
Reusing Model Transformations

While Preserving Properties

Ethan K. Jackson1, Wolfram Schulte1,
Daniel Balasubramanian2, and Gabor Karsai2

1 Microsoft Research
{ejackson,schulte}@microsoft.com

2 Vanderbilt University
{daniel,gabor}@isis.vanderbilt.edu

Abstract. Model transformations are indispensable to model-based de-
velopment (MBD) where they act as translators between domain-specific
languages (DSLs). As a result, transformations must be verified to ensure
they behave as desired. Simultaneously, transformations may be reused
as requirements evolve. In this paper we present novel algorithms to de-
termine if a reused transformation preserves the same properties as the
original, without expensive re-verification. We define a type of behavioral
equivalence, called lifting equivalence, relating an original transformation
to its reused version. A reused transformation that is equivalent to the
original will preserve all compatible universally quantified properties.
We describe efficient algorithms for verifying lifting equivalence, which
we have implemented in our FORMULA [1, 2] framework.

1 Introduction

Model-based development (MBD) utilizes domain-specific languages (DSLs) and
model transformations to support formal modeling [3–6] . DSLs are used to (1)
capture vertical abstraction layers, (2) separately specify design concerns, and (3)
provide convenient modeling notations for complex problem domains [7]. Model
transformations act as bridges between DSLs in order to (1) incrementally refine
models through abstraction layers, (2) compose models into a consistent whole
or evolve them as requirements evolve [2], and (3) capture operational semantics
as sequences of transformation steps [8].

Consequently, composition, verification, and reuse of DSLs/transformations
are essential operations. Informally, a DSL X exposes an abstract syntax S(X),
and a model transformation τ is a mapping across syntaxes. A verified trans-
formation is a mapping guaranteed to exhibit certain properties, such as every
well-formed input yields a well-formed output. Transformations are reused when-
ever a new transformation τ ′ is built from parts of an existing τ . We explore
whether the properties of τ also hold in the reused transformation τ ′.

For example, consider a DSL for a non-deterministic finite state automa-
ton (NFA) abstraction. An important operation on NFAs is the synchronous
product ⊗, which creates product NFAs where states have internal structure

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 44–58, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reusing Model Transformations While Preserving Properties 45

(i.e. pairs of product states). Let ProdNFA be the DSL for product NFAs, then
the τ⊗ transformation is a mapping from S(NFA) × S(NFA) to S(ProdNFA).
It can be verified that τ⊗ has the property: ∀x1, x2 #states(τ⊗(x1, x2)) =
#states(x1) × #states(x2), i.e. products grow combinatorially in size. This
convenient transformation can be reused to create products of product NFAs:
τ ′
⊗ : S(ProdNFA) × S(ProdNFA) → S(ProdNFA). We would like to know if

the previous property holds in the new context without reproving it.
In this paper we present a novel approach to avoid expensive re-verification

when a model transformation is reused in a new context. Our approach is to
fix an auxiliary class of transformations Trw, which we call rewriting procedures.
Whenever a transformation is reused in a new context, an attempt is made
to discover a rewriting procedure from the new to the old context. A reused
transformation τ ′ lifts τ if it is equivalent to a rewriting procedure followed
by an application of the original transformation τ . If this is the case, then all
(compatible) first-order universally quantified properties of τ also hold for τ ′, but
with dependencies on the rewriting procedures. Finally, for reasonable choices of
Trw, these rewriting procedures can be eliminated from lifted properties resulting
in an equivalent property that lives completely within the new context. We
have implemented this approach in our formula framework [2]: Static analysis
automatically rejects reused transformations that should maintain properties,
but for which lifting cannot be verified.

This paper is divided into the following sections: Section 2 describes related
work. Section 3 presents a general formal framework. Section 4 explains our
implementation of the general framework. We conclude in Section 5.

2 Related Work

Much work on transformation reuse is targeted at the automated or semi-
automated evolution of transformations in response to either refactored models
or language constructs. For instance, [9] describes how the evolution of models
may break transformations intended to operate on these models. The solution
is to capture model refactorings as transformations, which can then be used
to upgrade transformations that are unaware of these refactorings. [10] deals
the evolution of transformation context through user-defined rules relating the
constructs in the original meta-models with those in the evolved meta-models.
These rules are used to upgrade the transformation as much as possible.

Functional programming solves a related reuse problem: Given a function
f : X → Y , can f be applied to new recursive data structures containing data
of type X? For example, if f : Z → Z, determine a function f ′ : Lists(Z) → Z

from lists of integers to integers that generalizes f . In this case, the lifted f ′ is
not behaviorally equivalent to f , but may preserve properties of f depending
on the choice of f ′. The Bird-Meertens [11] formalism enumerates patterns of
recursive data types that can be used to generalize f automatically. See [12]
for a catalog of these recognizable patterns and the formal properties of these
generalizations. The main application of this work has been to automatically
parallelize functional programs [13].

