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Abstract
Linearizable libraries provide operations that appear to execute
atomically. Clients, however, may need to execute a sequence of op-
erations (a composite operation) atomically. We consider the prob-
lem of extending a linearizable library to support arbitrary atomic
composite operations by clients. We introduce a novel approach in
which the concurrent library ensures atomicity of composite oper-
ations by exploiting information (foresight) provided by its clients.
We use a correctness condition, based on a notion of dynamic right-
movers, that guarantees that composite operations execute atomi-
cally without deadlocks, and without using rollbacks.

We present a static analysis to infer the foresight information
required by our approach, allowing a compiler to automatically
insert the foresight information into the client. This relieves the
client programmer of this burden and simplifies writing client code.

We present a generic technique for extending the library im-
plementation to realize foresight-based synchronization. This tech-
nique is used to implement a general-purpose Java library for Map
data structures — the library permits composite operations to si-
multaneously work with multiple instances of Map data structures.

We use the Maps library and the static analysis to enforce atom-
icity of a wide selection of real-life Java composite operations. Our
experiments indicate that our approach enables realizing efficient
and scalable synchronization for real-life composite operations.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract data
types, Concurrent programming structures, Data types and struc-
tures

Keywords Concurrency, Composition, Transactions, Data Struc-
tures, Automatic Synchronization
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1. Introduction
Writing concurrent software is hard and error prone. To ease the
programmer’s burden, programming languages such as Java, Scala,
and C# provide libraries of efficient concurrent data structures.
These libraries provide operations that are guaranteed to be atomic,
while hiding the complexity of the implementation from clients.
Unfortunately, clients often need to perform a sequence of library
operations that appears to execute atomically, referred to hereafter
as an atomic composite operation.

The problem of realizing atomic composite operations is an im-
portant and widespread one [9]. Atomic composite operations are
a restricted form of software transactions [15]. However, general-
purpose software transaction implementations have not gained ac-
ceptance [10] due to their high overhead as well as difficulties in us-
ing libraries that are incompatible with software transactions. Pro-
grammers typically realize such composite operations using ad-hoc
synchronization leading to many concurrency bugs in practice [27].
Concurrency Control with Foresight In this paper, we address the
problem of extending a linearizable library [19] to allow clients
to execute an arbitrary composite operation atomically. Our basic
methodology requires the client code to demarcate the sequence of
operations for which atomicity is desired and provide declarative
information to the library (foresight) about the library operations
that the composite operation may invoke (as illustrated later). It is
the library’s responsibility to ensure the desired atomicity, exploit-
ing the foresight information for effective synchronization.

Our first contribution is a formalization of this approach. We
formalize the desired goals and present a sufficient correctness
condition. As long as the clients and the library extension satisfy
the correctness condition, all composite operations are guaranteed
atomicity without deadlocks. Furthermore, our condition does not
require the use of rollbacks. Our sufficiency condition is broad
and permits a range of implementation options and fine-grained
synchronization. It is based on a notion of dynamic right-movers,
which generalizes traditional notions of static right-movers and
commutativity [21, 23].

Our formulation decouples the implementation of the library
from the client. Thus, the correctness of the client does not depend
on the way the foresight information is used by library implementa-
tion. The client only needs to ensure the correctness of the foresight
information.
Automatic Foresight for Clients We then present a simple static
analysis to infer calls (in the client code) to the API used to pass
the foresight information. Given a description of a library’s API,
our algorithm conservatively infers the required calls. This relieves



the client programmer of this burden and simplifies writing atomic
composite operations.
Library Extension Realization Our approach permits the use of
customized, hand-crafted, implementations of the library exten-
sion. However, we also present a generic technique for extending
a linearizable library with foresight. The technique is based on a
variant of the tree locking protocol in which the tree is designed
according to semantic properties of the library’s operations.

We used our technique to implement a general-purpose Java
library for Map data structures. Our library permits composite
operations to simultaneously work with multiple instances of Map
data structures.
Experimental Evaluation We use the Maps library and the static
analysis to enforce atomicity of a wide selection of real-life Java
composite operations, including composite operations that manip-
ulate multiple instances of Map data structures. Our experiments
indicate that our approach enables realizing efficient and scalable
synchronization for real-life composite operations.
Main Contributions We develop the concept of concurrent li-
braries with foresight along several dimensions, providing the the-
oretical foundations, an implementation methodology, and an em-
pirical evaluation. Our main contributions are:

• We introduce the concept of concurrent libraries with foresight,
in which the concurrent library ensures atomicity of composite
operations by exploiting information (foresight) provided by its
clients. The main idea is to shift the responsibility of synchro-
nizing composite operations of the clients to the hands of the
library, and have the client provide useful foresight information
to make efficient library-side synchronization possible.

• We define a sufficient correctness condition for clients and the
library extension. Satisfying this condition guarantees atomicity
and deadlock-freedom of composite operations (Sec. 4).

• We show how to realize both the client-side (Sec. 5) and the
library-side (Sec. 6) for leveraging foresight. Specifically, we
present a static analysis algorithm that provides foresight infor-
mation to the library (Sec. 5), and show a generic technique for
implementing a family of libraries with foresight (Sec. 6).

• We realized our approach and evaluated it on a number of
real-world composite operations. We show that our approach
provides efficient synchronization (Sec. 7).

2. Overview
We now present an informal overview of our approach, for extend-
ing a linearizable library into a library with foresight-based syn-
chronization, using a toy example. Fig. 1 presents the specifica-
tion of a single Counter (library). The counter can be incremented
(via the Inc() operation), decremented (via the Dec() operation),
or read (via the Get() operation). The counter’s value is always
nonnegative: the execution of Dec() has an effect only when the
counter’s value is positive. All the counter’s procedures are atomic.

Fig. 2 shows an example of two threads each executing a com-
posite operation: a code fragment consisting of multiple counter
operations. (The mayUse annotations will be explained later.) Our
goal is to execute these composite operations atomically: a serializ-
able execution of these two threads is one that is equivalent to either
thread T1 executing completely before T2 executes or vice versa.
Assume that the counter value is initially zero. If T2 executes first,
then neither decrement operation will change the counter value, and
the subsequent execution of T1 will produce a counter value of 2. If
T1 executes first and then T2 executes, the final value of the counter
will be 0. Fig. 3 shows a slightly more complex example.

int value = I;
void Inc() { atomic { value=value+1; } }
void Dec() { atomic { if (value > 0) then value=value-1; } }
int Get() { atomic { return value; } }

Figure 1. Specification of the Counter library. I denotes the initial
value of the counter.

1 /* Thread T1 */
2 /* @atomic */ {
3 @mayUseInc()
4 Inc();
5 Inc();
6 @mayUseNone()
7 }

1 /* Thread T2 */
2 /* @atomic */ {
3 @mayUseDec()
4 Dec();
5 Dec();
6 @mayUseNone()
7 }

Figure 2. Simple compositions of counter operations.

1 /* Thread T1 */
2 /* @atomic */ {
3 @mayUseAll()
4 c = Get();
5 @mayUseInc()
6 while (c > 0) {
7 c = c-1;
8 Inc();
9 }

10 @mayUseNone()
11 }

1 /* Thread T2 */
2 /* @atomic */ {
3 @mayUseDec()
4 Dec();
5 Dec();
6 @mayUseNone()
7 }

Figure 3. Compositions of counter dependent operations.
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Figure 4. Execution prefixes of the code shown in Fig. 2, for a
counter with I = 0. Each node represents a prefix of an execution;
a leaf node represents a complete execution.

