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Abstract
A variety of techniques have been proposed to verify stateful func-
tional programs by developing Hoare logics for the state monad.
For better automation, we explore a different point in the design
space: we propose using affine types to model state, while relying
on refinement type checking to prove assertion safety.

Our technique is based on verification by translation, starting
from FX, an imperative object-based surface language with speci-
fications including object invariants and Hoare triple computation
types, and translating into Fine, a functional language with depen-
dent refinements and affine types. The core idea of the translation
is the division of a stateful object into a pure value and an affine to-
ken whose type mentions the current state of the object. We prove
our methodology sound via a simulation between imperative FX
programs and their functional Fine translation.

Our approach enables modular verification of FX programs sup-
ported by an SMT solver. We demonstrate its versatility by several
examples, including verifying clients of stateful APIs, even in the
presence of aliasing, and tracking information flow through side-
effecting computations.

1. Introduction
Several recent papers propose a verification methodology for state-
ful functional programs by developing Hoare logics for the state
monad (Nanevski et al. 2006; Swierstra 2009; Borgström et al.
2010). Tools based on this approach are known to be powerful. For
example, the Ynot tool has been used to carry out interactive proofs
of correctness for programs that manipulate B+ trees (Malecha
et al. 2010), a pointer structure with tricky sharing properties.

While such successes make a good case for interactive machine-
assisted proofs in a Hoare logic for the state monad, this paper
explores a different point in the design space of a program logic
for stateful functional programs. We are motivated primarily by
a desire to automate the modular verification of functional pro-
grams that make use of local state. We aim to develop a verification
methodology based on classical first-order logic, for which power-
ful off-the-shelf solvers already exist. (In contrast, tools like Ynot
work with separation logic to recover modularity, but automation
for separation logic remains a significant challenge, although the
situation is improving (Chlipala et al. 2009).)

Our work considers a well-known alternative to monadic state
as the basis of a verification methodology: substructural state, by
which we mean state modeled using linear (use-once) or affine
(use-at-most-once) types (Wadler 1990). Our insight is that the
problem of verifying stateful functional programs can be factored
into two pieces. First, we can use an affine type system to model
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the stateful behavior of the program in a purely functional style.
Then, to prove the safety of assertions in the program, we can rely
on automated refinement type checking for a first-order classical
logic. Affine types partition the state of the program into a number
of disjoint pieces, thus yielding a modular verification procedure
without necessitating the use of the separation logic connectives.

In addition to improved automation, modeling state using affine
types is attractive since it enables combinations of Hoare logic
with other program verification disciplines. We work out one such
example in detail in §5.1, where we combine our basic approach
with a discipline of fractional capabilities to control aliasing.

Concretely, our work is grounded in the context of Fine (Swamy
et al. 2010), a purely functional language with a type system based
on a combination of dependent refinements and affine types. Our
contributions include the following:

• We present FX (§3), an extension of the term syntax of Fine
with stateful commands including object allocation, deletion
and mutation. We also extend the type language with Hoare
types (Nanevski et al. 2006) to give specifications (in the style
of Hoare triples) to stateful code in FX.
• We show how to translate FX programs to Fine (§4), using

Fine’s affine types to model state, and dependent refinements
for the translation of Hoare types. The core idea is to divide
a stateful object into a pure value and an affine token whose
type mentions the current state of the object. We prove that our
translation is a simulation, which implies that refinement type
checking in Fine guarantees assertion safety for FX.
• We demonstrate the effectiveness of our approach on a variety

of examples (§5), which, although simpler than the B+ trees
verified interactively in Ynot, are still known to be challeng-
ing. Our examples include a conference management program
previously verified for authorization properties by Swamy et al.
(2010); a client of a stateful API of collections and iterators
studied by Bierhoff and Aldrich (2007); and an encoding of in-
formation flow tracking suitable for use with programs that may
leak information via side effects (an enhancement of a tech-
nique studied by Swamy (2008)).

Although the results of this paper are limited (primarily) to first-
order programs, we discuss ongoing work that naturally extends our
approach to the higher-order case in §5.3. The remainder of this
section presents a short overview of our work, highlighting some
of the technical challenges we solve.

1.1 Marrying substructural and dependent types
Linear types have been known as an effective tool for modeling
state for the last 20 years (Wadler 1990), roughly as long as the
monadic approach. Yet, with a few notable exceptions, verification
tools and programming languages have only seldom adopted linear
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types as model of state. One reason for this, particularly in the type-
based approach to verification, is the subtle interaction between lin-
ear and dependent types. The metatheory of an arbitrary mixture of
these types is usually considered intractable. For example, Linear
LF (Cervesato and Pfenning 2002), perhaps the canonical presen-
tation of linearity and dependency, restricts linear values from ap-
pearing as indices in types. Fine has a similar restriction on affine
indices, placing seemingly severe limitations on expressiveness.

For a sense of the difficulty, consider implementing a function
incr that increments an affine integer x:aInt. One might write it as
λx:aInt. x+1, consuming the original integer x and threading back
the incremented version to the caller. We would like to give this
function a more precise type, such as x:aInt→{y:aInt | y>x}. This
is the type of a dependent function from affine integers x to affine
integers y, where the refinement type to the right of the arrow states
that the returned value y is greater than x. However, this type is
illegal in Linear LF and Fine, because the refinement formula y>x
is interpreted as a type, and the affine values x and y cannot be used
at the type level.

A key technical contribution of our work is to surmount this
difficulty by using a combination of value-indexed types and affine
capabilities (Walker et al. 2000) to permit unrestricted refinements
of stateful values. In our solution, the type of an increment function,
say incr2, could be x:int→Token x→ (y:{y:int | y > x} ∗ Token y),
where Token :: int⇒ A is a dependent type constructor that con-
structs an affine type from an int-typed value. (The kind of affine
types is A .) The type of incr2 indicates that to increment x, client
code must present a token for x. The incr2 function destructs the
token for x, produces y, and a new token for y. By making Token x
affine, we ensure that the client can no longer use x in a context
that expects a mutable integer. By indexing the type of the token
with the value of x, we ensure that a token of one value cannot be
confused with a token for another. Finally, by separating x from
its token, we can use x in refinement formulas, e.g., in the formula
y > x in the return type of incr2.

1.2 Shielding programmers from affinity
Clearly, requiring programmer to directly manipulate tokens is far
from optimal—mutable values and their tokens have to be threaded
through the program in a functional style. Additionally, exposing
affinity to the programmer is also questionable, since it limits
the use of library code—data structures that contain affine values
become affine themselves, making it hard to use, say, a standard
non-affine lists to hold affine values.

To counter these difficulties, we present FX, a surface syntax
with imperative commands that hides the low-level plumbing of to-
kens and affinity from the programmer. To illustrate FX, consider a
snippet of an FX implementation of ConfWeb, a verified conference
management tool we had previously implemented directly in Fine.

1 type review = {[txt:string; u:user]}
2 val upd review: r:review→x:string→
3 {(s1) >} :unit {(s2) s2(r).txt=x && s2(r).u=s1(r).u}
4 let upd review r x = r.txt := x

Here, we define a mutable object type review of reviews, with fields
for review text and the reviewer u. Line 4 shows the implementa-
tion of a function upd review that updates a review r by assigning
to its txt field. FX programmers can use imperative commands like
assignment rather than threading mutable objects through the pro-
gram. Mutable objects can also be placed in standard data struc-
tures, without having to re-implement libraries to deal with affinity.

Specifications in FX are written using Hoare types, a nota-
tion resembling Hoare triples. Lines 2-3 show the specification of
upd review, with the form x:t1→{(s1) Φ}r:t2 {(s2) Ψ}, where the for-
mula Φ is a pre-condition on the function argument x:t1 and pre-
state s1; r:t2 is the name and type of the return value; and Ψ is a

post-condition on the argument x, the pre-state s1, the return value
r, and the post-state s2.

The main technical development of this paper is a translation
from FX to Fine that introduces affine tokens and threads stateful
values and their tokens through the program. The main results are
Theorem 1, which establishes that the translation is a simulation,
and Corollary 2, which establishes progress for FX programs that
translate to well-typed Fine programs.

2. Overview
We begin with a brief review of the Fine programming language,
then discuss ConfWeb, a conference management application we
previously implemented in Fine. This application motivates, in part,
the need for better support for imperative features in Fine. §2.2
presents the design of FX using examples from ConfWeb. §2.3
presents informally our methodology of verifying FX programs via
translation to Fine.

2.1 A brief review of Fine

Fine is an experimental, purely functional programming language
on the .NET platform. The principal novelty of Fine is in its type
system, which is designed to support static verification of safety
properties via a mixture of refinement and substructural types. Our
work on Fine has, thus far, focused primarily on verifying security
properties, including properties related to authorization policies
and information flow controls. However, by design, the type system
of Fine has little in it that is security-specific. This paper is a step
towards putting Fine to use for the general-purpose verification
of programs that mix both functional and imperative idioms. We
discuss several elements of Fine’s design next—for details, consult
our prior papers (Swamy et al. 2010; Chen et al. 2010).
Value-indexed types. Types in Fine can be indexed both by types
(e.g., list int) as well as by values. For example, array int 17 could
represent the type of an array of 17 integers, where the index 17:nat
is a natural number value. Fine prohibits non-value expressions
from appearing as type indices, in effect forbidding type-level com-
putations. This restriction limits expressiveness, but considerably
simplifies Fine’s metatheory and implementation.
Dependent function types. Functions in Fine are, in general, given
dependent function types, i.e., their range type depends on their
argument. Dependent function types are written x:t→t’, where the
formal name x of the parameter of type t is in scope in t’. For
example, the type of a function that allocates an array of n integers
can be given the type n:nat→array int n. When a function is non-
dependent, we simply drop the formal name.
Refinement types. A refinement type in Fine is written {x:t | φ },
where φ is a formula in which x may appear free. Formulas are
drawn from the same syntactic category as types, although, for
readability, we typeset formulas differently and use distinct meta-
variables (φ versus t). In practice, types are refined by formulas
from a first-order logic with equality, extended with user-defined
predicates. For example, we may give the following type to a
list permutation: ∀α .l:list α→{m:list α | ∀x:α . In x l⇔ In x m}. Univer-
sal quantifiers in formulas are represented using dependent ar-
rows and existential quantifiers using dependent pairs; In is a user-
defined predicate for list membership; and connectives like ⇔ are
represented using indexed types (we elaborate below).
Refinement type checking. A refinement type {x:t | φ } is inhabited
by values v:t, for which φ [v/x] is derivable. Derivability is defined
with respect to assumptions induced by the program context (e.g.,
equalities due to pattern matching) as well as a set of assumptions
that axiomatize user-provided predicates. We formalize this using
an LCF-style (Milner 1979) kernel for Fine, which contains the
inference rules for a classical first-order logic with equality, ex-
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tended with constructors corresponding to user-provided axioms.
As such, user-provided axioms must be used with care, since faulty
axioms compromise soundness. Derivability is decided by relying
on Z3 (de Moura and Bjorner 2008), an SMT solver. Formally,
refinement types are viewed as Σ-types. However, we include a
program transformation (somewhat similar to the coercions used
by Sozeau (2006)) that systematically inserts pack/unpack opera-
tions so as to equip refinement types with a subtyping relation that
allows programmers to view {x:t | φ } as a subtype of t.
Affine types. Dependent refinements in Fine bear close resem-
blance to constructs found in related languages like F7 (Bengtson
et al. 2008) and Sage (Flanagan 2006), despite several technical dif-
ferences. A substantial difference in Fine however, is the addition
of affine types. The interaction between dependent and affine types
in Fine is strictly regulated by the no-affine-indices restriction—
this prohibits the use of values with affine types as type indices. As
such, Fine is closely related to Linear LF (Cervesato and Pfenning
2002), which integrates linear and dependent types, with a similar
restriction that prevents linear resources being mentioned in types.
This paper shows that even with this restriction, the combination of
dependent and affine types available in Fine provides a powerful set
of primitives for verifying programs that use mutable local state.
Kind language. To enforce the no-affine-indices restriction (as well
as to keep account of type constructors) Fine employs a system of
kinds. The (slightly simplified) syntax of kinds is shown below:

kinds k ::= ? | A | α ::k⇒ k | x:t⇒ k

Types in Fine are divided into two basic kinds: ?, the kind of normal
non-affine types, and A, the kind of affine types. A ?-kinded type
can be coerced to the A universe using the modality ¡, e.g., int::? ,
while ¡int::A . Type constructors are given arrow kinds, which come
in two flavors. The first, α ::k⇒ k′ is the kind of type functions that
construct a k′-kinded type from a k-kinded type α . Just as at the
term level, type-level arrows are dependent—the type variable α

can appear free in k′. Type functions that construct value-indexed
types are given a kind x:t ⇒ k, where x names the formal of type
t and x can appear free in k. In both cases, when the kind is non-
dependent, we simply drop the formal name. The no-affine-indices
manifests itself as a restriction on kinds x:t⇒ k, where the domain
type t must have kind ?. For example, the kind of list is ?⇒ ? ; the
kind of the value-indexed array constructor is ?⇒ nat⇒ ? ; the kind
of the propositional connective And is ?⇒ ?⇒ ? ; the kind of the
user-defined predicate In is α ::?⇒ α⇒ list α⇒ ? .
Module system. Aside from the core type system, Fine has a simple
module system allowing us to define certain types private to a
module, which in effect forces clients of the module to view values
of these private types abstractly. Fine uses the module system to
prove secrecy and authenticity properties. In this paper, the module
system comes in handy for the definition of unforgeable capabilities
and the corresponding authenticity property plays a crucial role in
proving the correctness of our translation from FX to Fine.
Proof-carrying compilation. Finally, it is worth mentioning that
Fine is compiled in a proof-carrying style to DCIL, .NET byte-
code enhanced with dependent and affine types in a backwards-
compatible way. In addition to certification, compilation to DCIL
allows Fine to interoperate easily with the other .NET languages.
By virtue of the translation of the forthcoming sections, FX too en-
joys a proof-carrying translation to DCIL.

2.2 ConfWeb: A first taste of FX

Our prior work on Fine included the development of an application
ConfWeb, a conference management tool based on the Continue
server (Krishnamurthi 2003). Continue’s behavior is governed
by an authorization policy, modeled with liberal use of object-

1 type user=int
2 type NoConflict :: user⇒ user⇒ ?
3 assume nc sym: ∀u1, u2. NoConflict u1 u2⇒ NoConflict u2 u1
4 val checkNC: u1:user→u2:user→{b:bool | b=true⇔ NoConflict u1 u2}
5 type review = {[txt:string; u:user]}
6 type paper = {[authors:list user; revs:list review | ∀u:user, r:review.
7 (In u self.authors && In r self.revs)⇒ NoConflict u r.u]}
8 (∗ Allocation function with a Hoare type ∗)
9 val mk review: txt:string→u:user→{(s1) >} r:review

10 {(s2) s2(r).txt=txt && s2(r).u=u}
11 let mk review txt u = new review{[txt=txt; u=u]}
12 (∗ Pure library function can operate on a list of mutable objects ∗)
13 val for all: ∀α ::? , P::α ⇒ ? .
14 f:(x:α →{b:bool | b=true⇔ P x})→ l:list α→
15 {b:bool | b=true⇔ ∀x:α . In x l⇒ P x}
16 (∗ Impure function mutates a paper; also given a Hoare type ∗)
17 val add review: p:paper→ r:review→
18 {(s) not(In s(r) s(p).revs)} o:option review
19 {(t) (In s(r) t(p).revs || t(o)=Some s(r))&& ...}
20 let add review p r =
21 if for all<user,NoConflict r.u> (checkNC r.u) p.authors
22 then let tl = (p.revs :=: Nil) in p.revs :=: Cons r tl; None
23 else Some r

Figure 1. Invariants on mutable objects in ConfWeb

orientation and mutable state in Alloy (Jackson 2002). A basic data
structure in the model is a paper, an object with mutable fields
holding a paper submission and list of its associated reviews. An
invariant on paper ensures that the reviews of an paper are from
reviewers not conflicted with the paper’s authors. Our prior imple-
mentation of ConfWeb modeled many of these stateful features, but
some features (including invariants on mutable objects like paper)
proved to be too cumbersome to implement directly in Fine.

In this section, we introduce FX, a surface syntax for Fine
with direct support for mutable objects. FX considerably simplifies
programming with mutable objects and makes an implementation
of ConfWeb more faithful to its original specification. Subsequent
sections shows how mutable state can be systematically translated
away via translation to purely functional Fine programs.

