

Analysis of Two Token-Based Authentication Schemes for

Mobile Banking

Saurabh Panjwani, Prasad Naldurg, Raghav Bhaskar
Microsoft Research India

{saurap, prasadn, rbhaskar}@microsoft.com

ABSTRACT
We analyze two token-based authentication schemes, designed for

authenticating users in banking systems implemented over mobile

networks. The first scheme is currently deployed in India by a

mobile banking service provider named Eko with a reach of over

50,000 customers. The second scheme was proposed recently in

[1] (in joint effort with Eko) to fix weaknesses in the first one, and

is now being considered for deployment. Both systems rely on

PINs and printed codebooks (which are unique per user) for

authentication.

In this paper, we present a detailed security analysis of the two

schemes. We show that Eko’s current scheme is susceptible to

PIN recovery attacks and a class of impersonation attacks wherein

the attacker compromises users’ codebooks. The new scheme, on

the other hand, is secure against both these attack possibilities.

We also show that the two schemes are secure against

impersonation attacks where users’ codebooks are not

compromised. Variants of the new scheme with improved security

are also proposed.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection–

authentication.

General Terms

Algorithms, Security, Human Factors.

Keywords

Mobile banking.

1. INTRODUCTION
In the developing regions of the world, there is a steadily

growing interest in using mobile phone networks as a means

to extend financial services to the disenfranchised and rural

populations. Numerous “mobile banking” facilities have

emerged in the last 4 years in countries like India, South

Africa, Kenya and the Philippines and today, these systems

are responsible for carrying millions of dollars of mobile

cash [2,3] to places where conventional bank branches are

either completely unavailable or else too inaccessible for

the ordinary populace.

Just like in conventional banking, security is a real concern

in mobile banking (m-banking) as well, and one of the key

aspects of security that needs to be addressed is user

authentication: If I, as a bank, receive a message stating

“Move $100 from Alice’s account to Bob’s account” over a

mobile network, how do I verify that the sender of the

message is Alice and not someone else impersonating her?

What makes user authentication particularly challenging in

m-banking is the fact that a large fraction of mobile phones

in the developing world have limited inbuilt security

services and are essentially impossible to program with

custom solutions. (See figure 1.) Add to this the fact that

network-level security on GSM phones has a long record

Figure 1. Low-end feature-less phones like these, which

neither support GPRS nor are programmable, dominate the

mobile landscape in developing countries. It is estimated that

over 100 million such phones are in use in India alone [4].

of security vulnerabilities [5] and today’s GSM networks

neither offer good privacy guarantees to users, nor enable

authenticated communication between them [6,7].Together,

these factors make the task of designing authentication

solutions for mobile banking challenging.

In this paper, we analyze two authentication solutions that

have been designed in the context of an m-banking facility

named Eko in India [8, 1]. Eko is a business correspondent

of State Bank of India (SBI), the leading public sector bank

in India, and through its m-banking system, it currently

services over 50,000 customers with a daily transaction

volume of nearly 2,000,000 Indian Rupees (44,000 USD).

The first scheme we analyze in this paper is the one

currently being used by Eko across its customer base. The

second one is an alternate solution, developed jointly by

Eko and Microsoft Research India with the goal to fix

certain weaknesses in the former scheme; this scheme is

described in [1]. Both schemes rely on the use of numeric

passwords (PINs) which are combined with paper-based

security tokens – referred to as codebooks – to ensure PIN

privacy during transmissions (see figures 2 and 3).

Implementation of the schemes requires neither any

software installation on phones nor any modification of

network-layer protocols, which makes them easily

deployable on developing-world phone networks.

There is currently no literature on the security analysis of

either of these schemes. In [1], although certain weaknesses

in Eko’s scheme are mentioned and the alternate scheme is

claimed to improve security, neither of these claims is

substantiated with rigorous arguments2. The current paper

fills this gap. We first present a detailed threat model that is

appropriate for analyzing security of 2-factor authentication

schemes in a mobile environment. Our model encompasses

PIN recovery attacks and a variety of impersonation attacks

that model different amounts of information leakage to the

adversary. We primarily focus on security against

adversaries who can eavesdrop on users’ communication to

the bank server and can acquire user’s phones and/or their

secret tokens. (Both insider and outsider attacks are

considered.) Towards the end of the paper, we consider

man-in-the-middle threats and outline a technique to these

threats in both the schemes; this modification leads to

reduced efficiency in the schemes.

