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ABSTRACT
We study an online advertising model in which the merchant
reimburses a portion of the transacted amount to the cus-
tomer in a form of rebate. The customer referral and the
rebate transfer might be mediated by a search engine. We
investigate how the merchants can set rebate rates across
different products to maximize their revenue. We consider
two widely used demand models in economics—linear and
log-linear—and explain how the effects of rebates can be
incorporated in these models. Treating the parameters esti-
mated as inputs to a revenue maximization problem, we de-
velop convex optimization formulations of the problem and
combinatorial algorithms for solving them. We validate our
modeling assumptions using real transaction data. We con-
duct an extensive simulation study to evaluate the perfor-
mance of our approach on maximizing revenue, and found
that it generates significantly higher revenues for merchants
compared to other rebate strategies. The rebate rates se-
lected are extremely close to the optimal rates selected in
hindsight.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; F.2.0
[Analysis of Algorithms and Problem Complexity]:
General

General Terms
Algorithms, Economics

Keywords
Internet advertising, Rebates

1. INTRODUCTION
Sponsored search, where merchants pay search engines

for displaying their advertisements or for redirecting traffic
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to their websites, has played a key role in making internet
search ubiquitous on the web. Under the pay per click model
of sponsored search, merchants pay for clicks that bring users
to their website. An increasingly popular variant is the pay
per action model, where merchants pay the search engine
only when users take some action such as placing an order
at the website. See [10, 13, 16, 20] for concept, history, and
analysis of sponsored search.

Cashback, an experimental program introduced by Mi-
crosoft in May 2008, added a novel twist to the pay per ac-
tion model. Merchants first select products that they would
like to advertise. They also select the referral commission
they are willing to pay per transaction as a fraction of the
sales price. As in pay per action, merchants only pay the
search engine when a transaction occurs. But the search
engine then returns the commission to the consumer in the
form of a cash rebate. This program can thus be viewed as
one where merchants offer rebates on their products, facili-
tated by the search engine. In effect, when a user searches
for a product and buys it through a participating merchant,
the user receives a percentage of the amount she pays as
rebate.1

There has been little work on analyzing Cashback as an
advertising program. An exception is [6], where Chen et
al. proposed several different revenue sharing mechanisms
that are reminiscent of Cashback, and compare their revenue
properties from the search engine’s perspective.

In this paper, we adopt the merchant’s perspective, and
examine the question of how merchants can best use rebates
to maximize their revenue. Assuming that the search engine
passes on the whole of commission received from a merchant
for a transaction to the customer as rebate, the problem of
determining how much commission should a merchant pay
for a transaction becomes the same as computing optimum
rebate.2 We thus address the problem of selecting rebate
rates to maximize revenue subject to a budget constraint,
taking into account that a merchant may carry more than
one product line, and that the effects of rebates on different
product lines may differ.

Our approach is to tackle this problem in two steps. First,

1The program has been discontinued as of July 2010. The
study of the question of how to select rebate rates remains
interesting nonetheless from a research viewpoint. There
are also other websites where merchants can offer rebates to
online shoppers, such as ebates.com and fatwallet.com.
2It is straightforward to extend our work to the case where
the search engine charges a fixed amount of administrative
fee for the rebate processing service or charges a fee which
is some fraction of the amount of rebate handled.



for different products, we estimate the sensitivity of demand
to changes in prices and rebates using historical data. Sec-
ond, treating the values estimated in the previous step as
parameters, we formulate an optimization program to find
the best rebate rate for every product. We consider two im-
portant economic demand models [18]—linear demand and
log-linear demand—and show how rebates can be incorpo-
rated into these models. We also address the algorithmic
question of revenue maximization under both demand mod-
els. While the two demand models give rise to different op-
timization problems, we provide efficient algorithms to solve
both problems.

We evaluate our approach using both real and synthetic
transaction data. We first validate our modeling assump-
tions with transaction data obtained from Microsoft Cash-
back operations. For evaluation, as we do not have direct ac-
cess to merchants, we conduct an extensive simulation study
using synthetic transaction data, and compare our proposed
solution to a number of rebate selection heuristics on the
amount of revenue each method generates. Our approach
outperforms all tested heuristics in almost all of the cases.

The rest of the paper is organized as follows. We discuss
related work from the economic and marketing literature in
Section 2. We state our problem formulation in Section 3.
In Section 4, we explain how the linear and the log-linear
demand model can be extended to estimate demand sensi-
tivity to rebate rates. In Section 5, we show how to solve the
rebate optimization problem efficiently under both demand
models. In Section 6, we validate our modeling assump-
tions using real transaction data collected over a year. In
Section 7, we conduct an extensive simulation study using
a synthetic data generation process designed to mimic real
data, and evaluate the end-to-end performance of our ap-
proach to maximizing revenue. We conclude with the key
findings and directions for future work in Section 8.

2. RELATED WORK
Merchants often choose between price cuts and rebates

for stimulating sales [9, 17, 19]. The key difference be-
tween these two tactics is that price cuts offer discounts
up front whereas rebates offer discounts after the product
is purchased at the regular price. This difference leads to
a phenomena known as “slippage”, where some rebates are
not redeemed [11]. In the context of Cashback, the rebate
credit to the customer collection process is automatic, hence
slippage in its traditional sense is a non-issue. Nonetheless,
users wait to collect the rebates creating a float for the search
engine.

