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Abstract— Research on query optimization has traditionally
focused on exhaustive enumeration of an exponential number of
candidate plans. Alternatively, heuristics for query optimization
are restricted in several ways, such as by either focusing on
join predicates only, ignoring the availability of indexes, or
in general having high-degree polynomial complexity. In this
paper we propose a heuristic approach to very efficiently obtain
execution plans for complex queries, which takes into account
the presence of indexes and goes beyond simple join reordering.
We also introduce a realistic workload generator and validate
our approach using both synthetic and real data.

I. Introduction

Research in query optimization has quickly acknowledged
the exponential nature of the problem. While certain special
cases can be solved in polynomial time (e.g., chain queries
with no cross-products [1] or acyclic join queries under ASI
cost models [2]), the general case is NP-hard (see [3], [2]).

Despite the inherent complexity of query optimization,
algorithmic research has traditionally focused on exhaustive
enumeration of alternatives (see [4] for the classical dynamic
programming approach and [5], [6] for a transformation-
based approach). As queries become more complex, exhaustive
algorithms simply cannot enumerate all alternatives in any
reasonable amount of time. For instance, enumerating all join
orders for a 15-table star query takes several minutes in
commercial systems (but we have seen scenarios with queries
that join more than 50 tables together).

To be able to cope with such complex queries, several
heuristics have been proposed in the literature (see Section II
for more details). However, previous work is limited to joins
operators (i.e., they do not consider other relational operators
like group-by clauses), do not consider the presence of indexes
(which, as we will see, can drastically change the landscape
of optimal plans), and can still be inefficient or inadequate in
certain scenarios. This is illustrated by the following examples:

Language integrated queries: New advances in pro-
gramming languages [7] allow expressing declarative queries
(similar to those using SQL) in procedural languages like C#.
Extensions to compilers and the language themselves make
possible to optimize such queries at runtime. In contrast to tra-
ditional DBMSs, such declarative queries might be executed in
main-memory, are dynamically generated, and usually operate
on relatively small amounts of data. For that reason, the latency
for optimizing such queries needs to be minimal, and only
very efficient optimization strategies are allowed. In fact, any
heuristic with more than a quadratic complexity factor risks
being longer than a naı̈ve execution of an un-optimized query!

At the same time, availability of indexes and large join graphs
present the opportunity for some amount of optimization.

Transformation-based optimization: Some optimiza-
tion frameworks, like Volcano [6] and Cascades [5], perform
a significant amount of exploration, where logical alternatives
are discovered, before obtaining physical execution plans
that could be evaluated. Note that if we decide to abort
optimization (due to time limits or memory pressure) before
implementation is well underway, we might not have a single
plan to evaluate. To mitigate this problem with complex
queries, some implementations of Cascades (e.g., Microsoft
SQL Server) use optimization stages, which are performed
sequentially. In a first stage, a heuristic join reordering is done,
followed by very restricted exploration and implementation
phases (e.g., the exploration phase does not consider join
reordering, or only uses it in a very restricted manner). A
later stage performs the exhaustive enumeration. In this case, if
the later (and time-consuming) stage is aborted, the optimizer
can always return the result of an earlier phase (which would
always be available). It is therefore crucial that the plan found
by the first phase is of reasonably good quality (since it will
be returned if later phases are aborted), but also very quickly
produced (since it is just an initial component of the whole
optimization process).

As illustrated in the previous examples, new applications
require efficient optimization heuristics that go beyond the
traditional scenario that exclusively handles join predicates
with no indexes. The main contributions of the paper are:

- We introduce the Enumerate-Rank-Merge framework (or
ERM for short), that generalizes and extends previous join
reordering heuristics in the literature (Section III).

- We extend previous work on heuristic join reordering to
take into account other operators (Section IV).

- We design a workload generator that goes beyond previ-
ous proposals, and use it to comprehensively evaluate our
techniques on synthetic as well as real data (Section V).

II. RelatedWork

There has been significant research on techniques to ex-
haustively enumerate search spaces for relational query op-
timization. The pioneering work in [4] presents a dynamic
programming algorithm to enumerate joins of a given query.
This result was extended several times, culminating in a
technique in [8] that efficiently enumerates all bushy trees
with no cross products, and additionally considers outer-joins.
A different approach is considered in [9], which presents



a top-down approach to exhaustively enumerate bushy trees
with no cross-products. Finally, reference [10] introduces an
exhaustive algorithm to enumerate all bushy trees including
cross-products. Reference [11] extends the dynamic program-
ming technique to additionally consider group-by operators. A
different line of work in [6], [5] exhaustively enumerates joins
by using transformations, and can be more easily extended to
explore other relational operators.

Whenever certain query properties hold, there are poly-
nomial algorithms that guarantee optimality. For instance,
for chain queries, it is known that the classical dynamic
programming algorithm works in polynomial time [1]. Also,
if the join graph is acyclic and the cost model satisfies the ASI
property [2], the IKKBZ technique in [12] returns the optimal
plan in O(N2) where N is the number of tables.