Figure 1 shows a fragment of ConfWeb written in FX. The key
data structure in ConfWeb is paper (line 6), a mutable object with
fields containing the authors of a paper and its reviews (in addition
to other fields, not shown). We verify that this program preserves
the no-conflict invariant on paper. The full program translates to a
109-line Fine program that is verified automatically in 8 seconds.
Mutable objects and invariants. FX extends Fine with a notation
for records with mutable fields—we call these types objects, al-
though our core calculus for FX does not include other OO features
like inheritance. Object types are of the form {[f1:t1;...;fn:tn | φ]},
where each fi is a mutable field of type ti, and the formula φ is
an object invariant in which the name self refers to the object it-
self. Note that the values of non-object types like string and int are
immutable.
The paper object and its invariant. Line 6 defines paper, an ob-
ject with a field authors (a list of immutable integers, standing for
user ids); and a field revs, a list of objects representing the re-
views of a paper. The invariant on paper is a formula which uses
two user-defined predicates. The first predicate, In, stands for list
membership. The predicate NoConflict is a binary predicate to reflect
the absence of conflict-of-interest between a pair of users. Line 2
shows the kind of NoConflict and line 3 shows a user-provided ax-
iom that asserts that NoConflict is a symmetric relation. Rather than
provide further axioms to define NoConflict, at line 4 we show the
signature of a trusted external function checkNC, where we use de-
pendent refinement types in Fine to assert that checkNC decides
the NoConflict relation. The implementation of this function consults
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a database that records conflict-of-interest declarations by authors
and PC members of the conference—interoperability between Fine
and the rest of .NET makes it easy to implement this function in F#
and to call it from FX.
Impure functions and Hoare types. At line 11, we show the im-
plementation of a function mk review, which allocates a new review
object. Its specification at lines 9-10 shows the type of an impure
function, which, in general, has the form x:t→{(s1) Φ}r:t’ {(s2) Ψ},
as explained in §1.2. For mk review, the pre-condition Φ is trivial—
>, which always holds. The post-condition Ψ contains terms of the
form s2(r)—this stands for the value of the mutable object r in the
state s2. In this case, s2(r) is a record value of the object type review.
The post-condition of mk review states that the fields of the returned
object r contain the arguments passed to the function.
Interacting with libraries. Next, at lines 13-15, we show the type
of for all, a library function on lists. This is a higher-order function
whose argument f is a (pure) boolean-valued function over the α -
typed elements of its second argument l, where f decides some
property P of the list elements. The type we give to for all is
polymorphic in both α and P. The return type indicates that for all
returns true if, and only if, f returns true on each element of l. The
type also indicates that both f and for all are pure, since neither of
them has a Hoare type. This pure function can be programmed in
Fine and verified against its specification. The implementation is
entirely standard—we omit it here for brevity.
Mutation and controlled aliasing. Finally, at lines 17-23, we show
the type and implementation of a function add review that tries to
add a review to a paper. Informally, the implementation checks that
the review’s author is not conflicted with any of the paper’s authors
and, if the check succeeds, adds the review to the paper and returns
None. Otherwise, add review leaves the paper unchanged and re-
turns the review to the caller. The type shows an impure function,
where the precondition requires the review r to not be present in the
paper p’s revs list; the returned value is an option review, where the
post-condition shows that the review r has been stored in the paper
p, or that r is contained in returned option value.

The implementation of add review reveals several subtleties of
FX. First, to properly model stateful invariants on objects, FX for-
bids constructing aliases to mutable objects. (§5.1 shows how to re-
lax this restriction.) If a mutable object o is stored in another object
c’s f field, then a field projection c.f constructs an alias to the ob-
ject o. As a result, FX does not permit unrestricted field projection.
Instead, we provide other operations to emulate field projections
(which get compiled to a small set of function calls in Fine).

At line 22, we call for all, providing explicit instantiations for
its type and predicate parameters, α and P respectively. We apply
checkNC to r.u; project p.authors; and pass both to for all. The
projections here are safe since the type of for all is pure, and hence
does not create any unsafe aliases to p. Additionally, since the user
type is immutable, it is always safe to project r.u. If the no-conflict
check fails, we return r to the caller. Otherwise, we update the
paper, adding the new review r to p.revs and returning None. The
update uses FX’s swap command, c.f :=: v, which replaces the f field
of c with the value v and returns the original contents of c.f. We first
swap out the original list of reviews from p; add our new review
to it; and then swap the extended list back in. Note that it would
also be safe to project p.revs and use it in a normal assignment
p.revs := Cons r p.revs, since this creates no aliases. Projections of
fields that contain primitive or immutable types are also safe.

In both branches of add review, the mutable object r is stored
within another object—in the then-branch, within p; in the else-
branch, in the returned option object. Since creating unrestricted
aliases to mutable objects is forbidden, and the caller retains a
reference to r, we need to indicate to the caller that its reference

r is invalidated. We use the absence of a sub-term t(r) in the post-
condition to indicate that r is invalidated in the post-state, i.e., that
it may no longer be used by the caller. By contrast, the type of
upd review shows that the review r is still accessible to the caller by
mentioning s2(r) in its post-condition. Currently, FX cannot express
that a reference has been conditionally consumed, e.g., returning
a boolean success code b from add review to indicate in the post-
condition that r is consumed only if b=true.

2.3 Verifying FX programs via translation to Fine
This section sketches the translation of FX to Fine. The main idea
is to thread record values corresponding to mutable objects through
the program in a purely functional style. For this functional transla-
tion to be sound, we also thread affine capabilities for each object to
render stale record values unusable. As discussed in §1, by making
the capabilities affine, while giving record values ?-kinded types,
we circumvent the no-affine-indices restriction and give precise re-
finement types (corresponding to object invariants, pre- and post-
conditions) to the functional translation of imperative FX code. As
a result, we can rely on Fine’s automated refinement type checking
system to verify FX programs.
A module for FX primitives. The translation is organized around
a Fine module, Prims, which collects definitions of FX primitives.
Certain types will be private to Prims, and the metatheory of Fine
(specifically, the value abstraction theorem provided by its module
system) guarantees that clients of Prims treat these types abstractly.
Objects and constructors. An object with mutable fields in FX,
say r:review, where review = {[txt:string; u:user]} from Figure 1,
is represented (roughly) in Fine as a pair of 1) a record value
r:review where review is a record type in Fine, {txt:string; u:user};
and 2) a token value v:Token r, used as a capability for r, where
Token::α ::?⇒ α⇒ A, is a constructor of an affine, value-indexed
type. Given an object type declaration in FX, we generate sev-
eral public functions in Prims, corresponding to constructors, field
updates, etc., as shown below. Imperative commands in FX get
translated into calls to these functions.

1 private type Token:: α ::? ⇒ α⇒ A = |MkToken: x:α →Token x
2 private type review = {txt:string; u:user}
3 val mkReview: txt:string→u:user→unit→
4 (r:rev ∗ Token r ∗ { :unit | r.txt=txt && r.u=u})
5 val reviewUpdTxt: r:review→txt:string→ (Token r ∗ unit)→
6 (r’:review ∗ Token r’ ∗ { :unit | r’.txt=txt && r’.u=r.u})
7 val reviewReadTxt: r:review→ (Token r ∗ unit)→
8 (txt:string ∗ Token r ∗ { :unit | r.txt=txt})

The function mkReview is the constructor function of review. In
addition to the constructed record value r and its token, it returns
a unit value refined with a formula recording information about
the contents of r. The reviewUpdTxt function updates the txt field.
Its arguments include r the object to be updated and its token; the
return type shows r’ and its token, where the refined unit shows that
r’ differs from r in only its txt field. We also show reviewReadTxt,
a pure function that serves as a projection function for the txt field.
Note that all three functions take seemingly redundant unit-typed
arguments and return refined units—we include these because, as
we shall see, they help keep our translation uniform.

Finally, the Token type, which has a single constructor MkToken,
is declared private to Prims to ensure that its values cannot be
manufactured directly by clients. Likewise, the review record type
is also private. Stateful operations on r:review (e.g., updating one
of its fields) require a client to present a v:Token r attesting to
the validity of r; the operation consumes the token, rendering r
invalid for further use in stateful operations. Pure operations like
reviewReadTxt thread the token back to the caller for further use.
Hoare types. The Fine type below is the translation of the FX type
r:review→{(s1) s1(r).u=1} x:int {(s2) s2(r).u=s1(r).u+x}.
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1 r:review→ (Token r ∗ { :unit | r.u=1})→
2 (x:int ∗ r’:review ∗ Token r’ ∗ { :unit | r’.u=r.u+x})

This type shows a function that takes as arguments tokens for all the
variables x where s1(r) is a subterm in the pre- or post-condition; in
this case a token for r, since only s1(r) is mentioned. In addition
to the token, we have a unit argument refined with the translation
of the pre-condition. The return type of the function shows x:int
the value returned by the impure FX computation. We also include
in the return type all variables y where s2(y) is a subterm of in the
post-condition (i.e., r,); tokens for these values; and, the translation
of the post-condition formula expressed as a refinement on a unit
value. The scoping rules of dependent functions, pairs (aka sums),
and refinement types naturally allow the post-condition to describe
properties of the initial value of r in the pre-state, the returned value
x, and the value of r in the post-state, (i.e., r’).
Adapting libraries to work with mutable objects. A significant ad-
vantage of our token-based translation is that it lends itself naturally
to the re-use of types and libraries that were originally constructed
for purely functional programs. For example, we show below how
the standard list library can be adapted to work with lists of mutable
objects. The list type shown below is the standard type for a list of
non-affine values. FX programs are free to use the constructors of
list directly to store immutable values within them, and to pattern
match on lists to extract immutable values as well. But, we require
a bit more care to store mutable objects within lists, since the con-
structed list would capture a reference to the object. For this, we
provide functions in Prims that construct and destruct lists while
managing tokens appropriately.

1 type list :: ?⇒ ?= Nil : list α

2 | Cons : α→ list α→ list α

3 val mkCons: hd:α →tl:list α→ (Token hd ∗ Token tl ∗ unit)→
4 (l:list α ∗ Token l ∗ { :unit | l=Cons hd tl})
5 val unCons: l:list α→ (Token l ∗ { :unit | ∃hd,tl. l=Cons hd tl})→
6 (hd:α ∗ tl: list α ∗ Token hd ∗ Token tl ∗ { :unit | l=Cons hd tl})
7 val mkNil: unit→ (l:list α ∗ Token l ∗ { :unit | l=Nil})

The function mkCons takes an object value hd:α and a list of object
values tl:list α ; tokens for each of them; consumes the tokens for
hd and tl and returns a new list l, a token for l, and a refined unit
capturing the structure of l. While it is possible for a client program
to pattern match against l to extract its components, to mutate any
object in l, a client must destruct l by presenting l and its token to
unCons; proving a pre-condition that l is indeed a Cons-cell; and
receiving the components of l, tokens for each of them, and a post-
condition relating the components to the original l.

By adopting a token-based approach, not only have we been
able to circumvent the no-affine-indices restriction, but we have
been able to store mutable objects in standard lists, operate over
these lists using the standard implementations of map, fold, for all,
etc., since these functions are pure. Impure functions that need
to explicitly manipulate the objects in a list, need to be written
and verified in FX. Even if the no-affine-indices restriction were
to somehow be lifted, representing mutable objects using affine
types directly would lead to significant difficulties. For example, if
our translation were to translate the mutable object rev in FX to an
affine record arev::A, then we would need an alternative type of list,
say alist :: A→A, in which to store arev::A values and a duplicate
standard library to operate over alist α values (which would be
much more cumbersome to write, since we would have to pay
attention to the affinity of both the list and of the α -typed values
it contains). Even in a system like F◦ (Mazurak et al. 2010), which
supports sub-kinding between normal and linear kinds, we would
have to construct separate libraries to work with linear and non-
linear lists. Tokens make life much easier!

Nested objects and object invariants. Translating objects with
nested objects does not add any further complexity. Object invari-
ants too are easily translated using refinement types. The translation
of the FX type paper (from Figure 1) is shown below. The construc-
tor and destructor are similar to those for list and thus omitted.

1 private type paper = {self:{authors:list user; revs: list rev} |
2 ∀u:user, r:rev. In u self.authors && In r self.revs⇒ NoConflict u r.u }
3 val swapRevs: p:paper→newrl:list rev→ (Token p ∗ Token newrl ∗
4 { :unit | ∀u:user, r:rev. In u p.authors && In r newrl⇒ NoConflict u r.u})→
5 (oldrl:list rev ∗ p’:paper ∗ Token oldrl ∗ Token p’ ∗
6 { :unit | p’.authors=p.authors && p’.revs=newrl && p.revs=oldrl})

The refinement on the paper record shows the invariant from FX.
Swapping a new value newrl into the revs field of a paper p calls
swapRevs and has to prove that newrl satisfies the object invariant.
The tokens of the old record p and the new field value newrl are
consumed. The token for the old field value oldrl is available again.

As an example, we show how to translate an FX expression
p.revs :=: Cons r tl; None using swapRevs:

1 let newrl, tok newrl = mkCons r tl (tok r, tok tl, ()) in
2 let oldrl, p’, tok oldrl, tok p’, = swapRevs p newrl (tok p, tok newrl, ()) in
3 let none, tok none, () = mkNone () in
4 none, p’, tok none, tok p’, ()

At line 1, we construct the new review list newrl by calling mkCons.
We then call swapRevs to swap newrl in and the old field value oldrl
out, creating a new record p’. We create a record none correspond-
ing to None at line 3. At line 4, in addition to returning none, we
thread out p’ and its token, since it represents an updated object
that may be accessed later.

2.4 Understanding FX error messages
Errors that may be reported when verifying FX programs include
type mismatch, e.g., passing an integer instead of a string to
up review, and assertion failures, i.e., assertions in FX programs
are translated to unsatisfiable formulas in Fine. Another kind of
errors relates to aliasing and is more subtle. Aliasing restrictions in
FX are violated if a program tries to use an object that is unavail-
able, because the object has been deleted, or nested inside another
object, or assigned to a local variable. More experience with FX
programming and implementation in the future would give us more
insights into user-friendly error reporting.

2.5 DCIL and the efficient execution of FX programs
The purely functional model of FX in terms of Fine, while con-
venient for verification and equational reasoning, leaves much to
be desired in terms of producing an efficient execution strategy for
FX programs. While not the main focus of this paper, in this sec-
tion, we briefly consider how FX programs may be executed ef-
ficiently by translating them first to Fine and thence to DCIL—a
dependently typed bytecode language to which we compile Fine
in a type-preserving style. We begin with a few brief remarks to
introduce DCIL.

DCIL is a typing discipline for a purely functional fragment of
the .NET byte code language (CIL) (ECMA 2006). It extends the
type system of CIL with value-indexed types and affine types, but
not refinement types. DCIL is backwards compatible with CIL, and
DCIL programs can be executed on standard .NET virtual machines.
Conceptually, our type-preserving compilation strategy encodes
refinement types in Fine using dependent pairs in DCIL.A value
v of a refined type {x:t |φ} in Fine is translated to a t-typed value
v and a proof of the refinement formula φ [v/x]. A consequence of
our type-preservation results for Fine and DCIL is that FX programs
also enjoy compilation in a proof-carrying style to .NET byte code.
However, after verification of DCIL byte code, we may choose to
optimize the program by, say, erasing computationally irrelevant
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fragments of the program such as proof terms. In what follows,
we discuss a few further optimizations that aim, roughly, to undo
the functional encoding of state wrought by the translation from
FX to Fine—of course, we have yet to implement any of these
optimizations.
Erasure of tokens and units. The first ineffciency in our transla-
tion of FX to Fine is the introduction of affine tokens and refined
unit values. Tokens are threaded through computation to witness
the accuracy of the functional model of state, and the unit val-
ues appear as placeholders which witness the validity of pre- and
post-conditions—both of these uses are computationally irrelevant.
Since both tokens and units are identifiable by their types, we ex-
pect a type-based erasure of these fragments of the program to be a
simple first optimization.
In-place updates. A convenient aspect of our translation is that the
parts of the program that perform field updates are demarcated as
separate functions within the Prims module, e.g., field updates and
swaps are modeled by functions like reviewUpdTxt and swapRevs.
These functions are expensive since they copy their arguments
rather than performing in-place updates. While Fine itself has no
facilities to model in-place updates, DCIL programs, because they
are also CIL programs do not have this restriction. A straightfor-
ward strategy, then, is for functions like reviewUpdTxt to be imple-
mented in CIL using in-place updates. We can then rely on the .JIT
compiler to inline the function call.
Elimination of threading. A final inefficiency of our translation
is that mutable objects are always threaded through computations;
although, clearly, once mutation is implemented using in-place up-
dates, threading objects is redundant. A pass to eliminate threading
would be a nice optimization. However, in contrast to the two pre-
vious optimizations, elimination of threading requires a somewhat
more sophisticated whole-program transformation.

3. Formalization of core FX

This section formalizes the syntax and the dynamic semantics of a
core subset of FX. As mentioned previously, FX is considered a sur-
face syntax for Fine. FX has no static semantics of its own. Instead,
we introduce the notion of type shapes for FX and formalize a sim-
ple syntactic analysis of FX to compute these shapes. Type shapes
serve only to facilitate the translation of FX to Fine (§4), where the
types of an FX program can be interpreted using Fine’s type system.
We show that this interpretation is sound by proving a simulation
between FX programs and their Fine counterparts.

Core FX is a lambda calculus augmented with imperative com-
mands for object allocation, deletion, and mutation. It uses a
monomorphic typing discipline based around dependent functions,
Hoare types and objects with mutable fields. Its syntax is below.

Core syntax of FX

τ ::= TC | x:τ → C | {[ f :τ | φ ]} types
C ::= {(s)Φ}r:τ {(s′)Ψ} Hoare types
φ ,Φ,Ψ ::= P p | ∀x:τ.Φ | ∃x:τ.Φ formulas
|Φ∧Φ′ |Φ∨Φ′ | ¬Φ | > | ⊥

S ::= assume φ | P :: k | S;S′ signature
p ::= v | s(η) | p. f atoms
v ::= η | c | error | λx:τ.e values
η ::= x | ` names
e ::= v | v v′ | let x = e in e′ | e:C | assert (s)Φ terms
| newτ {[ f = v]} | destruct v as {[ f = x]} in e | v. f :=: v′

FX kinds are the same as those in Fine (see §2.1) and omitted
here. FX types τ include nullary type constants TC, like unit. Ab-
stractions are given impure, dependent function types, x:τ → C,
where x names the formal and is bound in the computation type C,
whose syntax was described in §1.2. (Pure function types x:τ → τ ′

are sugar for x:τ → {(s)>}τ ′ {(t)>}, since the pre- and post-
conditions > do not mention any objects.) We also have object
types {[ f :τ | φ ]}, which can be thought of as records with mutable
fields f1:τ1, . . . , fn:τn. The formula φ specifies an object invariant,
referring to each of the fields using self. f1, . . . ,self. fn.

Formulas are ranged over by φ , Φ, and Ψ, and are first order
formulas defined over a set of n-ary base predicates P over atoms
p. The atoms include FX values v; field projections (which are not
themselves values in FX); and terms of the form s(η), which stands
for the value of an object named η in the state s. We use φ for
object invariants, which cannot refer to state variables, while Φ and
Ψ may contain state variables.

A signature S collects top-level user-specified assumptions
assume φ and declarations of predicates P :: k of an FX program.
The assumptions are global and do not refer to state variables. The
predicate declarations specify kinds (k) of predicates (P).