There has been work on finding rebate policies that max-
imize profits by Arcelus et al. [1, 2, 3] and Khouja et al. [14,
15]. Their work focuses on settings where merchants can
choose to set the sales price, the rebate value, and the or-
der size (for managing inventory). Our work is different in
several ways. First, in our setting, the merchant carries mul-
tiple products, and the optimal rebates may differ for each
product. Second, the size of the rebate program is governed
by a budget that plays a central role in determining the size
of the advertising program. On the other hand, we do not
model inventory holding costs and treat prices as given, and
focus on the selection of rebate rates.

Past work on modeling the relationship of demand and
rebates is discussed further in Section 4.

3. PROBLEM SETUP
Let the products a merchant sells be P = {1, 2, . . . , n},

and the budget for rebates be b. The relationship among de-
mand, price, and rebates is product-dependent. For product
i, let its price be pi, its rebate rate be ri, and its demand,
which depends on pi and ri, be qi(pi, ri).

We define revenue as the net proceeds the merchant re-
ceives, i.e., the gross revenue from the products sold less
the rebates paid. Our objective is to find rebate rates, one
for each product, that maximizes revenue without exceed-
ing the budget. Prices are treated as input parameter to the
problem. The rebate optimization problem can be stated as
follows.3

max
r

∑

i∈P

qi(pi, ri)pi(1− ri)

subject to
∑

i∈P

qi(pi, ri)piri ≤ b

0 ≤ ri ≤ 1 ∀i ∈ P

(1)

Budgets are central to the problem formulation, as they
are instrumental in controlling exposure risk in sponsored
search [16]. Even though in the long run, a budget may
be effectively unlimited as long as a merchant is making a
profit, in the short run, it is needed to balance the alloca-
tion of capital across different operations. Hence, we treat
the budget as given to the optimization. The presence of a
budget presents a trade-off between offering more rebates on
one product versus another. It also requires careful planning
of rebates so as not to run out of budget before the end of
an advertising campaign. In the (unlikely) scenario where
a merchant is not constrained by a budget, selecting rebate
rates can be simplified to selecting the optimal rate for each
product individually.

The above formulation treats prices as input parameters,
and tacitly assumes that prices stay unchanged during the
rebate program. Given that rebate programs often run for
short duration, this assumption is realistic. In situations
where prices may change, one can rerun the optimization
and adjust the rebate rates accordingly.

The formulation also assumes that there is no constraint
on supply for each product. This assumption holds for digi-
tal goods [12], or when supply is large compared to demand.
Limits on supply can be modeled by adding constraints of
the form qi(pi, ri) ≤ Si to the optimization problem (1).
Our results generalize to this setting.

This work assumes that the demand of a product can
be estimated independently of prices and rebates offered by
other products, and leaves the general case where prices and
rebates of different products may interact to future work.

To instantiate the optimization problem, the demand func-
tion qi(pi, ri) is estimated using historical data. This intro-
duces uncertainty in the underlying problem. Our results
directly apply if one is interested in maximizing expected
revenue while satisfying the constraint in expectation. When
the constraint has to be satisfied with high probability, one
will need to extend proposed techniques employing ideas
from stochastic programming [22].

3Our formulation and optimization technique allows one to
specify limits on the minimum and maximum rebate rate
for each product; this is useful when a merchant is running
a targeted campaign. We keep the limits to be 0 and 1 for
ease of exposition.



4. ESTIMATING DEMAND SENSITIVITY
To determine the rebates to offer, we start with estimat-

ing a relationship among prices, rebates, and quantity of
goods sold (demand). We have chosen to treat prices (p)
and rebates (r) as two separate variables rather than treat-
ing them as a net price variable (p(1− r)) for two reasons.
First, consumers often consider the value of a dollar rebate
to be different from a dollar discount. Second, in our ex-
periments in Section 6, models that treat the two variables
separately fit the data much better.

A simple yet widely-used demand model is the linear de-
mand model [18]. It has been extended to treat price and
rebate separately in [3, 14, 15].

q = β0 + β1p+ β2pr + ε (2)

where β0, β1, β2 are parameters of the model to be estimated
and ε is random noise. Given historical sales data of the
form (q, p, r), we can estimate the parameters of the model
using linear regression. We expect the coefficient β1 to be
negative and β2 to be positive, consistent with the expected
properties of a demand curve.

Another model we consider is the log-linear demand model
[18]. It is an important and well-studied model in economics
due to its interpretability, though it has been examined less
in the context of rebates, the exception being [3]. To treat
rebates separate from prices, we extend the model as follows.

log q = γ0 + γ1 log p+ γ2 log(1− r) + ε (3)

where γ0, γ1, γ2 are parameters of the model to be esti-
mated and ε is random noise. As in the case of the linear
demand model, we can learn the parameters of the model
from historical data using linear regression.

In the economic literature, the coefficient γ1 has been in-
terpreted as the price elasticity of demand, and the coeffi-
cient γ2 as the rebate elasticity of demand. For our model,
both of these coefficients are expected to be negative, cor-
responding to the expectation that demand increases when
price decreases or rebate increases.

The description above makes the simplifying assumption
that demand relationship remains unchanged for the dura-
tion of the analysis. As rebate programs are often short,
this assumption is reasonable. If demand relationship may
shift over time, one may use ideas from time series analysis
to model the time-dependent effects [4]. The central idea
is to augment the basic model with time, and express de-
mand as a function of price, rebate rates, and past demand.
Our techniques also apply to such time-variant models; the
limiting factor is whether one has sufficient data.