The join reordering problem has also received significant at-
tention in the context of heuristic algorithms. One line of work
adapts randomized techniques and combinatorial heuristics to
address this problem. These techniques consider the space
of plans as points in a high-dimensional space, that can be
“traversed” via transformations (e.g., join commutativity and
associativity). Reference [13] surveys different such strategies,
including iterative improvement, simulated annealing, and
genetic algorithms. These techniques can be seen as heuris-
tic variations of transformation-based exhaustive enumeration
algorithms. Another line of work implements heuristic vari-
ations of dynamic programming. These approaches include
reference [14] (which performs dynamic programming for a
subset of tables, picks the best k-table join, replaces it with a
new “virtual” table, and repeats the procedure until all tables
are part of the final plan), reference [15] (which simplifies
an initial join graph by disallowing non-promising join edges
and then exhaustively searches the resulting, simpler problem
using [8]), and references [16], [17] (which greedily build join
trees one table at a time).

Except for [16], [17], the above heuristics do not naturally
fit the scenarios described in the introduction. Although more
efficient than exhaustive search, these approaches are still
expensive for low-latency scenarios, do not consider other
relational operators beyond joins, and are unaware of indexes.

III. Enumerate-Rank-Merge Approach

In this section we introduce our main approach, which
can be seen as a generalization of earlier greedy techniques
(e.g., see [17], [16]). When trying to understand the different
heuristics, it is useful to refer to Figure 1, which presents a
generic pseudocode that is used, in one form or another, by
virtually all greedy approaches. The input to the algorithm is a
set of tables T and a join graph J. Each table is associated with
a base cardinality and, optionally, a selectivity of all single-
table predicates applied to it. The join graph J has associated
a selectivity value to each join edge. In line 1 we initialize a
pool of plans P, which consists of a Scan operator for each
table t ∈ T . We then modify the pool of plans P in lines 2-6,
until there is a single plan remaining, which we return in line
7. Each iteration of the main loop starts by enumerating all

ERM (T: set of tables, J: join graph)
01 P = { Scan(t) | t ∈ T }
02 while |P| ≥ 1
03 E = {(P1, P2) ∈ P × P : valid(P1, P2)}
04 find (P1, P2)∈ E that maximizes R(P1, P2)
05 Pn = merge(P1, P2)
06 P = P − {P1, P2} ∪ {Pn}
07 return p ∈ P

Fig. 1. Generic greedy technique to enumerate joins.

valid ways to combine two plans in P (enumerate step). Line
4 chooses the pair with the best ranking value (ranking step).
Line 5 then combines the highest ranked pair of plans into a
new plan Pn (merge step). Finally, line 6 removes the original
plans in the highest ranked pair from P and adds the new plan
Pn into the pool. The invariant at all times is that any plan
p in P is valid for the sub-query that contains all tables of
the plans that were merged to obtain p. Therefore, at the end,
when |P| = 1, the only plan in P is valid for the original query.

The generic algorithm ERM is parameterized by three
components. First, we need to determine which pairs of plans
in P are valid (enumerate). Second, we need to rank each
valid pair of plans (rank). Third, we need to combine a pair
of plans into a new plan (merge). The complexity of ERM
is then O(N2R + NM), where N is the number of tables, and
R and M are, respectively, the complexities of a assigning a
score to a single alternative, and merging a pair of plans (if R
is constant and M is at most linear, the complexity of ERM
is quadratic in the number of tables). Ranking has a factor
N2 because we can arrange the computation so that the first
time we evaluate N2 pairs, and then at each iteration we only
compute the rank of each element in P and the newly added Pn

(other ranks stay the same), which is linear per iteration1. The
following sections explain the components of ERM in detail.

A. Enumerate Step

The enumeration step determines the fundamental charac-
teristics of plans that we consider. If we are only interested
in linear trees, the valid function in line 3 only allows a pair
(P1, P2) if, after merging, there will be exactly one plan in the
pool defined over more than one table. It is easy to see that
this condition always results in linear trees. Similarly, if we do
not want to consider cross products, the valid function would
reject any pair (P1, P2) for which there is no join predicate
in J between a table in P1 and a table in P2. If the valid
function succeeds for every possible combination, we end
up considering bushy trees with cross products. Previously
proposed approaches use different versions of Enumerate:
minSel [16] considers linear trees with no cross products, and
Goo [17] considers bushy trees and cross products.

Linear vs. Bushy Trees

Since bushy trees include linear trees, the optimal bushy
tree is never worse than the optimal linear tree. However,

1In this analysis we assume that the ranking of pairs is done by assigning
a score to each pair, and then sorting by such score.



exhaustively enumerating all bushy trees is significantly more
expensive than doing so for just the subset of linear trees.
For that reason, query engines commonly restrict the search
space to consider only linear trees. In the context of our greedy
heuristics, the real advantage of bushy trees comes from the
additional flexibility and potential to recover from mistakes.
A problem with greedy techniques that only consider linear
trees is that they are fragile with respect to initial bad choices.

Example 1: Suppose that we have a chain query R1 � R2 �
R3 � . . . � Rk, and suppose that R1 � R2 is the highest ranked
join. Furthermore, suppose that R2 � R3 is a really bad choice,
since it increases 100x the number of tuples in R3. Suppose
that we initially choose R1 � R2. Next, we have no choice
but choosing (R1 � R2) � R3 to respect linear trees and no
cross products (even though (R1 � R2,R3) is ranked badly,
it is the only valid pair). The net effect is an explosion of
intermediate results. Alternatively, if bushy trees are allowed,
we can still first join R1 and R2, but we would have the
option to choose other join sub-trees before joining the plans
containing R2 and R3 (the final plan could be something like
(R1 � R2) � (R3 � . . . � Rk), therefore delaying the “bad
join” as much as possible.

