implies

the PoA of correlated and mixed Nash equilibria is at most
a constant regardless of the value of K, assuming ρ > 1. The
PoA reduces as ρ increases and tends to 1 as ρ → ∞. This
shows that as nodes give larger and larger weight to their
intrinsic opinion, the PoA improves, and is in fact bounded
even when nodes place roughly the same weight on their own
opinion as all their neighbors’ put together.

In Section 4.2, we show that a pure NE is not guaranteed
to exist for this game, showing the need for a local smooth-
ness analysis. We also complement our upper bound result
by showing that for ρ < 1, the PoA is at least 1/ρ2; in other
words, the PoA is not bounded as ρ reduces. Finally, in Sec-
tion 4.3, we present a generalization of this game and show
that the generalization admits a pure NE.

4.1 Robust PoA Bound
The optimal solution chooses o to minimize

∑
i Ci(oi, o−i).

We will first show that for any ρ, setting zi = si is a ρ+6
ρ

approximation to OPT , the optimal solution.
Let S∗(i) denote the K closest oj to si in OPT (where we

exclude i = j). Similarly, let Q(i) denote the K closest sj

to si (where we again exclude i = j). The following lemma
is immediate since the sj lie on a line.

Lemma 4.1. Each j appears it at most 2K sets Q(i).

The following lemma bounds OPT , with the bound being
exact as ρ→∞.

Lemma 4.2. For ρ ≥ 0, we have

OPT ≥ ρ

ρ+ 6

∑
i

∑
j∈Q(i)

(sj − si)2

Proof. We have

Ci(oi, o−i) =
∑

j∈S∗(i)

(oj − oi)2 + ρK(oi − si)2

Fix any j ∈ S∗(i). There are two mutually exclusive and
exhaustive cases:

Case 1. Suppose there is no sk ∈ Q(i) such that sk is on
the same side of si as oj and such that sk is further away
from si than oj . In this case, there exists a unique k′ ∈ Q(i)
so that (oj − si)2 ≥ (s2k′ − si)2.

Claim 4.3.

(oj − oi)2 +
ρ

3
(oi− si)2 ≥

ρ

ρ+ 3
(oj − si)2 ≥

ρ

ρ+ 6
(s2k′ − si)2

Proof. Set |oj − oi| = r, and |oi − si| = 1, so that |oj −
si| = r + 1. Then the LHS is r2 + ρ/3 ≥ ρ

ρ+3
(r + 1)2 for all

r, ρ ≥ 0.

Case 2. In the other case, observe that for any j, there are
at most 2K i for which oj is closer to si than some k ∈ Q(i)
and sk and oj both lie on the same side of si. This follows
from Lemma 4.1. Now split the term 2K ρ

3
(oj − sj)2 in the

cost Cj into 2K equal parts and assign one part to each such
i to be added to the term (oj − oi)2 + ρ

3
(oi − si)2.

Claim 4.4.

(oj − oi)2 +
ρ

3
(oj − sj)2 +

ρ

3
(oi − si)2 ≥

ρ

ρ+ 6
(si − sj)2



Proof. Set |oj − oi| = r, and |oj − sj | = |oi − si| = 1, so
that |si−sj | = r+2. Then the LHS is r2+2ρ/3 ≥ ρ

ρ+6
(r+2)2

for all r, ρ ≥ 0.

Either j ∈ Q(i) or we can replace j with a unique k ∈ Q(i)
so that (si − sj)2 ≥ (si − sk)2

Therefore, in either case, summing over all i, it is easy to
check that we have:

OPT ≥
∑
i

∑
j∈S∗(i)

(
(oj − oi)2 +

ρ

3
(oi − si)2 +

ρ

3
(oj − sj)2

)
≥ ρ

ρ+ 6

∑
j∈Q(i)

(sj − si)2

This completes the proof of Lemma 4.2. We will now prove
the following theorem:

Theorem 4.5. For ρ = (1 + ε) where ε > 0, the robust

PoA of the K-NN game is at most (7+ε)(2+ε)
ε(1+ε)

.