5. OPTIMIZING REBATE RATES
Treating the coefficients of demand sensitivity as param-

eters, we now discuss the question of how to select the opti-
mal rebate rates. Depending on the demand model used, the
solution to the optimization problem requires different tech-
niques. In the following, we are going to consider the linear
demand model and the log-linear demand model separately.

5.1 Linear Demand Model
Under the linear demand model (Equation (2)), the opti-

mization program (1) becomes:

max
r

∑

i∈P

(

β0,i + β1,ipi + β2,i(piri)
)

pi(1− ri)

subject to
∑

i∈P

(

β0,i + β1,ipi + β2,i(piri)
)

piri ≤ b

0 ≤ ri ≤ 1 ∀i ∈ P

The decision variables in this optimization are the rebate
rates ri. The prices pi, the demand sensitivities (β0,i, β1,i,
β2,i), and the budget b, are all inputs to the problem.

To solve this optimization problem, we start with some
preprocessing. Note that for any product i for which β2,i ≤
0, one should not offer any rebates. We thus set ri = 0 for
these products and remove them from further consideration.
After this step, remaining products have β2,i > 0.

Our problem has both a quadratic objective and a quadratic
constraint. We can formulate the problem as a (convex)
quadratically constrained quadratic program (QCQP), which
can be solved in polynomial time using interior point meth-
ods [5]. There are also efficient off-the-shelf solvers for the
problem [7].

Theorem 1. Selecting rebate rates that maximize revenue
under the linear demand model can be solved in polynomial
time via a convex QCQP.

Proof. The objective is quadratic in r and the budget con-
straint is quadratic in r, hence we need to verify that the
optimization is a convex one, i.e., the objective is concave
(since it is maximized) and the constraints are convex [5].

Recall all products with negative β2,i have been removed
during preprocessing. The objective can be expressed as a
sum of quadratic and linear terms in ri’s. The coefficient
to the quadratic terms are −β2,ip

2
i , hence the individual

quadratic terms are concave, and the overall function is con-
cave. Similarly, the budget constraint can be expressed as a
sum of quadratic and linear terms in ri’s. The coefficients to
the quadratic terms are β2,ip

2
i , hence they are convex and

the constraint is convex. The other constraints are linear
and hence also convex.

Next, we will develop a combinatorial algorithm for solv-
ing the optimization in the case of log-linear demand model.
The technique can be adapted to linear demand model as
well. However, given the speed of existing solvers for con-
vex QCQP, a combinatorial algorithm for the linear demand
case might not be needed.

5.2 Log-linear Demand Model
We start by re-writing the log-linear demand model (Equa-

tion (3)) as follows.

log q = γ0 + γ1 log p+ γ2 log(1− r)

q = exp(γ0 + γ1 log p) exp(log((1− r)γ2)) = c(1− r)γ2

where c is a positive number independent of rebate rate r.
As the coefficients of the demand function (γ0, γ1, γ2) and

prices p are input to our optimization, we can compute c and
treat it as part of the input as well. Note that each product
will have its own constant c. Rewriting our optimization



program (1), we have:

max
r

∑

i∈P

ci(1− ri)
γ2,ipi(1− ri)

subject to
∑

i∈P

ci(1− ri)
γ2,ipiri ≤ b (4)

0 ≤ ri ≤ 1 ∀i ∈ P

To solve this optimization problem, similar to the case
for linear demand model, we start by removing products for
which offering rebates do not improve revenue. In this case,
for any product i, if γ2,i ≥ −1, we should set ri = 0. We
can verify this as follows. Denote the objective function of
Eq. (4) by f(r). Taking the partial derivative of f with
respect to ri,

∂f

∂ri
= −cipi(γ2,i + 1)(1− ri)

γ2,i , (5)

which is non-positive when γ2,i ≥ −1. One arrives at the
same conclusion by interpreting γ2,i as the rebate elasticity:
when it is at least −1, a unit increase in rebates will gen-
erate at most a unit return in gross revenue, hence offering
rebates do not improve net revenue. After preprocessing, all
remaining products have γ2,i < −1.

Unlike the case for linear demand model, however, after
preprocessing, the resulting problem is a non-convex opti-
mization problem. This is because we are maximizing an
objective that is not necessarily concave. Indeed, evaluating
the partial derivative in Eq. (5), when γ2,i < −1, ∂f

∂ri
> 0;

the objective is actually convex rather than concave!
However, by a careful change of variables, one can find an

equivalent optimization problem that is convex.

Theorem 2. Selecting rebate rates that maximize revenue
under the log-linear demand model can be (re)formulated as
a convex optimization problem.

Proof. For all i ∈ P , let xi = (1−ri)
γ2,i+1. Rewriting rebate

rate ri in terms of xi,

ri = 1− x
1/(γ2,i+1)

i .

Changing the optimization variables in the problem from r

to x, and making the substitution to Eq. (4), we have

max
x

∑

i∈P

picixi

subject to
∑

i∈P

pici
(

x
γ2,i/(γ2,i+1)

i − xi

)

≤ b

xi ≥ 1 ∀i ∈ P

(6)

To verify that this problem is convex, first, note that the
objective function is linear in x, hence it is concave. Denote
the budget constraint by g(x). Taking the partial derivative
of g with respect to xi,

∂g

∂xi
= pici

(

γ2,i
γ2,i + 1

x
−1

γ2,i+1

i − 1

)

When γ2,i < 1, ∂g
∂xi

> 0, hence g is a convex function, and

the problem is a convex optimization problem.