2.1 Serializable and Serializably-Completable Executions
Fig. 4 shows prefixes of various interleaved executions of the
code shown in Fig. 2 for an initial counter value of 0. Nodes
are annotated with the values of the counter. Bold double cir-
cles depict non-serializable nodes: these nodes denote execu-
tion prefixes that are not serializable. E.g., node #18 is a non-
serializable node since it represents the non-serializable execution
T2.Dec();T1.Inc();T2.Dec();T1.Inc() (which produces a final
counter value of 1).



Bold single circles depict doomed nodes: once we reach a
doomed node, there is no way to order the remaining operations in
a way that achieves serializability. E.g., node #6 is a doomed node
since it only leads to non-serializable complete executions (rep-
resented by nodes #17 and #18). Finally, dashed circles depict
safe nodes, which represent serializably-completable executions.
We formalize this notion later, but safe nodes guarantee that the
execution can make progress, while ensuring serializability.

Our goal is to ensure that execution stays within safe nodes.
Even in this simple example, the set of safe nodes and, hence,
the potential for parallelism depends on the initial value I of the
counter. For I ≥ 1 all nodes are safe and thus no further syn-
chronization is necessary. Using our approach enables realizing
all available parallelism in this example (for every I ≥ 0), while
avoiding the need for any backtracking (i.e., rollbacks).

2.2 Serializably-Completable Execution: A Characterization
We now present a characterization of serializably-completable ex-
ecutions based on a generalization of the notion of static right
movers [23]. We restrict ourselves to executions of two threads
here, but our later formalization considers the general case.

We define an operation o by a thread T to be a dynamic right-
mover with respect to thread T ′ after an execution p, iff for any
sequence of operations s executed by T ′, if p;T.o; s is feasible,
then p; s;T.o is feasible and equivalent to the first execution. Given
an execution ξ, we define a relation @ on the threads as follows:
T @ T ′ if ξ contains a prefix p;T.o such that o is not a dynamic
right-mover with respect to T ′ after p. As shown later, if @ is
acyclic, then ξ is a serializably-completable execution (as long as
every sequential execution of the threads terminates).

In Fig. 4, node #2 represents the execution prefix T1.Inc()
for which T1 @ T2.This is because T2.Dec() is a possible suf-
fix executed by T2, and T1.Inc();T2.Dec() is not equivalent to
T2.Dec();T1.Inc(). On the other hand, node #5 represents the
execution prefix T1.Inc();T2.Dec() for which T2 6@ T1.This ex-
ecution has one possible suffix executed by T1 (i.e., T1.Inc()),
and the execution T1.Inc();T2.Dec();T1.Inc() is equivalent to
the execution T1.Inc();T1.Inc();T2.Dec().

Observe that the relation @ corresponding to any non-serializable
or doomed node has a cycle, while it is acyclic for all safe nodes.

Note that the use of a dynamic (i.e., state-dependent) right-
mover relation is critical to a precise characterization above. E.g.,
Inc and Dec are not static right-movers with respect to each other.

2.3 Synchronization Using Foresight
We now show how we exploit the above characterization to ensure
that an interleaved execution stays within safe nodes.
Foresight. A key aspect of our approach is to exploit knowledge
about the possible future behavior of composite operations for
more effective concurrency control. We enrich the interface of
the library with operations that allow the composite operations to
assert temporal properties of their future behavior. In the Counter
example, assume that we add the following operations:

• mayUseAll(): indicates transaction may execute arbitrary oper-
ations in the future.

• mayUseNone(): indicates transaction will execute no more op-
eration.

• mayUseDec(): indicates transaction will invoke only Dec oper-
ations in the future.

• mayUseInc(): indicates transaction will invoke only Inc oper-
ations in the future.

The code in Fig. 2 is annotated with calls to these operations in a
straightforward manner. The code shown in Fig. 3, is conservatively
annotated with a call to mayUseAll() since the interface does not

provide a way to indicate that the transaction will only invoke Get
and Inc operations.
Utilizing Foresight. We utilize a suitably modified definition of
the dynamic right mover relation, where we check for the right
mover condition only with respect to the set of all sequences of
operations the other threads are allowed to invoke (as per their
foresight assertions). To utilize foresight information, a library
implementation maintains a conservative over-approximation @′

of the @ relation. The implementation permits an operation to
proceed iff it will not cause the relation @′ to become cyclic (and
blocks the operation otherwise until it is safe to execute it). This
is sufficient to guarantee that the composite operations appear to
execute atomically, without any deadlocks.

We have created an implementation of the counter that (implic-
itly) maintains a conservative over-approximation @′ (see [14]).
Our implementation permits all serializably-completable execution
prefixes for the example shown in Fig. 2 (for every I ≥ 0). Our
implementation also provides high degree of parallelism for the ex-
ample shown in Fig. 3 — for this example the loop of T1 can be
executed in parallel to the execution of T2.
Fine-grained Foresight. We define a library operation to be a tuple
that identifies a procedure as well as the values of the procedure’s
arguments. For example, removeKey(1) and removeKey(2)
are two different operations of a library with the procedure
removeKey(int k). In order to distinguish between different op-
erations which are invoked using the same procedure, a mayUse
procedure (which is used to pass the foresight information) can
have parameters. For example, a library that represents a single
Map data structure can have a mayUse procedure mayUseKey(int
k), where mayUseKey(1) is defined to refer to all operations on
key 1 (including, for example, removeKey(1)), and mayUseKey(2)
is defined to refer to all operations on key 2 (including, for example,
removeKey(2)).
Special Cases. Our approach generalizes several ideas that have
been proposed before. One example, from databases, is locking that
is based on operations-commutativity (e.g., see [8, chapter 3.8]).
Such locking provides several lock modes where each mode cor-
responds to a set of operations; two threads are allowed to execute
in parallel as long as they do not hold lock modes that correspond
to non-commutative operations. A simple common instance is a
read-write lock [12], in which threads are allowed to simultane-
ously hold locks in a read-mode (which corresponds with read-only
operations that are commutative with each other). Interestingly, the
common lock-acquire and lock-release operations used for
locking, can be seen as special cases of the procedures used to pass
the foresight information.

2.4 Realizing Foresight Based Synchronization
What we have described so far is a methodology and formalism for
foresight-based concurrency control. This prescribes the conditions
that must be satisfied by the clients and library implementations to
ensure atomicity for composite operations.
Automating Foresight For Clients. One can argue that adding calls
to mayUse operations is an error prone process. Therefore, in Sec-
tion 5 we show a simple static analysis algorithm which conser-
vatively infers calls to mayUse operations (given a description of
the mayUse operations supported by the library). Our experience
indicates that our simple algorithm can handle real-life programs.
Library Implementation. We permit creating customized, hand-
crafted, implementations of the library extension (a simple example
is demonstrated in [14]). However, in order to simplify creating
such libraries, we present a generic technique for implementing
a family of libraries with foresight (Section 6). The technique
is based on a variant of the tree locking protocol in which the



tree is designed according to semantic properties of the library’s
operations. We have utilized the technique to implement a general
purpose Java library for Map data structures. Our library permits a
composite operation to simultaneously work with multiple maps.

3. Preliminaries
3.1 Libraries
A library A exposes a set of procedures PROCSA. We define a
library operation to be a tuple (p, v1, · · · , vk) consisting of a pro-
cedure name p and a sequence of values (representing actual values
of the procedure arguments). The set of operations of a libraryA is
denoted by OPA. Library operations are invoked by client threads
(defined later). Let T denote the set of all thread identifiers. An
event is a tuple (t,m, r), where t is a thread identifier, m is a li-
brary operation, and r is a return value. An event captures both an
operation invocation as well as its return value.

A history is defined to be a finite sequence of events. The seman-
tics of a library A is captured by a set of histories HA. If h ∈ HA,
then we say that h is feasible for A. Histories capture the inter-
action between a library and its client (a set of threads). Though
multiple threads may concurrently invoke operations, this simple
formalism suffices in our setting, since we assume the library to be
linearizable. An empty history is an empty sequence of events.