Proof. From Lemma 4.2, the vector z = ~s is a 7+ε
1+ε

approximation to OPT . The local smoothness argument
hinges on showing the following for any opinion vector z.∑
i

Ci(zi, z−i) + (si − zi)
∂

∂zi
Ci(zi, z−i) ≤ λC(~s) + µC(z)

If the above holds for µ < 1, the robust price of anarchy
will be 7+ε

1+ε
λ

1−µ , where the factor 7+ε
1+ε

is because ~s is a 7+ε
1+ε

approximation. We will set µ = 0 so that the PoA bound is
7+ε
1+ε

λ.

Fix an expressed opinion vector z and let S(i) = S(i, z−i)
be the K agents j whose zj are closest to si. We need to
show:∑

i

ρK(zi − si)2 +
∑
j∈S(i)

(zi − zj)2


+
∑
i

2(si − zi)

ρK(zi − si) +
∑
j∈S(i)

(zi − zj)


≤
∑
i

λ
∑
j∈Q(i)

(sj − si)2

For a fixed j ∈ S(i), (zi−zj)2 +(zi−si)2 +2(si−zi)(zi−
zj) = (si − zj)2. Therefore, it is sufficient to show:∑

i

∑
j∈S(i)

(si − zj)2

≤
∑
i

(ρ+ 1)K(si − zi)2 + λ
∑
j∈Q(i)

(sj − si)2


Observe that since S(i) are the K closest zj to si, we have∑
j∈S(i)(si− zj)

2 ≤
∑
j∈Q(i)(si− zj)

2. Next we will use the

following inequality (a+b)2 ≤ (d2+1)a2+(1/d2+1)b2 for any
a, b, d ≥ 0. This inequality is equivalent to (da − b/d)2 ≥ 0
and is hence true. Now substituting a = (si − sj), b = (sj −
zj) and d2 = (ρ− 1)/2, we get,∑
j∈Q(i)

(si − zj)2

≤
∑
j∈Q(i)

((
1 +

2

(ρ− 1)

)
(sj − si)2 +

(ρ+ 1)

2
· (sj − zj)2

)

Summing the above inequality over all i and observing that
each j appears in at most 2K Q(i) using Lemma 4.1:∑
i

∑
j∈S(i)

(si − zj)2

≤
∑
i

(1 +
2

(ρ− 1)

) ∑
j∈Q(i)

(sj − si)2 +K(ρ+ 1)(si − zi)2


This implies for ρ = 1 + ε, λ = (1 + 2/ε). This completes
the proof.

4.2 Lower Bounds
We will now present some lower bounds for the case where

K = 1, which will complement the robust PoA bound pre-
sented above. We will show that the K-NN game need not
admit to a pure Nash equilibrium. Furthermore, for ρ < 1,
the PoA is at least 1

ρ2
. In other words, the PoA deterio-

rates for small ρ, implying our upper bound is close to best
possible.

We first simplify notation. For expressed opinions z, let
σ(i) = argminj 6=i|zj − si| where ties are broken arbitrarily
but consistently. Define

Ci(zi, z−i) = (zi − zσ(i))2 + ρ(zi − si)2

We call this the nearest neighbor game. Note that in a
pure Nash equilibrium, given z−i, agent i simply sets zi =
(zσ(i) + ρsi)/(1 + ρ).

Proposition 4.1. In the instance with three players when
players’ intrinsic opinions are s1 = 0, s2 = 1/2, and s3 = 1,
and weight ρ = 1, a pure NE does not exist when player can
express any real number in [0, 1].

Proof. Suppose a pure Nash equilibrium exists. Let a, b,
and c denote the expressed opinions of the three players in
this equilibrium, respectively. First note that c cannot be
less than both a and b, as it is the average of one of them
with 1. Similarly a cannot be bigger than both b and c. It is
also easy to check that b must necessarily lie between a and
c, else one of them has a feasible deviation, which forces the
ordering to be a < b < c.

