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ABSTRACT

Gaussian mixture model (GMM) based speech-to-lips conversion of-
ten operates in two alternative ways: batch conversion and sliding
window-based conversion for real-time processing. Previously, Min-
imum Converted Trajectory Error (MCTE) training has been pro-
posed to improve the performance of batch conversion. In this paper,
we extend previous work and propose a new training criteria, MCTE
for Real-time conversion (R-MCTE), to explicitly optimize the qual-
ity of sliding window-based conversion. In R-MCTE, we use the
probabilistic descent method to refine model parameters by minimiz-
ing the error on real-time converted visual trajectories over training
data. Objective evaluations on the LIPS 2008 Visual Speech Synthe-
sis Challenge data set shows that the proposed method achieves both
good lip animation performance and low delay in real-time conver-
sion.

Index Terms— speech-to-lips, minimum converted trajectory er-
ror, real-time conversion

1. INTRODUCTION

Speech-to-lips systems that synthesizes lip animation from given
speech offer a wide range of useful applications. For example, gen-
erating lip animation from acoustic speech animation is crucial for
animating avatar for human computer interaction in video games
or other augmented reality scenario. As audio and visual informa-
tion compensate each other in human communication, an animated
avatar is also beneficial in human-to-human interactions, e.g. inter-
net videophones with low network transmission rate.

There are many attempts at modeling the relationship between
audio (speech) and visual (usually lips, sometimes also upper face)
signals. Most of them are generative probabilistic models that make
assumptions about the underlying probability distribution of audio-
visual data. Typical model assumptions are Gaussian Mixture model
(GMM), Hidden Markov Model (HMM), Dynamical Bayesian Net-
work (DBN) [1] and Switching Linear Dynamical System (SLDS)
[2], in order of increasing model complexity. With sufficient train-
ing data, all these methods are capable of converting speech to syn-
chronous lips movement.

Besides the quality of converted lips movements, another chal-
lenge is low latency required by certain real-time applications, e.g.,
videophones. Negative delay effects include: 1) The visual anima-
tion is rendered behind corresponding audio, giving rise to audio-
visual asynchrony to which human perception is sensitive [3]; 2) The
audio could be delayed until visual information become available.
Instead of asynchrony, in this case the delay is also inconvenient in

conversational interactivity. In a closely related area, voice conver-
sion [4], the latency issue has been addressed by sliding window-
based conversion [5]. Compared to conventional GMM based batch
conversion, the method achieves low latency while keeping compa-
rable performance.

In our previous work [6], we proposed Minimum Converted
Trajectory Error training which, unlike maximum likelihood crite-
ria, directly minimizes the converted trajectory error over training
data, thereby improves the quality of GMM-based batch conversion.
Combining MCTE training with sliding window-based conversion,
however, does not lead to optimal performance for real-time con-
version, because MCTE specifically optimizes for batch conversion
which convert all frames in an utterance at one time. The mismatch
between conversion schemes used in training (batch) and testing
(sliding window-based) leads to a degradation of conversion perfor-
mance.

In response to this mismatch, in this paper, we extend the original
MCTE to a more general form and propose R-MCTE which accounts
for the converted trajectory errors in sliding window-based conver-
sion. In contrast to MCTE training which updates GMM model
parameters at every utterance of training data, R-MCTE performs
model update at each individual frame in a sliding window man-
ner. By making the conversion method in training and testing consis-
tent, R-MCTE can significantly improve the performance of sliding
window-based conversion, demonstrated by objective evaluations on
a public data set.

The remainder of this paper is organized as follows. Batch and
sliding window-based speech-to-lips conversion are described in
Section 2. In Section 3 we firstly review MCTE for batch conversion
and then propose R-MCTE for sliding window-based conversion in
detail. We present experimental results in Section 4 and conclusions
in Section 5.

2. GMM BASED CONVERSION

The speech-to-lips conversion consists of two stages: training and
conversion, as illustrated in Fig. 1. During training, acoustic and
visual features are extracted from parallel training data, forming two
feature spaces. A statistical model is automatically trained to char-
acterize the joint feature space. Later at the conversion stage, pre-
viously unseen sequences in the acoustic space will be mapped to
the visual space. The mapped visual feature sequences are used for
rendering animations of lips movements.