Let h ◦ h′ denote the concatenation of history h′ to the end of
history h. Note that the set HA captures multiple aspects of the
library’s specification. If h is feasible, but h ◦ (t,m, r) is not, this
could mean one of three different things: rmay not be a valid return
value in this context, or t is not allowed to invokem is this context,
or t is allowed to invokem in this context, but the library will block
and not return until some other event has happened.

A library A is said to be total if for any thread t, operation
m ∈ OPA and h ∈ HA, there exists r such that h◦(t,m, r) ∈ HA.

3.2 Clients
We now briefly describe clients and their semantics. (A more com-
plete definition appears in [14].) A client t1 || t2 || · · · || tn con-
sists of the parallel composition of a set of client programs ti (also
referred to as threads). Each ti is a sequential program built out of
two types of statements: statements that change only the thread’s
local-state, and statements that invoke a library operation. Threads
have no shared state except the (internal) state of the library, which
is accessed or modified only via library operations.

The semantics [[ti]] of a single thread ti is defined to be a la-
belled transition system (Σi,⇒i) over a set of thread-local states
Σi, with some states designated as initial and final states. The exe-
cution of any instruction other than a library operation invocation is
represented by a (thread-local) transition σ ε⇒i σ

′. The execution
of a library operation invocation is represented by a transition of
the form σ

e⇒i σ
′, where event e captures both the invocation as

well as the return value. This semantics captures the semantics of
the “open” program ti. When ti is “closed” by combining it with a
libraryA, the semantics of the resulting closed program is obtained
by combining [[ti]] with the semantics of A, as illustrated later.

A ti-execution is defined to be a sequence of ti-transitions
s0

a1⇒i s1, s1
a2⇒i s2, · · · , sk−1

ak⇒i sk such that s0 is an initial
state of ti and every aj is either ε or an event. Such an execution is
said to be complete if sk is a final state of ti.

The semantics of a client C = t1 || · · · || tn is obtained by
composing the semantics of the individual threads, permitting any
arbitrary interleaving of the executions of the threads. We define the
set of transitions of C to be the disjoint union of the set of transitions
of the individual threads. A C-execution is defined to be a sequence
ξ of C-transitions such that each ξ | ti is a ti-execution, where ξ | ti
is the subsequence of ξ consisting of all ti-transitions.

We now define the semantics of the composition of a client
C with a library A. Given a C-execution ξ, we define φ(ξ) to be
the sequence of event labels in ξ. The set of (C,A)-executions is
defined to be the set of all C-executions ξ such that φ(ξ) ∈ HA.
We abbreviate “(C,A)-execution” to execution if no confusion is
likely.
Threads as Transactions Our goal is to enable threads to execute
code fragments containing multiple library operations as atomic
transactions (i.e., in isolation). For notational simplicity, we assume
that we wish to execute each thread as a single transaction. (Our
results can be generalized to the case where each thread may wish
to perform a sequence of transactions.) In the sequel, we may
think of threads and transactions interchangeably. This motivates
the following definitions.
Non-Interleaved and Sequential Executions An execution ξ is
said to be a non-interleaved execution if for every thread t all t-
transitions in ξ appear contiguously. Thus, a non-interleaved execu-
tion ξ is of the form ξ1, · · · , ξk, where each ξi represents a different
thread’s (possibly incomplete) execution. Such a non-interleaved
execution is said to be a sequential execution if for each 1 ≤ i < k,
ξi represents a complete thread execution.
Serializability Two executions ξ and ξ′ are said to be equivalent
iff for every thread t, ξ | t = ξ′ | t. An execution ξ is said to be
serializable iff it is equivalent to some non-interleaved execution.
Serializably Completable Executions For any execution ξ, let
W(ξ) denote the set of all threads that have at least one transi-
tion in ξ. An execution ξ is said to be a complete execution iff
ξ | t is complete for every thread t ∈ W(ξ). A client execution
ξ is completable if ξ is a prefix of a complete execution ξc such
that W(ξ) = W(ξc). An execution ξ is said to be serializably com-
pletable iff ξ is a prefix of a complete serializable execution ξc
such that W(ξ) = W(ξc). Otherwise, we say that ξ is a doomed
execution.

An execution may be incompletable due to problems in a client
thread (e.g., a non-terminating loop) or due to problems in the
library (e.g., blocking by a library procedure leading to deadlocks).

4. Foresight-Based Synchronization
We now formalize our goal of extending a base library B into a
foresight-based library E that permits clients to execute arbitrary
composite operations atomically.

4.1 The Problem
Let B be a given total library. (Note that B can also be considered to
be a specification.) We say that a library E is a restrictive extension
of B if (i) PROCSE ⊃ PROCSB, (ii) {h ↓ B | h ∈ HE} ⊆ HB,
where h ↓ B is the subsequence of events in h that represent calls
of operations in OPB, and (iii) PROCSE \ PROCSB do not have a
return value. We are interested in extensions where the extension
procedures (PROCSE \ PROCSB) are used for synchronization to
ensure that each thread appears to execute in isolation.

Given a client C of the extended library E , let C ↓ B denote
the program obtained by replacing every extension procedure invo-
cation in C by the skip statement. Similarly, for any execution ξ of
(C, E), we define ξ ↓ B to be the sequence obtained from ξ by omit-
ting transitions representing extension procedures. We say that an
execution ξ of (C, E) is B-serializable if ξ ↓ B is a serializable ex-
ecution of (C ↓ B,B). We say that ξ is B-serializably-completable
if ξ ↓ B is a serializably completable execution of (C ↓ B,B). We
say that E is a transactional extension ofB if for any (correct) client
C of E , every (C, E)-execution is B-serializably-completable. Our
goal is to build transactional extensions of a given library.



4.2 The Client Protocol
In our approach, the extension procedures are used by transactions
(threads) to provide information to the library about the future
operations they may perform. We refer to procedures in PROCSE \
PROCSB as mayUse procedures, and to operations in MUE =
OPE \ OPB as mayUse operations. We now formalize the client
protocol, which captures the preconditions the client must satisfy,
namely that the foresight information provided via the mayUse
operations must be correct.

The semantics of mayUse operations is specified by a function
mayE : MUE 7→ P(OPB) that maps every mayUse operation
to a set of base library operations1. In Section 5 we show simple
procedure annotations that can be used to define the set MUE and
the function mayE .

The mayUse operations define an intention-function IE : HE ×
T 7→ P(OPB) where IE(h, t) represents the set of (base library)
operations thread t is allowed to invoke after the execution of h. For
every thread t ∈ T and a history h ∈ HE , the value of IE(h, t) is
defined as follows. Let M denote the set of all mayUse operations
invoked by t in h. (I) IF M IS NON-EMPTY, THEN IE(h, t) =⋂
m∈M mayE(m). (II) IF M IS EMPTY, THEN IE(h, t) = {}. We

extend the notation and define IE(h, T ), for any set of threads T ,
to be

⋃
t∈T IE(h, t).

Once a thread executes its first mayUse operation, the intention
set IE(h, t) can only shrink as the execution proceeds. Subsequent
mayUse operations cannot be used to increase the intention set.

DEFINITION 1 (Client Protocol). Let h be a history of library E .
We say that h follows the client protocol if for any prefix h′ ◦
(t,m, r) of h, we have m ∈ IE(h′, t) ∪MUE .

We say that an execution ξ follows the client protocol, if φ(ξ)
follows the client protocol.

4.3 Dynamic Right Movers
We now consider how the library extension can exploit the foresight
information provided by the client to ensure that the interleaved ex-
ecution of multiple threads is restricted to safe nodes (as described
in Section 2). First, we formalize the notion of a dynamic right
mover.