46 E.K. Jackson et al.

There is also an important body of work on transformation verification. Verifi-
cation of model transformations can be performed point-wise, on the input/output
pairs of a transformation, or on the transformation itself. The former is known as
instance-based verification. [14] describes an approach where each execution of the
transformation is verified by checking whether the output model bi-simulates the
input model. [15] uses a set of graph transformation rules to describe the opera-
tional semantics of a DSL and then generates a transition system for each
well-formed model of the language. A model checker is used to provide formal ver-
ification and check dynamic properties of the models.

[16] is an example of verifying the action of a transformation τ over its entire
domain. Here, it is assumed that the behaviors of source and target models are
defined by simulation rules (which are also transformations). A transformation is
correct/complete if for every input model the output model includes the behav-
iors of the input, and vice versa. This is verified by examining the effects of τ on
the simulation rules. Modular verification of model refactorings is also described
in [17, 18]. The authors show that once a behavioral semantics is fixed for models
of a DSL (e.g. models may correspond to CSPs), then model refactorings can be
shown to preserve behavior under certain conditions.

3 General Framework

3.1 Transformations and Reuse Scenarios

We begin with a general discussion of DSLs and transformations. For our pur-
poses, a DSL X is an object providing a set S(X), called the abstract syntax of
X . A model x is instance of the abstract syntax; equivalently x is an element
of S(X). A model transformation τ is a map from n input models to m output
models:

τ : S(X1) × . . . × S(Xn) → S(Y1) × . . . × S(Ym) (1)

The domain/range of τ form its context. A transformation is defined via a set of
rules R, which match patterns in input models to build output models. A trans-
formation terminates when no more rules can be applied. Rules are variously
specified as graph-rewrite rules [3] [19], declarative relations [20], term-rewrites
rules [21], logic programs [2], and even blocks of imperative code [22]. A set of
rules R is converted to a mapping τ by a formal semantics � �, which also takes
into account the input/output DSLs:

�R, X, Y � �→ τ, where X = [X1, . . . , Xn] and Y = [Y1, . . . , Ym]. (2)

Since rules operate on abstract syntax, the context (X, Y) is required to bind
patterns in the rules with elements of the sytnax. We do not hypothesize on
the framework-independent properties of � �, other than to assume that, when
defined, τ is a function whose signature is given by (1). Later in the paper we
investigate � � for a particular transformation framework.

Reusing Model Transformations While Preserving Properties 47

Using this notation, we study reuse scenarios where the rules R are interpreted
in a new context (X ′, Y ′):

�R, X ′, Y ′� �→ τ ′, where X ′ = [X ′
1, . . . , X

′
n] and Y ′ = [Y ′

1 , . . . , Y ′
m]. (3)

We provide static analysis to decide if τ ′ preserves the properties of τ with-
out expensive re-verification. Several important scenarios are included in this
definition:

Example 1. Transformation Evolution. A transformation is defined and ver-
ified, but changes in requirements necessitate changes in DSL syntax [10]. In this
case τ evolves to τ ′, where each X ′

i (or Y ′
j) is either the original Xi (or Yj) or a

modified version X∗
i (or Y ∗

j).

X ′
i =

{
X∗

i if requirements change
Xi otherwise

, Y ′
j =

{
Y ∗

j if requirements change
Yj otherwise

. (4)

Example 2. DSL Composition. A DSL X may represent one aspect or archi-
tectural facet of a multi-faceted design problem. In this case, a complete abstrac-
tion is formed by composing X with another DSL X∗ to obtain X ′ = X ⊕ X∗.
The DSL composition operator ⊕ varies across tools from UML package merge
to eBNF grammar composition [23]. It is then necessary to reuse τ across com-
posite DSLs.

X ′
i =

{
Xi ⊕ X∗

i if composed
Xi otherwise

, Y ′
j =

{
Yj ⊕ Y ∗

j if composed
Yj otherwise

. (5)

3.2 Properties of Transformations

A quantifier-free formula over τ is a well-formed formula consisting of variables,
function applications, and τ applications; the following pseudo-grammar pro-
vides a sketch:

expr ::= Var | app | (expr).
app ::= τ(x1, . . . , xn) | Func(expr1, . . . , exprk).
Var ::= {u, v, w, x, y . . .}.
Func ::= {f, g, h,∧,∨,¬ . . .}.