Both the training and conversion stages can be done in several al-
ternative ways. In this section, we introduce two schemes of GMM
based conversion: batch conversion and sliding window-based real-
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Fig. 1. Diagram of speech-to-lips conversion

time conversion. Model training will be discussed in the next sec-
tion.

2.1. Batch conversion

We denote acoustic and visual feature sequences, and their time
derivatives as,

x = [x�
1 , . . . , x

�
T ]

�, y =[y�
1 , . . . , y�

T ]�

�xi =
1

2
(xi+1 − xi−1), �yi =

1

2
(yi+1 − yi−1)

Xi = [x�
i ,�x�

i ], Yi =[y�
i ,�y�

i ]
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where x and y are acoustic and visual feature sequences of one utter-
ance. We further augment the feature vector with its time derivatives
(or dynamic features [7]) �xi and �yi, so that the sequence X and
Y can be represented as linear transformations of static vectors,

X = Wx, Y = Wy (1)

where the transformation W has a same form for all sequences [7].
In the GMM based approach [4], every Xt and Yt are assumed to

be independently drawn from a mixture of Gaussian distributions,

P (Xt, Yt|λ)=
M∑

m=1

wmN (Xt, Yt;μm,Σm) (2)

where m is the index of mixture component, wm, μm and Σm de-
note for the mixture weight, mean and covariance of mth Gaussian.
λ = {w, μ,Σ} denotes for the set of GMM parameters.

With GMM, batch conversion of a sequence is formulated as,

P (Y |X,λ) =
T∏

t=1

P (Yt|Xt, λ)

=

T∏
t=1

M∑
mt=1

P (mt|Xt, λ)P (Yt|Xt,mt, λ) (3)

ŷ = argmaxP (Y |X) (4)

In practice, we make several approximations to reduce the com-
plexity in solving Eq. 4. First, the summation in Eq. 3 is approxi-

mated by the Maximum A Posterior (MAP) mixture component, m̂t,

P (Y |X,λ) ≈
T∏

t=1

P (m̂t|Xt, λ)P (Yt|Xt, m̂t, λ) (5)

m̂t = argmaxP (m|Xt, λ) (6)

With this approximation, Eq. 4 can be solved in a closed form,

ŷ = (W�D(Y )
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Second, to have a robust estimation of covariance matrix Σ, we
assume the off-diagonal terms in Σ

(XY )
m and Σ

(Y X)
m to be all null,

and Σ
(XX)
m and Σ

(Y Y )
m to be diagonal. In other words, correlations

between different dimensions in the joint audio-visual feature space
are ignored. Eventually, Eq. 10 and Eq. 11 are simplified to be,

E
(Y )
m̂t

≈ μ
(Y )
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, D
(Y )
m̂t

≈ Σ
(Y Y )
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(12)

Batch conversion comes with a latency time no less than the
length of one utterance.

2.2. Sliding window-based conversion

To achieve low latency in real-time conversion applications, GMM
based batch conversion has been adapted to generate trajectory with
sliding windows. In particular, for the estimation of ŷt, a sliding
window of length L = Lf + Lb is taken around time t. Here Lf =
Lforward denotes for the number of look-ahead frames after t, whereas
Lb = Lbackward is the number of frames in the past. At time t, the
statistics in the sliding window can be denoted as,

Xt,L = [X�
t−Lb+1, . . . , X

�
t , . . . , X�

t+Lf
]� (13)

E
(Y )
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Following Eq. 7, the solution in this sliding window is,

ỹt,L = (W�
L D

(Y )
m̂,t,L

−1
WL)

−1W�
L D

(Y )
m̂,t,L

−1
E

(Y )
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All frames in the window are converted together, but we only keep
the converted result for current frame t as the estimation of ŷ, while
neglect all others in the window. That is,

ŷt = βLỹt,L (17)

where βL = [0, . . . , 0, 1Lb+1, 0, . . . , 0] is a row vector for picking
up the (Lb + 1)th element of ỹt,L.