Given a history h of a library A, we define the set EA[h] to
be {h′ | h ◦ h′ ∈ HA}. (Note that if h is not feasible for A,
then EA[h] = ∅.) Note that if EA[h1] = EA[h2], then the concrete
library states produced by h1 and h2 cannot be distinguished by any
client (using any sequence of operations). Dually, if the concrete
states produced by histories h1 and h2 are equal, then EA[h1] =
EA[h2].

DEFINITION 2 (Dynamic Right Movers). Given a library A, a
history h1 is said to be a dynamic right mover with respect to a
history h2 in the context of a history h, denoted h : h1 .A h2, iff

EA[h ◦ h1 ◦ h2] ⊆ EA[h ◦ h2 ◦ h1].

An operation m is said to be a dynamic right mover with respect
to a set of operations Ms in the context of a history h, denoted
h : m.AMs, iff for any event (t,m,r) and any history hs consisting
of operations in Ms, we have h : (t,m, r) .A hs.

The following example shows that an operation m can be a
dynamic right mover with respect to a set M after some histories
but not after some other histories.

1 Our approach can be extended to use a more precise semantic function
mayE : MUE 7→ P(OP∗B) that maps each mayUse operation to a set
of sequence of operations, enabling client transactions to more precisely
describe their future behavior.

EXAMPLE 4.1. Consider the Counter described in Section 2.
Let hp be a history that ends with a counter value of p >
0. The operation Dec is a dynamic right mover with respect
to the set {Inc} in the context of hp since for every n the
histories hp ◦ (t,Dec, r) ◦ (t1, Inc, r1), . . . , (tn, Inc, rn) and
hp ◦ (t1, Inc, r1), . . . , (tn, Inc, rn) ◦ (t,Dec, r) have the same
set of suffixes (since the counter value is p − 1 + n after both
histories).

Let h0 be a history that ends with a counter value of 0. The
operation Dec is not a dynamic right mover with respect to the set
{Inc} in the context of h0 since after a history h0 ◦ (t,Dec, r) ◦
(t′, Inc, r′) the counter’s value is 1, and after h0 ◦ (t′, Inc, r′) ◦
(t,Dec, r) the counter’s value is 0. Thus, (t, Get, 1) is a feasible
suffix after the first history but not the second.

The following example shows that the dynamic right mover is
not a symmetric property.

EXAMPLE 4.2. Let hi be a history that ends with a counter value
of i > 0. The operation Inc is not a dynamic right mover with
respect to the set {Dec} in the context of hi since after a history
hi◦(t, Inc, r)◦(t1, Dec, r1), . . . , (ti+1, Dec, ri+1) the Counter’s
value is 0, and after hi ◦ (t1, Dec, r1), . . . , (ti+1, Dec, ri+1) ◦
(t, Inc, r) the Counter’s value is 1.

One important aspect of the definition of dynamic right movers
is the following: it is possible to have h : m .A {m1} and
h : m .A {m2} but not h : m .A {m1,m2}.
Static Movers. We say that an operation m is a static right mover
with respect to operation m′, if every feasible history h satisfies
h : m.A {m′}. We say that m and m′ are statically-commutative,
if m is a static right mover with respect to m′ and vice versa.

4.4 Serializability
It follows from the preceding discussion that an incomplete history
h may already reflect some execution-order constraints among the
threads that must be satisfied by any other history that is equivalent
to h. These execution-order constraints can be captured as a partial-
ordering on thread-ids.

DEFINITION 3 (Safe Ordering). Given a history h of E , a partial
ordering v ⊆ T × T , is said to be safe for h iff for any
prefix h′ ◦ (t,m, r) of h, where m ∈ OPB, we have h′ ↓ B :
m .B I(h′, T ), where T = {t′ ∈ T | t 6v t′}.

A safe ordering represents a conservative over-approximation
of the execution-order constraints among thread-ids (required for
serializability). Note that in the above definition, the right-mover
property is checked only with respect to the base library B.

EXAMPLE 4.3. Assume that the Counter is initialized with a value
I > 0. Consider the history (return values omitted for brevity):

h = (t,mayUseDec), (t′,mayUseInc), (t,Dec), (t′, Inc).

If v is a safe partial order for h, then t′ v t because after
the third event Inc is not a dynamic right mover with respect to
the operations allowed for t (i.e., {Dec}). Dually, the total order
defined by t′ v′ t is safe for h since after the second event,
the operation Dec is a dynamic right mover with respect to the
operations allowed for t′ (i.e., {Inc}) because the Counter’s value
is larger than 0.

DEFINITION 4 (Safe Extension). We say that library E is safe ex-
tension of B, if for every h ∈ HE that follows the client protocol
there exists a partial ordering vh on threads that is safe for h.

The above definition prescribes the synchronization (specifi-
cally, blocking) that a safe extension must enforce. In particular,



assume that h is feasible history allowed by the library. If the his-
tory h ◦ (t,m, r) has no safe partial ordering, then the library must
block the call to m by t rather than return the value r.

THEOREM 4.1 (Serializability). Let E be a safe extension of a
library B. Let C be a client of E . Any execution ξ of (C, E) that
follows the client protocol is B-serializable.

The proofs appear in [14].

4.5 B-Serializable-Completability
We saw in Section 2 and Fig. 4 that some serializable (incomplete)
executions may be doomed: i.e., there may be no way of complet-
ing the execution in a serializable way. Safe extensions, however,
ensure that all executions avoid doomed nodes and are serializ-
ably completable. However, we cannot guarantee completability if
a client thread contains a non-terminating loop or violates the client
protocol. This leads us to the following conditional theorem.

THEOREM 4.2 (B-Serializable-Completability). Let E be a safe
extension of a total library B. Let C be a client of E . If every
sequential execution of (C, E) follows the client protocol and
is completable, then every execution of (C, E) is B-serializably-
completable.

The precondition in the above theorem is worth noting. We re-
quire client threads to follow the client protocol and terminate.
However, it is sufficient to check that clients satisfy these require-
ments in sequential executions. This simplifies reasoning about the
clients.

4.6 E-Completability
The preceding theorem about B-Serializable-Completability has a
subtle point: it indicates that it is possible to complete any execu-
tion of (C, E) in a serializable fashion in B. The extended library E ,
however, could choose to block operations unnecessarily and pre-
vent progress. This is undesirable. We now formulate a desirable
progress condition that the extended library must satisfy.

In the sequel we assume that every thread (transaction) always
executes a mayUse operation m such that mayE(m) = {} before
it terminates. (Essentially, this is an end-transaction operation.)
Given a history h and a thread t, we say that t is incomplete after h
iff IE(h, t) 6= ∅. We say that history h is incomplete if there exists
some incomplete thread after h.

We say that a thread t is enabled after history h, if for all events
(t,m, r) such that h ◦ (t,m, r) satisfies the client protocol and
h ◦ (t,m, r) ↓ B ∈ HB, we have h ◦ (t,m, r) ∈ HE . Note that
this essentially means that E will not block t from performing any
legal operation.

DEFINITION 5 (Progress Condition). We say that a library E sat-
isfies the progress condition iff for every history h ∈ HE that fol-
lows the client protocol the following holds:

• If h is incomplete, then at least one of the incomplete threads t
is enabled after h.

• If h is complete, then every thread t that does not appear in h
is enabled after h.

THEOREM 4.3 (E-Completability). Let E be a safe extension of
a total library B that satisfies the progress condition. Let C be
a client of E . If every sequential execution of (C, E) follows the
client protocol and is completable, then every execution of (C, E)
is completable and B-serializable.

4.7 Special Cases
In this subsection we describe two special cases of safe extension.

int createNewMap();
int put(int mapId,int k,int v);
int get(int mapId,int k);
int remove(int mapId,int k);
bool isEmpty(int mapId);
int size(int mapId);

Figure 5. Base procedures of the example Maps library.