If a < b < c, the first player points to the second player
and the third player also points to the second player. Hence
a = b/2 and c = (1 + b)/2. There are two cases. Suppose
player 2 points at player 1. Then b = (1/2 + a)/2 = (1/2 +
b/2)/2. Solving this we get that b = 1/3 and a = 1/6. But
then c = 2/3 and player 2 should point at player 3 instead.
On the other hand if player 2 does point to player 3, then
b = (1/2 + c)/2 = (1 + b/2)/2 and b = 2/3. In this case,
a = 1/3 and c = 5/6 and player 2 should point to player 1
instead. Thus an equilibrium does not exist.

In fact, the above proof shows a pure Nash equilibrium
need not exist even when there are three players and seven
possible opinions. Our local smoothness proof circumvents
this impossibility result to bound the price of anarchy of
mixed Nash and correlated equilibria, both of which are al-
ways guaranteed to exist.

We next present a lower bound on the PoA for small values
of ρ which motivates the need for considering ρ ≥ 1 for
presenting our upper bound above.

Proposition 4.2. For ρ ≤ 1, the (robust) PoA of the
nearest neighbor game is at least 1

ρ2
.



Proof. Consider the scenario where s1 = s2 = 0, and
s5 = s6 = 1. For x < 1/2, let s3 = x and s4 = 1− x. Define
δ = |s4 − s3| = 1− 2x.

It is clear that z1 = z2 = 0 and z5 = z6 = 1 in any pure
NE. If agents 3 and 4 point to each other, it is easy to check
that OPT ≤ 2ρδ2/(1 + ρ).

We now exhibit a NE where agent 3 points to 1 and 4
points to 5. If this happens, z3 = ρx/(1 + ρ) and z4 =
1 − ρx/(1 + ρ). Since this is an NE, we need |s3 − z1| ≥
|z4 − s3| which implies δ ≥ ρx/(1 + ρ). Choose x so that
δ = ρx/(1 + ρ) which makes the NE feasible. The cost of
the NE is exactly 2x2ρ/(1 + ρ), so that the PoA is at least
(x/δ)2 ≥ 1/ρ2.

4.3 Generalized Asymmetric Games
The K-NN game is a special case of a more general asym-

metric coevolution game, which we define next. Each agent i
has an intrinsic opinion si. His strategy involves expressing
an opinion zi which could be different from si. The vec-
tor of expressed opinions z−i together with si determines
the strength of agent i’s friendship with other agents. In
particular, for i 6= j, define dij = |zj − si| as the distance
of agent j’s expressed opinion from agent i’s true opinion.
Let qij(z) = Fi(d

i
j , d

i
−i,−j) where Fi is a continuous func-

tion that is decreasing in the first coordinate and increasing
in the remaining coordinates. This captures the strength of
i’s interaction with j (which is asymmetric). This strength
increases as dij decreases, and increases as dij′ decreases for

j′ 6= j. Furthermore, for any ~d, the values {qij(z)} for each
i lie within some polyhedral constraints that define feasi-
ble friendship formation. As an example, if each agent i is
required to have exactly Ki friends, which is captured by∑
j qij(z) = Ki.
Define the cost of agent i as

Ci(zi, z−i) =
∑
j 6=i

(zi − zj)2qij(z) + ρi(zi − si)2.

This defines the asymmetric coevolution game.

Theorem 4.6. The asymmetric coevolution game admits
to a pure strategy Nash equilibrium when the cost functions
Ci are continuous.

Proof. Note that the quantity qij(z) is independent of
zi and only depends on si and z−i. Therefore, the function
(zi − zj)2qij(z) is continuous in z and convex in zi. This
implies Ci(zi, z−i) is continuous in z and convex in zi. This
game is therefore a concave game and admits to a Nash
equilibrium [17].

We note that for the K-NN game, the cost Ci is not con-
tinuous in z−i so that this game violates the premise of the
above theorem and need not admit to a pure NE. An in-
teresting open question is to decide the computational com-
plexity of NE when Ci are continuous.
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