(6)

(Note that τ applications are normalized so τ is only applied to variables.) Let
ϕτ [V] be a quantifier-free formula containing one or more applications of τ ; V
is the set of variables appearing in ϕ. We refer to a (first-order) universally
quantified property of τ as a statement of the form:

Definition 1. Universally quantified property of τ

∀x1 ∈ Q1 . . . ∀xk ∈ Qk ϕτ [x1, . . . , xk]. (7)

where every variable xi is universally quantified over an input syntax Qi =
S(Xj). We write τ
 p if property p can be deduced from τ . For the remainder
of this paper we deal with this restricted class of properties, which encompasses
a number of important examples:

48 E.K. Jackson et al.

Example 3. Static Correctness. As in traditional programming languages, an
instance of DSL syntax x ∈ S(X) is not guaranteed to be semantically mean-
ingful. A compiler performs static analysis, e.g. type-checking, to check that x
is meaningful. Let checkX(·) be a predicate evaluating to true when a model
is statically correct. Then a transformation τ : S(X) → S(Y) preserving static
correctness has the following property [1]:

∀x ∈ S(X), checkX(x) ⇒ checkY (τ(x)). (8)

This property generalizes to transformations with multiple inputs/outputs. Let
πi be a projection operator; when applied to an n-tuple it returns the ith coor-
dinate. Let τ be an transformation with n inputs and m outputs.

∀x1 ∈ S(X1)
...

∀xn ∈ S(Xn)

∧
1≤i≤n

checkXi(xi) ⇒
∧

1≤j≤m

checkYj(πj(τ(x1, . . . , xn))) . (9)

Example 4. Behavioral Correspondence. Let ∼ ⊆ S(X) × S(Y) be a simu-
lation relation over models of X and Y . A transformation preserves behavioral
correspondence [14] if the output simulates the input, whenever the input is
meaningful.

∀x ∈ S(X), checkX(x) ⇒ checkY (τ(x)) ∧ x ∼ τ(x). (10)

Behavioral correspondence can also be generalized to multiple inputs/outputs
according to a family of simulation relations.

In order to develop general theorems about property preservation, some assump-
tions on abstract syntaxes are required. We shall make the assumption that every
S(X) is disjoint from every other S(Y). Under this assumption, a property p
must satisfy simple compatibility conditions before it can be lifted to another
context. Properties that are incompatible with a context do not hold there. Of
course, when deeper knowledge about of syntax structure is available, then these
compatibility conditions can be augmented appropriately.

Definition 2. Compatible Properties. Let τ
 p where τ has context (X, Y).
Let τ ′ be a reused transformation with context (X ′, Y ′). A property p is compat-
ible with the context (X ′, Y ′) if whenever a variable x appears as the ith and jth

argument to a τ application then X ′
i = X ′

j.

Example 5. Let τ : S(X)× S(X) → S(Y) and τ ′ : S(U)× S(W) → S(Z). Then
the property ∀x1, x2 ∈ S(X) τ(x1, x2) = τ(x2, x1) is not compatible in the new
context because S(U) ∩ S(W) = ∅.

3.3 A General Scheme for Property Preserving Reuse

We wish to determine if all compatible properties satisfied by τ are also satisfied
by τ ′. This is accomplished by establishing a behavioral equivalence between τ ′

and τ , which we call lifting equivalence. Assume τ : S(X) → S(Y). We say τ ′

lifts τ if the following procedures are equivalent:

Reusing Model Transformations While Preserving Properties 49

1. Calculate y′ = τ ′(x′), and then rewrite y′ ∈ S(Y ′) to y ∈ S(Y).
2. Rewrite x′ ∈ S(X ′) to x ∈ S(X), and then calculate y = τ(x).

If τ ′ lifts τ , then τ ′ can be viewed as syntactic rewriting step followed by an
application of τ . This scheme requires fixing a class Trw of transformations, which
we call rewriting procedures. Let Trw(X ′, X) be the (possibly empty) subset of
rewriting procedures from X ′ to X. Formally, τ ′ lifts τ if for every rewriting
procedure Λ on the inputs, there exists a rewriting procedure Γ on the outputs
such that the diagram in Figure 1 commutes. In other words, there is no wrong
choice for Λ. To simplify construction of rewriting procedures, Trw must satisfy
a decomposition criterion:

Definition 3. Class of Rewriting Procedures. A class of rewriting pro-
cedures Trw is a class of functions of the form Λ : S(X ′

1) × . . . × S(X ′
n) →

S(X1)× . . .× S(Xn). Every Λ can be decomposed into a direct product of unary
rewrites:

Λ = 〈Λ1, . . . , Λn〉 and Λi : S(X ′
i) → S(Xi) ∈ Trw. (11)

In other words, Λ(x′
1, . . . , x

′
n) can be calculated by point-wise rewriting each x′

i

with Λi. The decomposition also agrees on how to perform rewrites: If compo-
nents Λi and Λj have the same signature, then they are the same unary rewriting
procedure.

Definition 4. Lifting Equivalence. Let Trw be a class of rewriting procedures.
Then τ ′ lifts τ if both transformations have n-inputs/m-outputs and:

∀Λ ∈ Trw(X ′, X) ∃Γ ∈ Trw(Y ′, Y) τ ◦ Λ = Γ ◦ τ ′. (12)

Claim. If τ
 p, τ ′ lifts τ , and p is compatible with τ ′, then τ ′
 p′ where p′ is
constructed by the following procedure:

1. Pick any Γ and Λ satisfying Equation (12).
2. Replace every occurrence of τ(xc1 , . . . , xcn) in p with Γ (τ ′(x′

c1
, . . . , x′

cn
)).