Values in FX are names (variables x or memory locations `);
constants c, where the type of each constant c is denoted TCc; error,
used only during execution to indicate failures; or lambda abstrac-
tions. Expressions e are required to be in A-normal form (Flanagan
et al. 1993). Dependent typing in FX and in Fine only permits val-
ues to index types—A-normal form helps ensure that expressions
do not escape into the type level. The expression forms include the
standard function application v v′ and let-binding let x = e in e′; the
form e:C ascribes a computation type C to e; and assert (s)Φ asserts
formula Φ of the current state s.

The imperative fragment of FX includes two core constructs for
object allocation and deletion. Allocation is newτ {[ f = v]}, which
creates a new object of type τ initializing its fields f1, . . . , fn to
v1, . . . ,vn. Expression destruct v as {[ f = x]} in e destructs an object
v, and binds the contents of its fields f1, . . . , fn to fresh variables
x1, . . . ,xn in e. The fresh variables xi are in scope within e, while
v is no longer accessible in e or later in the program. Using these
two constructs alone, we can encode field updates, field swaps, etc.
However, we include field swaps, v. f :=: v′, as a primitive as well,
since we use this in our examples. This instruction assigns the new
value v′ to the field f of v and returns the old value of the field.

3.1 Dynamic semantics

Runtime configurations in FX are expressions e paired with a store
σ , a finite map from memory locations ` to object values {[ f = v]}.
We show the dynamic semantics of FX below. Congruence rules are
elided.

The semantics has the form (e,σ) → (e′,σ ′), and is mostly
as one would expect, except for two subtleties. First, to specify
progress for FX, it is convenient to ensure that FX programs never
get stuck. Instead, we mark certain evaluation steps as erroneous
and define safe FX programs as those that are guaranteed to re-
duce without taking erroneous steps. Specifically, when evaluating
assert (s)Φ we check whether the current values in the store satisfy
the formula Φ, under the assumptions in the signature S. Subterms
s(`) in Φ are replaced with v̂`, which is a location-free object value
corresponding to σ(`) (where σ ` ` ↓ v̂` is in §4). Assertions evalu-
ate to the error value if the check fails (the last rule). Although some
care has to be taken to translate the two-state predicate Ψ properly,
the translation of ascriptions (e:C) to assertions is straightforward.

The other subtlety is that bindings in the store σ are tagged with
a superscript ι , indicating whether a location represents allocated
(⊕) or freed (	) memory. These tags have no impact on the re-
duction of FX programs, but the translation of FX to Fine uses these
tags to prove that if an FX program is translated to a well-typed Fine
program, it never references freed memory. The reduction rule for
new creates a new memory location ` and tags it with ⊕. The rule
for destruct substitutes the bound variables with the object contents
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in e and tags the destructed location with 	. Finally, the rule for
swap updates the object and returns the old value, as expected.

Expressions with failures such as assertion failures or missing
fields evaluate to the error value.

Selected dynamic semantics of FX: (e,σ)→ (e′,σ ′)

σ ::= σ +{` 7→ {[ f = v]}}ι | • where ι ::=⊕ | 	
(let x = v in e,σ)→ (e[v/x],σ) LET
(let x = v:C in e,σ)→ (e[v/x],σ) LETC
((λx:τ.e) v2,σ)→ (e[v2/x],σ) FUN
(assert (s)Φ,σ)→ ((),σ) if S |= Φ[v̂`/s(`)],∀` ∈ FV (Φ)

where σ ` ` ↓ v̂`
((e:{(s)Φ}r:τ {(t)Ψ}),σ)→

(let = assert (s)Φ in let x = e in
let = assert (t)Ψ[x/r,σ(`)/s(`)] in x,σ)

(newτ {[ f = v]},σ)→ (`,σ +{` 7→ {[ f = v]}}⊕) ` 6∈ dom(σ)

(destruct ` as {[ f = x]} in e,σ +{` 7→ {[ f = v]}}ι )→
(e[vi/xi ]

n
i=1,σ +{` 7→ {[ f = v]}}	)

(`. fi :=: v′i,σ +{` 7→ {[ f = v]}}ι )→
(vi,σ +{` 7→ {[ · · · ; fi = v′i; · · · ]}}ι )

(e,σ)→ (error,σ) e 6= v otherwise

3.2 Computing type shapes
In preparation for the translation of FX to Fine, we define a sim-
ple syntactic analysis of FX programs to compute type shapes.
Type shapes describe an equivalence relation on computation types,
where types that describe expressions with the same footprint (i.e,
the set of locations read or written) are placed in the same equiva-
lence class. The footprint of an expression (and hence the shape of
its type) guides the translation of §4 since it determines the values
that we must thread into and out of a translated FX expression.

Formally, we define two functions, iv (input variables) and ov
(output variables), from computations types C to sets of names
X ,Y ⊆ 2η . Given a computation type C = {(s)Φ}r:τ {(t)Ψ},
iv(C) = {η | s(η) ∈ Subterms(Φ,Ψ)} and ov(C) = {η | t(η) ∈
Subterms(Ψ)}\{r}. We write C ∼ {X}r:τ ′ {Y}, when X = iv(C),
Y = ov(C), and τ ∼ τ ′. The last relation, τ ∼ τ ′ is a structural con-
gruence on type shapes lifted into function types, i.e., τ ∼ τ and
x:τ1→C1 ∼ x:τ2→C2 when τ1 ∼ τ2 and C1 ∼C2, where we write
C1 ∼C2 when C1 ∼ {X}r:τ {Y} and C2 ∼ {X}r:τ {Y}.

Intuitively, the input variables of an expression e (strictly, e’s
type C) represent the objects that may be read, modified, deleted,
or stored inside other objects by e; the output variables represent
the subset of the input variables (excluding the returned value r)
that are still accessible after e has been evaluated.

The first judgment Γ ` v ∼ τ says that the value v (if it type
checks in Fine) has a type that is in the same shape equivalence
class as τ , where Γ maps names to their types. Likewise, the
judgment Γ ` e ∼ C says that an expression (if it type checks in
Fine) has a type that is in the same equivalence class as C. In some
cases, we overload notation and write Γ ` e ∼ {X}r:τ {Y}, with
the obvious meaning, i.e., the type of e is in the equivalence class
described by {X}r:τ {Y}. We also write η :τ,X to conditionally add
a name to an input or output variable set—η :τ,X means η ,X when
τ is an object type, and X otherwise.

Computing type shapes: Γ ` v∼ τ and Γ ` e∼C

Γ ` η ∼ Γ(η) Γ ` c∼ TCc

Γ,x:τ ` e∼ C
Γ ` λx:τ.e ∼ x:τ → C

Γ ` v1 ∼ (x:τ ′→ C) Γ ` v2 ∼ τ ′

Γ ` v1 v2 ∼ C[v2/x]

Γ ` v∼ τ

Γ ` v∼ {v:τ}r:τ {}
X = {η | s(η) ∈ Subterms(Φ)}

Γ ` assert (s)Φ ∼ {X} : unit{X}

Γ ` e∼C′ C′ ∼C
Γ ` (e:C)∼C

τ ′ = {[ f :τ | φ ]} Γ ` v∼ τ

Γ ` (newτ ′ {[ f = v]})∼ {v:τ}r:τ ′ {}

Γ ` v1 ∼ {[ f :τ | φ ]} Γ ` v2 ∼ τk

Γ ` (v1. fk :=: v2)∼ {v1,v2:τk}r:τk {v1}

Γ ` v∼ {[ f :τ | φ ]} Γ,z:τ ` e∼ {X}r:τ {Y}
Γ ` destruct v as {[ f = z]} in e∼ {X \{z}∪ v}r:τ {Y \ z}

Γ ` e1 ∼ {X1}x:τ1 {Y1} Γ,x:τ1 ` e2 ∼ {X2}r:τ2 {Y2}
Γ ` let x = e1 in e2 ∼ {X1 ∪ (X2 \{x})}r:τ2 {Y2 ∪ (Y1 \X2)\{x}}

The first four rules compute shapes for values and function applica-
tion. An object value v, when used in an expression context, can be
given a computation type that includes itself as an input variable,
and no output variables. We give assert expressions assert (s)Φ a
shape where the input and output variables are the same, namely
those referenced by Φ, i.e., all the objects mentioned in an asser-
tion are still accessible after the assertion has been evaluated. An
expression e can be ascribed the type C, (using e:C) so long as the
ascription does not change the shape of the type.

When computing type shapes for the imperative operations, we
pay attention to the aliasing relationships induced by each opera-
tion. However, we do not attempt to check here that FX programs
respect the aliasing constraints on the object graph necessary for
assertion safety—all checking is left to Fine. With this principle
in mind, consider the rule for new. It states that the input variables
are the stateful field values v, while the output variable set is empty.
Since references to each of the v are captured by the newly allocated
object, the empty output variable set indicates that the v should no
longer be accessed directly by the program. The swap statement is
similar. Its input variables include the object being updated v1 and
the new contents of the field v2 (if its type τk is an object type);
the output variables only include v1 since the reference to v2 has
been captured by v1. For a destruct expression, the input variables
include v, the object being destructed, and e’s input variables but
not the z since these are locally bound; for the same reason, z are
excluded from the output variables. Note that e (or some enclosing
expression) may attempt to use v after it has been destructed—this
situation will be trapped by the Fine type checker. Finally, we have
lets. Here, the input variables are the union of the input variables of
e1 and e2, excluding the let-bound variable x. The output variables
are the outputs of e2 (excluding x) and those outputs of e1 that are
not in the footprint of e2.

4. Translating FX to Fine
As sketched in §2.3, FX programs are translated to functional Fine
programs. We formalize this translation here, and prove that the
translation of FX programs preserve their semantics. Since Fine
programs can be verified using refinement type checking, we also
obtain the result that the safety of FX programs can be established
by the Fine type checker. Our description of the translation starts by
describing the role of tokens and their types in our translation. We
then describe the translation of types and finally the translation of
terms. The section concludes with discussion of our main results.

4.1 FX objects, tokens, and ownership
For safety in the presence of mutation and aliasing, we require FX
programs to respect an ownership discipline on the object store.
Affine tokens play a central role in our translation, and serve pri-
marily to enforce this ownership discipline. To illustrate this point,
we first discuss how to represent FX object values in Fine. As
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we have seen, FX object values are locations `, where a store σ

maintains a mapping from locations to records holding the object’s
fields. In Fine, we represent object values as immutable records.
The translation of objects is described by the judgment below.

σ(`) = {[ f = v]}ι σ ` vi ↓ v̂i ∀i
σ ` ` ↓ { f1 : v̂1, . . . , fn : v̂n}`

This rule looks up the binding for a location ` in σ , and produces a
tuple of Fine values, where each v̂i, recursively, is the translation
of the components of the object stored at `.1 Fine values that
correspond to FX objects are tagged with the location ` from which
the value was derived—we explain its significance shortly.

Now, given a store σ = `1 7→ {[ f = 0]}⊕, consider the simple FX
program and its translation to Fine shown below (eliding irrelevant
unit-values from the Fine versions for clarity).

FX (1) let x = newτ ′{[g = `1]} in let y = `1. f :=: 1 in x
Fine (1) let x, tokx = mkτ ′{ f = 0}`1 tok`1 in

let y, toky = swapτ{ f = 0}`1 1 tok`1 in x, tokx

The FX program allocates a new object x storing the object `1
inside it, then updates `1 and returns x. The program above violates
ownership, since after a single step of execution, the store contains
a new location `2 7→ {[g = `1]}⊕, meaning that a reference to `1 has
been captured by `2, and the very next step mutates `1 directly.

The image of the FX program under the translation is the Fine
program shown directly beneath it. The Fine program contains calls
to the functions mkτ ′ and swapτ (discussed in §2.3), passing in
Fine values corresponding to the object `1 (i.e., { f = 0}), and,
importantly, the variable tok`1 representing a token or capability
to use the immutable record value in a stateful way. Tokens are,
of course, affine and since tok`1 is used more than once, the Fine
program fails to type check, and the FX program is dismissed as
potentially unsafe.

Not all violations of ownership are as easily detected as in this
first example. One problematic case is when a reference to an object
is captured by a closure, and somewhere else in the program the
captured object is updated via an alias, as in the example shown
below (with the same initial store σ ).

FX (2) let g = λ :unit.`1 in let = `l . f :=: 1 in g
Fine (2) let g = λ :unit.λx:Token { f = 0}`1 .({ f = 0}`1 ,x) in

let = swapτ{ f = 0}`1 1 tok`1 in g

In this case, we translate the thunk g by adding an additional
argument for the token of the captured object value { f = 0}`1 .
Notice that the type of the token variable (Token { f = 0}`1 ) is
indexed by the value for which it is a capability. Any operation
that mutates `1 consumes its token, producing a new token with a
type indexed by the new value. Thus, after an update the thunk g
becomes unusable since a token with the appropriate type cannot
be passed in. (Unless the update does not change the value of the
object, in which case it is still perfectly safe to use g). Since this
program never attempts to use g, it is safe in FX and is also type
correct in Fine. In other words, in addition to tokens being affine,
giving them value-indexed types is also crucial for safety.

Token threading, for all its benefits (recall also the discus-
sion of §2.3), also makes it harder to prove that our translation
from FX to Fine is a simulation. Informally, we wish to show
that when an FX program e1 is translated to a well-typed Fine
program ê1, and if e1 steps to e2, then ê1 steps (using one or
more steps) to some ê2, where ê2 is semantically equivalent to
the image of e2 under the translation. If we inspect the example
program FX (2) above, we see that after several steps it reduces

1 Throughout this section, syntactic elements from Fine are indicated using
the hatted version of the corresponding elements in FX.

to λ :unit.`1 , in a store where `1 7→ {[ f = 1]}⊕, which translates
to λ :unit.λx:Token { f = 1}`1 .({ f = 1}`1 ,x) . However, this Fine
lambda term is syntactically distinct from the value of g in the pro-
gram Fine (2) above—g contains a stale value for `1. In proving
our simulation result we show that, despite the syntactic differ-
ences, these two values are in fact semantically equivalent. We use
Fine’s module system (formalized and proved sound previously
using the colored brackets of Grossman et al. (2000)) to show that
stale values that result from the reduction of Fine programs are
semantically irrelevant since these values must always be treated
abstractly. The `-superscripts on values facilitate this proof.

4.2 Type translation

The translation of FX types τ and computation types C to Fine
types τ̂ (Ĉ is a synonym for τ̂) is shown below. Throughout the
translation, we use variables named tokη for η’s token. We also
use toks(X) to mean the set of tokens for variables in X , i.e.,
toks(η ,X) = tokη , toks(X) with toks(·) = ·.

Translation of types: Γ ` τ  τ̂ and Γ ` C Ĉ

Γ ` TC TC
∀i.Γ ` τi τ̂i Γ ` φ  φ̂

Γ ` {[ f :τ | φ ]} {self :{ f : τ̂} | φ̂}

Γ ` τ  τ̂ Γ;x : τ ` C Ĉ C ∼ {X}r:τ {Y}
Γ ` x:τ → C x:τ̂ → ({Token x j}x j∈X ∗{ :unit | Pre(C)Γ})→ Ĉ

C ∼ {X}r:τ {Y} Γ ` τ  τ̂ ∀y j ∈ Y, Γ ` y j : τ j Γ ` τ j  τ̂ j

Γ `C (r:τ̂ ∗{y′j:τ̂ j}y j∈Y ∗{Token y′j}y j∈Y ∗{ :unit | Post(C)Γ})

where, for C = {(s)Φ}r:τ {(t)Ψ}
Pre(C)Γ = Φ̂ if Γ `Φ[η/s(η)] Φ̂

Post(C)Γ = Ψ̂ if Γ `Ψ[η/s(η)][η ′/t(η)] Ψ̂

Type constructors TC remain the same. Object types in FX are
translated to refined record types in Fine, with each field type trans-
lated to τ̂ j, and the invariant translated to φ̂ as described shortly.
Function types in FX x:τ → C are translated to Fine function types
that bind the same parameter x (with translated type τ̂), tokens for
each input variable of C, and a unit value refined with the translated
precondition Pre(C)Γ. The function returns a value with the trans-
lated computation type Ĉ. A computation type C is translated to
a dependent tuple, consisting of the return value r (with the trans-
lated return type τ̂), the output variables y′j and their tokens, and a
unit value whose type is refined with the translated post-condition
Post(C)Γ. The output variables y j are rebound to y′j in the tuple
type, to stand for the values of y j at the function exit point.

Translation of FX formulas is straightforward and is defined
by the judgments Γ ` Φ Φ̂ and Γ ` φ  φ̂ . The rules in these
judgments are congruences over the structure of formulas, where,
in the base case, value-indexed predicates Pv̄ are translated to
P ¯̂v, for Γ ` vi  v̂i, the value translation judgment of the next
section. We use two macros Pre(C)Γ and Post(C)Γ for translating
pre- and post-conditions of computations to refinement formulas
in Fine. The refinement formula replaces the stateful terms in a
formula, s(η) and t(η), with the corresponding name bindings for
the immutable values in Fine that correspond to η .
Translation of signatures. Predicate declarations P :: k are trans-
lated to type constructors in Fine with the same name P and the
same kind k. Assumptions assume φ are translated to data construc-
tors in Fine representing proofs of φ̂ if Γ ` φ  φ̂ . These data con-
structors are included in Fine’s LCF-styple proof kernel, along with
the standard first-order logic inference rules (see §2.1).
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4.3 Value and expression translation

This section describes the translation of FX expressions. An FX
expression e is translated to a Fine terms ê, where the free variables
of ê correspond to the object locations ` in e. For translation of
source code the translated term ê is closed, since store locations do
not occur in the source code of a program.

The value translation judgment Γ ` v  v̂ states that an FX
value v is translated to a Fine value v̂. The translation of FX names
η (variables or locations) is trivial—these are translated to Fine
variables with the same names, which may be substituted away
when the Fine expression is closed. The rule for translation of
functions is shown below.