As we show experimentally, including bushy trees in a
greedy search strategy greatly improves the quality of results.

B. Ranking Step

Consider a pair of plans (P1, P2), and denote T (P) the set
of tables referenced in plan P. Further assume that J is the
set of join predicates in the query. There are several ways to
assign a score to (P1, P2) to enable ranking of pairs. In this
section we review some alternatives (we assume that smaller
scores are better ranked), and in the next section we refine
the ranking function so that it is aware of merging. We first
present the rationale behind a good ranking function. The total
cost of an execution plan p is the sum of costs of all operators
in p. Consider for simplicity a join tree composed exclusively
of hash-based algorithms. Under a simple cost model, the cost
of each hash join is proportional to the sizes of both its inputs
and output. Since all plans would read the same amount of data
from base tables, minimizing the cost of the query is very well
aligned with minimizing the total sizes of intermediate results.
The different metrics discussed below try to minimize the sum
of intermediate results in different ways:

- MinSel: The score of pair (P1, P2) is defined as |P1�P2 |
|P1 |×|P2 | ,

where the join predicate is the conjunction of all join
predicates in J for which one table is in T (P1) and the
other table in T (P2). In other words, it is the selectivity
of the join predicates between T (P1) and T (P2). This
ranking function is used in minSel [16].

- MinCard: The score of pair (P1, P2) is defined as |P1 �
P2|, where the join predicate is the same as above. In other
words, it is the cardinality of the intermediate result that
joins all tables in T (P1) ∪ T (P2). This ranking function
is used in Goo [17].

- MinSize: The score of pair (P1, P2) is defined as |P1 �
P2| · rowLen(P1 � P2), where the join predicate is defined
as before, and rowLen(P) is the size, in bytes, of a row
produced by plan P. We slightly generalized MinCard
into MinSize, which additionally takes into account the
width of tuples produced by different operators, and
more closely satisfies the original intent of minimizing
intermediate result sizes.

We experimentally validated that MinSize is consistently
better and more robust than the alternatives, and this is the
ranking function we assume for the rest of the paper. It is
important to note, though, that we can construct scenarios for
which MinSel results in better results (but this rarely happens
in practice, especially when considering bushy trees). The
following example illustrates this fact.

Example 2: Consider a chain query A � B � C � D, where
|A| = |B| = 1K, |C| = |D| = 100, |A � B| = 1K (selectivity is
1/1K), |B � C| = x (selectivity is x/100K), and |C � D| = 200
(selectivity is 1/50). Further assume, for simplicity, that all
tuples have the same size. For x = 300 (selectivity is 3/1K),
minSel would choose the join order ((A � B) � C) � D,
and the sum of intermediate results would be 1K+300+600 =
1.9K. In turn minSize would choose the order ((D � C) � B) �
A, and the sum of intermediate results would be smaller at
200+600+600 = 1.4K. Now, if we change x = 900 (selectivity
is 9/1K), minSel would still choose the same join order, and
the sum of intermediate results would be 1K+900 + 1.8K=
3.7K. When considering minSize, it will first choose C � D
as before. After the first iteration, we have |C � D| = 200 and
thus |(C � D) � B| = 1.8K, which is larger than |A � B| = 900.
If we are restricted to linear trees, minSize would still end up
choosing the same plan as before, and the sum of intermediate
results would be 200+1.8K+1.8K = 3.8K (which is worse than
that of minSel). If bushy trees are allowed, however, minSize
would choose A � B in the second iteration, and would return
the final plan (D � C) � (B � A), with a sum of intermediate
results of 200 + 1K+1.8K= 3K (better than minSel, which
returns the same plan for either linear or bushy trees).

C. Merging Step

Once we decide in line 4 in Figure 1 the highest ranked
pair of plans (P1, P2), we have to merge them together in line
5 and replace the P1 and P2 with the merged plan Pn in line
6. Traditionally, the merge operation simply combines both
execution sub-plans with a join alternative (i.e., Pn=P1 � P2),
which always results in a valid plan. Note however that we
can consider alternative execution plans, as long as we do it
efficiently (as we discussed earlier, since there is a quadratic
number of -constant time- ranking invocations, and a linear
number of merges, we have a linear budget to implement better
versions of merging without increasing the complexity of the
algorithm). An interesting aspect of merging is that it is very
flexible. If we think of a new way of merging two execution
plans, we can add the new alternative and pick the best option



overall. We next introduce our merging alternatives, assuming
that the ranking function is minSize.

Switch-HJ

This is a very simple merge, motivated by our ranking
functions not distinguishing between left and right inputs. In
reality, it is better to have the smaller relation in the build side
of a hash join. So when merging P1 and P2, we choose the
alternative that uses the smaller input as the build side.

Switch-Idx

If we are about to merge P1 and P2, where P2 refers to
a single table T2, and there is an index on T2 that enables
an index-join strategy between P1 and T2, we consider this
alternative in addition to the one that does not use indexes,
and pick the one expected to be cheaper.

While this is an interesting merge that consider indexes, it
still depends on the ranking function to choose the appropriate
pair P1 and P2. In other words, we would only use an index
alternative “reactively,” if by chance there was an available
index for the highest ranked pair. A more robust alternative
would be to bias the ranking function so that it takes into
account the presence of indexes “natively”. At the same time,
since ranking is done for each pair of plans, this modification
to the ranking function needs to be very cheap to compute.