3. Replace every remaining occurrence of xi with Λxi(x′
i) where Λxi is any

well-typed unary rewrite from the decomposition of Λ.
4. Quantify each variable x′

i over a well-typed Q′
i = S(X ′

j), which must exist.

∏
i

S(Xi)
∏
j

S(Yj)

τ ′ = � R,X ′, Y ′ �
∏

i

S(X ′
i)

∏
j

S(Y ′
j)

Λ Γ

τ = � R,X, Y �

Fig. 1. A commuting diagram for lifting equivalence

50 E.K. Jackson et al.

We denote this replacement procedure by:

∀x′
1 ∈ Q′

1, . . . ,∀x′
k ∈ Q′

k ϕ[x1/Λx1(x
′
1), . . . , xk/Λxk

(x′
k), τ/(Γ ◦ τ ′)]. (13)

where ϕ[x1, . . . , xk] is the original formula appearing in p.

Example 6. Lifting Static Correctness. Given τ : S(X) → S(Y), τ ′ : S(X ′) →
S(Y ′). If τ ′ lifts τ and τ preserves static correctness, then p′ becomes:

∀x′ ∈ S(X ′), checkX(Λ(x′)) ⇒ checkY (Γ (τ ′(x′))). (14)

Theorem 1. Property lifting. If τ
 p, τ ′ lifts τ , and p is compatible with τ ,
then τ ′
 p′ where p′ is constructed according to (13). We say p′ is a lifting of p.

Proof. Observe that for every variable xi quantified over Qi there is at least one
component Λxi : S(X ′) → Qi. This is due to the compatibility condition (Defi-
nition 2) and the requirement that variables are quantified over input syntaxes
(Definition 1). Since p holds for all values of xi, replace every occurrence of xi

with Λxi(x′
i) where x′

i is a fresh variable. Each x′
i is quantified over dom Λxi ,

which we denote Q′
i yielding the property:

∀x′
1 ∈ Q′

i, . . . ,∀x′
k ∈ Q′

k ϕτ [x1/Λx1(x
′
1), . . . , xk/Λxk

(x′
k)]. (15)

This property still has occurrences of τ . However, since the τ applications in
p were normalized to τ(xc1 , . . . , xcn), then every application in (15) has the
form τ(Λxc1

(x′
c1

), . . . , Λxcn
(x′

cn
)). This can be rewritten (τ ◦ Λ)(x′

c1
, . . . , x′

cn
).

Applying Equation (12), this is equivalent to (Γ ◦ τ ′)(x′
c1

, . . . , x′
cn

), which yields
Γ (τ ′(x′

c1
, . . . , x′

cn
)). Thus, we obtain a property over τ ′ according to (13). ��

3.4 Summary of the Approach

Our approach relies on a class of rewriting procedures as a basis for comparing an
original transformation with its reused version. Given τ ′ and τ , our algorithms
characterize the set of rewriting procedures for reconciling the context of τ ′

with the context of τ . If no procedures can be found, then the contexts are
too different and no guarantees can be provided about property preservation. If
rewriting procedures exist, then it must be ensured that diagram 1 commutes
for any choice of procedure, guaranteeing that lifted properties hold regardless of
this choice. If this can be verified, then every compatible property p holding for
τ also holds for τ ′ (in the sense of Theorem 1) even if p is not explicitly known
to hold for τ . This is due to the behavioral equivalence that exists between the
two transformations.

The effectiveness of this approach depends crucially on the choice for Trw.
If the class is too complicated, then it may be computationally prohibitive to
verify that τ ′ lifts τ . If the class is too simple, then either most contexts cannot
be reconciled or occurrences of rewriting procedures cannot be eliminated from
lifted properties. In other words, lifted properties may indirectly depend on the

Reusing Model Transformations While Preserving Properties 51

original context through the rewriting procedures. Fortunately, for some lifted
properties it is possible to remove these occurrences, thereby obtaining an equiv-
alent property with no dependency on the original context. For the remainder
of this paper we show a reasonable choice for Trw that leads to computation-
ally efficient algorithms and to lifted properties where elimination of rewriting
procedures can be automated.

4 Implementing Lifting Analysis

For the remainder of this paper we apply these techniques to strongly-typed rule-
based systems where models are instances of recursive data types. We develop
a useful class of rewriting procedures for algebraic data types, called collapsing
morphisms.

4.1 Example: Reuse in FORMULA

We motivate the following sections by illustrating lifting analysis in our for-
mula framework, beginning with the classic non-deterministic finite state au-
tomata (NFA) abstraction specified with formula. The left side of Figure 2
shows the syntax and static semantics for the NFA DSL. The domain keyword
declares a DSL called NFA (line 1). DSL syntax is defined via a set of record
constructors. For example, line 3 defines a record constructor State, which takes
an integer ID and returns a State record with that ID. Record constructors can
have more complex type constraints; e.g. the Transition constructor takes two
State records an an Event record as input. Equality is defined over records; two
records are the same if both were constructed by the same constructor using

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

domain NFA

{

 State : (id: Integer).