Γ,x:τ1;• ` (e:C) ê Γ ` τ1 τ̂1
τ̂2 = ({Token η}η∈iv(C) ∗{ :unit | Pre(C)Γ})

Γ ` λx:τ1.(e:C) λx:τ̂1.λy:τ̂2.let tokη , = y in ê

This rule follows the translation of function types. We add a pa-
rameter y:τ̂2 to receive the tokens for the function’s input variables.
The function body e:C is translated to ê, preceded by a let that un-
packs the components of the tuple y, giving token variables their
required names and types, tokη :Token η . Our formalization does
not attempt to infer types, or pre- and post-conditions for functions.
As such, the rule above expects both the formal parameter x to be
decorated with a type and for the function body to be ascribed a
computation type. In practice, we expect weakest precondition in-
ference to alleviate some of this difficulty, although, of course, an-
notations will be expected at least on recursive functions. Addition-
ally, while our simulation result holds for translations of arbitrary
FX programs (that are well-typed in Fine), in practice we expect FX
programs to be closure-converted prior to translation.

The judgment Γ;Ẏ ` e ê (below) translates an FX expression
e to a Fine expression ê. The environment includes Ẏ , either empty
(•) or a set of names Y representing the output variables of a
computation. We define an operation � on output sets: Ẏ �Y ′
returns Y ′ if Ẏ = •, and Ẏ otherwise. Intuitively, Ẏ corresponds to
locations that may have been modified in expressions preceding e in
a block of lets. Fine values (and tokens) corresponding to locations
in this set need to be “threaded out” in the translation.

Translation of expressions, Γ;Ẏ ` e ê

T-Return Γ ` v∼ τ Γ ` v v̂
Γ;Y ` v (v̂,Y, toks(v:τ,Y ),())

T-Let

Γ ` e1 ∼ {X1}x:τ1 {Y1} Γ;• ` e1 ê1
Γ ` let x = e1 in e2 ∼C Γ,x:τ1;Ẏ �ov(C) ` e2 ê2

Γ;Ẏ ` let x = e1 in e2 let x,Y1, tokx, tokY1 , = ê1 in ê2

T-Assert
Γ `Φ[η/s(η)] Φ̂ X = ivs(Φ)

Γ;• ` assert (s)Φ ASRTX (Φ̂)

T-Chk

Γ;• ` e ê C ∼ {X}r:τ {Y}
C = {(s)Φ}r:τ {(t)Ψ} X1 = ivs(Φ) X2 = ivt(Ψ)

Γ;• ` (e:C) let ,X1, tokX1 , = ASRTX1(Pre(C)Γ) in
let r,Y, toks(r:τ,Y ), = ê in
let ,X2, tokX2 , = ASRTX2(Post(C)Γ) in
(r,Y, toks(r:τ,Y ),())

T-App
Γ ` v1 v2 ∼C Γ ` v1 v̂1 Γ ` v2 v̂2

Γ;• ` v1 v2 v̂1 v̂2 (toks(iv(C)),())

T-New
Γ ` (newτ {[ f = v]})∼C ∀i. Γ ` vi v̂i

Γ;• ` (newτ {[ f = v]}) mkτ v̂1 · · · v̂n (toks(iv(C)),())

T-Upd
Γ ` (v1. fk :=: v2)∼C Γ ` v1 v̂1 Γ ` v2 v̂2

Γ;• ` (v1. fk :=: v2) upd fk (v̂1, v̂2, toks(iv(C)),())

T-Destr
Γ ` v∼ {[ f :τ]} Γ ` v v̂ Γ,zi:τi;Ẏ ` e ê

Γ;Ẏ ` destruct v as {[ f = z]} in e 
let zi, tokzi , = destrτ v̂ tokv in ê

To illustrate the significance of Ẏ , consider the FX expression
let y = (`. f :=: 1) in y. The type shape computed for this expres-
sion is {`}r:int{`}, indicating that ` was modified in the expres-
sion and is still accessible after the expression has been evaluated.
When translating the body of the let (i.e., y), we need to return y as
well as the value and token corresponding to the updated value of
`. The rule (T-Return) does just this. It translates values v that appear
in expression contexts to tuples containing the translated value v̂,
any additional values dictated by the output set Y (if any), tokens
for the object values, and finally a unit for the post-condition.

The other aspect of the Ẏ environment is illustrated in the trans-
lation of let expressions let x = e1 in e2. The first premise computes
the shape of the let-bound expression e1 for its set of output vari-
ables Y1, and binds names and tokens for these in the translation.
To translate the body e2, we compute the shape C of the entire let
expression for its set of outputs Y = ov(C)—these are locations that
may have been modified in either e1 or e2 and are still live, and so,
must be threaded out when translating e2. We do this by translating
e2 in a context Ẏ �Y , which ensures that Y is threaded out of e2,
unless Ẏ is non-empty, in which case the output variables of some
enclosing let are threaded out of e2.

The remaining rules are mostly straightforward. To translate
assertions, we define the following macros: ivs(Φ) = {η | s(η) ∈
Subterms(Φ)} and ASRTX (Φ̂) = ((),X , toks(X),(() : { : unit |
Φ̂})). Assertions reduce to unit in FX—the first unit value in the
tuple corresponds to this. The last unit value with a refined type
corresponds to a check of the assertion formula. Additionally, we
include values and tokens for each object value ` ∈ X . This ensures
that assertions in Fine never refer to stale values, thereby keeping
the behavior of Fine assertions in correspondence with FX. The
ascription form (e:C) is translated, as expected, using a pair of
assertions. The tokens used in the assertion are rebound so that the
capabilities they stand for are not consumed.

Applications (v1 v2) are translated to pass in tokens (computed
using the type shape judgment) for the input variables of v1, as well
as a unit value for the precondition (T-App). The Fine type checker
must prove that the unit value passed in can be given a refined
type corresponding to the precondition of v1. The translation of new
uses the constructor mkτ of the record type τ (T-New). (The function
mkRev in §2.3 is an instance of such a constructor.) The constructor
takes the initial values v̂1, . . . , v̂n for the fields, consumes the tokens
for the input variables (again computed using type shapes), and
returns the new record r and its token tokr. The translation of swaps
using (T-Upd) is similar. The translation of a destruct expression calls
the destructor destrτ of the record type τ (T-Destr). The destructor
consumes the token tokv for the record to destruct, and returns the
field values and their tokens. These are let-bound and in scope for
ê, the translated body.

The main result of this section is Theorem 1, which shows that
the translation from FX to Fine preserves the semantics of the FX
program, if the resulting Fine program is well-typed. More pre-
cisely, the translation is a weak simulation modulo strong bisim-
ilarity. We do not give meaning to FX programs that translate to
ill-typed Fine porgrams since ill-typed Fine programs are never ex-
ecuted.
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From this result we derive Corollary 2, a progress result for
FX that shows that FX programs that translate to well-typed Fine
programs do not reach the error state. An additional result is that the
computation types given to FX programs describe small footprints.
§A gives formalizations of all lemmas and proofs.
Setting up for the simulation. Using the rules of §4.3, an FX
expression e produces ê, a Fine program that contains free variables
corresponding to locations ` and tokens for locations tok`. Given a
store σ that maps locations ` to values v`, free location variables
` are eliminated via substitution with the corresponding translated
Fine values v̂`.

The semantics of Fine also makes it convenient to handle free
token variables, since it permits affine values to be held in a mem-
ory, M, rather than inlined in the program. We translate the FX store
σ to a Fine memory M, which maps free token variables tok` in ê
to Fine values MkToken v̂`. The reduction of Fine programs has the
form (M, ê) fine→ (M′, ê′). Reads from M are destructive, and Fine’s
metatheory establishes that affine values are used at most once.

We present a simplified version of our simulation lemma below,
and illustrate its structure graphically. To type check the Fine pro-
grams ê1 and ê2 in the statement below, we use an environment
including a signature Ŝbase for FX primitives (corresponding to the
Prims module of §2.3), and affine capabilities for every token in M.

FX Fine
(e1,σ1)  (M1, ê1)
↓ ↓+

(e2,σ2)  (M2, ê′2) ∼= (M2, ê2)

Theorem 1 (Fine programs simulate FX programs). If an FX run-
time configuration (e1,σ1) translates to a well-typed Fine configu-
ration (M1, ê1), and (e1,σ1) steps to (e2,σ2), then (e2,σ2) trans-
lates to a well-typed Fine configuration (M2, ê′2), and (M1, ê1) takes
multiple steps to a configuration (M2, ê2) such that ê′2 is strongly
bisimilar to ê2.

Theorem 1 establishes that our translation relation is a simula-
tion up to strong bisimilarity, between ê2 and ê′2 above. The relation
M2 ` ê2 ∼= ê′2 states that ê2 and ê′2 reduce in “lock step”, and is de-
rived from a value abstraction theorem provided by Fine’s module
system. In addition to this core simulation result, the full version of
Theorem 1 establishes several other key properties. Among these
are 1. that FX programs that translate to well-typed Fine programs
respect aliasing and ownership constraints on the object graph; and
2. that the types given to effectful expressions only mention loca-
tions that they access or modify.

Theorem 1 also yields an important corollary. Since the error
state cannot be translated to Fine, FX programs that translate to
well-typed Fine programs do not reach the error state.

Corollary 2 (Progress for FX). Given a closed FX program e.
If ·;• ` e  ê, where Ŝbase; ·; · ` ê : τ̂ , then for any reduction
sequence (e, ·) fx→∗ (e′,σ ′), e′ is guaranteed to not be error.

5. Examples
This section illustrates the use of FX using further examples. We
have applied the translation of §4 (manually, at present) to extended
versions of these examples (and the ConfWeb example of §2), and
verified the resulting programs using the Fine type checker.

5.1 Verifying stateful APIs in the presence of aliasing

In this section, we show how to verify two properties of clients
of a stateful API of collections and iterators, even in the presence
of aliasing. First, we ensure that the collection underlying an iter-
ator is never modified while an iteration over the collection is in
progress. Second, we ensure that a client never attempts to extract

1 (∗ Fragment of a library implementing fractional permissions ∗)
2 private type trk α = {[v:α ; p:rat]}
3 type Aliases :: (α ::? ⇒ α⇒ α⇒ ? )
4 assume A refl: ∀x:trk α , y:trk α . x.v=y.v⇔ Aliases x y
5 val split: x:trk α→{(s) >} y:trk α

6 {(t) Aliases t(x) s(x) && Aliases t(x) t(y) && t(y).p=t(x).p=s(x).p/2 }
7 val join: x:trk α→y:trk α→{(s) Aliases s(x) s(y)} unit
8 {(t) Aliases t(x) s(x) && t(x).p=s(x).p+s(y).p}
9 (∗ Fragment of a safe wrapper for the Collections API ∗)

10 type collection α

11 type iterator α

12 type coll α = trk (collection α )
13 type istate = HasMore | Unknown
14 type iter α = trk {[i:iterator α ; c:coll α ; st:istate]}
15 val newColl: unit→{(s) >} c:coll α {(t) t(c).p=1}
16 val add: c:coll α→y:trk α→{(s) s(c).p=1 && s(y).p > 0} unit
17 {(t) t(c).p=s(c).p && Aliases t(c) s(c) && t(y).p=s(y).p/2 }
18 val iterator: c:coll α→{(s) s(c).p>0} i:iter α

19 {(t) t(c).p=s(c).p/2 && Aliases t(c) s(c) &&
20 t(i).p=1 && Aliases t(c) t(i).v.c && t(i).v.c.p = t(c).p }
21 val finalize: c:coll α→ i:iter α→{(s) s(i).p=1 && Aliases c s(i).v.c} unit
22 {(t) t(i).p=0 && Aliases t(c) s(c) && t(c).p = s(c).p + s(i).v.c.p}
23 val next: i:iter α→{(s) s(i).p=1 && s(i).v.st=HasMore} y:trk α

24 {(t) t(i).p=s(i).p && t(y).p > 0 && Aliases s(i) t(i) && t(i).v.i=s(i).v.i}
25 val hasNext: i:iter α→{(s) s(i).p>0 } b:bool
26 {(t) t(i).p=s(i).p && Aliases t(i) s(i) && (b=true⇔ t(i).v.st=HasMore) }
27 (∗ A client of the Collections API ∗)
28 val client: c:coll α→{(s) s(c).p=1} unit {(t) t(c).p = s(c).p && t(c).v=s(c).v}
29 let client c =
30 let it1 = iterator c in
31 let rec loop1 (c:coll α ) (it1:iter) :
32 {(s) Aliases s(it1).v.c s(c) && s(it1).p=1 && s(c).p> 0} unit
33 {(t) t(it1).p=s(it1).p && t(it1).v.c=s(it1).v.c && t(c).p=s(c).p} =
34 if hasNext it1 && ... then
35 let rec loop2 (c:coll α ) (it2:iter) :
36 {(s) Aliases s(it2).v.c s(c) && s(it2).p=1} unit
37 {(t) t(c).p=s(c).p+s(it2).v.c.p} =
38 if hasNext it2 then let a = next it2 in ... loop2 c it2
39 else finalize c it2 in
40 let it2 = iterator c in loop2 c it2;
41 let b = next it1 in ... loop1 c it1
42 else () in
43 loop1 c it1; finalize c it1

Figure 2. Controlled aliasing using fractional permissions

elements from an iterator that has been exhausted. Our example is
adapted from the work of Bierhoff and Aldrich (2007), who de-
velop a special-purpose type system that uses linear logic to check
type-state properties in the presence of aliasing, and apply it to
clients of the Java collections library. A variant of this example has
also been studied by Krishnaswami et al. (2009), who verify a sim-
ilar program using interactive proofs in a higher-order separation
logic. In contrast, we enforce an aliasing discipline by developing
a library of fractional permissions (Boyland 2003), and rely on an
SMT solver for assertion checking.

We highlight three elements of our solution. First, the library-
based approach to aliasing illustrates the flexibility of our approach—
variations on our permission scheme could be implemented in
a similar fashion. This library also illustrates the value of sub-
structural state—affine tokens introduced by the translation en-
sure proper use of the library. Next, we leverage local state, a
feature of FX. Permissions are mutable fields within structured,
alias-controlled objects. A similar approach using monadic state
would involve explicitly modeling a map from alias-controlled ob-
jects to their permissions. Finally, we show how the local state of
permissions for collections and iterators can be easily combined,
and for these permissions to be used with a state machine that
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tracks whether or not an iterator has been exhausted. The modular-
ity afforded by our approach makes these combinations natural.

The program in Figure 2 contains three parts. First, we have the
interface of our permissions library. Next, we show the interface of
a wrapper to an underlying implementation of the .NET collections
library. Although not shown, the wrapper is programmed in FX and
contains calls to the permissions library to manage aliases. Finally,
we show a client program that uses the wrapped collections library.
Although we have yet to formalize this, we conjecture that for
clients that verify against the wrapper, calls to the wrapper can be
replaced with direct calls to the underlying library.
Permissions library. Lines 1-9 of Figure 2 show the interface of our
fractional permissions library. At a high level, our library defines a
type trk α that associates a permission p:rat (a rational number)
with an α -typed value. Using split, a client can construct an alias
y to a tracked object x, but the permission previously associated
with x is split between x and y. The join function allows a client to
destroy y, an alias of x, coalescing the permission previously asso-
ciated with y into x’s new permission. The library implementation
(not shown) directly manipulates the private permission field, and
uses A refl to generate its post-condition Aliases. Two tracked val-
ues are Aliases if they refer to the same underlying object.
Wrapper of the collections library. Lines 10-27 show the interface
of our wrapper of the .NET collection API. The abstract types
collection α and iterator α correspond to the types implemented by
the .NET library. We then define coll α , the tracked version of a
collection α . The type iter α is the tracked version of an iterator and
associates a permission with a record of three fields, and illustrates
how local state in FX can be easily composed. The first field, i, is
the iterator itself; the second field c:coll α holds a tracked reference
to the collection from which the iterator was derived; the last field
represents a state machine to track when an iterator is exhausted.

At line 16 we show the signature of newColl, a function that al-
locates a new collection. Its post-condition shows that the returned
collection has a full permission. The add function (17-18) allows
an object y to be added to the collection c. Since this mutates the
underlying collection, the pre-condition of add requires c to hold a
full permission. Since c captures a reference to y, the post-condition
shows the permission of y halved.

Lines 19-20 shows show the signature of iterator, which pro-
duces an iterator i over a collection c. Calling iterator requires only
a non-zero permission on c, but the post-condition shows that it
consumes half of c’s permission, since the iterator captures a ref-
erence to the collection from which it was derived. By halving the
permission of c, we ensure that c cannot be modified while the it-
erator is still live. The implementation of iterator (not shown) calls
split to stash a reference to c in the returned object. The finalize op-
eration (22-23) allows an iterator i to be destroyed, so long as there
are no other aliases to i. Its post-condition restores the permission
to the collection from which the iterator was derived—the imple-
mentation of finalize calls to join.

The function next (24-25) allows a client to extract a tracked
object from an iterator. The pre-condition of next requires the
iterator to be in a state where it has more elements. In the post-
condition, the state of the iterator is updated to indicate that it
may or may not have more elements. In order to establish the pre-
condition of next, clients can call and test the result of hasNext.
A client program. Lines 29-44 show a client function that takes a
collection c with a full permission, extracts an iterator it1 (line 31),
and iterates over it1 using loop1 and finalizes the iterator afterward
(line 44), leaving c with a full permission. At each iteration of
loop1, we extract another iterator it2 from c (line 41) and iterate
over it in loop2 and finalize it2 before exiting loop2 (line 40).
Concurrent modifications to the collection c (say, by calling add)

1 module InfoFlow
2 type level = High:level | Low:level | J:level→ level→ level
3 type LEQ :: level⇒ level⇒ ?