Suppose that we are considering a pair of plans (P1, P2)
where P2 covers a single table T2. Further suppose that P1

has cardinality C. An index-join alternative needs to perform
an index lookup for each of the C outer tuples, and seek the
index for matches (if the index is not covering, for each one
of these matches there should be a clustered index lookup
to obtain the remaining columns)2. Suppose that each index
lookup fetches LT2 tuples that fit in LP2 pages from T2. Then,
the index-join would read C · LP2 pages (plus C · LT2 pages
from the clustered index if the index is not covering), for the
benefit of not reading T2 altogether. The value PI, defined as:

PI = max
(
0, pages(T2) −C · (LP2 + δcov(I) · F · LT2)

)

approximates the number of pages we would save (if any) by
using an index-join alternative with index I, where pages(T2)
is the number of pages of table T2, δcov(I) is zero if the index is
covering (and one otherwise), and F is the ratio of a random
page read versus a sequential page read (to normalize PI
values to “sequential page reads”). The value of F can be
obtained by either using the optimizer’s cost model (which
we did) or by a calibration phase. We then refine the minSize
ranking function as follows:

minSize′(P1, P2) = minSize(P1, P2) − pageSize · PI
This function is still an approximation based on some

simplifying assumptions, such as not modeling duplicate outer
values or buffer pool effects. While all these could be accom-
modated by further refining the ranking function, our simple
metric already provides good quality results.

2The details are slightly more complex since we need to take into account
the single-table predicates on table T2, which could be applied before the
clustered index lookup. We omit such details for simplicity.

Push

The previous merging alternatives are simple and can be
implemented in constant time (they only change the root of the
merged tree). Push is a merging alternative that sometimes is
able to correct early “mistakes” that result from using a greedy
heuristic. Consider merging (P1, P2) and suppose that J is the
set of join predicates between tables in P1 and tables in P2.
As hinted by its name, the Push alternative tries to push one
plan inside the other. Consider pushing P2 into P1. Without
considering cross products, we can push P2 to any subtree in
P1 that has a non-empty join predicate between the subtree
and P2 (Figure 2(a) shows the positions where we could push
P2 = R5 � R6 if the join predicate between P1 and P2 is
J = R3 � R5). For each such sub-tree p of P1, we replace
p with an additional join operator that joins p and P2 (see
Figure 2(b) for an example).

Once we determine all subtrees for pushing P2, we select
the one with the highest aggregated rank (i.e., the sum of
sizes for all intermediate results). Note that pushing P2 into a
subtree p in P1 only changes the result size of all ancestors of
p in P1. This enables strategies that share most of the work
for calculating aggregated ranks of all push alternatives. For
instance, if we assume independence among join predicates,
each pushing of P2 into a subtree can be calculated in constant
time, by precomputing cardinality information on each plan in
the pool incrementally. There are two extensions to this basic
approach. First, note that for each push, we can apply the
Switch-HJ and Switch-Idx merges to each intermediate join in
the path from the root to the pushed element. This is useful
as changes in cardinality might make a index-join alternative
much more useful than before the push. Note that, since P2

into the root of P1 is the same as joining both trees, the Push
strategy is effectively a generalization of the previous Switch-
HJ and Switch-Idx. At the same time, the complexity of this
alternative is larger than that of the original approach.

The benefit of the Push technique is twofold. First, it might
help correct early mistakes done by the greedy technique. For
instance, suppose that (A � B) � C is better than (A � C) � B
overall, but A � B is more expensive than A � C (this is
the canonical adversarial scenario for a greedy technique).
Our greedy heuristic would pick A � C first, obtaining a
suboptimal plan. However, when later joining with B, we
can push B towards A and obtain the better plan again. The
second (related) benefit of Push has to do with join cycles,
or residual predicates that operate over a subset of tables.
Greedy heuristics are not aware that certain joins are beneficial
because they are part of a larger join cycle (or a multi-table
predicate) that would significantly reduce cardinality values.
Therefore, greedy heuristics sometimes do not close cycles
early enough. Whenever the join cycle is eventually closed,
the Push heuristic will attempt to push it down into the
tree, possibly making a substantial reduction in intermediate
cardinality appear earlier.
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(a) Candidate subtrees for pushing P2. (b) Applying a specific push operation.

Fig. 2. Merging two plans using Push.

Pull

This strategy tries to correct missed opportunities of index-
based joins. After merging P1 and P2, the resulting cardinality
can decrease significantly (either as a result of the join or
because of an additional residual predicate or join cycle).
Then, some early decisions that discarded index joins because
of large outer cardinalities can become interesting again. The
Pull strategy operates on P1 � P2 as follows. It first considers
each leaf node in the plan that is not already the inner side of
an index-join alternative, and tries to “pull” the leaf node all
the way up to the root of the plan to be used as the inner
of an index join. Figure 3 illustrates how R3 is pulled up
to the root of the tree (it also shows that sometimes earlier
joins that involve the pulled table must be converted in cross
products). As before, every pull operation of node p changes
the cardinality of all operators in the path from root to p. By
carefully maintaining cardinality information for all leaf nodes
in the pool of plans, the pulling of each node can be done in
constant time, and thus the Pull strategy is linear in the size
of the tree (we omit details due to space constraints).