 Event : (id: Integer).

 [relation]

 Transition : (src: State,

 trg : Event, dst: State).

 [relation]

 Initial : (state: State).

 //At least one initial state.

 conforms :? i is Initial.

}.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

domain ProdNFA

{

 State : (id: StateLbl).

 StateLbl : Integer + Pair.

 Pair : (p1: ProdLbl,

 p2: ProdLbl),

 ProdLbl : State + Pair.

 Event : (id: Integer).

 [relation]

 Transition : (src: State,

 trg : Event, dst: State).

 [relation]

 Initial : (state: State).

 conforms :? i is Initial.

}.

Fig. 2. (Left) Simple automata DSL, (Right) Product automata DSL

52 E.K. Jackson et al.

the same arguments (i.e. structural equality). An instance x of DSL syntax is a
finite set of finite records:

x = {State(1), State(2), Event(3), T ransition(State(1), Event(3), State(2))}
(16)

A formula specification also contains static semantics for the DSL. The anno-
tations on lines 5, 8 require Transition and Initial records to behave like relations
over states and events. Line 12 is an explicit conformance rule requiring at least
one initial state (i.e. at least one Initial record).

The NFA DSL contains just enough elements to express the most basic of
NFAs. For example, it is inconvenient to express products of NFAs, because
the State constructor cannot hold the IDs of product states. The ProdNFA do-
main remedies this situation by defining states with more complex IDs (line 18).
Now, IDs are instances of the StateLbl type, which is a union of the Integer and
Pair types. In turn, a Pair constructor accepts either a State or another Pair.
Consequently, State is a recursive data type permitting IDs such as:

State

(
Pair

(
Pair(State(1), State(2)), Pair(State(3), State(4))

))
(17)

At this point, the formula compiler does not know that these two DSLs are
related.

The two DSLs can be explicitly related by a transformation taking two NFAs
and returning their synchronous product. Such a transformation has the
signature:

transform SProd (NFA as in1, NFA as in2) returns (ProdNFA as out) {...}

The identifiers in1, in2, and out are special variables that hold the input and
output models during execution of the transformation. Two NFAs can be com-
posed with SProd, but further composition is not possible since SProd does not
accept ProdNFA models as inputs. Intuitively, the rules defining SProd should
behave similarly in the context X ′ = [ProdNFA, ProdNFA], Y ′ = [ProdNFA]. This
intuition can be stated using the following one line declaration.

transform SProd2 lifts SProd overrides (ProdNFA as in1, ProdNFA as in2).

The SProd2 transformation interprets the rules from SProd in a new context
according to the list of overrides. formula accepts this declaration if it can be
verified that SProd2 lifts SProd, in which case the lifted transformation also lifts
properties. Otherwise, an error is emitted.

The lifting analysis employs a class of rewriting procedures that we call col-
lapsing morphisms. This class allows automatic elimination of rewrites appearing
in lifted properties. For example, we know that:

∀x1, x2 ∈ S(NFA), #states(SProd(x1, x2)) = #states(x1) × #states(x2) .

Assume SProd2 lifts SProd, then the lifted property is:

∀x′
1, x

′
2 ∈ S(ProdNFA), #states(Γ (SProd2(x′

1, x
′
2))) = #states(Λx1(x

′
1)))×

#states(Λx2(x′
2)))

.

Reusing Model Transformations While Preserving Properties 53

If Γ and Λ are collapsing morphisms, then the rewrites can be immediately
eliminated, yielding:

∀x′
1, x

′
2 ∈ S(ProdNFA), #states(SProd2(x′

1, x
′
2))= #states(x′

1)×#states(x′
2) .

4.2 Collapsing Morphisms as Rewriting Procedures

Instances of algebraic data types with structural equality can be formalized as
either terms over a term algebra or as ordered trees [24]. We describe the ordered
tree representation as it simplifies description of algorithms. An ordered tree is a
tree where the children of node v are ordered 1 to kv. A record s instantiated by
f(s1, . . . , sn) produces an ordered tree where the root is labeled by the construc-
tor f and the ith child is the root of the ith subtree si. Syntactically, a model
x ∈ S(X) is a set of ordered trees; the left-hand side of Figure 3 shows the set
of ordered trees corresponding to (16) from the previous section. (By convention
children are drawn in order from left to right.) Note that every internal node
must be labeled by a record constructor and every leaf node must be a value,
such as the integer 3. (We treat nullary constructors as user-defined values.)