4 assume Lattice assumptions: LEQ Low High, ...
5 (∗ The program counter sensitivity level, initially Low ∗)
6 private type pc = {[v:level]}
7 let pc=new pc{[ v=Low]}
8 (∗ An abstract monad for leveled data ∗)
9 private type L :: ?⇒ level⇒ ?= MkL : α→ l:level→L α l

10 val return: l:level→α→L α l
11 val bind: l:level→m:{m:level | LEQ l m}→pc1:level→x:L α l→
12 f:(α →{(s2) s2(pc).v=J l pc1 } L β m {(s2’) s2’(pc)=s2(pc)})→
13 {(s1) LEQ s1(pc).v pc1 } L β m {(s1’) s1’(pc)=s1(pc)}
14 let bind l m pc1 (MkL x ) f = let tmp = pc.v in pc.v := J l pc1;
15 let r = f x in pc.v := tmp; r
16 (∗ Channels on which to send data (side effects) ∗)
17 type Ch :: ?⇒ level⇒ ?
18 val write: α→ l:level→Ch α l→{(s1) LEQ s1(pc).v l} unit
19 {(s2) s2(pc)=s1(pc)}
20 end
21 val client: L str Low→L str High→Ch str High→
22 {(s1) s1(pc).v=Low } L str High {(s2) s2(pc)=s1(pc)}
23 let client lx1 lx2 chan = bind Low High Low lx1 (fun x1→
24 bind High High High lx2 (fun x2→
25 let x = strcat x1 x2 in (write x High chan); return High x))

Figure 3. Tracking information flow through side-effects

fail to type check, since while there are still iterators extant, c has
less than a full permission.

Notice that aside from the annotation with loop invariants, the
client function is fairly direct. Pleasingly, client contains no explicit
calls to split or join. All these operations are factored into the imple-
mentation of the wrapped collection API, and the specifications of
this API in effect manage the implicit aliasing behavior of the client
program. Clients can also call split and join directly to explicitely
manage aliases, should the need arise.
Translating to Fine. Translating Figure 2 to Fine is relatively
straightforward. We first closure-convert the nested loops, hoisting
them to the top-level. Thereafter, the translation follows the rules
of §4 directly (which generalizes readily to handle type abstraction
and application). Our implementation uses a more complex model
for permissions that maintains separate fractions for read and write
permissions; a larger API for collections, including functions to re-
move elements from collections and to query the size of a collec-
tion; and finally, a more complex client program. The resulting Fine
program is 244 lines long, and its verification involves proving 29
goals, which we discharge in 15 seconds.

5.2 Tracking implicit information flows through impure code

Our second example develops an information-flow tracking li-
brary suitable for programs with side-effects. The basic idea is
to combine a monadic treatment of dependency (as in DCC (Abadi
et al. 1999)) with the program-counter technique used (originally)
by Fenton (1973) in his Data Mark Machine. In short, we represent
α -typed data protected at security level l as values of the type L α l,
where the type L represents a family of monads arranged in a lat-
tice according to the ordering on security levels. Additionally, we
maintain a global stateful value pc that accounts for the influence
of protected data on reaching the current program point. Effectful
operations (such as writing a message to a channel) have precon-
ditions (expressed as constraints on pc) to ensure that they are not
control dependent on secret data.

We prove two properties of client programs. First, that Low
channels never carry data that is marked High-security; and, sec-
ondly, that Low channels are never used at High security-level pro-
gram points. Using these two properties, a syntactic proof of a
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noninterference property is possible. Although we have not proved
noninterference for the program of Figure 3 per se, a similar encod-
ing was proved noninterferent by Swamy (2008).

Note that this program does not make use of local state—there
is a single global piece of state called pc. As such, this program
could easily be modeled and verified using a monadic treatment of
state. However, this example highlights two features of FX. First,
it illustrates the ability of FX to handle programs that manipulate
global state. Second, it serves as initial evidence that our approach
generalizes to higher order programs. Our information flow library
example makes use of a second-order function bind, where the
type of its function argument is parametrized by the preceding
arguments to the bind function. We discuss further generalizations
to higher order programs in §5.3.
The API. Figure 3 shows a module InfoFlow (lines 1-20) which
defines the monad L α l and exports it abstractly to the client (21-
25). InfoFlow begins with a definition of the security levels using
the type level, which stands for a two-point lattice, ordered by
the relation LEQ. The ordering is axiomatized by user-provided
assumptions—we show one such assumption at line 4; the others
are standard. At line 6, we define the type pc, a mutable object
with a single field, v, which will hold the sensitivity of the program
counter—we initialize pc to Low at line 7. We define the L α l type
at line 9 and the type of function return at line 10, which allows any
value to be injected into the monad using any level.

To appreciate the type of bind in Figure 3, it is instructive
to consider a type of bind for flow controls in purely functional
code: l:level→m:{m:level |LEQ l m}→x:L α l→ f:(α→L β m)→L β m
This version of bind allows f to view the protected data x:L α l at
the unprotected type α , but the constraint LEQ l m ensures that the
result f computes from x is at least as secret as x itself. However,
this model is only sound if f is a pure function—nothing prevents f
from writing its unprotected α -typed argument to a public channel.

The purpose of the program-counter pc is to prevent such leaks,
and it plays a role in two parts of InfoFlow. Consider, first, our
model of channels at lines 16-19. Here, we define Ch α l, the type
of a channel on which to send (or receive) α -typed data to parties
privileged to view data at secrecy level l. To protect against leaks via
implicit flows, the pre-condition of write states that the sensitivity
of the program counter pc must not be greater than l. Next, consider
the type of bind at line 11—we give the function f passed to bind
the type α→{(s2) s2(pc).v=J l pc1} L β m {(s2’) s2’(pc)=s2(pc)}. This type
allows f to view the protected data x:L α l at its underlying type α .
But, the pre-condition on f’s type says that the state of pc is elevated
to be the join of pc1 (the value of pc at the time write is called) and
l (the level on the secret data x). This ensures that f cannot satisfy
the pre-condition of write if f calls write using a channel c:Ch α l2,
for some l2 less secret than l.

A proof of noninterference for this scheme relies crucially on
f treating pc values abstractly—we achieve this by marking the pc
type private. This ensures, for example, that f cannot mutate the
pc itself. The only mutation of pc occurs in the implementation of
bind, which elevates the pc before calling f; then restores it before
returning the value computed by f.

The client program concatenates Low and High strings, writes
the result on a High channel, and returns a High string. The explicit
level arguments to bind (e.g., the three occurrences of High on line
24) lead to some syntactic noise—this could easily be eliminated
with some inference for implicit parameters.
Translating to Fine. As previously, translating Figure 3 to Fine be-
gins with a simple closure-conversion step, turning the global vari-
able pc into an argument of every stateful function. The resulting
Fine program is 81 lines long, and produces 7 verification goals
that are discharged automatically in 6 seconds.

1 type pt = {[x:real; y:real]}
2 val div x by y: p:pt→{(s) s(p).y ¡= 0} unit {(t) t(p).x = s(p).x/s(p).y }
3 let div x by y p = p.x := p.x/p.y
4 val iter<α ::? , PreF::State⇒ α⇒ ? , PostF::State⇒ State⇒ α⇒ ? ,
5 Inv::State⇒ list α⇒ ? , Post::State⇒ State⇒ list α⇒ ?> :
6 f:(x:α →{(s) PreF s x} unit {(t) PostF s t x})→ l:list α→
7 {(s) Inv s l && ∀s1:State, s2:State, hd:α , tl:list α .
8 ((Inv s1 Nil⇒ Post s1 s2 Nil) &&
9 ((Inv s1 (Cons hd tl)⇒ PreF s1 hd) &&

10 (Inv s1 (Cons hd tl) && PostF s1 s2 hd⇒ Inv s2 tl) &&
11 (PostF s1 s2 hd && Post s1 s2 tl⇒ Post s1 s2 (Cons hd tl))) } unit
12 {(t) Post s t l}
13 let rec iter f l = match l with Nil→ () | Cons hd tl→ f hd; iter f tl
14 prop XDiv :: State⇒ State⇒ list pt⇒ ?
15 assume XD nil: ∀s1:State, s2:State, XDiv s1 s2 Nil
16 assume XD cons: ∀s1:State, s2:State, hd:pt, tl:list pt.
17 ((s2(hd).x = s1(hd).x/s1(hd).y) && (XDiv s1 s2 tl))⇒ XDiv s1 s2 (Cons hd tl)
18 prop YNEQ0 :: State⇒ list pt⇒ ?
19 assume YNEQ0 Nil:∀ s:(YNEQ0 s Nil)
20 assume YNEQ0 Cons: ∀s:State, hd:pt, tl:list pt.
21 (s(hd).y ¡= 0) && (YNEQ0 s tl)⇒ YNEQ0 s (Cons hd tl)
22 val div all: pl:list pt→{(s) YNEQ0 s pl} unit {(t) XDiv s t pl }
23 let div all pl = iter <α =pt, PreF=\s.\p. s(p).y¡=0,
24 PostF=\s1.\s2.\p. s2(p).x=s1(p).x/s1(p).y,
25 Inv=YNEQ0, Post=XDiv> div x by y pl

Figure 4. Mutating a list of objects using a higher-order iterator

5.3 Extension to higher-order programs

Although our token-threading translation works equally well for
both first- and higher-order programs, we have yet to formalize
an extension of the assertion language of FX to work with higher-
order stateful code. However, this extension is fairly natural, since
the kind language of Fine makes it easy to write types for higher-
order programs. A simple example of this was shown in §2.2, where
the type of for all abstracted over the predicate P decided by its
argument f. However, in the case of for all, the argument f was
required to be a pure function. Below is a detailed example showing
how extend this scheme to higher-order stateful code. We intend
to elaborate on the application of FX to higher-order programs in
future work.

Our final example illustrates how FX generalizes to the verifi-
cation of higher-order stateful programs. We use extensively poly-
morphism which is provided by the implementation of Fine. This
example uses a technique due to Régis-Gianas and Pottier (2008)
for purely functional programs. A recent extension of this work to
higher-order stateful programs has been developed in the context
of the Who verifier (Kanig and Filliâtre 2009), requiring a custom
effect analysis and assuming a strict no-aliasing discipline. Our
example shows that Fine’s general-purpose affine and refinement
types are up to the task too, and, although we have yet to combine
them, we conjecture that the fractional permissions library of §5.1
can be used in conjunction with higher-order stateful computations
to relax Who’s restrictions on aliasing.

At a high-level, the program in Figure 4 works with points,
objects with two mutable fields, x and y, called pt. Given a list
of points pl, the client program div all calls a library function iter
on pl, passing in a stateful function div x by y which updates the x
field of each point in the list by dividing it by the y field. Given that
pl is a list in which every point has a non-zero y field, we would
like to prove that after updating pl, the x field of each point in the
updated list has been divided by the corresponding y field, and that
no divide-by-zero errors occur.
The type and definition of iter. The main complexity in this ex-
ample is in the type of iter, shown at lines 4-12. The traditional
arguments of iter are a type argument α ::? for the type of the list
elements; a function argument f of type α→unit; and a list l:list α .
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The implementation of iter (line 13) applies f to each element of l
and returns unit. To verify iter independently of its uses, we give
it a specification that generalizes over the specification of f—the
additional type arguments to iter (PreF etc.) serve this purpose.

First, the predicates PreF and PostF correspond to the pre- and
post-conditions of the function f. We use an FX-specific type State
for the state variables bound in computation types. (The State
type has no counterpart in Fine—they are erased in the transla-
tion.) PreF has kind State⇒ α⇒ ? , meaning a one-state predicate
applied to the α -typed values, i.e., for a state variable s and x:α ,
PreF s x is a valid type. PostF has kind State⇒ State⇒ α⇒ ? , a two-
state predicate on α -typed values. We use these predicates in f’s
type: (x:α→{(s) PreF s x} unit {(t) PostF s t x }). PreF allows us to speak
about the value of x in the pre-state s; PostF relates the value of x in
the pre-state s to its value in the post-state t. In addition to the pre-
and post-conditions of f, iter is also parametrized by an inductive
invariant Inv on the list l; as well as a post-condition Post for iter
itself. Inv, like PreF, is a single-state predicate for the state of the
list just prior to each (recursive) call to iter. The post-condition Post
relates the state of the list before and after each call to iter.

Then, at lines 7-12, we see the computation type for the body of
iter. The pre-condition expresses a number of constraints between
the four quantified predicates. First, we require the inductive in-
variant to be true of the list argument l in the initial state (Inv s l on
line 7); line 8 is the base case of the induction; line 9 establishes
the pre-condition of f on each iteration; line 10 re-establishes the
inductive invariant; line 11 is the induction step; the post-condition
on line 12 is straightforward.
A client program. At lines 14-17, we define an inductive, two-state
predicate XDiv on lists of points to say, roughly, that each point
in the list is updated so that its x field is divided by its y field.
At lines 18-21, we define another inductive (one-state) predicate,
YNEQ0, to say that every point in a list has a non-zero y field. At
line 22 we show the type of div all. In the implementation of div all,
we call iter instantiating each of its type and predicate parameters.
The instantiation of α to pt is easy. But, to instantiate the predicate
parameters, we rely on predicate literals of the form \x.P, where
x is an abstracted value variable in the body of the proposition
P. Using this notation, we instantiate PreF and PostF to predicates
corresponding to the pre- and post-conditions of div x by y; Inv
and Post to the invariant and the expected post-condition of div all.
Finally, we pass in the function argument and the list itself.
Translating to Fine. Admittedly, our example program uses some
rather powerful machinery to describe a type for iter—machinery
that is considerably beyond the formalism of prior sections. How-
ever, an extension of our translation to account for these features
is relatively straightforward. Indeed, a significant virtue of our ap-
proach of verifying stateful FX programs via translation to func-
tional Fine programs is that much of the complexity associated with
quantifying over state predicates is simply eliminated (although, we
still rely on the ability in Fine to quantify over predicates on val-
ues). Our translation produces an 89 line program in Fine, with 13
proof obligations that we discharge in about 7 seconds.

As stated, our formalization of translation in Section 4 is
sufficiently expressive to handle higher-order stateful functions
abstractions—threading tokens through such computations “just
works”. However, without the ability to quantify over predicates,
higher-order stateful functions are not particularly useful. The main
limitation of our formalism is that it lacks polymorphism and an
associated language of kinds. Extending our formalism to handle
polymorphism over ?-kinded types is trivial; quantification over
non-stateful predicates, as in the type of for all from §2 also poses
no additional challenges. However, translating quantification over
stateful predicates does take some care—we discuss this below.

Each n-ary one-state predicate of kind State⇒ t1⇒ ... tn⇒ ? ,
is translated to a predicate in Fine by erasing the State argument,
i.e., t1⇒ ... tn⇒ ? . No translation of the types t1 ... tn is needed
either, since object types in FX are translated to records of the same
name and fields in Fine. Applications of one-state predicates are
translated trivially—we simply drop the state variable argument
and the other arguments remain unchanged. For each n-ary two
state predicate, State⇒ State⇒ t1⇒ ... tn⇒ ? in FX, we gener-
ate a 2n-ary predicate in Fine of kind t1⇒ t1⇒ ...⇒ tn⇒ tn⇒ ∗.
To translate applications of two-state predicates we follow a pat-
tern similar to the translation of post-conditions in computa-
tion types, i.e., the Post(Ψ,C) thing from Section 4. We used
primed variables etc. For example, the instantiation of PostF at
line 27 in Figure 4 becomes \p.\p’. p’.x=p.x/p.y; the return type of
iter (r:unit ∗ l’:list α ∗ Valid l’ ∗ { :unit | Post l l’}); etc. The simplic-
ity of this translation is a direct consequence of our functional
simulation—it allows us to simply erase state variable arguments
and to relate the value of a variable in the pre-state to its value in
the post-state using a pair of immutable values.

6. Related work and conclusions

Our work is perhaps most closely related to the work of Charguéraud
and Pottier (2008), who show how to functionalize imperative pro-
grams using a translation based on linear capabilities. Like us, they
prove their translation sound via a simulation argument. However,
their work does not include a program logic, although motivated by
the desire to verify programs; our work includes the use of Hoare
types and their translation to refinement types. Additionally, in the
absence of a logic, Charguéraud and Pottier embed a specific alias-
ing discipline into their calculus, (based on the adoption and focus
constructs of Fähndrich and DeLine (2002)). In contrast, because
of the expressiveness of refinement types, we show how aliasing
controls can be encoded using a library of fractional permissions.

Our use of tokens in the translation of FX to Fine, is closely re-
lated to Walker et al.’s calculus of capabilities (Walker et al. 2000).
Whereas Walker et al. prove a syntactic type soundness property
for the capability calculus (which is sufficient for their domain of
safe memory management), we prove the correctness of our token-
based translation using a simulation argument. Instead of targeting
just memory safety properties, the ATS language (Zhu and Xi 2005)
combines stateful views with indexed types for full verification,
where stateful views are described using linear logic. This gives
ATS the ability to reason directly about pointer manipulations, but
at a price, since linear logic is hard to automate. FX is also related to
HOOP (Flanagan et al. 2006), a language that uses dependent types
to express refinements on imperative objects. However, unlike FX,
refinements in HOOP can only mention immutable data.

Finally, our work is closely related to the work of Borgström
et al. (2010), who use Hoare types for a state monad to verify
stateful computations. However, as argued throughout this paper,
the state monad suffers from a lack of modularity—a monolithic
state is threaded through the entire program, making it difficult
(without resorting to separation logic, as in Ynot), to reason locally
about parts of the state or to mix stateful idioms. In contrast, FX
programs use local state in the form of mutable objects, and, as
illustrated by the example of §5.1, permits multiple stateful idioms
to be combined in a modular way.

In summary, we have presented FX, a functional language with
support for mutable objects. We show how FX programs can be
translated to functional Fine programs, using affine types to model
state and refinement type checking for verification. Our approach
extends the scope of automatic, modular verification for programs
that use mutable local state and aliasing.
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Syntax of instrumented Fine expressions

ê ::= v̂ | v̂1 v̂2 | let x = ê1 in ê2 Expressions
û ::= x | ` | tok` | Dv̂1, . . . , v̂n | λx:τ̂.ê | (v̂1, v̂2) pre-values
v̂ ::= û | û`:τ values

Extending typing relation in Fine for l-annotated values

Ŝ; Γ̂; · ` û : τ Ŝ 3 (prims,τ)

Ŝ; Γ̂;X ` û`:τ : τ
T-Loc

Note the empty X-set in the premise of this rule. Values corresponding
to objects are token-free.