R1

R2

R3

R4

R1

R2 R3

R4

Pull(R3)

HJ

HJ

HJ

HJ

IJ

Fig. 3. Pulling table R3.

D. BSizePP: Heuristic join reordering

Figure 4 shows an instance of the ERM algorithm of
Figure 1 (the name BSizePP is explained in Section V). We
consider bushy trees and cross products, use the minSize rank-
ing function with the extensions in Section III-C to natively
consider indexes, considers all valid pull and push merges and
picks the one that minimizes the aggregated minSize value. We
will validate each of this choices experimentally in Section V.

IV. Beyond Join Reordering

In this section we extend our strategies, which heuristically
reorder join graphs, to additionally handle other operators.

BSizePP (T: set of tables, J: join graph)
01 P = { Scan(t) | t ∈ T }
02 while |P| ≥ 1
03 E = { (P1, P2) ∈ P × P } // consider bushy trees
04 find (P1, P2) ∈ E minimizing minS ize(P1, P2)
05 Pn = best of Push(P1, P2) and Pull(P1, P2)

// Includes Switch-HJ and Switch-Idx
06 P = P − {P1, P2} ∪ {Pn}
07 return p ∈ P

Fig. 4. Generic greedy technique to enumerate joins.

A. Group-by Clauses

After joins, group-by clauses are the most commonly used
operator in SQL. A group-by clause is defined by (i) a set of
grouping columns c, (ii) a set of aggregate functions a, and
(iii) the relational input expression R. We concisely write a
group-by expression as GB(c,a,R), or simply GB(c,R) if the
aggregate functions are not relevant for the discussion.

Group-by clauses can be done before or after joins in certain
situations. Specifically, a group-by clause can be pulled up
above a join, as long as (i) we add a key of the other join
relational input to the set of grouping columns, and (ii) the join
predicate is not defined over an aggregated column (otherwise
the resulting join is not well-formed). Figure 5 illustrates this
transformation (note that b2 must include b1 so that the original
join is well-formed). A group-by clause can be pushed below
a join R � S (down to S ) whenever (i) the grouping columns
include a key of R, (ii) the columns from S in the join predicate
are included in the grouping columns or derived from them via
functional dependencies, and (iii) all aggregates are defined in
terms of columns in S [11], [18].

GB(b2)A

B

a=b1

GB (b2, key(A))

A B

a=b1

Fig. 5. Pulling a group-by clause above a join.

Canonical representation

Join graphs are well-known canonical representations of
SPJ queries. We now describe how to extend this concept for
queries that additionally contain group-by clauses. The canon-
ical representation of a generic query with joins and group-by



clauses is a join graph augmented with a set of canonical
group-by clauses. Each canonical group-by clause is obtained
from an original group-by in the query, and consists of (i) a set
of grouping columns, (ii) a set of aggregate functions, and (iii)
an input signature (instead of the relational input expression
in regular group-by clauses). An input signature consists of a
set of tables and optionally other canonical group-by clauses.
Consider a logical operator tree representing a query with joins
and group-by clauses. We first push all group-by clauses down
joins as much as possible (reordering joins below group-by
clauses if required). Since group-by clauses in the same query
are either defined over disjoint relational inputs or else one is
part of the other’s input, the result of this step is always unique
and well defined. We then consider each group-by clause in the
resulting tree, and convert it into a canonical group-by. The
grouping columns and aggregate functions in the canonical
group-by clause are identical to those in the original group-by
clause. The input signature contains all tables and group-by
clauses that are descendants of the original group-by clause
and can be reached from it using a path in the query tree that
does not go through another group-by clause. The join graph,
in turn, is constructed as if no group-by clauses were present
(for simplicity, cases which define joins between aggregated
columns are discussed later in this section).

Example 3: Consider the query in Figure 6(a) and the corre-
sponding operator tree representation in Figure 6(b). The inner
group-by clause initially is defined by (i) columns key(A), B.1,
D.3, (ii) the COUNT(*) aggregate, and (iii) the input relation
A � B � C � D. Note that we can push the group-by below
A �A.1=B.1 (B � C � D) since k(A) and B.1 are part of the
grouping columns. Then, the group-by is canonically defined
as (i) the set of grouping columns {B.1, D.3}, (ii) the aggregate,
and (iii) the input signature {B, C, D}. We concisely write this
as GB1 = GB({B.1,D.3},{B,C,D}). Using a similar argument,
the canonical representation of the outer group-by clause is
GB2 = GB({E.3},{A, GB1,E}). Figure 6(c) shows the canonical
representation of the query above.

It is important to note that we were able to obtain a
single join graph even though the original query had two join
components “separated” by a group-by clause. This would
allow to reorder joins across group-by clauses, which is not
possible in previous approaches.

The canonical representation of a query allows identifying
the locations in a join tree where each group-by clause can
be inserted. Specifically, we can insert a group-by G on top
of a sub-tree T whenever T contains at least all tables and
group-by clauses in G’s input signature. In such case, the set
of grouping columns in the resulting group-by clause would
additionally include keys for any table or group-by clause in
T that is not present in the “transitive closure” of the input
signature of G (i.e., not present in G’s input signature, in input
signatures in G’s input signature, and so on).