From this perspective, rewriting procedures must reconcile the legal trees of
S(X ′) with the legal trees of another syntax S(X). Our approach is to preserve
subtrees that are common to both syntaxes, while collapsing new types of sub-
trees from S(X ′) into arbitrary values. The right side of Figure 3 illustrates this.
On one hand, there is a complex State record from the ProdNFA domain. The
rewriting procedure Λ transforms the root node into an equivalent node in the
NFA domain, because the State constructor is common to both domains. How-
ever, the ID of the State record is rooted by a Pair node, which does not exist
in the NFA domain. This entire subtree is collapsed into a single value σ ∈ ΣX ,
where ΣX is the set of all values that can appear in the trees of X . The re-
sult is a well-typed tree in the original syntax that preserves as much common
structure as possible, and disguises foreign subtrees as values. A tree s is legal in
S(X) if s ∈ ΣX or s is rooted by the constructor f and its children satisfy the
type-constraints of this constructor. Let Trees(X) be the set of all legal finites
trees of DSL X , then S(X) = P(Trees(X)) is all finite sets of such trees.

Event State State Trans.

State Event State

3 1 2 1 3 2

State

Pair

State Pair

State

σ ∈ Σ

Λ

Λ

Fig. 3. (Left) Instance of syntax as set of ordered trees, (Right) Action of collapsing
morphism Λ on trees

54 E.K. Jackson et al.

The motivation for this class of rewriting procedures is based on the following
observation: Many transformation rules do not require full examination of record
structure. Consider the rule for constructing product states; in pseudo-code:

Pattern: Match State s1 from input1, match State s2 from input2.
Action: For every match, create State(x) where x = Pair(s1.id, s2.id); add it to
the output.

This rule uses the IDs to distinguish one state from another and to name product
states, but the internal structural of the IDs is not important. Thus, we expect
this rule to behave equivalently whether IDs are integers or trees of pairs. In
fact, given two ProdNFA models as inputs, the product states could be calculated
by first collapsing state IDs into distinct integers and then running the original
SProd transformation. At the end replace these integers with their corresponding
subtrees to obtain to correct result.

Rewriting procedures of this form do not exist between all pairs (S(X ′), S(X)).
It must be the case that: (1) Record constructors common to both syntaxes have
the same arity, though type-constraints can differ. (2) Every legal finite tree in
S(X ′) can be rewritten into a legal finite tree in S(X), taking into account
collapsing of foreign subtrees. (3) For every finite set of legal finite trees the col-
lapsing action must be in one-to-one correspondence. We formalize this in two
parts by first characterizing morphisms over trees, and then generalizing these
to finite sets of trees. Let Cons(X) be the set of record constructors for DSL X .

Definition 5. Collapsing Tree Morphism. Given X ′ and X such that com-
mon constructors agree on arity, then a collapsing tree morphism λ : Trees(X ′) →
Trees(X) has the following properties:

1. Common values are fixed: λ(s) = s if s = σ ∈ (ΣX ∩ ΣX′).
2. A tree rooted with a shared constructor is preserved: λ(s) = f(λ(s1), . . . , λ(sn))

if s = f(s1, . . . , sn) and f ∈ (Cons(X) ∩ Cons(X ′)).
3. All other trees are collapsed to a value: λ(s) = σ and σ ∈ ΣX if neither (1)

nor (2) apply.

If collapsing tree morphisms exist, then trees from X ′ can always be rewritten to
X . However, this does not guarantee that distinct trees can always be collapsed
into distinct constants, which requires a finite inverse condition.

Definition 6. Collapsing Morphism. Given X ′ and X, then a collapsing
morphism Λ : S(X ′) → S(X) maps finite sets of trees so that distinct collapsed
subtrees are mapped to distinct values. Specifically, applying Λ to a set x′ is
equivalent to extending a collapsing tree morphism over this set:

∀x′ ∈ S(X ′) ∃λx′ , Λ(x′) =
⋃

s∈x′
λx′(s). (18)

Every λx′ is one-to-one for the subtrees of x′:

∀s1, s2 ∈ x′ ∀t1 � s1, t2 � s2 (λx′(t1) = λx′(t2)) ⇒ (t1 = t2), (19)

where t � s indicates that t is an ordered subtree of s.

Reusing Model Transformations While Preserving Properties 55

Collapsing morphisms establish global relationships between syntaxes, so it is
not surprising that they can often be eliminated from lifted properties. In the
interest of space, we present one example of this elimination. Given a DSL X ,
a counting function #f(x) counts the number of trees rooted by constructor
f ∈ Cons(X) occurring in the set x. (We already made use of the #State
counting function.)

Theorem 2. Eliminating Rewrites from Counting Functions. Given a
subformula #f(Λ(x′)), where x′ ∈ S(X ′) and Λ is a collapsing morphism from
S(X ′) to S(X):

#f(Λ(x′)) =
{

0 if f /∈ Cons(X ′)
#f(x′) otherwise

(20)

As a final note, we have described unary collapsing morphisms. An arbitrary
rewrite Λ is decomposable into a direct product of unary rewrites, so these
results generalize immediately.