Eager-Ordering Library Our notion of safe-ordering permits v
to be a partial order. In effect, this allows the system to deter-
mine the execution-ordering between transactions lazily, only when
forced to do so (e.g., when one of the transactions executes a non-
right-mover operation). One special case of this approach is to
use a total order on threads, eagerly ordering threads in the order
in which they execute their first operations. The idea of shared-
ordered locking [7] in databases is similar to this. Using such ap-
proach guarantees strict-serializability [25] which preserves the
runtime order of the threads.

DEFINITION 6. Given a history h we define an order ≤h of the
threads in h such that: t ≤h t′ iff t = t′ or the first event of t
precedes the the first event of t′ (in h).

DEFINITION 7 (Eager-Ordering Library). We say that library E is
eager-ordering if for every h ∈ HE that follows the client protocol,
≤h is safe for h.

Commutative-Blocking Library A special case of eager-ordering
library is commutative-blocking library. (This special case is com-
mon in the database literature, e.g., see [8, chapter 3.8]). The idea
here is to ensure that two threads are allowed to execute concur-
rently only if any operations they can invoke commute with each
other. This is achieved by treating each mayUse operation as a lock
acquisition (on the set of operations it denotes). A mayUse opera-
tion m by any thread t, after a history h, will be blocked if there
exists a thread t′ 6= t such that some operation in mayE(m) does
not statically commute with some operation in IE(h, t′).

DEFINITION 8 (Commutative-Blocking Library). We say that li-
brary E is commutative-blocking, if for every h ∈ HE that follows
the client protocol:
if t 6= t′, m ∈ IE(h, t) and m′ ∈ IE(h, t

′), then m and m′ are
statically-commutative.

Note that, for the examples shown in Section 2 such library
will not allow the threads to run concurrently. This is because the
operations Inc and Dec are not statically-commutative.

5. Automatic Foresight for Clients
In this section, we present our static analysis to infer calls (in the
client code) to the API used to pass the foresight information. The
static analysis works for the general case covered by our formalism,
and does not depend on the specific implementation of the extended
library.

We assume that we are given the interface of a library E that
extends a base library B, along with a specification of the seman-
tic function mayE using a simple annotation language. We use a
static algorithm for analyzing a client C of B and instrumenting
it by inserting calls to mayUse operations that guarantee that (all
sequential executions of) C correctly follows the client protocol.
Example Library. In this section, we use a library of Maps as an
example. The base procedures of the library are shown in Fig. 5
(their semantics will be described later). The mayUse procedures
are shown in Fig. 6 — their semantic function is specified using the
annotations that are shown in this figure.



void mayUseAll();@{(createNewMap),(put,*,*,*),(get,*,*),
(remove,*,*),(isEmpty,*),(size,*)}
void mayUseMap(int m);@{(put,m,*,*),(get,m,*),(remove,m,*),
(isEmpty,m),(size,m)}
void mayUseKey(int m,int k);@{(put,m,k,*),(get,m,k),
(remove,m,k)}
void mayUseNone();@{}

Figure 6. Annotated mayUse procedures of the example library.

mayUseMap(m);
if (get(m,x) == get(m,y)) {
mayUseKey(m,x); remove(m,x); mayUseNone();

} else {
remove(m,x); mayUseKey(m,y); remove(m,y); mayUseNone(); }

Figure 7. Code section with inferred calls to mayUse procedures.

Fig. 7 shows an example of a code section with calls to the base
library procedures. The calls to mayUse procedures shown in bold
are inferred by our algorithm.

5.1 Annotation Language
The semantic function is specified using annotations. These anno-
tations are described by symbolic operations and symbolic sets.

Let PVar be a set of variables, and ∗ be a symbol such that
∗ 6∈ PVar. A symbolic operation (over PVar) is a tuple of the
form (p, a1, · · · , an), where p is a base library procedure name,
and each ai ∈ PVar ∪ {∗}. A symbolic set is a set of symbolic
operations.

EXAMPLE 5.1. Here are four symbolic sets for the example library
(we assume that m, k ∈ PVar):

SY1 = {(createNewMap), (put, ∗, ∗, ∗), (get, ∗, ∗), (remove, ∗, ∗),
(isEmpty, ∗), (size, ∗)}

SY2 = {(put,m, ∗, ∗), (get,m, ∗), (remove,m, ∗), (isEmpty,m),
(size,m)}

SY3 = {(put,m, k , ∗), (get,m, k), (remove,m, k)}.
SY4 = {}

Let Value be the set of possible values (of parameters of base
library procedures). Given a function asn : PV ar 7→ Value and a
symbolic set SY, we define the set of operations SY(asn) to be⋃
(p,a1,...,an)∈SY

{(p, v1, . . . , vn) | ∀i.(ai 6= ∗)⇒ (vi = asn(ai))}.

EXAMPLE 5.2. Consider the symbolic sets from Example 5.1. The
set SY3(asn) contains all operations with the procedures put, get,
and remove in which the first parameter is equal to asn(m) and
the second parameter is equal to asn(k). The sets SY1(asn) and
SY4(asn) are not dependent on asn. The set SY1(asn) contains
all operations with the procedures createNewMap, put, get,
remove, isEmpty and size. The set SY4(asn) is empty.

The Annotations Every mayUse procedure p is annotated with a
symbolic set over the the set of formal parameters of p.

In Fig. 6, the procedure mayUseAll is annotated with SY1,
mayUseMap is annotated with SY2, mayUseKey is annotated with
SY3, and mayUseNone is annotated with SY4.

Let p be a mayUse procedure with parameters x1, . . . , xn
which is annotated with SYp. An invocation of p with the val-
ues v1, . . . , vn is a mayUse operation that refers to the set defined
by SYp and a function that maps xi to vi (for every 1 ≤ i ≤ n).

EXAMPLE 5.3. In Fig. 6, the procedure mayUseAll() is an-
notated with SY1, hence its invocation is a mayUse operation
that refers to all the base library operations . The procedure

mayUseKey(int m, int k) is annotated with SY3, hence
mayUseKey(0,7) refers to all operations with the procedures put,
get, and remove in which the first parameter is 0 and the the sec-
ond parameter is 7.

5.2 Inferring Calls to mayUse Procedures
We use a simple abstract interpretation algorithm to infer calls to
mayUse procedures. Given a client C of B and annotated mayUse
procedures, our algorithm conservatively infers calls to the mayUse
procedures such that the client protocol is satisfied in all sequential
executions of C. We have implemented the algorithm for Java
programs in which the relevant code sections are annotated as
atomic. More details are described in [14].
Assumptions. The algorithm assumes that there exists a mayUse
procedure (with no parameters) that refers to the set of all base
library operations (the client protocol can always be enforced by
adding a call to this procedure at the beginning of each code
section). It also assumes that there exists a mayUse procedure (with
no parameters) that refers to an empty set, the algorithm adds a call
to this procedure at the end of each code section.
Limitations. Our implementation may fail to enforce atomicity of
the code sections because: (i) Java code can access shared-memory
which is not part of the extended library (e.g., by accessing a
global variable); (ii) our simple implementation does not analyze
the procedures which are invoked by the annotated code sections.
The implementation reports (warnings) about suspected accesses
(to shared-memory) and about invocations of procedures that do not
belong to the extended library. These reports should be handled by a
programmer or by a static algorithm (e.g., purity analysis [28]) that
verifies that they will not be used for inter-thread communication
(in our formal model, they can be seen as thread-local operations).

6. Implementing Libraries with Foresight
In this section we present a generic technique for realizing an eager-
ordering safe extension (see Definition 7) of a given base library
B. Our approach exploits a variant of the tree locking protocol
over a tree that is designed according to semantic properties of the
library’s operations.