Since the optimization problem can be formulated as a
convex program, in theory it can be solved in polynomial
time using interior point method. However, unlike convex

Algorithm 1: Primal-dual algorithm for (6)

forall the i ∈ P do xi ← 1
S ← {}
Sort(hi(xi)) // Ensures h1(x1) ≥ · · · ≥ h|P |(x|P |)
for i← 1 to |P | do

Add i to S
forall the j ∈ S do

Increase all xj while maintaining the invariant
h1(x1) = · · · = hi(xi) = λ until
(C1) λ = hi+1(xi+1), or (C2)

∑

i∈S gi(xi) = b.

if (C1) then Break
if (C2) then Terminate

end

end

QCQP, off-the-shelf solvers are slow for general convex pro-
grams. Hence, we develop a primal-dual-based combina-
torial algorithm for it. The details are described in Algo-
rithm 1.4

The correctness of the algorithm is based on two technical
lemmas. We state the two lemmas here. Let

fi(xi) = picixi,

gi(xi) = pici
(

x
γ2,i/(γ2,i+1)

i − xi

)

,

hi(xi) =
∂fi(y)

∂xi

/
∂gi(y)

∂xi

=
1

γ2,i
γ2,i+1

x
−1/(γ2,i+1)

i − 1
.

Lemma 1. A feasible solution x
∗ is optimal for (6) if and

only if there exists a constant c such that

• For i ∈ P where x∗
i > 1, hi(x

∗
i ) = c;

• For j ∈ P where x∗
j = 1, hj(x

∗
j ) ≤ c.

Lemma 2. The function hi(xi) is non-negative and mono-
tonically decreasing in xi.

Theorem 3. Algorithm 1 finds the optimal x to optimiza-
tion problem (6) in O(n2) + T time, where T is the time
needed to solve for the root of a univariate polynomial equa-
tion, and is bounded by the parameters of the problem.

Proof. One can verify that ∂gi
∂x

i

> 0. Hence,
∑

i∈P gi(xi)

increases as the xi’s increase. Condition (C2) will eventually
be satisfied and the algorithm always terminates.

Because of Lemma 2, for each j, as xj increase, the value
hj(xj) decreases, hence it is possible to maintain the invari-
ant. At termination, the conditions to Lemma 1 will be
satisfied, since for all i, j ∈ S, hi(xi) = hj(xj) = λ, and for
k 6∈ S, xk = 1, and hi(xi) ≥ hk(xk) due to sorting. Hence
the algorithm finds the optimal solution.

In actual implementation, one does not increase xj con-
tinuously; the description is only for intuition. Instead, one
checks for conditions (C1) and (C2) discretely. Let λi =
hi(xi). In the outer loop, while the budget is not exceeded,
we add i to S, and solve for h1(x1) = · · · = hi(xi) = λi+1.

4An alternative approach, suggested by an anonymous re-
viewer, is to perform the substitution xi = piciri(1−ri)

γ2,i/b
to Eq. (4), which gives rise to optimizing an convex objective
over a simplex constraint with respect to xi. Off-the-shelf
solvers run more efficiently for this type of problems.



The moment the budget is exceeded, we know that we can-
not add another product to S. Note that xi can be ex-
pressed as a function of λ, i.e., xi = h−1

i (λ). This inverse is
well-defined since hi is monotonically non-decreasing in xi.
Hence we solve a polynomial equation in one variable, λ,
∑

i∈S gi(h
−1
i (λ)) = b. The LHS is monotonic in λ, hence its

root can be found by binary search. The number of steps is
bounded by parameters to the optimization problem. Note
that only one equation needs to be solved.

The rest of the algorithm is bounded by O(n2), as there is
a maximum of n loops, each of which takes O(n) time.

6. MODEL VALIDATION
A central assumption in our demand model is that poten-

tial customers do not value price and rebates equally, and
hence the effects of these variables on demand should be
treated separately. We validate this assumption using real
transaction data in this section.

6.1 Transaction Data
We obtained transaction data from Microsoft Cashback

operations over a year. We grouped the transactions first
by merchant, and then by product. We randomly sampled
40 thousand such groups of merchant-product pairs, con-
straining to pairs for which the product was sold at least 5
times, and for which the units sold were not identical for all
days. We retrieved all transactions for the selected pairs.

This sampling process results in about 3 million transac-
tions for evaluation. Each row of data describes one trans-
action, and includes information such as the merchant, the
product, the date of sales, the price, the rebate rate, and
the number of units sold. This provides the input to our
demand estimation experiments discussed next.

6.2 Demand Estimation Evaluation
For each merchant-product pair, we compute for each day

the average price, the average rebate, and the number of
units sold for each group of transactions, and run regression
to estimate the parameters to four models. The first two
models are the linear and the log-linear models presented in
Section 4. They model price and rebates separately. The
other two models, the linear net-price (Linear-NP) and the
log-linear net-price (Log-linear-NP), are the control models
that only use the net prices (computed as prices times one
minus rebate rates) to model demand. If our assumption is
valid, we should see an increase in the explanatory powers
of the first two models over the latter two.