4.3 Calculating Collapsing Morphisms

We now turn our attention to calculating the set of collapsing morphisms,
CM(X ′, X), between DSLs X ′ and X . Our algorithm represents CM(X ′, X)
by a mapping from types declared in X ′ to type declarations compatible with X
such that every collapsing tree morphism λ must respect this type map. If the
algorithm fails to map every type in X ′, then no λ exists and CM(X ′, X) = ∅.
The success of this algorithm guarantees the existence of λ’s, but it does not
guarantee the existence of a Λ : S(X ′) → S(X) satisfying the finite inverse
condition. Fortunately, it can be constructively shown that Λ’s exist by solv-
ing a maximum bipartite matching problem between a finite number of trees in
Trees(X ′) and Trees(X).

A type declaration d can be any of the following: (1) A record constructor f:
(T1,. . .,Tn). (2) A finite enumeration of values e: {σ1,. . .,σn}. (3) A (non-disjoint)
union of types u: T1 + . . . + Tn. Each Ti is the name of some type, and all DSLs
share (order-sorted) infinite alphabets of values, e.g. Tinteger, Tstring. The type
Tbasic is the set of all values. Every type accepts a set of ordered trees, denoted
Trees(T). In our algorithms we use the fact that inclusion and equality testing
between types is decidable and the type system is closed under union, intersec-
tion, and complement. In fact, every type is equivalent to a tree automaton that
accepts exactly the set Trees(T), so operations on types correspond to opera-
tions on tree automata [24]. (The details of tree automata algorithms are outside
the scope of this paper.) Algorithm 1 tries to build a re-declaration map, called
redecl, from type names in X ′ to declarations/alphabets compatible with X .

If Algorithm 1 succeeds, then redecl characterizes how every collapsing tree
morphism behaves. Algorithm 2 ensures that the finite inverse condition can
hold by checking if an invertible λ exists even under worst case conditions. The
algorithm constructs a matching problem whenever a finite non-enumeration
type T ′ must collapse into another finite type T . It succeeds if this matching

56 E.K. Jackson et al.

Algorithm 1. Compute Re-declaration Map
1: for all f ′ ∈ (Cons(X ′) − Cons(X)) do
2: update redecl(Tf ′) := Tbasic
3: for all T ′ ∈ Types(X ′) where T ′ ⊆ Tbasic do
4: if T ′ is declared to be a finite enumeration e′ : {σ1, . . . , σn} then
5: update redecl(T ′) := e : {σ1, . . . , σn}
6: else
7: update redecl(T ′) := Ta // T ′ must be a built-in alphabet Ta

8: for all f ∈ (Cons(X ′) ∩ Cons(X)) do
9: lookup declarations d′ = f : (T ′

1, . . . , T
′
n) and d = f : (T1, . . . , Tn)

10: for all pairs (T ′
i , Ti) do

11: for all T ′′ ∈ Types(X ′) where T ′′ ⊆ T ′
i and T ′′

� Ti do
12: if T ′′ ⊆ Tbasic or T ′′ = Tg where g ∈ (Cons(X ′) ∩ Cons(X)) then
13: return false
14: else if T ′′ = Tg′ where g′ ∈ (Cons(X ′) − Cons(X)) then
15: let Told = redecl(Tg′)
16: update redecl(Tg′) := (Told ∩ Ti)
17: return true

problem has a perfect matching, which is decidable in polynomial time (e.g. via
the Hopcroft-Karp algorithm [25]). Note that Values(X ′) is the set of all values
that could appear as an argument to any constructor of X ′. A full complexity
analysis is outside the scope of this paper. However, the following theorem is
immediate from the algorithm:

Algorithm 2. Check Finite Inverses
1: update match := {} // Initialize a map called match to the empty map.
2: for all (T ′, T) where redecl(T ′) = T do
3: if |T ′| > |T | then
4: return false
5: if T ′ is a finite non-enumeration type and T is a finite enumeration then
6: for s ∈ Trees(T ′) do
7: if s is not in the domain of match then
8: update match(s) := (Trees(T)− Values(X ′))
9: else

10: let matchold = match(s)
11: update match(s) := (Trees(T)∩ matchold)
12: return HasPerfectMatching(match)

Theorem 3. Construction of Collapsing Morphisms. The set of collaps-
ing tree morphisms CM(X ′, X) can be characterized with a polynomial number
of type comparisons (e.g. tree automata operations) and a maximum bipartite
matching problem of size c(|Types(X ′)|+ |Types(X)|) where c is the size of the
largest finite enumeration.

Reusing Model Transformations While Preserving Properties 57

Surprisingly, the calculation of collapsing morphisms is the primary task to check
if τ ′ lifts τ . After CM(X ′, X) is calculated, static analysis determines if the
diagram in Figure 1 commutes. This verification can be accomplished fairly
easily, because the compiler knows that τ ′ and τ were generated by the same
rule set. Static analysis examines the interpretation of each rule in the new and
original contexts, and checks if any rule patterns are sensitive to the choice of
Λ. All formula rules are strongly typed during compile time, so a simple type
comparison is required to test if a pattern might be sensitive to this choice.