The principal outcomes of our security analyses are as

follows. First, Eko’s current scheme provides poor security

against PIN recovery attacks and PINs of users can be

completely leaked if the adversary observes just 4

transaction messages, on average. The scheme is also

susceptible to an impersonation attack if the adversary

acquires the phone and codebook of a user. The new

scheme, on the other hand, provides a reasonable amount of

security against both these attacks. Second, we find that

both schemes are secure against impersonation attacks

where the attacker does not compromise users’ codebooks,

although the probability of a successful attack is greater in

the new scheme. We then propose some simple variants of

the new scheme to improve its security against

impersonation attacks.

We remark that although our exposition centers around

authentication for m-banking systems, our threat model and

the techniques used for analyzing the schemes are

potentially applicable in other contexts where user

authentication (based on passwords and security tokens) is

studied. To the best of our knowledge, the impersonation

attack taxonomy developed in this paper is novel and there

seems to be no precedent to it in the literature on

authentication systems based on passwords and tokens.

2. BACKGROUND AND RELATED WORK
The idea of using mobile phones for conducting banking

transactions is not entirely new and has been implemented

in developed countries for at least a decade [9]. However,

2 The focus of [1] is primarily on a usability comparison of the

two schemes and it is shown that the proposed scheme fares

better than Eko’s in terms of task completion time, error rates

and user preferences.

in the developed world, the motivation behind such

applications has been to make banking convenient for those

who already have bank accounts. This paper deals with

mobile-based banking systems designed for a different

purpose – that of providing access to banking for people

who do not have bank accounts. Throughout this paper, the

term m-banking is used to refer to such systems only.

Typical m-banking services rely on a network of human

agents who are located close to the target users and who

mediate most transactions between the user and the bank.

Users approach these agents to enroll into the system and to

make deposits into their accounts. A deposit (or a “cash in”)

transaction requires the agent to send an SMS or a USSD

message to a bank server through his/her phone, along with

some credentials (like a secret PIN). If the bank server

approves of the deposit request, it sends an

acknowledgement to both the user and the agent (via

SMS/USSD), after which the user must submit the stated

amount of cash to the agent, who, in turn, stores it in his

cash kitty. Later on, to withdraw cash, this user may

approach the same agent or another one and this time, he

(i.e. the user) would send a transaction message to the bank

from his phone, along with suitable authentication

information. The bank confirms transaction approval by

sending messages to both the agent and the user and the

agent then transfers the required amount of cash from his

kitty to the user. It has been argued that using agents to

mediate banking transactions in this manner is more cost-

effective than using regular ATMs in developing regions,

owing to the low cost of labor in such places [10], which

has led to a lot of excitement and new ventures around the

concept. Most m-banking services today also provide a

money-transfer facility, using which customers can transfer

money from their account into another user’s account by

sending a suitable transaction message to the bank. Money-

transfer transactions typically do not require an agent and

thus provide an extremely efficient mechanism to move

money across long distances.4

There are at least six different services across the world

today which are built on this model of banking and over the

last 4 years, these services have become a significant

contributor to monetary flows in their respective countries.

M-PESA, the pioneer of the m-banking concept, today

carries over 10% of Kenya’s GDP through its network [3],

while G-Cash in the Philippines is reportedly transacting

hundreds of millions of dollars on a daily basis [2]. Given

that most users who enroll into such services are motivated

by security reasons [10], preventing electronic fraud is of

high priority for m-banking services.

4 To avoid misuse of such services for, say, money laundering

activities, regulatory authorities often place limits on the

transaction volumes and balances that customers can maintain.

Current m-banking services primarily rely on PINs – which

are normally 4 digits long – to authenticate users to the

bank. PIN-based authentication is well-established in

conventional banking, and even in m-banking, PINs have

been found to be a convenient tool, across a wide spectrum

of users [1]. However, for security, it is essential that PINs

be protected when transmitted over the network. Different

m-banking service providers use different proprietary

techniques for protecting PINs but unfortunately, the details

of these techniques are often not kept in the public domain.