In Section 6.1 we describe the basic idea of our technique which
is based on locking and static commutativity. In Section 6.2 we
show how to utilize dynamic properties like dynamic right-movers.
In Section 6.3 we show an optimistic synchronization that enables
mitigating lock contention that may be caused by the locking in our
approach. Further extensions of our technique are described in [14].

6.1 The Basic Approach

Example Library. Here, we use the example from Section 5. The
procedures of the base library are shown in Fig. 5. The procedure
createNewMap creates a new Map and returns a unique identifier
corresponding to this Map. The other procedures have the standard
meaning (e.g., as in java.util.Map), and identify the Map to be
operated on using the unique mapId identifier. In all procedures,
k is a key, v is a value.

We now describe the mayUse procedures we use to extend the
library interface (formally defined in Fig. 6): (1) mayUseAll():
indicates that the transaction may invoke any library operations.
(2) mayUseMap(int mapId): indicates that the transaction will
invoke operations only on Map mapId; (3) mayUseKey(int
mapId, int k) : indicates that the transaction will invoke opera-
tions only on Map mapId and key k; (4) mayUseNone(): indicates
the end of transaction (it will invoke no more operations).

In the following, we write mayE(m) to denote the the set of
operations associated with the mayUse operation m.
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Figure 8. A locking-tree used in the example.

Implementation Parameters Our technique is parameterized and
permits the creation of different instantiations offering tradeoffs
between concurrency granularity and overheads. The parameters
to our extension are a locking-tree and a lock-mapping.

A locking-tree is a directed static tree where each node n rep-
resents a (potentially unbounded) set of library operations On, and
satisfies the following requirements: (i) the root of the locking-tree
represents all operations of the base library; (ii) if n′ is a child of
n, then On′ ⊆ On; (iii) if n and n′ are roots of disjoint sub-trees,
then every m ∈ On and m′ ∈ On′ are statically-commutative.

EXAMPLE 6.1. Fig. 8 shows a possible locking-tree for the Map
library. The root A represents all (library) operations. Each M i

(i = 0, 1) represents all operations with argument mapId that
satisfies2 : i = mapId % 2. Each Ki

j (i = 0, 1 and j = 0, 1, 2)
represents all operations with arguments mapId and k that satisfy:
i = mapId % 2 ∧ j = k% 3.

The lock-mapping is a function P from mayUse operations to
tree nodes and a special value⊥. For a mayUse operationm, P (m)
is the node which is associated withm. For each mayUse operation
m, P should satisfy: if mayE(m) 6= ∅, then mayE(m) ⊆ OP (m),
otherwise P (m) = ⊥.

EXAMPLE 6.2. Here is a possible lock-mapping for our example.
mayUseAll() is mapped to the root A. mayUseMap(mapId) is
mapped to M i where i = mapId % 2. mayUseKey(mapId,k) is
mapped toKi

j where i = mapId % 2 ∧ j = k% 3. mayUseNone()
is mapped to ⊥.

Implementation We associate a lock with each node of the locking-
tree. The mayUse operations are implemented as follows:

• The first invocation of a mayUse operation m by a thread
or transaction (that has not previously invoked any mayUse
operation) acquires the lock on P (m) as follows. The thread
follows the path in the tree from the root to P (m), locking each
node n in the path before accessing n’s child. Once P (m) has
been locked, the locks on all nodes except P (m) are released.3

• An invocation of a mayUse operation m′ by a thread that holds
the lock on P (m), locks all nodes in the path from P (m) to
P (m′) (in the same tree order), and then releases all locks
except P (m′). If P (m′) = P (m) or P (m′) is not reachable
from P (m),4 then the execution of m′ has no impact.

• If a mayUse operation m is invoked by t and P (m) = ⊥, then
t releases all its owned locks .
Furthermore, our extension adds a wrapper around every base

library procedure, which works as follows. When a non-mayUse

2 We write % to denote the modulus operator. Note that we can use a hash
function (before applying the modulus operator).
3 This is simplified version. Other variants, such as hand-over-hand locking,
will work as well.
4 This may happen, for example, when OP (m′) ⊃ OP (m).

operation m is invoked, the current thread t must hold a lock on
some node n (otherwise, the client protocol is violated). Conceptu-
ally, this operation performs the following steps: (1) wait until all
the nodes reachable from n are unlocked; (2) invoke m of the base
library and return its return value. Here is a possible pseudo-code
for isEmpty:

bool isEmpty(int mapId) {
n := the node locked by the current thread
if(n is not defined) error // optional
wait until all nodes reachable from n are unlocked
return baseLibrary.isEmpty(mapId);

}

Correctness The implementation satisfies the progress condition
because: if there exist threads that hold locks, then at least one of
them will never wait for other threads (because of the tree structure,
and because the base library is total).

We say that t is smaller than t′, if the lock held by t is reachable
from the lock held by t′. The following property is guaranteed: if
t ≤h t′ (see Definition 6) then either t is smaller than t′ or all oper-
ations allowed for t and t′ are statically-commutative. In an imple-
mentation, a non-mayUse operation waits until all smaller threads
are completed, hence the extended library is a safe extension.
Further Extensions In [14] we show extensions of the basic ap-
proach. We show how to associate several nodes with the same
mayUse operation — this enables, for example, mayUse operation
that is associated with operations on several different keys. We also
show how to utilize read-write locks — this enables situations in
which several threads hold the same lock (node).

6.2 Using Dynamic Information
The dynamic information utilized by the basic approach is limited.
In this section we show two ways that enable (in some cases) to
avoid blocking by utilizing dynamic information.

6.2.1 Utilizing the State of the Locks
In the basic approach, a non-mayUse operation, invoked by thread
t, waits until all the reachable nodes (i.e., reachable from the node
which is locked by t) are unlocked — this ensures that the operation
is a right-mover with respect to the preceding threads. In some
cases this is too conservative; for example:

EXAMPLE 6.3. Consider the example from Section 6.1, and a case
in which thread t holds a lock on M0 (assume t is allowed to
use all operations of a single Map). If t invokes remove(0,6) it
will wait until K0

0 , K0
1 and K0

2 are unlocked. But, waiting for K0
1

and K0
2 is not needed, because threads that hold locks on these

nodes are only allowed to invoke operations that are commutative
with remove(0,6). In this case it is sufficient to wait until K0

0 is
unlocked.

So, if a non-mayUse operationm is invoked, then it is sufficient
to wait until all reachable nodes in the following set are unlocked:

{n | ∃m′ ∈ On : m is not static-right-mover with m′}

6.2.2 Utilizing the State of the Base Library
In some cases, the state of the base library can be used to avoid
waiting. For example:

EXAMPLE 6.4. Consider the example from Section 6.1, and a case
in which thread t holds a lock onM0 (assume t is allowed to use all
operations of a single Map), and other threads hold locks on K0

0 ,
K0

1 and K0
2 . If t invokes isEmpty, it will have to wait until all the

other threads unlock K0
0 , K0

1 and K0
2 . This is not always needed,

for example, if the Map manipulated by t has 4 elements, then the
other threads will never be able to make the Map empty (because,



according to the Map semantics, they can only affect 3 keys, so
they cannot remove more than 3 elements). Hence, the execution of
isEmpty by t is a dynamic-right-mover.

A library designer can add code that observes the library’s state
and checks that the operation is a dynamic-right-mover; in such a
case, it executes the operation of the base library (without waiting).
For example, the following code lines can be added to the beginning
of isEmpty(int mapId):

bool c1 = M0 or M1 are held by the current thread ;
bool c2 = baseLibrary.size(mapId) > 3 ;
if(c1 and c2) return baseLibrary.isEmpty(mapId);
... // the remaining code of isEmpty

This code verifies that the actual Map cannot become empty by
the preceding threads; in such a case we know that the operation is a
dynamic-right-mover. Note that writing code that dynamically ver-
ifies right-moverness may be challenging, because it may observe
inconsistent state of the library (i.e., the library may be concurrently
changed by the other threads).