In contrast to batch conversion, the sliding window-based ap-
proach generate lip movement ŷt for the tth frame as soon as the
(t + Lf )

th frame Xt+Lf becomes available, thus effectively reduc-
ing the latency to the number of look-ahead frames. On the other
hand, few or no look-ahead frames often results in a quality degra-
dation of converted trajectories [5]. Therefore, look-ahead frames
can be treated as a trade-off between latency and conversion perfor-
mance.
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3. MINIMUM CONVERTED TRAJECTORY ERROR
TRAINING

3.1. Conventional ML training

As a generative model, a GMM is usually trained by Maximum Like-
lihood (ML) estimation and the EM algorithm. The log likelihood
function for a joint audio-visual GMM is,

L(λ) = log(N ([X,Y ];μm,Σm))

=− log((2π)D|Σ(XX)αX

m Σ(Y Y )αY

m | 12 ))
− 1

2
αX(X − μX

m)�Σ(XX)−1

m (X − μX
m)

− 1

2
αY (X − μY

m)�Σ(Y Y )−1

m (Y − μY
m) (18)

where αX and αY are weighting factors for likelihood in acous-
tic and visual subspaces, respectively. In our previous work [6],
we empirically choose weighting exclusively on the audio subspace
(αX = 1, αY = 0) which results in significant performance im-
provement than equal weights.

Maximum Likelihood training is an effective way to train the
GMM. However, an audio-visual GMM with maximum likelihood
on the training data does not necessarily result in the best converted
visual trajectories. Alternatively, a discriminative criterion which di-
rectly minimizes the task specific error often outperforms ML. For
audio-visual conversion, we have proposed a discriminative criterion
called Minimum Converted Trajectory Error (MCTE) training which
achieves better performance than conventional ML training.

3.2. MCTE for batch conversion

MCTE aims to minimize the converted trajectory error, i.e., Eu-
clidean distance between converted trajectory and ground truth over
all the training data,

D(y, ŷ) = ||y − ŷ||22 =
T∑

t=1

||yt − ŷt||22 (19)

L(λ) =
1

N

N∑
i=1

D(yi, ŷi) (20)

Note that in GMM conversion with MAP approximation Eq. 5,
the conversion is actually accomplished in two steps. First, a se-
quence of Gaussian mixtures is estimated from observation X by
MAP: m̂ = argmaxP (m|X,λ). Then, visual trajectory ŷ is gen-
erated from mixture sequence m̂ by maximizing P (Wy|m̂, λ), lead-
ing to the closed form solution in Eq. 7. Thus, the MCTE loss func-
tion Eq. 20 becomes a function of λ(Y ) for given mixture sequence
m̂. We minimize it using the probabilistic descend (PD) algorithm.

The probabilistic descend (PD) algorithm updates the model pa-
rameters at each training utterance [8]. For the nth utterance,

λ
(Y )
n+1 = λ(Y )

n − εn
∂D(yn, ŷn)

∂λY
|
λ(Y )=λ
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∂ŷn

∂λ(Y )
(21)

By Eq. 7,
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where E
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m̂t,d

is the dth dimension of the mean vector of

the tth mixture in the MAP mixture sequence, ZE =
[0, . . . , 0, 11×DY +d, 0, 0, . . . , 0]

� and DY is the dimension of Y .

For convenience we denote vt,d = 1/σ2
t,d, Zv = ZEZ

�
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t,d =

D
(Y )
m̂t,d

is the variance corresponding of E
(Y )
m̂t,d

. The updating rule
for covariance is,

∂ŷn
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(Y )
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3.3. R-MCTE for sliding window-based conversion

As the sliding window-based conversion generates visual trajecto-
ries in a different way, the original MCTE does not necessarily lead
to reduced conversion errors. To resolve the inconsistency between
MCTE training and sliding window-based conversion, in this sec-
tion we propose R-MCTE which minimizes the generation error for
sliding window-based conversion.

Recall the definition in Section 2.2, Eq. 17 indicates sliding win-
dow based-conversion operates independently on each frame. Con-
sequently, the generation error should be defined as a summation
over all frames over training data:

L(λ) =
1

N

N∑
i=1

Ti∑
t=1

||βLỹ
i
t,L − yi

t||22 (24)

Instead of updating model utterance-by-utterance as in original
MCTE, the proposed R-MCTE performs frame-by-frame model up-
dating. Specifically, for the minimization of Eq. 24, the probabilistic
descent algorithm updates current model parameter λY

k at every ith

frame of nth utterance in training data,

λ
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(Y )
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∂||βLỹ
i
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∂βLỹ
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In particular, by taking derivative on the sliding window version
of generation function, we have,

∂βLỹ
i
t,L

∂E
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m̂t,d,i,L

= βL(W
�
L D
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and for variance,

∂βLỹ
i
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(27)

where E
(Y )
m̂t,d,i,L

is the dth dimension of the mean vector of tth mix-
ture in the MAP mixture sequence of the sliding window at i. Simi-
larly, vt,d,i,L is the definition for elements in covariance matrix.