In some situations (e.g., in M-PESA), the service is

operated by the network provider, who is in a position to

implements proprietary network-level protocols to protect

PINs when in transit. To the best of our knowledge, such

systems encrypt PINs using GSM’s SIM toolkit services;

details of the encryption scheme are not publicly known.

Other systems like G-Cash seemingly use no encryption at

all to protect PINs and there are attacks against such

systems already reported [11]. In India, Eko uses a novel

interface-layer protocol to protect PINs where PINs are

protected through the use of paper-based security tokens.

The use of security tokens for user authentication is a well-

established cryptographic technique and several corporate

access control systems rely on it, the most popular one

being RSA SecurID [12]. Increasingly, banks are becoming

interested in deploying such systems as well, particularly

for securing Internet-based transactions [13]. Tokens

typically contain a list of random one-time passwords

(stored electronically or on paper) and each authentication

session requires the use a fresh one-time password.

Sometimes, randomness is shared across multiple

authentication sessions (e.g., the authenticating server sends

a set of challenge indices, and the user responds with the

random digits or symbols in the token corresponding to

those indices). The principal advantage of security tokens is

that they provide a factor that supplements the commonly

utilized password or PIN to authenticate users. In almost all

token-based solutions, the token itself is treated as a

secondary authentication factor; the password is given

greater importance and maintaining its privacy is regarded

paramount. Despite the long history of token-based

authentication solutions, research on modeling the security

of such systems and on analyzing the security of existing

systems is currently lacking; this paper seeks to address this

gap in the literature, within the context of m-banking.

Amongst all m-banking systems, Eko seems to be the first

to have deployed security tokens as an authentication tool.

There have been some proposals to use voice biometrics for

authenticating users in m-banking [14,15] but the problem

of ambient noise in developing world environments makes

such proposals difficult to deploy. Some companies

currently use fingerprint biometrics to authenticate users in

agent-assisted banking [16,17], but the setup and

operational costs of these solutions are significantly greater

than that of token-based systems and these solutions are not

implementable over low-end mobile phones, which are

prevalent in the developing world.

3. THREAT MODEL
We now present a threat model we have developed to

define security of token-based authentication solutions

implemented for mobile phone networks. The description is

kept brief for lack of space; formal definitions of different

attack notions will be provided in the future.

We consider adversaries who have complete access to

messages sent from users to the bank server and can use this

information to mount different types of attacks. Adversaries

could either be eavesdroppers on the mobile network

(outsiders) who exploit known vulnerabilities of network-

layer protocols to recover messages [6,7] or else they could

be bank agents (insiders) with whom users interact while

conducting withdrawal and deposit transactions. It is

reasonable to assume eavesdropping capabilities for agents

since in many m-banking systems (including Eko’s) agents

closely facilitate the communication of withdrawal

messages to the bank: the contents of the message,

including the authenticating information, are spoken out by

the user as the agent types them into his or the users’ phone

and sends them on behalf of the user. Such transactions are

often referred to as aided transactions. In Eko’s current

deployment, at least 67% of all withdrawal transactions are

conducted in an aided manner, a phenomenon that is

attributable to the limited literacy levels of the customers.

In such a setting, insider eavesdropping is arguably easier to

carry out than outsider eavesdropping.

We consider four different types of attacks against a

mobile-based user authentication system. The first is PIN

recovery, an attack in which the adversary acquires the

secret PIN of a user. We then consider three types of

impersonation attacks, which we refer to as type-0, type-1

and type-2 impersonation attacks. In type-0 impersonation

attacks the adversary acquires a user’s phone and attempts

to use it to authenticate to the bank as the phone’s

legitimate owner. This models a scenario in which a user’s

phone is stolen or lost and the thief wishes to transact on the

user’s bank account. In type-1 impersonation attacks, the

adversary is given, besides the user’s phone, access to his

unique security token; the goal of the adversary is the same

– authenticate to the bank as the legitimate user. Since

tokens are susceptible to theft, it is important to guard

against type-1 attacks in any protocol design. In type-2

impersonation attacks, the adversary acquires not the token

but the secret PIN of a user. This models a situation in

which a user’s PIN gets leaked to a malicious third party.