6.3 Optimistic Locking
In the approach, the threads are required to lock the root of
the locking-tree. This may create contention (because of several
threads trying to lock the root at the same time) and potentially
degrade performance [18].

To avoid contention, we use the following technique. For each
lock we add a counter — the counter is incremented whenever the
lock is acquired. When a mayUse operation m is invoked (by a
thread that has not invoked a mayUse operation) it performs the
following steps: (1) go over all nodes from the root to P (m) and
read the counter values; (2) lock P (m); (3) go over all nodes from
the root to P (m) (again), if one node is locked or its counter has
been modified then unlock P (m) and restart (i.e., go to step 1).

The idea is to simulate hand-over-hand locking by avoid writing
to shared memory. This is done by only locking the node P (m)
(and only read the state of the other nodes). When we do not
restart in step 3, we know that the execution is equivalent to one
in which the thread performs hand-over-hand locking from the root
to P (m).

7. Experimental Evaluation
In this section we present an experimental evaluation of our ap-
proach. The goals of the evaluation are: (i) to measure the preci-
sion and applicability of our simple static analysis algorithm (ii) to
compare the performance of our approach to a synchronization im-
plemented by experts, and (iii) to determine if our approach can be
used to perform synchronization in realistic software with reason-
able performance.

Towards these goals, we implemented a general purpose Java
library for Map data structures using the technique presented in
Section 6 (we used the extensions from Sections 6.2 and 6.3).
Implementation details can be found in [14]. In all cases, in which
our library is used, the calls to the mayUse operations have been
automatically inferred by our static algorithm.
Evaluation Methodology For all performance benchmarks (ex-
cept the GossipRouter), we followed the evaluation methodology
of [17]. We used a Sun SPARC enterprise T5140 server machine
running Solaris 10 — this is a 2-chip Niagara system in which each
chip has 8 cores (the machine’s hyperthreading was disabled). More
details about the evaluation methodology can be found in [14].

7.1 Applicability and Precision Of The Static Analysis
We applied our static analysis to 58 Java code sections (compos-
ite operations) from [27] that manipulate Maps (taken from open-
source projects). We have found that for all composite operations,
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Figure 9. Throughput of ComputeIfAbsent.

our simple algorithm infers calls to mayUse operations which can-
not be further improved manually. For 18 composite operations,
our implementation reported (warnings) about procedure invoca-
tions that did not belong to the library — we manually verified that
these invocations are pure5 (so they can be seen as thread-local op-
erations). These results are summarized in [14].

7.2 Comparison To Hand-Crafted Implementations
We selected several composite operations over a single Map: the
computeIfAbsent pattern [1], and a few other common composite
Map operations (that are supported by [2]). For these composite
operations, we compare the performance of our approach to a
synchronization implemented by experts in the field. The results
of the computeIfAbsent pattern are reported here, and the rest of
the results are reported in [14].
ComputeIfAbsent The ComputeIfAbsent pattern appears in many
Java applications. Many bugs in Java programs are caused by non-
atomic realizations of this simple pattern (see [27]). It can be
described with the following pseudo-code:

if(!map.containsKey(key)) {
value = ... // pure computation
map.put(key, value);

}

The idea is to compute a value and store it in a Map, if and only
if, the given key is not already present in the Map. We chose this
benchmark because there exists a new version of Java Map, called
ConcurrentHashMapV8, with a procedure that gets the computa-
tion as a parameter (i.e., a function is passed as a parameter), and
atomically executes the pattern’s code [1].

We compare four implementations of this pattern: (i) an imple-
mentation which is based on a global lock; (ii) an implementation
which is based on our approach; (iii) an implementation which is
based on ConcurrentHashMapV8; (iv) an implementation which is
based on hand-crafted fine-grained locking (we used lock stripping,
similar to [16], with 32 locks; this is an attempt to estimate the
benefits of manual hand-crafted synchronization w/o changing the
underlying library). The computation was emulated by allocating a
relatively-large Java object (∼ 128 bytes).

The results are shown in Fig. 9. We are encouraged by the fact
that our approach provides better performance than Concurren-
tHashMapV8 for at least 8 threads. Also, it is (at most) 25% slower
than the hand-crafted fine-grained locking.

7.3 Evaluating The Approach On Realistic Software
We applied our approach to three benchmarks with multiple Maps
— in these benchmarks, several Maps are simultaneously manip-
ulated by the composite operations. We used the Graph bench-
mark [16], Tomcat’s Cache [3], and a multi-threaded application

5 We have found that the purity of the invoked procedures is obvious, and
can be verified by existing static algorithms such as [28].
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Figure 10. Throughput (operations/millisecond) as a function of the number of threads (1-16).

GossipRouter [6]. In these benchmarks, we compare the perfor-
mance to coarse grained locking.
Graph This benchmark is based on a Java implementation of the
Graph that has been used for the evaluation of [16]. The Graph
consists of four composite operations: find successors, find prede-
cessors, insert edge, and remove edge. Its implementation uses two
Map data structures in which several different values can be asso-
ciated with the same key (such type of Maps is supported by our
library; also [5] contains an example for such type of Maps).

We compare a synchronization which is based on a global lock,
and a synchronization which is based on our approach. We use the
workloads from [16]. The results are shown in Fig. 10(a)–(d).

For some of the workloads, we see that there is a drop of
performance between 8 and 16 threads. This can be explained by
the fact that each chip of the machine has 8 cores, so using 16
threads requires using both chips (this creates more overhead).
Tomcat’s Cache This benchmark is based on a Java implementation
of Tomcat’s cache [3]. This cache uses two types of Maps which are
supported by our library: a standard Map, and a weak Map (see [4]).
The cache consists of two composite operations Put and Get which
manipulate the internal Maps. In this cache, the Get is not a read-
only operation (in some cases, it copies an element from one Map
to another). The cache gets a parameter (size) which is used by its
algorithm. Fig. 10(e) and Fig. 10(f) show results for two workloads.
GossipRouter The GossipRouter is a Java multi-threaded routing
service from [6]. Its main state is a routing table which consists
of several Map data structures. (The exact number of Maps is
dynamically determined).

We use a version of the router ("3.1.0.Alpha3") with several
bugs that are caused by an inadequate synchronization in the code
that access the routing table. We have manually identified all code
sections that access the routing table as atomic sections; and ver-
ified (manually) that: whenever these code sections are executed
atomically, the known bugs are not occurred.

We compare two ways to enforce atomicity of the code sec-
tions: a synchronization which is based on a global lock, and a
synchronization which is based on our approach. We used a perfor-
mance tester from [6] (called MPerf ) to simulate 16 clients where
each client sends 5000 messages. In this experiment the number of
threads cannot be controlled from the outside (because the threads
are autonomously managed by the router). Therefore, instead of
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Figure 11. Throughput of GossipRouter.

changing the number of threads, we changed the number of active
cores. The results are shown in Fig. 11.

For the router’s code, our static analysis has reported (warn-
ings) about invocations of procedures that do not belong to the
Maps library. Interestingly, these procedures perform I/O and do
not violate atomicity of the code sections. Specifically, they per-
form two types of I/O operations: logging operation (used to print
debug messages), and operations that send network messages (to
the router’s clients). They do not violate the atomicity of the atomic
sections, because they are not used to communicate between the
threads (from the perspective of our formal model, they can be seen
as thread-local operations).