Reduction for Fine expressions

(M;λx.ê v̂)
fine→
pub (M; ê[v̂/x])

R-Beta

(M; let x = v̂ in ê)
fine→
pub (M; ê[v̂/x])

R-Let

(M; ê1)
fine→
p (M′; ê1

′)

(M; let x = ê1 in ê2)
fine→
p (M′; let x = ê1

′ in ê2)

R-Ctx

(M; let x,y = (v̂1, v̂2) in ê)
fine→
pub (M; ê[v̂1/x][v̂2/y])

R-Pair

v̂base = (v̂1, . . . , v̂n)
`:τ ` fresh

M = M0,TokenVal (v̂1), . . . ,TokenVal (v̂n) M′ = M0,(tok`,MkToken v̂base)

(M;mkτ v̂1 · · · v̂n (tokens(v̂1, . . . , v̂n),()))
fine→

prims (M′; v̂base, tok`,())

R-New

v̂base = (v̂1, . . . , v̂k, . . . , v̂n)
`:τ M = M0,TokenVal v̂base,TokenVal v̂′k

v̂′base = (v̂1, . . . , v̂′k, . . . , v̂n)
`:τ M′ = M0,TokenVal v̂′base,TokenVal v̂k

(M;upd fk (v̂base, v̂′k, tokens(v̂base, v̂′k),()))
fine→

prims (M′; v̂k, v̂′base, tokens(v̂k, v̂′base),())

R-Upd

v̂base = (v̂1, . . . , v̂n)
`:τ M = M0,TokenVal v̂base

M′ = M0,TokenVal v̂1, . . . ,TokenVal v̂n

(M;destrτ v̂base tokv̂base)
fine→

prims (M′; v̂1, . . . , v̂n, tokens(v̂1, . . . , v̂n),())

R-Destr

where

1. TokenVal v̂ = (tokl ,MkToken v̂) when v̂ = (v̂1)
`:τ

otherwise, TokenVal v̂ = ·
2. token(v̂) = tokl when v̂ = (v̂1)

`:τ

otherwise token(v̂) = ·
3. tokens(v̂1, ¯̂v) = token(v̂1), tokens( ¯̂v)

with tokens() = ·

Figure 5. Syntax and semantics of Fine (Reproduced with minor revisions from ESOP ’10)

A. Soundness of the translation
The translation of runtime configurations of FX programs entails one additional technicality that amount to further book-keeping for tokens.
The subtlety that needs to be handled is that when a program e = let x = x. f := 1;e1 in e2 reduces to e′ = let x = e1 in e′2, the type shape
computed for (x. f := 1;e1) is, in general, different from the shape computed for e1 alone; e.g., the shape for e1 alone would omit x as an
output variable. Since the shape of the types govern the structure of the token threading, we need to account for the tokens threaded when
translating e when translating the reduction of e, i.e, e′.

We accomplish this in the translation judgment (Figure 6) Γ;Y ` e =⇒C ê. This judgment is a reproduction of the rules of §4, with two
changes. First, the judgment is indexed by a structure Y that specifies the set of output variables to be threaded out of each sub-expression in
the program. Second, we find it convenient in our proofs to inline the definition of the type-shape judgment into the definition of translation
judgment—thus, in addition to translating e to ê, we compute a type shape C for e while accounting explicitly for the tokens that, according
to Y, must be threaded through.

This additional judgment is simply a technical device. We prove (Lemma 13) that whenever Γ;Ẏ ` e ê then ∃Y,C.Γ;Y ` e =⇒C ê.

Definition 3 (Base signature). A type declaration in FX is of the form td = (τ = {[ f1 : τ1; . . . ; fn : τn]}) and an FX signature is a sequence of
type declarations, S ::= td,S|·.
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Γ;Y ` e =⇒C ê Translation of FX runtime configurations, where Y ::= Y | (1:Y,2:Y)

T-Return
Γ ` v∼ τ Γ ` v v̂ C ∼ {v:τ}r:τ {Y}

Γ;Y ` v =⇒C (v̂,Y, toks(v:τ,Y ),())
T-Let

Γ;Y.1 ` e1 =⇒C1 ê1 C1 ∼= {X1}x:τ1 {Y1}
Γ,x:τ1;Y.2 ` e2 =⇒C2 ê2 C2 ∼= {X2}s:τ2 {Y2}

C ∼= {X1∪X2 \{x}}s:τ2 {Y2}
Γ;Y ` let x = e1 in e2 =⇒C let x,Y1, tokx, tokY1 , = ê1 in ê2

T-Assert
Γ `Φ[η/s(η)] Φ̂ X = ivs(Φ) C ∼ {X} :unit{X}

Γ;• ` assert (s)Φ =⇒C ASRTX (Φ̂)
T-App

Γ ` v1 v2 ∼C Γ ` v1 v̂1 Γ ` v2 v̂2

Γ;• ` v1 v2 =⇒C v̂1 v̂2 (toks(ov(C)),())

T-Chk

Γ;Y ` e =⇒C′ ê C ∼ {X}r:τ {Y} ∼C′

C = {(s)Φ}r:τ {(t)Ψ} X1 = ivs(Φ) X2 = ivt(Ψ)

Γ;Y ` (e:C) =⇒C let ,X1, tokX1 , = ASRTX1(Pre(C)Γ) in let r,Y, toks(r:τ,Y ), = ê in
let ,X2, tokX2 , = ASRTX2(Post(C)Γ) in (r,Y, toks(r:τ,Y ),())

T-New
Γ ` (newτ {[ f = v]})∼C ∀i. Γ ` vi v̂i

Γ;• ` (newτ {[ f = v]}) =⇒C 
mkτ v̂1 · · · v̂n (toks(iv(C)),())

T-Upd
Γ ` (v1. fk :=: v2)∼C Γ ` v1 v̂1 Γ ` v2 v̂2

Γ;• ` (v1. fk :=: v2) =⇒C 
upd fk (v̂1, v̂2, toks(iv(C)),())

T-Destr

Γ ` v∼ {[ f :τ]} Γ ` v v̂ Γ,zi:τi;Y ` e =⇒C′ ê
C′ ∼ {X}r:τ {Y} C ∼ {v,X}r:τ {Y}

Γ;Y ` destruct v as {[ f = z]} in e =⇒C let zi, tokzi , = destrτ v̂ tokv in ê

σ ` v ↓ v̂;L Translating FX objects to Fine values

σ(`) = {[ f = v]}ι σ ` vi ↓ v̂i;L ∀i
σ ` ` ↓ (v̂1, . . . , v̂n)

`:τ ;L, `
· ` λx:τ.e⇒ τ ′ v̂

σ ` λx:τ.e ↓ v̂; · σ ` c ↓ c; ·

σ ` σ ↓M Translating FX stores to Fine token stores
∀`′.σ(`′) = {[ f = v]}⊕⇒ ` 6∈ FV (v̄) σ0 ` ` ↓ v̂;L σ0 ` (σ \L) ↓M

σ0 ` (σ ,{` 7→ {[ f = v]}⊕}) ↓M,(tok`,MkToken v̂)
M-1

σ0 ` σ ↓M

σ0 ` (σ ,{` 7→ {[ f = v]}	}) ↓M
M-2

σ0 ` σ2,σ1 ↓M
σ0 ` σ1,σ2 ↓M

M-3
σ0 ` · ↓ ·

M-4

σ ` ê1 ↓ ê2;M Closing Fine expressions

σ ` σ ↓M ê2 = ρ ê1
ρ = {[ /̀v̂] | ` ∈ FV (ê1)∧σ ` ` ↓ v̂;L}

σ ` ê1 ↓ ê2;M

σ ;Γ;Y ` e =⇒C ê;M Top-level judgment: Translating FX expressions to Fine programs with token stores

T-Trans
Γ;Y ` e =⇒C ê1 σ ` ê1 ↓ ê;M

σ ;Γ;Y ` e =⇒C ê;M

Figure 6. Translating FX runtime configurations to Fine
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Given an FX signature S, we derive a Fine signature Ŝ, using the following judgment: td,S Ŝtd , Ŝ when td  Ŝtd and S Ŝ. The
translation of a single type declaration is defined below:

(τ = {[ f1:τ1; . . . ; fn:τn | Φ]}) 
(prims,τ::?), (prims,Tokenτ ::τ ⇒ A)
(prims,MkTokenτ : x:τ → Tokenτ x)
(prims,Dτ : f1:τ1→ . . .→ fn:τn→ τ),
mkτ : x1:τ1→ . . .→ xn:τn→ (tokens(x1:τ1, . . . ,xn:τn)∗{ : unit |Φ[xi/self. fi]})→ (x:τ ∗Token x∗{ : unit |

∧
i x. fi = xi}),

upd fk : x:τ → y′:τk→ (tokens(x:τ,y′:τk)∗unit)→ (y:τk ∗ x′:τ ∗ tokens(y:τk,x′:τ)∗{ : unit | y = x. fk ∧ y′ = x′. fk})
destrτ : x:τ → (tokens(x:τ)∗unit)→ ( f1:τ1 ∗ . . .∗ fk:τk ∗ tokens( f1:τ1, . . . , fn:τn)∗{ : unit|

∧
fi = x. fi})

Lemma 4 (Preservation for Fine). Given (M, ê1) and Ŝ; Γ̂, such that

(1) Ŝ; Γ̂ |= M
(2) Ŝ; Γ̂;X ` ê1 : τ̂ , for X ⊆ domM

(3) (M, ê1)
fine→
p (M′, ê2)

Then, there exists Γ̂′,X ′ such that Ŝ; Γ̂′;X ′ ` ê2 : τ̂ and Ŝ; Γ̂′ |= M′.
Furthermore, for ∆X = (dom(M)∪dom(M′))\ (dom(M)∩dom(M′)), if dom(M′)⊇ dom(M) then X ′ = X ∪∆X ; otherwise X ′ = X \∆X .

Proof. Extension of Fine’s soundness proof to account for the three additional base cases, R-New, R-Upd, and R-Destr.

Lemma 5 (Progress for Fine). Given (M, ê1) and Ŝ; Γ̂, such that

(1) Ŝ; Γ̂ |= M
(2) Ŝ; Γ̂;X ` ê1 : τ̂ , for X ⊆ domM
(3) ê1 6= v̂

Then, there exists M′, ê2 such that (M, ê1)
fine→
p (M′, ê2).

Proof. Extension of Fine’s soundness proof to account for the three additional base cases, R-New, R-Upd, and R-Destr.

Equivalence of Fine configurations

(M1, ê1)∼= (M2, ê2)
M1 ∼= M2 M1 ` ê1 ∼= ê2

(M1, ê1)∼= (M2, ê2)
C-Cfg

M1 ∼= M2
(M2,M1)∼= M
(M1,M2)∼= M · ∼= ·

M1 ∼= M2

(M1,(tokl , v̂))∼= (M2,(tokl , v̂))

M ` ê1 ∼= ê2
tokl 6∈ dom(M)

M ` û`:τ1
∼= û`:τ2

C-Dead

M = M′,(tokl ,MkToken (v̂1, . . . , v̂n)
`:τ ) ûi = (v̂′1, . . . , v̂

′
n) ∃ k, v̂k 6= v̂′k

M ` û`:τ1
∼= û`:τ2

C-Stale

M ` ê∼= ê
C-id

M ` êi ∼= ê′i ∀i
M ` let x̄ = ê1 in ê2 ∼= let x̄ = ê′1 in ê′2

C-Let

M ` v̂i ∼= v̂′i ∀i
M ` D v̂1 . . . v̂n ∼= D v̂′1 . . . v̂

′
n

C-Data
M ` v̂i ∼= v̂′i ∀i

M ` (v̂1, v̂2)∼= (v̂′1, v̂
′
2)

C-Pair

M ` ê1 ∼= ê2

M ` λx:τ̂.ê1
∼= λx:τ̂.ê2

C-Lam
M ` v̂i ∼= v̂′i ∀i

M ` (v̂1 v̂2)∼= (v̂′1 v̂′2)
C-App

Lemma 6 (Structural equivalence). For all (M1, ê1) and (M2, ê2) such that (M1, ê1)∼= (M2, ê2).
There M1 = M2, and exists ê and σ1 = (x1,ul

1), . . .(xn,ul
n) and σ2 = (x1,vl

1), . . .(xn,vl
n)

Such that ê1 = σ1ê and ê2 = σ2ê
And vice versa.

Proof. Easy induction on the structure of the equivalence relation.
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Lemma 7 (Equivalent Fine configurations simulate each other). Given and FX signature S and its Fine counterpart Ŝbase such that S Ŝbase.
Then, for all (M1, ê1), (M2, ê2) such that

A1 (M1, ê1)∼= (M2, ê2)

A2 Ŝbase; Γ̂(M1);domM1 ` ê1 : τ

A3 Ŝbase; Γ̂(M1);domM1 ` ê2 : τ

A4 (M1, ê1)
fine→
p (M′1, ê

′
1)

Then, (M2, ê2)
fine→
p (M′2, ê

′
2) And (M′1, ê

′
1)
∼= (M′2, ê

′
2)

Proof. We start by appealing to Lemma 6, and deriving ê, σ1, and σ2 such that ê1 = σ1ê and ê2 = σ2ê.
From well-typedness and an inversion of (T-Loc) we find that for each ul:τ in the range of σ1, σ2; we have S 3 (prims,τ).
We proceed by induction on the structure of the reduction relation (A4).
We consider two main sub-cases.

Sub-case p = pub:
From the metatheory of Fine, specifically from the soundness of Fine’s module system, we have a value abstraction result.
Namely, for Ŝ; Γ̂(M),x : (prims, τ̂x);X ` e : τ

and for any two u1 and u2 such that Ŝ ` u1 : τ̂x and Ŝ ` u2τ̂x.

If (M,e[u1/x])
fine→
pub (M′,e′).

Then, there exists e′′ such that e′ = e′′[u1/x] and (M,e[u2/x])
fine→
pub (M′,e′′[u2/x]).

From this result, and the inverse direction of Lemma 6, we get our conclusion.
Sub-case p = prims:

Sub-sub-case R-New:
We have e1 = mkτ̂ ûl1 , . . . , ûln(l1, . . . , ln,()) e2 = mkτ̂ v̂l1 , . . . , v̂ln(l1, . . . , ln,())
Since we have M1 = M2 we have M1(li) = M2(li) = MkToken ŵi : Tokenŵi.
From well-typedness of e1 and e2 we have li : Tokenûi and li : Tokenv̂i.
Together, from convertibility of types, we have ui = vi = li.
Thus, e1 = e2 and we have the conclusion.
Sub-sub-case R-Upd and R-Destr:
Analogous to (R-New)—the presence of the tokens and M1 = M2 guarantees that e1 = e2.
Sub-sub-case R-Ctx: Simple, from the induction hypothesis.

A store and expression respect ownership constraints on object graph

RespectsOwnership σ ê RespectsOwnership σ ê ⇐⇒ OwnershipOK σ {l | tokl ∈ FV (ê)}

OwnershipOK σ L , for L = l1, . . . , ln

OwnershipOK (σ2,σ1) L
OwnershipOK (σ1,σ2) L

RO-Perm
OwnershipOK • L

RO-Nil

FreeLocs(v)∩dom(σ) = /0 l 6∈ Reachable σ L OwnershipOK σ L

OwnershipOK (σ +{l 7→ {[ f = v]}	}) L
RO-Dead

FreeLocs(v)∩dom(σ) = /0
Parents σ l∩Reachable σ L = /0 OwnershipOK σ L

OwnershipOK (σ +{l 7→ {[ f = v]}⊕}) (L, l)
RO-Root

l 6∈ L FreeLocs(v)∩dom(σ) = /0
|Parents σ l∩Reachable σ L| ≤ 1 OwnershipOK σ L

OwnershipOK (σ +{l 7→ {[ f = v]}⊕}) L
RO-Nested

` ∈ Reachable σ L

` ∈ L
` ∈ Reachable σ L

(Parents σ `)∩ (Reachable σ L) 6= /0
` ∈ Reachable (σ +{` 7→ }ι ) L

We write Parents σ ` for {`′ | `′ ∈ dom(σ) ∧ ` ∈ FreeLocs(σ(l′))}, and Ancestors σ ` for the fixed point of this relation. We write
Live σ for {` ∈ dom(σ) | σ(`) = {[ f = v]}⊕}
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Lemma 8 (Parents). Given σ , L such that OwnershipOK σ L.
Then ∀l ∈ domσ .|L∩ (l∪Ancestors σ l)| ≤ 1

Proof. Straightforward, by induction on the definition of OwnershipOK σ L.

Lemma 9 (Canonical derivations for RO).
If OwnershipOK σ (L1,L2).
Then, there exists a permutation (σ0,σ1,σ2) of σ ,
Such that, OwnershipOK (σ0,σ1,σ2) (L1,L2).
Where,

(1) OwnershipOK (σ0,σ1) L1 and OwnershipOK σ2 L2
(2) dom(σ0) = dom(σ)\Live (σ)
(3) dom(σ1) = Reachable σ L1∩Live (σ)
(4) dom(σ2) = Reachable σ L2∩Live (σ)

Proof. By induction on the definition of OwnershipOK σ L, using the fact that the side conditions of the inductive rules are monotonic in
σ .

Lemma 10 (Extensibility of RO).
If OwnershipOK σ1 L1
and OwnershipOK σ2 L2.
where, L1∩L2 = /0,
L′1 = L1 \Reachable σ2 L2,
∀l ∈ dom(σ1).∀l′ ∈ dom(σ2). l ∈ FreeLocs(σ2(l′))⇒ l′ ∈ Reachable σ2 L2,
and ∀l ∈ dom(σ2).∀l′ ∈ dom(σ1). l ∈ FreeLocs(σ1(l′))⇒ σ1(l′) = {[ f = v]}	.
Then, OwnershipOK (σ1,σ2) (L′1,L2).