Security against type-1 and type-2 attacks is necessary to

guarantee 2-factor authentication. From a practical

perspective, type-0 attacks seem to be most important to

prevent against, although all attacks are important to

address for ensuring strong authentication. We contend that

security against PIN recovery attacks is particularly

essential since it is common practice to share PINs across

multiple applications and thus, a PIN compromise in a

mobile-based application could lead to a compromise in

other systems as well. Besides, for the usage of PINs in any

authentication system to be meaningful, it is imperative that

the system ensure their secrecy, for otherwise, a simpler

system which does not use the PIN could accomplish the

required task equally well.

We remark that in all the impersonation attacks we

consider, the adversary has access to the phone of the user

he is attempting to impersonate. An underlying assumption

here is that adversaries cannot easily, and undetectably,

connect to the network using arbitrary digital devices and

spoof caller IDs of other users. (If that was possible, the

requirement of phone possession for impersonation would

not be necessary.) Spoofing caller IDs, though shown to be

possible in GSM networks [6], requires greater technical

sophistication than eavesdropping (particularly when

compared to insider eavesdropping), and is thus excluded

from our current analysis. Neither of the schemes we

consider in this paper provides strong security against

spoofing attacks, and for achieving such security, alternate

(and conceivably less efficient) techniques seem necessary.

The design of such systems for low-end mobile phones,

while maintaining usability and simplicity advantages of the

schemes considered here, is an interesting open problem,

left open by this work.

4. THE SCHEMES

4.1 The Old Scheme
Authentication in Eko’s current scheme is based on 2

factors: a secret 4-digit PIN (“what you know”) and a

codebook (“what you have”) illustrated in figure 2. Each

entry in the codebook is a string of length 10 and contains a

6-digit random and independently-generated nonce.

Interspersed with the nonce are 4 “blank spaces”, marked

by ♦. The blank spaces are interspersed randomly with the

nonce in every string. Both the PIN and the codebook are

shared secretly between the user and the bank out-of-band.

In any transaction in which the user needs to authenticate

himself to the bank, the user first creates a suitably-

formatted transaction message, and appends to that message

a 10-digit numeric “signature”. Each signature is formed by

looking up the first unused string in the booklet and by

placing the PIN in the 4 blank spaces provided in it. Figure

2 illustrates this with an example. At the other end, the bank

server checks if the signature has been formed using the

correct PIN and the nonce that is being expected, and only

if this is the case, does it process the transaction.

Figure 2. Codebooks used in Eko’s current scheme contain

sequences of 6-digit nonces, each interspersed with 4 ♦’s that

denote blank spaces. For authentication, a user must place his

PIN in the blank spaces for the current nonce and thus form a

10-digit numeric “signature”. For example, if the user is using

the 13th nonce in the codebook (marked ♦002185♦♦♦), and his

PIN is 6391, his signature for the current transaction would be

6002185391.

4.2 The New Scheme
The new scheme proposed in [1] also relies on PINs and

codebooks for authenticating users, although the codebooks

are constructed differently in this case. Each entry in the

codebook is a 10-digit nonce, as shown in figure 4. The

digits in the nonce are labeled 0 through 9 to enable users to

“look up” digits based on their positions. As before, PINs

and codebooks are established out-of-band.

0 1 2 3 4 5 6 7 8 9

5 0 8 1 3 9 2 8 6 7
Figure 4. In the new scheme, each codebook entry is a 10-digit

nonce, with the digit positions in the codebook labeled 0

through 9. The scheme involves performing a substation

coding of the user PIN using the first unused nonce in the

booklet. For example, if the user’s PIN is 6391 and the first

unused nonce is as shown, the user’s signature is the result of

looking up the 6th, 3rd, 9th and 1st digits in the nonce, i.e., 2170.

A user with PIN x1x2x3x4 authenticates himself by looking

up the first unused nonce in his codebook, and forming a 4-

digit number consisting of the x1
th

, x2
th

, x3
th

 and x4
th

 digits in

the nonce, in that order. (This is a variant of the well-known

one-pad scheme.) This 4-digit number becomes the user’s

signature for the current transaction. At the other end, the

bank re-computes the signature using the locally-stored PIN

and codebook.6 For maximum security, it is recommended

that all PIN digits be distinct. There are 5040 such PINs, a

space that is sufficiently large to counter dictionary attacks.