5 Conclusion

We presented a novel framework for deciding if a reused transformation pre-
serves properties. The key idea is to relate a reused transformation with its orig-
inal version through an automatically deducible rewriting procedure. A reused
transformation preserves compatible properties if it is behaviorally equivalent to
a rewrite followed by the original transformation. We formalized a class of useful
rewriting procedures, called collapsing morphisms, which can be automatically
derived. Furthermore, properties lifted using collapsing morphisms are amenable
to automatic elimination of rewrites. These procedures have been implemented
in our formula framework.

References

1. Jackson, E.K., Sztipanovits, J.: Formalizing the structural semantics of domain-
specific modeling languages. Software and Systems Modeling (2008)

2. Jackson, E.K., Seifert, D., Dahlweid, M., Santen, T., Bjørner, N., Schulte, W.:
Specifying and composing non-functional requirements in model-based develop-
ment. In: Bergel, A., Fabry, J. (eds.) Software Composition. LNCS, vol. 5634, pp.
72–89. Springer, Heidelberg (2009)

3. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

4. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming 68(3), 214–234 (2007)

5. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electr. Notes Theor.
Comput. Sci. 152, 125–142 (2006)

6. Taentzer, G.: AGG: A tool environment for algebraic graph transformation. In:
Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–488. Springer,
Heidelberg (2000)

7. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter 39(2), 25–31 (2006)

8. de Lara, J., Vangheluwe, H.: Defining visual notations and their manipulation
through meta-modelling and graph transformation. J. Vis. Lang. Comput. 15(3-
4), 309–330 (2004)

9. Ehrig, H., Ehrig, K., Ermel, C.: Evolution of model transformations by model
refactoring. In: Proceedings of the Eighth International Workshop on Graph Trans-
formation and Visual Modeling Techniques, GT-VMT 2009 (2009)

58 E.K. Jackson et al.

10. Levendovszky, T., Balasubramanian, D., Narayanan, A., Karsai, G.: A novel ap-
proach to semi-automated evolution of dsml model transformation. In: 2nd Inter-
national Conference on Software Language Engineering, SLE (2009)

11. Meertens, L.: Paramorphisms. Formal Aspects of Computing 4, 413–424 (1992)
12. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas,

lenses, envelopes and barbed wire. In: FPCA, pp. 124–144 (1991)
13. Achatz, K., Schulte, W.: Massive parallelization of divide-and-conquer algorithms

over powerlists. Sci. Comput. Program. 26(1-3), 59–78 (1996)
14. Narayanan, A., Karsai, G.: Towards verifying model transformations. Electr. Notes

Theor. Comput. Sci. 211, 191–200 (2008)
15. Varró, D.: Automated formal verification of visual modeling languages by model

checking. Journal of Software and Systems Modeling 3(2), 85–113 (2004)
16. Ehrig, H., Ermel, C.: Semantical correctness and completeness of model transfor-

mations using graph and rule transformation. In: Ehrig, H., Heckel, R., Rozenberg,
G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 194–210. Springer, Hei-
delberg (2008)

17. Bisztray, D., Heckel, R., Ehrig, H.: Verification of architectural refactorings by rule
extraction. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
347–361. Springer, Heidelberg (2008)

18. Bisztray, D., Heckel, R., Ehrig, H.: Compositionality of model transformations.
Electr. Notes Theor. Comput. Sci. 236, 5–19 (2009)

19. Balasubramanian, D., Narayanan, A., van Buskirk, C.P., Karsai, G.: The Graph
Rewriting and Transformation Language: GReAT. ECEASST 1 (2006)

20. de Lara, J., Guerra, E.: Pattern-based model-to-model transformation. In: Ehrig,
H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214,
pp. 426–441. Springer, Heidelberg (2008)

21. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behavioral
semantics of visual modeling languages with maude. In: Gašević, D., Lämmel, R.,
Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 54–73. Springer, Heidelberg
(2009)

22. Cortellessa, V., Gregorio, S.D., Marco, A.D.: Using atl for transformations in soft-
ware performance engineering: a step ahead of java-based transformations? In:
WOSP, pp. 127–132 (2008)

23. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Monticore: a
framework for the development of textual domain specific languages. In: ICSE
Companion, pp. 925–926 (2008)

24. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez,
D., Tison, S., Tommasi, M.: Tree automata techniques and applications,
http://www.grappa.univ-lille3.fr/tata (2007) (release October 12, 2007)

25. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

http://www.grappa.univ-lille3.fr/tata

	Reusing Model Transformations While Preserving Properties
	Introduction
	Related Work
	General Framework
	Transformations and Reuse Scenarios
	Properties of Transformations
	A General Scheme for Property Preserving Reuse
	Summary of the Approach

	Implementing Lifting Analysis
	Example: Reuse in FORMULA
	Collapsing Morphisms as Rewriting Procedures
	Calculating Collapsing Morphisms

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