Example 3: (continued) Consider a sub-tree T = A � B �
C � D � E. We can insert a root group-by G1 (see Figure 6)
on top of T because T includes all tables in G1’s input

signature. We have to include in G1’s grouping columns a
key for A and E (which are not in the input signature of G1).
Group-by G2 can now be placed on top of the resulting sub-
tree because G1, A and E are present in the sub-tree. The
grouping columns in G2 do not need to be augmented, since
all tables and group-by clauses in the sub-tree appear in either
G2’s input signature, or in G1’s input signature (which belongs
to G2’s input signature).

Selectivity Estimation of Group-By Clauses

When considering a query that only contains joins, we can
associate a selectivity value with each join because this value
is independent of the order of the join in an execution tree.
No matter where a join is positioned in an execution plan, the
selectivity of the join would always be the same3. We now
extend this idea to queries that also contain group-by clauses.

We define the selectivity of a group-by G as the number
of output tuples divided by the number of input tuples. In
this work we do not take a position on how to calculate this
selectivity value (in general it would involve using statistical
formulas and exploiting histogram information). Instead, we
show that the selectivity of a group-by clause is independent
to its position in an execution plan.

Suppose that there are |A| tuples in A and |B| tuples in B.
Furthermore, assume that there are dvA distinct values of a
in A, each one repeating DA times, so |A| = dvA ∗ DA (this
is a simplification, but is the information that we have per
histogram bucket on A.a, and we can extend the discussion to
hold over all buckets). Similarly, there are dvB distinct values
of b in B, each one repeating DB times, so |B| = dvB ∗ DB.
Additionally, each distinct value of b in B (i.e., these DB

tuples) contain distinct values for b′ (recall that the columns in
b′ includes those in b, so it tuples that share b values generally
vary in columns b′ − b). Let’s say that there are dv′B distinct
values of b′ in these DB tuples, each one repeating D′B times,
so DB = dv′B ∗D′B (again, there is an implicit assumption about
independence of column distributions here, which is typically
used during cardinality estimation). With this notation, we can
calculate cardinality and selectivity values in presence of both
joins and group-by clauses. Specifically:

1) |GB(b′, B)| = dvB · dv′B (the group-by clause removes all
DB’ copies).

2) S el(GB(b′, B)) = |GB(b′, B)|/|B| = 1/D′B.
3) |A � B| = min(dvA, dvB) ·DA ·DB (using the containment

assumption for joins).
4) |A � (GB(b′, B))| = min(dvA, dvB) · DA · dv′B (using the

containment assumption again, but now each group of
DB tuples was reduced to only dvB’ tuples due to the
group-by clause).

5) |A � (GB(b′, B))| = |GB(b′, key(A), A � B)| (since both
expressions are the same when pulling up a group-by).

6) S el(GB(b′, key(A), A � B) = |GB(b′, key(A), A �
B)|/|A � B| = 1/D′B.

3This statement leverages the standard independence assumption commonly
used for cardinality estimation.



SELECT E.3, COUNT(*)
FROM E, F,

(SELECT A.1, B.1, D.3, COUNT(*)
FROM A,B,C,D
WHERE A.1=B.1 AND

B.2=C.2 AND
C.3=D.3

GROUP BY key(A), B.1, D.3) T1
WHERE E.1=F.1 AND E.2=T1.A.1
GROUP BY key(F), E.3

GB (key(F),E.3)

E F GB (key(A),B.1, D.3)

A B C D

A

F

ED

CB

GB1 = GB({B.1, D.3}, {B, C, D})
GB2 = GB({E.3}, {A, GB1, E})

(a) Original Query. (b) Operator tree representation. (c) Canonical Representation.
Fig. 6. Canonical representation of joins and group-by clauses.

By 2 and 6 above, the selectivity of the group-by is the same
independent of placement of additional joins. Join selectivities
are also unaffected by additional group-by clauses, since:

7) S el(A � B) = min(dvA, dvB) · DA · DB/|A| · |B| =
min(dvA, dvB)/(dvA · dvB) = 1/max(dvA, dvB).

8) S el(A � GB(b′, B)) = |A � GB(b′, B)|/(|A| ·
|GB(b′, B)|) =(by 4 and 1) min(dvA, dvB) ·DA ·dv′B/(|A| ·dvB ·
dv′B) = min(dvA, dvB)/(dvA · dvB) = 1/max(dvA, dvB).

This means that joins and group-by clauses, considered
together, are not that different from joins alone in terms of
having a single selectivity value that is independent of the
position of the operator in the final tree. The main difference
is that group-by clauses cannot be placed arbitrarily in an
execution plan, but can only be placed on top of a plan that
contains all elements in its input signature.

Reordering Joins and Group-by Clauses

To summarize the previous discussion, we showed (i) how
to extend canonical representations of queries so that they
also handle group-by clauses (which allows us to understand
when a group-by clause can be “merged” with an existing sub-
tree), and (ii) how to assign a selectivity value to a group-by
clause independent on the position in the execution tree. An
interesting consequence of these properties is that group-by
clauses can now be naturally incorporated into the Enumerate-
Rank-Merge approach. We now describe the extensions to the
approach in Section III by explaining how each component in
the main algorithm of Figure 1 needs to be extended.

Initial pool of plans P (line 1): In addition to one Scan
operator for each table in the query, we include one virtual
group-by node for each canonical group-by in the query. These
virtual group-by nodes are not executable leaf-nodes (as Scan
nodes are), but instead only make sense when they are put on
top of a valid execution sub-plan.