6 In an alternate implementation, the digits in every nonce are

forced to be distinct (i.e., nonces are sampled randomly from the

set of all permutations of 012..9). Such an implementation

facilitates storing PINs in hashed form rather than in plain.

(Authentication can be performed by doing a reverse-lookup,

followed by hashing the obtained value.) However, the above

implementation offers greater security against impersonation

attacks.

In our security analysis, we assume that PINs come only

from this space.

Nonces in the new scheme are stored in a form so that they

can be deleted by the user right after they have been

utilized. Several possible storage techniques, like the use of

perforated paper sheets, throw-away stickers and electronic

hardware, are proposed in [1].

4.3 Synchronization Issues
Synchronizing the user with the bank server is achieved in

both schemes is achieved using the same technique. Each

nonce is labeled with a unique sequence number (see figure

2) and users must use nonces in order of their sequence

numbers. If a user goes off-track, the bank sends an error

message with the sequence number of the nonce it is

expecting. To prevent dictionary attacks, at most 3 incorrect

signatures are tolerated.

There are about 50 nonces in each codebook in each

scheme. Users are provided a fresh codebook at the time of

registration and every time a booklet gets exhausted or is

lost. Upon receipt of a new booklet, users send a codebook

registration message (formed using the first nonce in the

book) to sync up with the bank.

5. ANALYSIS

The results of our analysis are summarized in table 1. First,

we find that the old scheme is insecure against PIN

recovery attacks: given a list of k 10-digit signatures

corresponding to a user, an attacker exhaustively searches

for 4-digit subsequences that are common to all of them. If

it finds such a subsequence, it reports it as the PIN; else, it

aborts. We conducted a small lab experiment with this

attack on Eko’s scheme. In 3 independent executions on

real Eko codebooks, we found that by setting k equal to 7,

the attack could always recover the PIN. (See figure 3.) On

average, across the 3 experiments, every possible PIN could

be recovered given just k=4 signatures.7 We remark that

although this weakness was mentioned in [1], no security

analysis with real codebooks was reported therein.

7 Part of the weakness lies in the quality of randomness used by

Eko to generate nonces. However, even using stronger

pseudorandom generators in the lab, we were able to recover

PINs from k=7 signatures with 99.6% success rate.

Figure 3: The maximum number of transactions that an

adversary needs to observe in order to recover the PIN in

Eko’s current scheme. The x-axis shows the number of PIN

values for which recovery is successful.

On the other hand, we find that the new scheme offers much

better security against PIN recovery attacks. The reasoning

is simple: assuming perfect randomness of the nonces, the

signature computed for any 4-digit PIN with distinct digits

is a perfectly random sample from the space of 4-digit

numbers. Since the nonces (and thus the signatures) are

independent, given any sequence of signatures, every

distinct-digit PIN is equally likely to have been used for

generating that sequence. The best that any attacker (even

an unbounded one) can do is to guess the right PIN and this

works with probability at most 1/5040 ~ 10
-3.7

.

Attack name Old scheme New Scheme

PIN recovery Insecure Secure (10
-3.7

)

Type-0 impersonation Secure (10
-8.3

) Secure (10
-4

)

Type-1 impersonation Insecure Secure (~10
-3.7

)

Type-2 impersonation Secure (10
-8.3

) Secure (10
-4

)

Table 1: Comparison of the security provisions for the two

schemes is shown. The old scheme is completely insecure

against PIN recovery and type-1 impersonation attacks. Both

schemes are secure against type-0 and type-2 impersonation

attacks, though the probability of a successful attack (depicted

in brackets) is smaller in the case of the old scheme. Each

success probability must be interpreted as being preceded with

a multiplicative factor of 3, which is the tolerance level for

incorrect authentication attempts.

We find that a similar disparity between the old scheme and

the new scheme exists for type-1 impersonation attacks.

Since the former is susceptible to PIN recovery attacks,

given a user’s codebook (and the corresponding phone), an

attacker can trivially create signatures on behalf of the user.