Proof. By induction on the derivation of OwnershipOK σ1 L1, using the fact that no dead locations in σ2 are reachable from L1,L2.

Lemma 11 (Soundness of small footprints on single steps).
If Γσ ` e : C, where C ∼= {X} { } and (σ ,e) fx→ (σ ′,e′).
Then, there exists σ0,σ1,σ

′
1 such that σ is a permutation of σ0,σ1; and

σ ′ is a permutation of σ0,σ
′
1; and

dom(σ1) = X and FreeLocs(σ2) = domσ1∪L, where L fresh.

Proof. By induction on the derivation of the transition.

Lemma 12 (Input variables correspond to tokens). If Γσ ` e⇒C ê
and C ∼= {X} { }
and Ŝbase; Γ̂σ ;dom(Γ̂σ ) ` ê : τ̂ .

Then FreeTokens(ê) = X.

Proof. Induction over the structure of the token-threading judgment.

Lemma 13 (Memo-ized derivations). If Γ;Ẏ |= e⇒C ê. Then, ∃Y.Γ;Y ` e =⇒C ê

Proof. Induction on the rewriting judgment.

Lemma 14 (Input variables correspond to tokens). If Γσ ` e⇒C ê and C ∼= {l,X}r : τ { }. Then tokl ∈ FV (ê).

Proof. Induction over the structure of the token-threading judgment.

Lemma 15 (Type translation). If Γσ ;Y ` e =⇒C ê. Then, exists Ĉ, Γσ `C⇒ Ĉ.

Proof. Induction over the structure of the token-threading judgment.

Lemma 16 (Well-typed translations preserve types). If Γσ ` e⇒C ê and Γ̂σ ` ê : τ̂ and Γσ `C Ĉ. Then Γ̂σ ` τ̂ <: Ĉ.

Proof. Induction over the structure of the token-threading judgment.

Lemma 17 (Substitution for type translation). Given Γ,x:τ `C Ĉ, and Γ ` v : τ . Then, Γ `C[v/x] Ĉ[v̂/x].

Proof. By the same property for the formulas and type that constitute C, which is proven by structural induction.

Lemma 18 (Substitution). Given all of the following:

(1) Γ,x:τ;Y ` e =⇒C ê
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(2) Γ;Y ′ ` v =⇒C′ v̂, where C′ ∼= { }x:τ {Y ′}
(3) Γ̂,x:τ̂,Y ′:τ, toks(x:τ,Y ′):τ ′ ` ê : Ĉ
(4) Γ̂ ` v̂ : Ĉ′

Then,

(A) There exists v̂x, v̂Y ′ , v̂tokens such that v̂ = (v̂x, v̂Y ′ , v̂tokens,()), and
(B) Γ;Y ` e[v/x] =⇒C[v/x] ê[v̂x/x][v̂Y ′/Y ′][v̂tokens/toks(x:τ,Y ′)]

Proof. (A) by induction on (2). (B) by induction on (1).

Lemma 19 (Effects of FX small steps are small). If (σ1,e1)
fx→ (σ2,e2). Then, one of the following holds true:

(1) σ1 = σ2
(2) ∃ fresh l.σ2 = σ1 +({l 7→ {[ f = v]}}⊕) for some {[ f = v]}.
(3) ∃ unique l.σ1(l) = {[ f = v]}⊕ ∧ σ2(l) = {[ f = v]}	 and ∀l′ 6= l.σ1(l) = σ2(l)
(4) ∃ unique l.σ1(l) = {[ f = v]}ι ∧ σ2(l) = {[v′]}ι and ∀l′ 6= l.σ1(l) = σ2(l)

Proof. By induction on the derivation of the step.

Lemma 20 (Equivalence of dead locations). For all ê, v̂`:τ1 , v̂`:τ2 , M1, M2; if l 6∈ dom(M1) and l 6∈ dom(M2), and M1 ∼= M2, then
M1 ` ê[v̂`:τ1 ]∼= ê[v̂2` : τ].

Proof. Easy, from application of (C-Dead)

Lemma 21 (Equivalence of stale locations). For all ê, v̂`:τ1 , v̂`:τ2 , M1, M2; if v̂1 = (u1, . . . ,un) and M1(l) = (w1, . . . ,wn) where uk 6= wk; and
M1 ∼= M2. Then M1 ` ê[v̂`:τ1 ]∼= ê[v̂`:τ2 ]. Similarly for M2, v̂2.

Proof. Easy, from application of (C-Stale)

Theorem 22 (Fine programs simulate FX programs). For all FX programs e and well-typed stores σ1, if all of the following are true

(T0) σ1;Γσ1 ;Y ` e1 =⇒C1 ê1;M1 where C1 ∼= {X1}r:τ {Y}
(T1) Γσ1 `C1 Ĉ1
(F0) Ŝbase; Γ̂σ1 ;domM ` ê1 : Ĉ1
(R0) OwnershipOK σ1 X1
(E0) (e1,σ1)

fx→ (e2,σ2)

Then, there exists M2, ê2 such that

(1) (M1, ê1)
fine→
p

∗
(M2, ê2)

(2) ∃Y′ such that σ2;Γσ2 ;Y′ ` e2 =⇒C2 ê′2;M2, where C2 ∼= {X2}r:τ {Y}
(3) M2 ` ê2 ∼= ê′2
(4) Ŝbase; Γ̂σ2 ;domM2 ` ê′2 : Ĉ2 where Γσ2 `C2 Ĉ2
(5) For all σ ,σ ′1 such that σ1 = σ ,σ ′1 and OwnershipOK σ ′1 X1; there exists σ ′2 such that σ2 = σ ,σ ′2 and OwnershipOK σ ′2 X2.

Proof. By induction on the structure of (E0), the FX reduction relation.
Case Ctx: e1 = let x = ea1 in eb

By inversion on (E0), we have (ea1,σ1)
fx→ (ea2,σ2)

and (e1,σ1)
fx→ (let x = ea2 in eb,σ2)

By discrimination, we have (T0) is an application of T-Let-Top
By inversion of (T0), we get

(T 1)Γσ1 ;Y.1 ` ea1⇒Ca1 êa1−open where Ca1 ∼= {Xa1}x:τ {Ya}
(T 2)Γσ1 ,x:τ;Y.2 ` eb⇒Cb êb−open

And ê1 = (let x,Ya, toks(x:τ,Ya) = êa1 in êb)
Where, êa1 = ρ1êa1−open and êb = ρ1êb−open, for ρ1 = {[l/v̂] |M1(l) = MkToken v̂}
Inverting (F0), we get Ŝbase; Γ̂σ1 ;X1 ` êa : Ĉa

′ where X1,X2 = domM1.
And from Lemma 16, we get Ĉa = Ĉa

′,
We apply the induction hypothesis to get:

(A1-fineto-A2) (M1; êa1)
fine→
p

∗
(M2; êa2)

(A2-transto-A2) ∃Y′′.σ2;Γσ2 ;Y′′ ` ea2⇒Ca2 ê′a2;M2
(A1-tokens) Ca2 ∼= {Xa2}x:τ {Ya}
(A2-sim-A2’) M2 ` êa2 ∼= ê′a2
(A2-RO) For all σ ,σ ′1,σ

′
2 such that σ1 = σ ,σ ′1 and OwnershipOK σ ′1 Xa1; there exists σ ′2 such that σ2 = σ ,σ ′2 and

OwnershipOK σ ′2 Xa2.
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Now, for the goals:
Goal (1): From an application of R-Ctx, using (A1-fineto-A2) we get

(M1; ê1)
fine→
p

∗
(M2; let x,Ya, toks(x,Ya) = êa2 in êb)

Goal (2): Next, we derive
σ2;Γσ2 ;(1:Y′′,2:Y.2) ` let x = ea2 in eb⇒C′ let x,Ya, toks(x:τ,Ya) = êa2 in ê′b;M2
We do this by applying (T-Trans),
re-using the first premise of (A1-transto-A2) to translate σ2 to M2.
Then, we apply (T-Let-Top) in the second premise,
re-using the second premise (A1-transto-A2) in the first premise of (T-LetTop).
For the second premise of (T-Let-Top),
we first observe that dom(σ1)⊆ dom(σ2) and hence Γσ2 ≥ Γσ1 .
Thus, appealing to weakening for the translation judgment,
we apply (T2) for the second premise of (T-Let-Top)
And ov(C′) = ov(C), by construction.
Note, êb differs from ê′b in some stale locations.
This is the content of the next sub-goal.

Goal (3): Our goal is to show (M2, ê2)∼= (M2, ê′2).
We apply (C-Cfg) and establish M2 ∼= M2 in its first premise
by inverting (A2-Sim-A2’) and using its first premise.
For the second premise, we apply (C-Let)
use the second premise of (A2-sim-A2’) in its first premise.
What’s left to show is M2 ` êb ∼= ê′b.
Recall, êb = ρ1êb−open, for
ρ1 = {[l/v̂] | σ1 ` l ↓ v̂∧ (l ∈ dom(M1)⇒M1(l) = MkToken v̂)}
And, ê′b = ρ2êb−open, for
ρ2 = {[l/v̂] | σ2 ` l ↓ v̂∧ (l ∈ dom(M2)⇒M2(l) = MkToken v̂)}
Where, σ1 ` σ1 ↓M1 and σ2 ` σ2 ↓M2.
Appealing to Lemma 19, we have four sub-cases.
Sub-case (FX step is pure): We have σ1 = σ2 and we’re done.
Sub-case (FX allocates): We have ∃ fresh l.σ2 = σ1 +({l 7→ {[ f = v]}}⊕)

In this case, since l is fresh, we have l 6∈ FreeVars(êb−open)
And, so, ∀l 6= l′.σ1 ` l′ ↓ v̂⇒ σ2 ` l′ ↓ v̂.
Thus, we have êb = ê′b.

Sub-case (FX destructs): We have
∃unique l.σ1(l) = {[ f = v]}⊕ ∧ σ2(l) = {[ f = v]}	
and ∀l′ 6= l.σ1(l) = σ2(l)
In this case, we have ∀l.σ1 ` l ↓ v̂⇒ σ2 ` l ↓ v̂.
Thus, once again, we have êb = ê′b.

Sub-case (FX updates): We have
∃unique l.σ1(l) = {[ f = v]}ι ∧ σ2(l) = {[v′]}ι

and ∀l′ 6= l.σ1(l) = σ2(l)
In this case, we consider the minimal set of locations ∆ where
l′ ∈ ∆⇒ σ1 ` l′ ↓ v̂1 and σ2 ` l′ ↓ v̂2 for v̂1 6= v̂2.
It is easy to show that ∆ = Ancestors σ1 l.
For the distinguished location l, since M1(tokl) 6= M2(tokl),
we use Lemma 21 (equivalence of stale locations) to show that
M2 ` êb−open[v̂l1/l]∼= êb−open[v̂l2/l], where Mi(tokl) = MkToken v̂li
For every other location l′ 6= l∧ l′ ∈ ∆, we will show tokl′ 6∈ dom(M2).
As a consequence, using Lemma 20, we can derive M2 ` êb ∼= ê′b.
First, we have (ea1,σ1)

fx→ (ea2,σ2).
Applying Lemmas 11 and 14, we have l ∈ Xa1 and tokl ∈ FV (êa1).
Since we have OwnershipOK σ1 X1, where X1 = FreeTokens(ê1), we have:
∀li 6= l ∈ (Ancestors σ1 l = ∆). 6 li ∈ Reachable σ1 X1
And, σ1(li) = {[ fi = vi]}	, and hence tokli 6∈ dom(M1).
Since, by assumption, ∀li 6= l.σ1(li) = σ2(li), we have tokli 6∈ dom(M2), as required.

Goal (4): Easy from soundness of Fine and the type-translation lemma.

Goal (5):
We start by considering an auxiliary goal, OwnershipOK σ2 X2.

Sub-case Cut OwnershipOK σ2 X2:
First, from OwnershipOK σ1 X1 we conclude OwnershipOK σ1 (Xb,Xa1),

21 2010/10/12

Preliminary version made available for peer review. Subject to revision. – October 12, 2010



Where, by Lemma 14, Xa1 = FreeTokens(êa1) = iv(Ca1) and Xb = FreeTokens(êb).
By Lemma 9 (canonical forms for RO), we have OwnershipOK (σ ,σ ′) (Xb,Xa1),
where OwnershipOK σ ′ Xa1 and dom(σ ′) = Reachable σ1 Xa1∩Live (σ1)
Next, by Lemma 11 (small footprints) and (T1), we have that l 6∈ Xa1 ⇒ σ1(l) = σ2(l).
Since we have OwnershipOK σ ′ Xa1, we clearly have domσ ∩Xa1 = /0 and hence σ2 = (σ ,σ ′′),
where (FL-Sigma-2) FreeLocs(σ ′′) = domσ ′∪L, for L fresh.
From (A2-RO), we get that OwnershipOK σ ′′ Xa2, and our goal is now to show OwnershipOK (σ ,σ ′′) (Xb,Xa2).
We apply Lemma 10 (extensibility for RO) to OwnershipOK σ Xb and OwnershipOK σ ′′ Xa2
From soundness of affine typing, we have that Xa2∩Xb = /0, since these correspond to tokens.
We are left with the sub-goal ∀l ∈ dom(σ ′′).∃l′.l ∈ FreeLocs(σ(l′))⇒ l′ 6∈ Live (σ)
However this follows from (FL-Sigma-2) and OwnershipOK σ ,σ ′ Xb,Xa1, and domσ ′ = Reachable σ1 Xa1,
Which gives us l ∈ domσ ′⇒ l 6∈ FreeLocs(Live σ), as needed.

We return now to the main goal:
For all σ ,σ ′1,σ

′
2 such that σ1 = σ ,σ ′1 and OwnershipOK σ ′1 X1; there exists σ ′2 such that σ2 = σ ,σ ′2 and OwnershipOK σ ′2 X2.

We start by appealing to canonical forms on OwnershipOK σ2 X2.
This gives us OwnershipOK (σ0,σ

′
2) X2, where domσ0∩Reachable σ2 X2 = /0

And, importantly, OwnershipOK σ ′2 X2, for dom(σ ′2) = Reachable σ2 X2.
I.e, σ ′2 is the smallest fragment of σ2 on which RespectsOwnership holds true.
Now, consider some arbitrary partition of σ1 = σ ′0,σ

′
1 where OwnershipOK σ ′1 X1.

By small footprints, Lemma 11, σ2 = σ ′0,σ
′′
2 .

By construction, since σ ′2 is the smallest fragment of σ2 on which RespectsOwnership holds,
σ ′′2 = σ ′′′0 ,σ ′2, where σ ′′′0 ⊆ σ0.
Since we have that σ0∩Reachable σ2 X2 = /0 and OwnershipOK σ ′′′0 ·
we apply Lemma 10 (extensibility for RO), to get OwnershipOK σ ′′2 X2, as needed.

Case Let: e = let x = va in eb
By inversion on (E0), we have (e,σ)

fx→ (eb[va/x],σ)
By discrimination, we have (T0) is an application of (T-Let-Top)
By inversion of (T0), we get
(T1) Γσ ;Y.1 ` va⇒Ca v̂a, where Ca ∼= { }x:τ {Ya}
(T2) Γσ ,x:τ;Y.2 ` eb⇒Cb êb
And ê = let x,Ya, toks(x:τ,Ya), = v̂a in êb
Inverting (F0), and using Lemma 16, we get
(Fa) Ŝbase; Γ̂σ ;Xa ` v̂a : Ĉa
(Fb) Ŝbase; Γ̂σ ,x:τ,Ya:τYa , toks(x:τ,Ya), : unit;Xb ` êb : Ĉb
We appeal to the translation of computation types to note that
(Ca-Tuple) Ĉa = Σ(x:τ,Ya, toks(x:τ,Ya),unit)
Appealing to canonical forms in Fine, and well-typedness of v̂a, we conclude
(Va-Tuple) v̂a = (v̂ax, v̂Ya , v̂tokens,())
Now, for the goals:

Goal (1): We use (Fine-Let) to derive:

(M1; let x,Ya, toks(x:τ,Ya), = v̂a in êb)
fine→
p (M1; êb[v̂ax/x][v̂Ya/Ya][v̂tokens, toks(x:τ,Ya)])

Goal (2): From Lemma 18, with (T2), (T1), (Fb) and (Fa), we derive:
Γσ ;Y.2 ` eb[va/x] =⇒Cb[va/x] êb[v̂ax/x][v̂Ya/Ya][v̂tokens, toks(x:τ,Ya)]
(Using determinism of canonical forms to identify v̂ax etc.

Goal (3): We need to show:
M1 ` êb[v̂ax/x][vYa/Ya][vtokens, toks(x:τ,Ya)]∼= êb[v̂ax/x][vYa/Ya][vtokens, toks(x:τ,Ya)]
Which is trivial from an application of (C-Id).

Goal (4): Easy, from the soundness of Fine.

Goal (5): For any partition of σ1 = σ0,σ
′
1 such that OwnershipOK σ ′1 X1, we have to show OwnershipOK σ ′1 X2.