To measure the explanatory powers of the models, we use
the coefficient of determination (commonly known as R2),
which measures the proportion of the variability in the ob-
servations accounted for by the statistical model [21]. The
value lies between 0 and 1, and a higher value suggests a
better fit. Since the models have different number of inde-
pendent variables, we also compute the adjusted R2 of the
models.5 Adjusted R2 takes into account the difference in
the number of independent variables of the models, and a
higher value suggests that the improvement of explanatory
power due to the additional variable(s) cannot be explained
by chance alone. The results are reported in Table 1.

5Adjusted R2 = 1− (1−R2) (n−1)
(n−m−1)

, where n is the num-

ber of samples and m is the number of independent vari-
ables [21].

Model R2 Adjusted R2

Linear 0.4379 0.2292
Log-linear 0.4420 0.2348
Linear-NP 0.2827 0.1730
Log-linear-NP 0.2898 0.1810

Table 1: R2 and adjusted R2 on transaction data.

Both the R2 and the adjusted R2 values of the models
are significantly higher when prices and rebates are mod-
eled as two separate variables (Linear and Log-linear) than
when they are modeled as net prices (Linear-NP and Log-
linear-NP). This indicates that potential customers under
real transaction conditions do not value price and rebates
equally. It validates our demand modeling assumptions, and
reinforces the importance of treating rebate selection as a
different problem from price selection.

7. SIMULATION STUDY
Our objective is to develop an approach that the mer-

chants can use to maximize their revenue. We conducted
two sets of experiments. In the first set of experiments, we
consider the case of a single product, and evaluate if our ap-
proach finds good rebate rates that both satisfy the budget
and maximize revenue, and whether it is better than the al-
ternatives considered. We also study the robustness of our
approach under various parameter settings. In the second
set of experiments, we consider the case of multiple prod-
ucts. We investigate whether our approach can discover the
product that is more sensitive to rebates, and whether it can
find the right trade-off between rebates offered on one and
the other.

Ideally we would like to evaluate our approach with real
operations, but we do not have direct access to merchants.
Historical data cannot help with evaluating the efficacy of
rebate selection as such evaluation requires counterfactual
changes to the rebates offered. To circumvent this difficulty,
we design a synthetic data generator that aims to mimic real
transactions, and evaluate our approach using simulation.

7.1 Synthetic Transaction Generator
To better understand the characteristics of real transac-

tions, we examined the sample transactions used for model
validation in Section 6. We observed that in most transac-
tions, only a single unit of product is sold. This suggests
that most potential customers face a discrete choice—given
the price and rebate, whether to purchase the product or
not. Hence, we adopt the following process for transaction
generation.

For each day, the number of potential customers of a mer-
chant for a given product, referred to as traffic henceforth,
is drawn according to a Poisson distribution, parameterized
by µ, the average traffic per day. We note that the traffic
to a website has also been modeled as a Poisson distribu-
tion in [23]. Each potential customer faces a binary choice
of whether to purchase the product. Following the discrete
choice literature [24], the decision is modeled using a binary
logit function; for price p and rebate rate r, the probability t
that the potential customer is going to purchase the product



is given by

t =
1

1 + exp(−(α0 + α1p+ fα1pr))
, (7)

where α0, α1, and f are parameters specific to the product.
The probability t can be interpreted as the conversion rate

of the merchant. The parameter α1 captures how sensitive
the potential customers are to price changes. The param-
eter f captures the relative value of rebate to price. The
parameter α0 can be viewed as an offset that helps deter-
mine the conversion rate; in our experiments, we vary the
minimum conversion rate of the merchant and compute the
corresponding value for α0.

To determine if a potential customer makes a purchase, a
number is drawn uniformly at random between 0 and 1. If
its value is less than t, the product is bought. We refer this
sample to be the potential customer’s deal-seeking attitude,
as a higher value means the person is seeking for a “better
deal” (lower prices or higher rebates). Finally, the number of
units sold per day is obtained by aggregating over all traffic.

This synthetic transaction generator is designed to mimic
how transactions take place for merchants. The key assump-
tion is based on the discrete choice process, supported in the
economic literature [18, 24]. We believe it does not create a
bias that favors our proposed approach; our approach uses
only transaction data, and it is unaware of how traffic is
generated, as well as the discrete choice process underlying
the decisions of the potential customers.

7.2 Experimental Setup
We want to conduct an end-to-end evaluation of our ap-

proach, starting from demand estimation and ending with
measuring the revenues generated based on rebate optimiza-
tion. Therefore, in each trial, we first generate transaction
data over some pre-determined price and rebate ranges, cor-
responding to a period during which a merchant is learning
the demand relationship. The data is then fitted to the
linear and the log-linear models and the parameters are es-
timated. Then, over a of 12-week evaluation period, given
a budget parameter b, the merchant fixes the price of the
product at price p and selects a rebate rate either based on
our optimization routines or some other heuristics.

The merchant offers the said rebate until budget runs out,
after which zero rebates are offered for the remaining period.
We measure the revenue generated both over the duration of
the rebate program, and over the entire 12 weeks, averaged
over 500 trials for each experiment. The former “while re-
bate lasts” (WRL) scenario is appropriate when a merchant
is required to offer rebates to participate in the program,
whereas the latter “entire duration” (ED) scenario is appro-
priate when that is not the case. The revenue under ED
is at least as high as the revenue under WRL, and strictly
higher when budget is exhausted due to potential customers
that purchase at zero rebates.