This does not apply to the new scheme since here, even if a

user’s codebook (with past nonces having been deleted) and

the entire transaction history compromised, from the

attacker’s perspective, every PIN is equally likely to be the

user’s PIN. Successful impersonation thus involves

guessing the “right” 4-digit sample from a 10-digit nonce,

which happens with probability nearly 1/5040 ~ 10
-3.7

. (The

probability is slightly more than 1/5040 since nonce digits

may not be distinct, thus reducing the space of possible

signatures.)8 An attack probability of 10
-3.7

 may not be

sufficient “in general” but in the presence of a suitable PIN-

blocking mechanism – as is recommended for both schemes

– it is a reasonable bound. (See the next section for further

improvements on security.)

As regards type-0 and type-2 impersonation attacks, both

schemes offer reasonable security, although success

probabilities are better (smaller) for the old scheme. This is

8 In the absence of faithful nonce deletion, security against type-1

impersonation attacks is not achieved, since a user’s PIN can be

recovered using past nonces and signatures.

expected since the authentication information contains more

randomness in the old scheme than in the new one. In case

of the old scheme, the reasoning is as follows: if an attacker

has no knowledge of a user’s codebook, then even if he is

provided the user’s PIN – either directly (type-2) or through

a self-mounted PIN-recovery attack (type-0) – he cannot

compute the 6-digit nonces for any signature with

probability better than random guessing. (Here, we rely on

the independence property of the nonces.) Plus, even if he

is successful in guessing the right nonce, he must guess the

right way to juxtapose the PIN with the nonce to form the

10-digit signature. Assuming that the PIN-nonce

interspersion is perfectly random, the success probability of

the attacker is (
10

C4)
-1

x 10
-6

which is 10
-8.3

.

In the new scheme, without knowledge of a user’s

codebook, every signature is like a fresh sample from the

space of all 4-digit numbers, and this holds true even if the

PIN has been compromised. Thus, the probability with

which an attacker can successfully create the desired

signature for any transaction is at most 10
-4

.

To sum up, the new scheme offers better security against

PIN recovery and type-1 impersonation attacks, which the

old scheme fails to counter. On the other hand, both

schemes provide reasonable security against type-0 and

type-2 impersonation attacks, although success probability

of attacks is smaller in the case of the old scheme. Thus, as

long as codebooks are not compromised, both schemes

offer reasonable security against impersonation, and the old

scheme, in fact, offers better security than the new scheme

in such circumstances. We next describe ways in which the

security strength of the new scheme can be further boosted.

5.1 Improving Security of the New Scheme
The reason for greater probability of successful type-0 and

type-2 impersonation in the new scheme is simple:

signatures contain fewer random bits than in the old

scheme. If an attack resistance of 10
-4

 is deemed insufficient

in an authentication application, there is a simple way to

improve it to say 10
-(4 + x)

 for arbitrary x by modifying the

scheme as follows: instead of storing 10-digit nonces in the

codebooks, store nonces of length 10+x. Use the first 10

digits of every nonce as before. However, to the 4-digit

signature thus obtained, append the last x digits of the

nonce as is. Another modification would be to repeat

signature generation with multiple independent nonces and

to concatenate each of the resulting signatures. A single

repetition reduces the success probability of attacks from

10
-4

 to 10
-8

. Similar techniques can also be applied to the

old scheme to improve security against type-0 and type-2

attacks, although these techniques do not improve security

against PIN recovery or type-1 attacks in any way.

Note that any such modification of the schemes will affect

their usability in the real world. In the context of m-

banking, target users have limited educational backgrounds,

which raises serious usability concerns and thus makes the

above modifications less attractive.

5.2 Tackling Man-in-the-Middle Attacks
One threat that our security model currently does not

address is the man-in-the-middle (MITM) attack. In such an

attack, an adversary can intercept communication from a

user to the authentication server and can modify messages

while they are in transit. Both schemes we discussed are

susceptible to forgeries by a man-in-the-middle (MITM)

attacker, as noted in [1]. For example, an MITM adversary

can intercept a transaction message with its associated

signature, change contents of the message (e.g., the

recipient account information) and forward the modified

version to the bank. The bank would still view the message

as originating from the legitimate user as the signature

would be a valid PIN encoding.