Enumerate (line 3): We disallow pairing two virtual
group-by nodes together (as explained before, it does not
result in a well-formed execution plan). Additionally, we only
consider pairing a virtual group-by G with a non virtual group-
by plan P2 if this would results in a valid placement of the
group-by as per definition of canonical representation (i.e., if
the tables and group-by clauses in P2 include those in the
signature of G). All other pairings of non-virtual group-by
nodes are handled as before (note that these input plans can

have a group-by operator as the root node, but the pairing
would result, as before, in a join or cross product).

Ranking (line 4): The ranking functions introduced in Sec-
tion III-B are easily extended to deal with group-by clauses.
For instance, the value minSize(G, P1) is the output size of
applying the group-by operator G on top of P1. This value
can easily be computed based on the cardinality of P1 and the
selectivity of G, which, as we saw earlier, does not depend on
the operator placement in the tree.

Merging (line 5): The naı̈ve merging operation is trivially
extended so that when combining a virtual group-by G with a
non-virtual plan P, the generated plan consists of the group-by
G (augmenting the grouping columns appropriately) on top of
P. Switch-HJ and Switch-Idx only operate on the root of the
tree, so they are not applicable when one of the plans in the
pair is a virtual group-by operator. Push and Pull operations
require a bit more care, but are also simple to extend. The
main challenge is to prevent invalid trees from being generated
through merges. Consider the pull operation of a table T that is
in the input signature of some intermediate group-by. In this
case, simply pulling the table to the root of the tree would
generate an invalid plan with a group-by that does not operate
on its input signature. Instead, when the pulled table appears
in the input signature of an intermediate group-by G, we pull,
along with the table, any dependent group-by operator as well
to the top of the tree. Similarly, consider the push operation
when applied to a virtual group-by node G. In addition to
generating the group-by at the root of the new tree, we try to
push the group-by down whenever possible, and pick the best
alternative. At a high level, the main extensions require us to
re-evaluate the ranking function of alternative plans, and pick
the one with the best ranking as the resulting merging plan.

Additional Details

For simplicity, we have not discussed a special case when
handling join predicates defined on aggregate columns of
group-by clauses, as illustrated in the example below:

SELECT *
FROM T1, (SELECT SUM(x) AS SX FROM TX) T2
WHERE T1.X = T2.SX

We cannot join T1 and T2 until after doing the aggregation
on T2 (otherwise, the join is not well-defined). In general,
this situation results in a dependency graph between joins and



group-by nodes, where the application of some operator is
blocked until other operators unlock it. Earlier in this section,
we discussed the case of group-by operators being blocked by
their input signatures. The same ideas and solutions can be
applied in this case, where group-by clauses block joins. A
suitable extension of the enumerate step in line 3 of Figure 1
is required, but we omit such details due to space constraints.

B. Semi-join operators

Although semi-joins (�) are not directly specified in SQL
queries, they are very useful relational operators because (i)
semi-joins can be used to handle nested sub-queries with
optional correlation, (ii) there exist efficient set- and tuple-
oriented implementations of semi-joins, and (iii) algebraically
they can be expressed as group-by clauses and joins, which
enables additional optimization alternatives. To make the last
item concrete, the traditional algebraic equivalence that relates
semi-joins with joins and group-by clauses is as follows:

A � B = GB(key(A), A � B)

We use this equivalence to produce a canonical represen-
tation of a query that contains joins, group-by clauses and
semi-joins. Suppose that the semi-join predicate in the equality
above is A �a=b B. This equality results in the functional
dependency (key(A)→ b) and thus in GB({key(A), b}, A � B),
which can then be rewritten by pushing the group-by clause
down the join as in A �a=b (GB(b, B)). Now consider a slightly
different example without an equi-join, namely A �a<b B.
This is equivalent to the expression GB(key(A), A �a<b B)
but we cannot push the group-by down the join since column
b in the join predicate is not a grouping column. As a more
complex example, consider A �a=b (B �b2=c2 C). In this case,
the transformation results in GB(key(A), A � B � C), which,
by a similar reasoning as in the first case above, can be pushed
down through the first join into A �a=b GB(b, B �b2=c2 C).

In general, to obtain a canonical representation for a subplan
like R � T we replace the � with a � and add a group-by with
key(R) as the grouping columns. We then proceed as before,
by pushing the group-by as much as possible and obtaining the
join graph and canonical group-by clauses. As a final example
consider expression A �a=key(B) (B �b=c C). We translate it to
GB(key(A), A � B � C), but key(A) → a, which is equal to
key(B), and key(B)→ b which is equal to c, so this is actually
GB({key(A), key(B), c}, A � B � C), and now we can push
the group-by below joins to result in A � B � GB(c,C). The
canonical representation contains the join graph A � B � C
and the canonical group-by clause GB(c,C).

Integrating Semi-joins

Since we transform semi-joins into joins and group-by
clauses, our algorithms can handle semi-joins with no mod-
ifications. While this approach is correct, it has a drawback:
group-by clauses obtained from semi-joins have sometimes
special properties. For instance, often there is a single table
in the right side of the semi-join, and if there are indexes, we
can use efficient index-based execution plans without actually

performing the group-by and join. Below we outline some
suggestions to address this issue.