However, X2 = FreeTokensêb[v̂ax/x][vYa/Ya][vtokens, toks(x:τ,Ya)]
and X1 = FreeTokensêb, v̂ax,vYa ,vtokens.
Thus, we have X2 ⊆ X1, and OwnershipOK σ ′1 X2 follows readily.
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Case Fun: Much like (Let), using Lemma 18 in the special case where Y ′ = /0

Case New: e1 = newτ {[ f = v]}
And we have (e1,σ1)

fx→ (l,σ2) where σ2 = (σ1 +{` 7→ {[ f = v]}}))
By discrimination, we have (T0) is an application of (T-Base), with (T-Y) in the premise, with (T-New) in its premise.
So, we have
ê1 = let x, tokx, = mkτ v̂1 · · · v̂n (tokens(· · ·),()) in x, v̂Y , toks(x, v̂Y )
where v̂Y = {v̂y1 | y ∈ Y ∧ σ1 ` y ↓ v̂y1}
Goals:

Goal (1) We aim to use (R-Ctx) with (R-New) in the premise to get

(M1; ê1)
fine→
p (M2; let x, tokx, = (v̂, tokl ,()) in x, v̂Y , tokens(x, v̂Y ))

fine→
p (M2;(v̂, v̂Y , tokl , toks(v̂Y )))

For the first step, we need to show M1 = M0,TokenVal (v̂1), . . . ,TokenVal (v̂n).
For this, we appeal to well-typedness of the Fine program and the base signature Ŝbase.
We have in Ŝbase the binding mkτ̂ : (x1 : τ̂1 ∗ . . .∗ xn : τ̂n ∗Token x1 ∗ . . .∗Token xn ∗{ :unit |Φ})→ τ̂ .
Where MkToken : x : τi→ Token x.
Thus, soundness of dependent typing in Fine gives us the premise of (R-New) and we get
M2 = M0,(tokl , v̂), for l fresh and v̂ = MkToken (1, v̂1, . . . , v̂n)

l:τ̂ .

Goal (2)
We derive Γσ2 ;Y ` l =⇒{l,Y}x:τ {Y} ê′2;M2 using (T-Base) with (T-Return).
where ê′2 = ρ((l,Y, toks(r,Y ))) and ρ = {[l′/v̂′ ] | l′ ∈ (l,Y )∧σ2 ` l′ ↓ v̂′∧ (tokl ∈ domM2⇒M2(tokl) = MkToken v̂)}
And we need to show σ2 ` σ2 ↓M2,
where σ2 = σ1,(l 7→ {[ f = v]}⊕) and σ1 = (l1 7→ v⊕1 ), . . . ,(ln 7→ v⊕n )
and σ1 ` σ1 ↓M1 and σ1 ` vi ↓ v̂i.
To do this, we start with an application of (M-1), and obtain M′0,(tokl , v̂) where σ2 ` σ0 ↓M′0.
To show that M′0 = M0, we appeal to OwnershipOK σ1 (tokens(l1, . . . , ln)) which ensures that {l1, . . . , ln}∩ (FreeLocs(σ0)∩

Live σ0) = /0.

Goal (3) We need to show M2 ` (v̂, v̂Y , tokl , toks(v̂Y ))∼= ρ((l,Y, toks(r,Y )))
By construction, we have ρ(l) = v̂, but, for y ∈ Y , ρ(y) = v̂y2 , where σ2 ` y ↓ v̂y2

We need to show that σ2 ` y ↓ v̂y2 ⇐⇒ σ1 ` y ↓ v̂y2 .
Suffice to show that Y ⊆ dom(σ0).
This follows from affine typing of Fine and freshness of l, which ensures that {toky | y ∈ Y}∩{l1, . . . , ln, l}= /0.

Goal (4) Well-typedness of the ê′2 follows from soundness of Fine.

Goal (5) Our goal is essentially to show OwnershipOK σ2 l,Y , given OwnershipOK σ0 Y .
Suffice to show OwnershipOK ((l1 7→ v⊕1 ), . . . ,(ln 7→ v⊕n ),(l 7→ {[ f = v]}⊕)) l.
This follows from a single application of (RO-Root) with (RO-Nil).
We reach the goal using an application of Lemma 10.

Case FldUpd: e1 = l. fk :=: v′k
And we have (e1,σ1)

fx→ (vk,σ2) where
σ1 = (σ0 +{l 7→ {[ fi = vi]}n

i=1}) and
σ2 = (σ0 +{l 7→ . . . ; fk = v′k; . . .})
By discrimination, we have (T0) is an application of (T-Base), with (T-Y) in the premise, and (T-Upd) in its premise.
So, we have

ê1 = let x,y, tokx:τ,y, = upd fk (v̂, v̂
′
k, toks(v̂, v̂′k),()) in x, v̂Y , tokx:τ,v̂Y

Goals:

Goal (1):
We aim to use (R-Ctx) with (R-Upd) in the premise to get

(M1; ê1)
fine→
p (M2; let x,y, tokx:τ,y, = v̂k, v̂′, toks(v̂, v̂k),() in x, v̂Y , tokx:τ,v̂Y )

fine→
p (M2;(v̂k, v̂Y , tokx:τ,v̂Y ))

For the first step, we need to show M1 = M0,(TokenVal (v̂),TokenVal (v̂′k).
For this, we appeal to well-typedness of the Fine program and the base signature Ŝbase.
We have in Ŝbase the binding upd fk : (x : τ̂ ∗ f : τ̂k ∗Token x∗Token x∗{ :unit |Φ})→ τ̂ ′.
Where MkToken : x : τi→ Token x.
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Thus, soundness of dependent typing in Fine gives us the premise of (R-New) and we get
M2 = M0,TokenVal (v̂′),TokenVal (v̂k), for v̂′ = MkToken ( j, v̂1, . . . , v̂′k, . . . , v̂n)

l:τ̂ .

Goal (2):
We derive Γσ2 ;Y ` vk =⇒{ }x:τ {Y} ê′2;M2 using (T-Base) with (T-Return).
where ê′2 = ρ((v̂k,Y, toks(v̂k,Y ))) and ρ = {[l′/v̂′ ] | l′ ∈ (l,Y )∧σ2 ` l′ ↓ v̂′∧ (tokl ∈ domM2⇒M2(tokl) = MkToken v̂)}
And we need to show σ2 ` σ2 ↓M2,
Which follows along the lines of the previous case (New).

Goal (3) We need to show M2 ` (v̂k, v̂Y , tokl , toks(v̂k, v̂Y ))∼= ρ((v̂k,Y, toks(v̂k,Y )))
By construction, if l ∈ Y then ρ(l) = v̂′, but, for y 6= l ∈ Y , ρ(y) = v̂y2 , where σ2 ` y ↓ v̂y2

We need to show that σ2 ` y ↓ v̂y2 ⇐⇒ σ1 ` y ↓ v̂y2 .
Suffice to show that (Y \{l})⊆ dom(σ0).
This follows from affine typing of Fine, which ensures that {toky | y 6= l ∈ Y}∩{l, v̂k}= /0.

Goal (4) Well-typedness follows from soundness of Fine.

Goal (5) OwnershipOK σ2 tokens(v̂k,Y ), follows from construction.

Case Destr: e1 = destruct ` as {[ f = z]} in eb
And, we have (e1,σ1)

fx→ (eb[vi/xi ]
n
i=1,σ2)

where σ1 = σ0,(l 7→ {[ f = v]}ι )
and σ2 = σ0,(l 7→ {[ f = v]}	).
By inversion of (T0), we have
ê1 = let zi, tokzi , = in destrτ v̂ tokvêb
where σ1 ` l ↓ v̂
Goal (1) We aim to use (R-Ctx) with (R-Destr) followed by (R-Let) to derive:

(M1; ê1)
fine→
p (M2; let zi, toks = v̂, tokens(v̂) in êb)

fine→
p (M2; êb[v̂, tokens(v̂)/zi, toks])

From OwnershipOK σ1 tokv, we have M1 = M0,(i, v̂1, . . . , v̂n)
And hence, M2 = M0,TokenVal v̂1, . . . ,TokenVal v̂n.

Goal (2)
We derive Γσ2 ;Y ` (eb[vi/xi ]

n
i=1 =⇒{ }x:τ {Y} ê′2;M2

using (T-Base) and appealing to the substitution lemma for the translation (as in the Let case).
We show that σ2 ` σ2 ↓M2 by observing that σ2 = σ0,(l 7→ {[ f = v]}	).
while σ1 = σ0,(l 7→ {[ f = v]}⊕).
Hence the contents of σ1(l), previously enclosed within M1(tokl), each receive their own location in M2, as required.

Goal (3) To show that M2 ` êb[v̂, tokens(v̂)/zi, toks]∼= ê′2
we first observe using the substitution lemma, that ê′2 = êb[v̂′, tokens(v̂′)/zi, toks]
where σ1 ` vi ↓ v̂i, while σ2 ` vi ↓ v̂′i.
However, σ1 and σ2 differ only on the ι-marker on location l and hence v̂ = v̂′.

Goal (4) Well-typedness follows from soundness of Fine.

Goal (5) OwnershipOK σ2 tokens(v̂1, . . . , v̂n),Y follows from construction,
since tokl 6∈ Y, tokens(v̂1, . . . , v̂n).

Definition 23 (Efficiency Preorder(Arun-Kumar and Hennessy 1992)).
A binary relation R ⊆ Fine× FX is an efficiency prebisimulation up to S (on the right) if for all (e1,σ)R(M,e2),

(1) if (e1,σ)
fx→ (e′1,σ

′) then (M,e2)
fine→
p

+

(M′,e′2) such that (e′1,σ
′)RS (M′,e′2).

(2) if (M,e2)
fine→
p (M′,e′2) then (e1,σ)

fx→? (e′1,σ
′) such that (e′1,σ

′)RS (M′,e′2).

We write (e1,σ)- (M,e2) if there is an efficiency prebisimulation R up to the identity relation such that (e1,σ)R(M,e2).

Not that for all relations S contained in strong bisimilarity, if (e1,σ) (M,e2) are related by some efficiency prebisimilarity up to S then
(e1,σ)- (M,e2).

Theorem 24. If ·;Γ·; · ` e =⇒C ê; ·, where C ∼= { /0}r:τ {Y}, · `C Ĉ and Ŝbase; ·; /0 ` ê : Ĉ, then (e, ·)- (M, ê).
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Proof. Theorem 22 yields the simulation (1) up to ∼=, which is a bisimulation by Lemma 6. The reverse simulation follows from reduction
fine→

p

being deterministic.

Theorem 25. Given a closed FX program e, such that ·;• ` e ê and Ŝbase; ·; · ` ê : τ̂ . Then for any reduction sequence (e, ·) fx→∗ (e′,σ ′), e′
is not error.

Proof. Assume that there is a reduction sequence that ends in error.
We derive false by induction on the length of the sequence, using Theorem 22 for the induction case.
In the base case, e = error, but there is no ê such that Γ;Y ` error =⇒C ê.
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B. Example FX programs and their translation to Fine
===============================================================================
Example program 1 and its translation

FX program:

let x = new_t {f=0} in
let s = x.f := 1 in
s

Annotated FX program:

let x = new_t {f=0} : {}x:t{} in <---- {} r:int {}
let s = x.f := 1 : {x}s:int{x} in <---- {x}r:int{x}

s : {}r:int{}

Note, although the second let has a footprint {x}s:int{x} we translate
it by PUSHING in a type with a smaller output set {x}s:int{} to
respect the scoping rules. I.e., PUSHING can decrease the size of the
output set.

Fine program:

let x, tok_x, _ = mk_t 0 () in
let s,x,tok_x, _ = upd_f x 1 tok_x () in

s, ()
===============================================================================

===============================================================================
Example program 2 and its translation

FX program:

let x = new_t {f=0} in
let s = x.f := 1 in
x

Annotated FX program:

let x = new_t {f=0} : {}x:t{} in <--- {}r:t{}
let s = x.f := 1 : {x}s:int{x} in <--- {x}r:t{}

x : {x}r:t{}

Fine program:

let x, tok_x, _ = mk_t 0 () in
let s,x,tok_x, _ = upd_f x 1 tok_x () in

x, tok_x, ()
===============================================================================

===============================================================================
Example program 3 and its translation

FX program:

let x = new_t {f=0} in
let y = new_t {f=1} in
let _ = x.f := 2 in
let r = y.f := 3 in

r

Annotated FX program:

let x = new_t {f=0} : {} x:t {} in <--------{}s:int{}
let y = new_t {f=1} : {} y:t {} in <------- {x}s:int{x}
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let _ = x.f := 2 : {x}_:int{x} in <------- {x,y}s:int{x,y}
let r = y.f := 3 : {y}r:int{y} in <------- {y} s:int {y}

r : {} s:int {}

PUSH in {x}s:int{} when checking the body of the first let
PUSH {x,y}s:int{} when checking body of 2nd let
PUSH {y}s:int{} for 3rd let
PUSH {}s:int{} for lastlet

Fine program:

let x, tok_x = mk_t 0 in
let y, tok_y = mk_t 1 in
let _, x, tok_x = upd_f x 2 tok_x in
let r, y, tok_y = upd_f y 3 tok_y in

r, ()

===============================================================================
Example program 4 and its translation

FX program:

let x = new_t {f=0} in
let y = new_t {f=1} in
let z =

let _ = x.f := 2 in
let yf = y.f := 3 in
yf in

let _ = x.f := 4 in
()

Annotated FX program:

let x = new_t {f=0} : {} x:t {} in <------ {}_:unit{}
let y = new_t {f=1} : {} y:t {} in <------ {x}_:unit{x}
let z = <--------------------------------- {x,y}_:unit{x,y}

let _ = x.f := 2 : {x}_:int{x} in <--- {x,y}r:int{x,y}
let yf = y.f := 3 : {y}yf:int{y} in <--- {y}r:int{y}

yf : {} r:int {} in
let _ = x.f := 4 :a {x} _:int {x} in <--- {x}_:unit{x}

() : {} _:unit {}

When translating the nested let, we first synth the type
{x,y}_:unit{x,y} for the whole nested let. Then PUSH the type
{y}r:int{x,y} when checking the second second sub-expr. I.e., PUSHING
can also increase the size of the output set.

Fine program:

let x, tok_x, _ = mk_t 0 () in
let y, tok_y, _ = mk_t 1 () in
let z, x, y, tok_x, tok_y, _ =

let _, x, tok_x, _ = upd_f x 2 tok_x () in
let yf, y, tok_y, _ = upd_f y 3 tok_y () in
yf, x, y, tok_x, tok_y, () in

let _ = upd_f x 4 tok_x () in
()

===============================================================================

===============================================================================
Example program 5 and its translation

FX program:

let x = new_t {f=0} in
let f = \y:T. y.g := x in
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let x1 = new_t {f=1} in
let x2 = new_t {f=2} in
let y1 = new_T {g=x1} in
let y2 = new_T {g=x2} in
let _ = f y1 in
let _ = f y2 in

()

Annotated FX program:

let x = new_t {f=0} : {}x:t{} in <-------------------{}_:unit{}
let f = \y:T. y.g := x : {} (y:T -> {y,x} r:t {y}) {} in <--- {x}_:unit {}
let x1 = new_t {f=1} : {} x1:t {} in <--- {x} _:unit {}
let x2 = new_t {f=2} : {} x2:t {} in <--- {x1,x} _:unit {}
let y1 = new_T {g=x1} : {x1} y1:T {} in <--- {x1,x,x2} _:unit {}
let y2 = new_T {g=x2} : {x2} y2:T {} in <--- {y1,x,x2} _:unit {y1}
let _ = f y1 : {y1,x} _:t {y1} in <---- {y1, y2, x} _:unit {y1, y2}
let _ = f y2 : {y2,x} _:t {y2} in <--- {y2,x} _:unit {y2}

() : {}_:unit{}

The issue here is that the closure f captures the object variable x
and is then invoked twice. This program fails to type check (as
intended) due to an affinity failure on the token of x. But, notice
that no closure conversion of f is necessary. And promotion of the
pure function closure into a computation type is automatic.

Fine program:

let x, tok_x , _ = mk_t 0 () in
let f , _ = (\y:T.\tok_y:Token y.\tok_x:Token x.

upd_g y x tok_y tok_x ()), () in
let x1, tok_x1 , _ = mk_t 1 () in
let x2, tok_x2 , _ = mk_t 2 () in
let y1, tok_y1 , _ = mk_T x1 tok_x1 () in
let y2, tok_y2 , _ = mk_T x2 tok_x2 () in
let x1’, y1, tok_x1’, tok_y1 , _ = f y1 tok_y1 tok_x () in
let x2’, y2, tok_x2’, tok_y2 , _ = f y2 tok_y2 tok_x () in <-- affinity failure

()
===============================================================================

===============================================================================
Example program 6

FX program:

let x = new_t {f=1} in
let f = \y:int. x.f += y in

f 1; f 1

FX semantics:
After first call to f, x={f=2}
After second call to f, x={f=3}

Annotated FX program:

let x = new_t {f=1} : {} x:t {} in
let f = \y:int. x.f += y : {}f:(int -> {x} r:int {x}){} in
let _ = f 1 : {x} r:int {x} in
let _ = f 1 {x} r:int {x} in

()

where
(x.f += y) \def= let tmp = x.f := 0 in let z = x.f := tmp + y in z
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After translation to fine:

let x, tok_x = mk_t 1 in
let f =

\y:int. \tok_x.
let tmp, x, tok_x = upd_f x 0 tok_x in
let z, x, tok_x = upd_f x (tmp+y) tok_x in

z, x, tok_x in
let _, x, tok_x = f 1 tok_x in
let _, x, tok_x = f 1 tok_x in <---- fails because wrong value index on token

()
===============================================================================

===============================================================================
Example program 7 and its translation.
Affinity in Fine ensures safety

FX program:

foo: y:T -> {(s)s(y).g.f=0} unit {(t)...}

let x = new_t {f=0} in
let y = new_T {g=...} in
let _ = y.g := x in
let _ = x.f := 17 in

foo y

Annotated FX program:

let x = new_t {f=0} : {} x:t {(s1) s1(x).f=0} in
let y = new_T {g=...} : {} y:T {(s2) s1(x)=s2(x) && .. } in
let _ = y.g := x : {(s2)} _:_ {(s3) s3(y).g=s2(x)} in
let _ = x.f := 17 : {(s3)} _:_ {(s4) s4(x)=17 && s4(y)=s3(y) } in

foo y : {(s4) s4(y).g.f=0} unit {(s5)...} <----- Pre-condition check succeeds
s4(y).g=s3(y).g=s2(x)=s1(x)={f=0}

Translated to Fine:

let x, tok_x = mk_t 0 in
let y, tok_y = mk_T ... in
let _, y, tok_y = upd_T y x tok_y tok_x in
let _, x, tok_x = upd_t x 17 tok_x in <----------affinity failure
foo y tok_y
================================================================================
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