While MITM attacks are difficult to mount in mobile

networks in real time, we sketch here a solution to counter

them in the context of mobile banking. Our solution has

some additional requirements: one, all transactions

(including money transfers) must be carried out in the

presence of a bank agent, and two, the agent must be

equipped with a programmable phone. The latter is not an

unreasonable assumption to make since the agent phone is

shared across multiple users’ transactions, and it becomes

cost-effective for the bank to invest in such a phone per

agent (even where the latter cannot afford one himself).

Once these requirements are met, forgeries can be

prevented using standard cryptographic techniques. The

agent’s phone would be loaded with a public key linked

with the bank and appropriate signature verification

software. Transaction messages would be sent as before

(over USSD) but every acknowledgement from the bank

server would be digitally signed using the bank’s private

key and the signature would be verified by the agent phone.

The acknowledgement must contain a unique transaction ID

and every piece of transaction-related information that

needs to be protected from forgery. Acknowledgements

would be sent to both the user’s phone and the agent’s

phone but the verification will occur only on the agent’s

phone, which is more capable. (Thus, physical proximity to

the agent is necessary.) Transactions would be treated as

complete only if the signature verification is successful.9 10

Designing mobile-based authentication schemes that are

secure against MITM-based forgery and that work with

9 We remark that this solution is still susceptible to phone-rigging

attacks by malicious agents who collude with network

interceptors. To prevent phone-rigging, physical security must

be built into the system using tamper-proof firmware.

10 By utilizing short signature schemes [19], the information flow

from the server to the user can be kept small (an overhead of 20

bytes only) and can even happen via SMS. Plus, the information

sent from the user to the bank remains the same as in the original

schemes, which is very nominal.

arbitrary low-end phones seems rather non-trivial and is left

as an open problem by this work.

6. REFERENCES
[1] S. Panjwani and E. Cutrell, “Secure and Usable

Authentication for Mobile Banking,” to appear in

Symposium on Usable Privacy and Security

(SOUPS), 2010.

[2] B. Lorica, “Mobiles and Money in the Developing

World,” Release 2.0, Apr. 2009.

[3] High Beam Research, “More Than 10% Of Kenya's

GDP Now pass through the M-Pesa Mobile Banking

Service,” http://www.highbeam.com/doc/1G1-

193984464.html, Feb. 2009.

[4] TelecomTiger, “Nokia forecasts 500 million mobile

phone users by 2010,”

http://www.telecomtiger.com/fullstory.aspx?storyid=

1491, Apr. 2008.

[5] D. Wagner and I. Goldberg, “GSM Cloning,”

http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html,

Apr. 1998.

[6] D. Hulton and Steve, “Black Hat,” 2008.

[7] O. Dunkelman, N. Keller, and A. Shamir, “A Practical-

Time Attack on the A5/3 Cryptosystem Used in Third

Generation GSM Telephony,” Cryptology ePrint

Archive: Report 2010/013, Jan. 2010.

[8] Eko India Financial Services Limited,

http://www.eko.co.in/.

[9] CNET News, “Bank of America plans to introduce

wireless banking,” http://news.cnet.com/Bank-of-

America-plans-to-introduce-wireless-banking/2100-

1017_3-228389.html, Jul. 1999.

[10] G. Ivatury and I. Mas, “The Early Experience with

Branchless Banking,” CGAP Focus Note 46, Apr.

2008.

[11] M. Paik, “Stragglers of the Herd Get Eaten: Security

concerns for GSM Mobile Banking Applications,”

HotMobile 2010: The Eleventh International

Workshop on Mobile Computing Systems and

Applications, Maryland: ACM, 2010.

[12] RSA SecureID,

http://www.rsa.com/node.aspx?id=1156.

[13] Swivel Authentication Solutions,

http://www.swivelsecure.com/.

[14] Grameen Koota, http://www.grameenkoota.org.

[15] A. Sharma, L. Subramanian, and D. Shasha, “ACM

SOSP Workshop on Networked Systems for

Developing Regions (NSDR),” Montana: ACM,

2009.

[16] A Little World, http://www.alittleworld.com.

[17] FINO Limited, http://www.fino.co.in.

[18] M-PESA,

http://www.safaricom.co.ke/index.php?id=745.

[19] D. Boneh, H. Shacham, and B. Lynn, “Short

Signatures from the Weil Pairing,” Journal of

Cryptology, vol. 17, 2004, pp. 297-319.