The updating rule differs from original MCTE by the term βL,
which could be interpreted as a weighting vector that decides how
errors of each converted frame in the sliding window contribute to
the updating factor. In theory, βL should be set in the same form
as in the conversion. In practice for robust model updating, βL can
also be in other forms, e.g. a Gaussian window centers at (Lb +1)th

frame in a sliding window.
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Batch Real-time

open closed open closed

ML 9.36 8.943 9.106 8.697

MCTE 7.624 5.206 9.103 7.118

R-MCTE 7.588 5.695 7.967 6.252

Table 1. MSE (×105) of different training criterion on batch and
sliding window-based real-time conversion. (Lb = 190, Lf = 10)
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Fig. 2. Performance under different number of look-ahead frames.
(Lf = 0 ∼ 30, Lb = 190)

4. EVALUATION

4.1. Experimental Setup

We employ the LIPS 2008 Visual Speech Synthesis Challenge [9]
data to evaluate the performance of different training criterion. The
dataset consists of 278 video clips, each is an English sentence spo-
ken neutrally by a female British native speaker. Videos are recorded
at a 50 Hz frame rate. For acoustic feature extraction, we compute
Mel-frequency Cepstral Coefficient (MFCC) from the speech with
a 20ms time window shifted every 5ms. For the visual features we
perform Principle Component Analysis (PCA) on the automatically
detected and aligned mouth image, keeping the first 20 principle di-
mensions. Visual feature vectors are interpolated to the same frame
rate as audio speech MFCCs.

4.2. Objective Evaluation

The conversion performance is objectively evaluated by Mean
Square Error (MSE) defined as

MSE =
1

T

T∑
t=1

||yt − ŷt||22 (28)

We conduct “open” and “closed” tests for objective evaluation. In
the “closed” test, all 278 sentence in the data set are used for both
training and conversion test. In the “open” test, we use a 14-fold
cross-validation and the errors are averaged over all folds. In sliding
window-based conversion, we set Lb = 190 and Lf = 10.

The results are shown in Table 1. In batch conversion, R-MCTE
retains comparable performance as MCTE, while both are better than
conventional ML. In sliding window-based conversion, the proposed
R-MCTE shows a significant improvement compared with MCTE
and is much closer to the best performance achieved by batch con-
version. In other words, R-MCTE narrows the gap between perfor-
mance of batch and sliding window-based conversion.

Fig. 2 shows the influence of look-ahead frames on conversion
performance. Note that we train individual R-MCTE models for
each look-ahead number Lf . R-MCTE (blue curve) consistently
outperforms MCTE (green curve) especially on small look-ahead

numbers. Also R-MCTE converges more quickly than MCTE as
the number of look-ahead frames increases.

The choice of Lf is critical since it is a tradeoff between per-
formance and latency. In our application for rendering an interac-
tive speech driven avatar, the avatar’s mouth needs to move instanta-
neously in synch with the human user’s voice. We choose Lf = 10
that results in an audio-visual asynchrony ≈ 50ms due to the la-
tency. In speech, audio-visual signal with this amount of asynchrony
remains intelligible to human perception [3].

5. CONCLUSION AND DISCUSSION

In this work, we propose R-MCTE training to directly refine the
model towards minimum error on trajectories generated by sliding
window based-conversion. R-MCTE training uses the probabilistic
descent algorithm which updates model parameters on every frame
in the training data. On the LIPS 2008 data set, the proposed method
outperforms original MCTE in sliding window-based conversion.
By R-MCTE, sliding window-based conversion achieves good per-
formance comparable to batch conversion, while maintaining a much
lower latency time which is suitable for real-time applications. This
work has demonstrated the flexibility of MCTE for different conver-
sion methods.
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