Revenue is sensitive to both traffic and the deal-seeking
attitudes of the potential customers. To control for this
variability, instead of running the simulation independently
for each rebate program, we couple the simulations together:
for each trial, we sample one set of potential customers along
with their attitudes, and evaluate all rebate programs with
respect to them. Any difference in revenue is therefore due
only to the choice of rebates, but not due to differences in
traffic or the attitudes of the potential customers.

Given a set of potential customers, we can compute the
optimal rebate rate (in hindsight) that would maximize rev-
enue for this specific instance. Of course, this revenue can-
not be achieved in reality as it requires foreknowledge of the
number of potential customers and their attitudes, but it
can serve as an instance upper bound for each trial. We
refer this upper bound as the optimal revenue.

7.2.1 Alternative Approaches to Selecting Rebates
We compare our approach to the following heuristics. The

first two heuristics are selected due to their popularity in
Cashback data. The last heuristic, motivated by feedback
control, tries to adapt to demand patterns, and constitute a
competitive baseline for comparison.
1. Fixed rates (Fix-r). Fix rebate rate at r for the en-
tire period, until budget runs out. In our experiment, we
try three popular rates—5%, 10%, and 15%. Note that our
approach also selects a fixed rate, although the rate is de-
termined algorithmically to optimize revenue.
2. Hi-Lo. A merchant alternates between offering high
rebate rates and low ones. In our experiment, the high rate
is set at 15% and the low at 5%, and the merchant changes
the rebate rate every week.
3. Adaptive. A merchant changes the rebate rates depend-
ing on the remaining budget. When the remaining budget is
higher than expected, the rates are increased; if lower, they
are decreased. In our experiment, we start with a rate of
5% and adjust the rates multiplicatively by a factor of 1.5
when the budget fails to track by more than 10%. These
parameters were chosen after some basic tuning and appear
to do well in simulation.

7.2.2 Performance Metric
Our metric for evaluating the different approaches to se-

lecting rebates is the % of optimal revenue achieved. The
revenues achieved under both WRL and ED scenarios are
measured. Naturally, the higher the value for this metric,
the better the approach.

When we evaluate our proposed approach, we will also
examine the rebate rates selected according to the linear
and the log-linear models for each trial, and compare them
to the optimal rebate rates. This helps to measure how close
we are to the optimal choice.

7.2.3 Simulation Parameters
There are altogether five parameters that we vary in our

simulation study. Four of these parameters, µ, α0, α1, and
f , govern the synthetic transaction generation process. As
mentioned, we do not explicitly select α0, but rather de-
termine α0 based on the minimum conversion rate, tmin,
which we vary in our experiments. The parameter tmin cor-
responds to the expected conversion rate when a merchant
selects the default price and offers zero rebate for the prod-
uct. The fifth parameter is the budget b, which determines
how much rebates are available during the evaluation period.
These parameters, along with their default values and the
ranges with which we have experimented, are summarized
in Table 2.

Throughout the study, price p is set at 100. This is with-
out loss of generality, as an increase in price can be mapped
to a corresponding decrease in α1 and in budget b. Hence,
variation in price is implicitly tested when we vary the pa-
rameters α1 and b.



Parameter Default Min Max
µ (traffic) 100 10 400
α1 (price sensitivity) −0.08 −0.06 −0.10
f (relative value of rebate) 0.8 0.4 1.2
tmin (min conversion rate) 0.04 0.005 0.08
b (budget) 5, 000 2, 500 10, 000

Table 2: Summary of simulation parameters.

Program
% of optimal revenue (standard deviation)
while rebate lasts (WRL) entire duration (ED)

Fix-5% 83.1 (2.0) 82.7 (2.0)6

Fix-10% 86.4 (2.5) 98.0 (1.0)
Fix-15% 54.4 (1.6) 92.5 (1.8)
Hi-Lo 74.7 (2.7) 94.4 (1.7)
Adaptive 92.6 (2.4) 92.4 (2.4)
Linear 97.8 (1.5) 97.6 (1.6)
Log-linear 93.3 (4.2) 98.8 (0.9)

Table 3: % of optimal revenue achieved by different
rebate programs under WRL and ED.

The default values for the parameters α1, f , and tmin

are chosen to give rise to realistic conversion rates. Under
the range of parameter values considered, depending on the
rebates offered, the conversion rates for the product fall in
the range of 0.5% to 20%. These values are within ranges
observed in online marketing [8]. The default value for traffic
is set to 100. This selection is based on an educated guess,
since this number could not be reliably estimated from the
Cashback data. Consequently, we vary its value in a wide
range as we test for sensitivity. When we vary traffic, we also
vary budget at the same time to keep the average amount
spent per potential customer constant.

The default value for budget is set to be 5, 000, corre-
sponding to spending about 50 cents per potential customer,
or $5 per conversion, assuming a 10% conversion rate (for
a product sold at $100). We believe this value is a realis-
tic estimate of the amount merchants are willing to pay per
transaction.

7.3 Experiment 1: Single-Product Case
Under the default parameter values to the simulation,

the average fractions of optimal revenue achieved (and their
standard deviations) for the different rebate approaches are
presented in Table 3.

Optimization under the linear and the log-linear mod-
els are respectively the best methods under WRL and ED,
and achieves close to 100% of the optimal revenue. These
are very strong performance numbers, especially considering
that the optimal revenues are determined with the benefit
of hindsight. The differences compared to other rebate pro-
grams are statistically significant in both cases under paired
t-tests (with p-values < 0.0001).