8. Related Work
8.1 Concurrent Data Structures
Many sophisticated concurrent data structures (e.g., [2, 18, 24])
were developed and integrated into modern software libraries.
These data structures ensure atomicity of their basic operations,
while hiding the complexity of synchronization inside their li-
braries. Unfortunately as shown in [27] employing concurrent data
structures in client code is error prone. The problem stems from the
inability of concurrent data structures to ensure atomicity of client
operations composed from several data structure operations.

In this paper we focus on enabling efficient atomicity of client
operations composed from several data structure operations. The
foresight information enables the library to provide concurrency
without violating atomicity of composite client operations. This
prevents the errors reported in [27] without the need for the library
to directly support composite operations as suggested in [1].



8.2 Synchronization by Utilizing Semantics Properties
Many synchronization approaches aim to utilize semantics proper-
ties of concurrent operations for the sake of concurrency and effi-
ciency. (e.g., by utilizing commutativity of read-only operations.)
These approaches are developed for databases (e.g.,[26, 29]) and
for general programming models (e.g.,[21, 22]).
Rollbacks A notable property of most approaches (e.g., all the ap-
proaches discussed in [21, 22, 26, 29]) is that they require a roll-
back mechanism (otherwise atomicity and deadlock-freedom are
not guaranteed). In contrast, in this paper we show an approach that
ensures atomicity and deadlock-freedom without using a rollback
mechanism. This may be an advantage in some cases (e.g., when a
rollback mechanism has a high runtime and memory overhead [10],
or when I/O operations are involved).

Using foresight may also be beneficial for approaches with a
rollback mechanism. Though, in this work we focus on synchro-
nization that does not require rollback mechanisms.
Commutativity and Movers We base our approach on right-movers
whereas most approaches are based on commutativity. Indeed, [21]
shows that many synchronization schemes can be based on either
right-movers or left-movers. In [21], they use a variant of a "static"
right-mover which is a special case of our definition for dynamic-
right-mover.
Locking Mechanisms Locking mechanisms are widely used for
synchronization, some of them utilize semantics properties of
shared operations (e.g., [12, 20]). Usually these mechanisms do
not allow several threads to hold locks which correspond to non-
commutative operations. An interesting locking mechanism is
shared-ordered locking [7] which allow several threads to hold
locks which correspond to non-commutative operations. Such lock-
ing mechanisms can be seen as special cases of libraries with
foresight-based synchronization.

8.3 Synchronization via Locking
Locking is a widely used approach for software synchronization.
Writing software with locking that permits concurrency, such as
fine-grain locking, is considered hard and error prone.

In order to mitigate this problem several algorithms for automat-
ically inferring locks using static analysis were recently suggested
(e.g. [11, 13]). Our algorithm for inferring mayUse operations is
similar to these algorithms; still with the following differences: (i)
we deal mayUse operations which can be seen as generalizations
of lock-acquire and lock-release operations — this enables our ap-
proach to utilize non-trivial semantic properties of shared opera-
tions; (ii) lock inference algorithms usually need to consider the
structure of a dynamically manipulated state, we avoid this by con-
sidering a single shared library that can be statistically identified.

Acknowledgments
We thank Yehuda Afek, Adam Morrison, Noam Rinetzky, Omer
Tripp and the anonymous referees for their insightful feedbacks.
This work was partially supported by Microsoft Research through
its PhD Scholarship Programme, and by The Israeli Science Foun-
dation (grant no. 965/10).

References
[1] gee.cs.oswego.edu/dl/jsr166/dist/jsr166edocs/

jsr166e/ConcurrentHashMapV8.html.

[2] docs.oracle.com/javase/6/docs/api/java/
util/concurrent/ConcurrentHashMap.html.

[3] www.devdaily.com/java/jwarehouse/apache-tomcat-
6.0.16/java/org/apache/el/util/ConcurrentCache.java.shtml.

[4] docs.oracle.com/javase/6/docs/api/java/util/WeakHashMap.html.

[5] guava-libraries. code.google.com/p/guava-libraries/.
[6] Jgroups toolkit. www.jgroups.org/index.html.
[7] AGRAWAL, D., AND EL ABBADI, A. Constrained shared locks for

increasing concurrency in databases. In Selected papers of the ACM
SIGMOD symposium on Principles of database systems (1995).

[8] BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley,
1987.

[9] BRONSON, N. Composable Operations on High-Performance Con-
current Collections. PhD thesis, Stanford University, Dec. 2011.

[10] CASCAVAL, C., BLUNDELL, C., MICHAEL, M., CAIN, H. W., WU,
P., CHIRAS, S., AND CHATTERJEE, S. Software transactional mem-
ory: Why is it only a research toy? Queue 6, 5 (Sept. 2008), 46–58.

[11] CHEREM, S., CHILIMBI, T., AND GULWANI, S. Inferring locks for
atomic sections. In PLDI (2008).

[12] COURTOIS, P. J., HEYMANS, F., AND PARNAS, D. L. Concurrent
control with readers and writers. Commun. ACM 14, 10 (Oct. 1971).

[13] GOLAN-GUETA, G., BRONSON, N., AIKEN, A., RAMALINGAM,
G., SAGIV, M., AND YAHAV, E. Automatic fine-grain locking using
shape properties. In OOPSLA (2011).

[14] GOLAN-GUETA, G., RAMALINGAM, G., SAGIV, M., AND YAHAV,
E. Concurrent libraries with foresight. Tech. Rep. TR-2012-89, Tel
Aviv University, 2012.

[15] HARRIS, T., LARUS, J., AND RAJWAR, R. Transactional memory,
2nd edition. Synthesis Lectures on Computer Architecture 5, 1 (2010).

[16] HAWKINS, P., AIKEN, A., FISHER, K., RINARD, M., AND SAGIV,
M. Concurrent data representation synthesis. In PLDI (2012).

[17] HERLIHY, M., LEV, Y., LUCHANGCO, V., AND SHAVIT, N. A
provably correct scalable concurrent skip list. In OPODIS (2006).

[18] HERLIHY, M., AND SHAVIT, N. The Art of Multiprocessor Program-
ming. Morgan Kauffman, Feb. 2008.

[19] HERLIHY, M. P., AND WING, J. M. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12
(July 1990).

[20] KORTH, H. F. Locking primitives in a database system. J. ACM 30
(January 1983), 55–79.

[21] KOSKINEN, E., PARKINSON, M., AND HERLIHY, M. Coarse-grained
transactions. In POPL (2010), pp. 19–30.

[22] KULKARNI, M., PINGALI, K., WALTER, B., RAMANARAYANAN,
G., BALA, K., AND CHEW, L. P. Optimistic parallelism requires
abstractions. In PLDI (2007).

[23] LIPTON, R. J. Reduction: a method of proving properties of parallel
programs. Commun. ACM 18, 12 (Dec. 1975), 717–721.

[24] MICHAEL, M. M., AND SCOTT, M. L. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In PODC
(1996), pp. 267–275.

[25] PAPADIMITRIOU, C. H. The serializability of concurrent database
updates. J. ACM 26, 4 (1979), 631–653.

[26] SCHWARZ, P. M., AND SPECTOR, A. Z. Synchronizing shared
abstract types. ACM Trans. Comput. Syst. 2, 3 (Aug. 1984), 223–250.

[27] SHACHAM, O., BRONSON, N., AIKEN, A., SAGIV, M., VECHEV,
M., AND YAHAV, E. Testing atomicity of composed concurrent
operations. In OOPSLA (2011).

[28] SĂLCIANU, A., AND RINARD, M. Purity and side effect analysis for
Java programs. In VMCAI (2005), pp. 199–215.

[29] WEIHL, W. E. Commutativity-based concurrency control for abstract
data types. IEEE Trans. Comput. 37 (December 1988), 1488–1505.