Examining the results closer, we find two trends. On the
one hand, rebate programs that use up more of the budget
generally achieve higher revenue. On the other hand, if bud-

6Note that the optimal revenue depends on the scenario,
and is higher under ED. Hence, we see that the fraction of
optimal revenue achieved for Fixed-5% is lower under ED
than under WRL even though its revenue stays the same.

get is exhausted too early, less revenue is achieved. Indeed,
the strong performance of our approach can be attributed
to the ability to balance the two factors. The importance
of balancing these factors can be illustrated using the three
fixed-rate programs, Fix-5%, Fix-10%, and Fix-15%. At a
rebate rate of 5%, there is leftover budget, and one can im-
prove revenue by setting a higher rate. At rebate rates of
10% and 15%, budget is fully exhausted. Comparing the
two, we see that a rebate rate of 10% does better as it ex-
hausts the budget later than a rebate rate of 15%.

At the default parameter values, the average optimal re-
bate rate is 8.7%. The average rebate rates computed using
the linear model and the log-linear models are 8.4% and
9.3% respectively. They are both close to the optimal rates.
The linear model performs better than the log-linear model
under WRL as it does not exhaust the budget before the
end. On the other hand, under ED, as revenue still counts
after budget is exhausted and the merchant starts offering
zero rebates, the log-linear model performs better as it puts
the entire budget to work.

7.3.1 Sensitivity Analysis
We next vary each of simulation parameters (holding oth-

ers to their default values) to understand their influence on
the performance of our approach. The results are presented
in Figure 1. In this figure, the panels on left right show the
rebate rates computed by our approach using the linear and
the log-linear demand models, along with the optimal rates,
as a function of the parameter value. The panels on the left
show the % of optimal revenue achieved. We have shown
revenue plots only for the linear model under the WRL sce-
nario and for the log-linear model under the ED scenario.
It is because the linear (resp. log-linear) model consistently
outperformed the log-linear (resp. linear) model under the
WRL (resp. ED) scenario. Similarly, we only show plots for
our approach since it outperformed the alternatives in more
than 90% of cases.

We observe the following with respect to the rebate rates:
1. Overall, the rebate rates selected by our approach are

very close to the optimal rates, with an average difference of
less than 0.5%. Comparing the rebate rates chosen, the lin-
ear model tends to pick rates slightly below optimal, whereas
the log-linear model picks ones slightly above.

2. When the traffic is very small (µ =10), the probabil-
ity that there is no transaction for an entire day is 67%.
This “missing” data problem manifests itself in adversely
affecting demand estimation. The resultant error in the re-
gression coefficients lead to the suboptimal values of rebate
rate. Computed rebate rates start tracking the optimal with
moderate increase in traffic (Figure 1(a)).

3. As expected, the computed rebate rates decrease as
the sensitivity of the demand to the price of the product
(parameter α1) increases (Figure 1(c)). Similarly, rebate
rates decrease as the relative value of rebate (parameter f)
increases (Figure 1(e)).

4. As minimum conversion rate (parameter tmin) increases,
the average number of transactions increases, and rebate
rate has to decrease to match the budget (Figure 1(g)). The
decrease is more significant for smaller values of tmin due
to the inverse proportional relationship between conversion
rate and rebate rate, which in turn is due to the budget con-
straint (number of transactions times rebate per transaction
must be less than a fixed budget).



Rebate rate sensitivity Revenue sensitivity

(a) Sensitivity to µ (b) Sensitivity to µ

(c) Sensitivity to α1 (d) Sensitivity to α1

(e) Sensitivity to f (f) Sensitivity to f

(g) Sensitivity to tmin (h) Sensitivity to tmin

(i) Sensitivity to b (j) Sensitivity to b

Figure 1: Sensitivity analysis.



5. As budget increases (parameter b) increases, the model
picks up larger rebate rates as there is no incentive to leave
the budget unspent (Figure 1(i)).

We observe the following with respect to the revenues:
1. Following the strategy of using the linear model when

optimizing revenue under WRL, and adopting the log-linear
model under ED, one does extremely well, achieving average
% of optimal revenue of at least 95% in most cases. Only
when the traffic is very small (µ = 10) or when transactions
are very rare (tmin = 0.5%), our approach does not achieve
95% of maximum possible revenue (Figures 1(b) and (h)).
The reasons are due to estimation errors because of “missing
values”, and that when transactions are rare, the relative
value of each transaction increases, and so missing out a
few transactions becomes more costly. But once we have
sufficient data, and transactions are not rare, our approach
starts performing at a very high level.

2. For the parameters α1 and f , the performance of our
approach is very consistent, with little variation in % of op-
timal revenue achieved across all choices of parameters (Fig-
ures 1(d) and (f)) . This is due to the data-driven nature
of our approach. As these parameters vary, the rebate sen-
sitivity of the product changes. By leveraging transaction
data, our approach identifies these changes during demand
estimation and optimize accordingly.

3. The performance of our approach is also very consistent
for the budget parameter b. As can be seen in Figure 1(i),
despite large variations in the optimal rates, our approach
found rates that are close to the optimal ones for different
budget values. Here, the reason is due to the algorithmic
nature of our approach. As our approach takes budget as in
input parameter and selects rebate rates through optimiza-
tion, it can adapt well to different budgets well.

7.3.2 Summary
Our approaches for selecting rebate rates achieves close to

the best possible revenue, and their performances are con-
sistent across almost all choices of simulation parameters.
Based on the experimental results, the linear model works
better under WRL, and the log-linear model works better
under ED. Both models manage to select rebate rates that
are very close to the optimal ones.

7.4 Experiment 2: Multi-Product Case
In this experiment, we investigate whether our approach

can identify products that are more sensitive to rebates and
find the right trade-offs amongst the rebates offered for dif-
ferent products. We simulate a situation where a merchant
carries two products. The first product, P1, has the same de-
fault parameter values as the ones used in the single product
case. The parameters for the second product, P2, is identi-
cal in all aspects except for f , its rebate sensitivity. Holding
f for the first product constant, we vary f of the second
product.

For the base case, f of P2 is set at 0.4. This is smaller
than f of P1, which is 0.8, and hence P2 is less responsive
to rebates than P1. The revenues achieved under different
approaches are shown in Table 4.

7When there are two or more products, we do not know how
to compute the optimal revenue under ED efficiently. Based
on our experiments on single products, the optimal revenue
is < 1% higher than under WRL. Hence we use the optimal
revenue under WRL as the approximate benchmark.

Program
% of optimal revenue (standard deviation)
while rebate lasts (WRL) entire duration (ED)

7

Fix-5% 81.4 (1.5) 81.4 (1.5)
Fix-10% 91.0 (2.2) 95.5 (1.0)
Fix-15% 57.3 (1.4) 91.7 (1.3)
Hi-Lo 80.9 (2.4) 93.1 (1.2)
Adaptive 88.9 (3.7) 93.4 (1.5)
Linear 97.1 (1.3) 97.2 (1.4)
Log-linear 92.8 (3.7) 98.6 (0.9)

Table 4: % of upper bound on revenue achieved by
different rebate programs with two products.

Figure 2: Rebate rates selected under the two de-
mand models compared to optimal, as the rebate
sensitivity f of P2 varies.

Like the case of a single product, our approach using the
linear and the log-linear models achieves the highest % of
optimal revenue respectively under WRL and ED. The dif-
ferences in performance are statistically significant under a
paired t-test (with p-value < 0.0001). The differences are
larger in this experiment compared to the case with only a
single product. This is due to the importance of offering
different rebate rates on products with different rebate sen-
sitivities. For the current setting, the optimal rebate rate is
about 12.7% for P1 and 1.2% for P2. A single rebate rate
will fail to take into account these differences.

To complete the experiment, we vary the rebate sensitiv-
ity f of P2 and compare the computed rebate rates using
coefficients produced by the linear and the log-linear models
to the optimal rates. The result is presented in Figure 2. As
P2 becomes more sensitive to rebates, both approaches cor-
rectly increase the rebates rates for P2, and they closely mir-
ror the optimal rates for both products. As a sanity check,
when the rebate sensitivity of both products are equal, both
the optimal rebate rate and the rates selected by our ap-
proach are roughly equal as well.

7.4.1 Summary
Our approach performs relatively even better when there

are multiple products. The demand estimation step cor-
rectly identifies the product more sensitive to rebates, and
the optimization selects correspondingly higher rebate rate
for the more sensitive product. The approach is robust to
changes in rebate sensitivities, and strikes a good balance
among the rates selected for different products.

8. CONCLUDING REMARKS
We studied the problem of how online merchants can best



use rebates to maximize their revenue. Our solution consists
of two steps—an estimation step and an optimization step.
Our estimation routine builds on classical demand models in
economics, and extends them to model the effect of rebates
separately from that of prices. We develop efficient solutions
to the optimization problem under both the linear and the
log-linear demand model, drawing upon ideas from convex
optimization. We validated our modeling assumptions using
transaction data obtained from Microsoft Cashback opera-
tions, and conducted an extensive simulation study to eval-
uate the performance of our proposed approach. We found
that across a wide range of parameters, our approach consis-
tently generates higher revenue than other approaches, and
achieves close to the maximum possible revenue.

Through these simulation studies, we found that selecting
good rebate rates requires carefully balancing two factors—
putting the entire budget to use and spreading the budget
over the entire period. Our approach does well in balanc-
ing these factors, and hence performs better than other ap-
proaches. Between the linear and the log-linear model, the
former is more suited for the scenario where revenues are
measured while rebate lasts (WRL), whereas the latter is
more suited for the scenario where revenues are measured
over the entire duration (ED). The rebate rates selected are
often within 1% of the optimal rates. We also note that
the performances of the linear and the log-linear models are
very close both in real and synthetic data. This is an inter-
esting and somewhat surprising finding, as economists have
often favored the log-linear model over the linear model for
demand, and merits further investigation.

The optimization approach we presented in this paper can
be extended in several ways. For example, it can be used to
maximize profits instead of revenue by taking into account
the cost of production. It can also be used to solve more
sophisticated problems that include additional constraints
such as minimum and maximum rebate rate per product or
limits on the supply of each product.

There are important future directions to explore. One di-
rection is techniques for optimizing rebates when demand of
one product may be affected by prices and rebates of others.
From the estimation standpoint, this presents a challenge
due to its requirement for large volume of data. The opti-
mization problem can no longer be formulated as a convex
program and new techniques will be needed.

In this work, we do not consider the revenue generated
during the period when a merchant is learning a demand
model for the product. If this period is considered as part
of the evaluation, merchants face a new problem that may
require interleaving exploration for additional data and ex-
ploiting the demand model. Solving this problem optimally
(or approximately optimally) will require new techniques.
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