Leveraging that a semi-join results into a join plus a group-
by, the ranking function can have certain limited look-ahead
capabilities. In general, if there are no aggregate functions
defined on a group-by clause over a join, we can attempt to
apply the join and the corresponding group-by together using
an index-based strategy when ranking the pair that contains
the join. Of course, merging should be made aware of the
look-ahead mechanism and implement the optimized plans
whenever possible. The main challenge in this approach is that
the merge operators (e.g., Pull and Push) need to be aware of
new physical operators that we might introduce in specialized
plans. We believe that this is not a straightforward task, and
we consider this form of tighter integration of semi-joins with
our Enumerate-Rank-Merge framework as part of future work.

C. Other operators

In addition to joins, semi-joins and group-by clauses, there
are other operators in SQL that need to be handled. In this
section we briefly comment on how we can approach such op-
erators4. In general, these operators are handled independently
of the join/semi-join/group-by components, either using pre-
or post-processing, as explained next.

Anti-Joins: As far as we know, we cannot freely reorder left
and right children of anti-joins as we did for joins and semi-
joins. Conceptually, R �a=b S is evaluated by considering each
row in R and processing it according to S (in the example,
it would return the tuple from R if there is no tuple in
S that satisfies predicate a=b). This procedure can be seen
as evaluating an expensive predicate for each row of R. In
fact, the cost per tuple in R depends on S and, according to
cardinality estimation, only a fraction of tuples from R would
pass the anti-join. To deal with queries that include anti-joins,
we first obtain a heuristic execution plan for the query that
omits the anti-join. We then identify the most specific point
in the query plan in which the anti-join can be evaluated, and
use the heuristic techniques in [20], [21] to obtain the most
appropriate place to position the anti-join in the tree.

Outer-Joins: We pre-process a query with outer-joins (de-
noted as →) by delaying them as much as possible (and
therefore obtaining larger join components). We do this using
the algebraic equivalence R � (S → T ) = (R � S ) → T
and pull outer-joins above joins as much as possible before
applying the ERM approach to the join component. A full
integration of outer-join reordering is part of future work.

Other operators: We do not specifically handle other
operators (such as unions or full outer-joins), and leave them
as in the original query.

D. Putting it All Together

Out technique to heuristically optimize queries is as follows:

4An alternative, more systematic approach that adapts work on anti-join
and outer-join reordering (e.g., [8], [19]) is part of future work.



1) Analyze the query and transform it into a set of
join/semi-join/group-by canonical components (with as-
sociated anti-join expensive predicates), and connected
among each other via (delayed) outer-joins, unions, and
any other un-handled operators.

2) Apply ERM to each component.
3) Greedily place anti-joins in each component.
4) Use default implementations for outer-joins, unions, and

other un-handled operators.

V. Experimental Evaluation

We now report an experimental evaluation of the techniques
described in this paper. We implemented a C# prototype
that enables us to compare different optimization variants.
Each experiment is specified by three components: a query
workload, an index configuration, and a set of optimizers to
evaluate. We next detail each component in detail.

A. Query Workloads

A query is specified by a set of tables (with selectivity values
given by single-table predicates), a join graph with associated
selectivity values, and a set of group-by clauses.

Tables: We generate table cardinalities by following Zipfian
distributions. The parameters of the table generation routine
are number of tables NT and the Zipfian parameter Z. A value
Z = 0 generates tables with the same cardinality, while a value
Z = 5 generates 10 tables with the following cardinalities
(for a total 100M tuples): {96440632, 3013770, 396875, 94180,
30861, 12403, 5738, 2943, 1633, 964} Alternatively, we used two
additional data generation routines: random (which generates
tables with random cardinality) and stratified (which was
previously proposed in the literature [13] and generates tables
of size 10-100 with 15% probability, size 100-1K with 30%
probability, size 1K-10K with 25% probability, and size 10K-
100K with 30% probability). Finally, a boolean parameter,
sorted, specifies whether the tables are sorted by cardinality
or are instead shuffled during query construction (this is
important due to join and filter generation, explained next).

Join Graphs: These are generated using the following
parameters:

- J: Number of joins. The first NT−1 joins form a spanning
tree, and remaining joins introduce cycles.

- 0 ≤ JL ≤ JR ≤ 1, which control the graph topology. The
i-th join (for i < NT ) is done between the i-th table
(in the order produced during table generation) and a
random table between JL*(i-1) and JR*(i-1). This pro-
cedure generalizes previous approaches in the literature
to generate interesting join topologies. For instance, for
JL=JR=0 we obtain star topologies, for JL=JR=1 we
obtain chain topologies, and for other values, such as
JL=0 and JR=0.3 we obtain snowflake-like topologies.
After NT − 1 joins, we randomly join pairs of tables
generating cycles.

- JoinType, which is a categorical variable which deter-
mines the cardinality of the join. It could be random

(which assigns a random selectivity value to the join),
Min/Max/MinMax (which assigns the cardinality of the
smallest/largest table, or a number in between), or N-M
(which models n-m joins by picking a number of distinct
values in each table and having the join selectivity be
1/max(dv1, dv2) as in [13]). We can specify a different
distribution for the first NT − 1 joins and the rest.

Table filters: So far each table is joined without applying
any filter on it, which is fine if no indexes are present (since we
always need to read the full table). When indexes are present,
tables with filters can result in big differences. We specify
table filters by a pair of values (0 ≥ lo ≥ hi ≥ 1) specifying the
selectivity of the filter, and a choice of tables to filter, which
could be either a random fraction of the tables, the value First
(which filters the fact table in a snowflake topology), or Leaves
(which filters dimension tables in snowflake topologies).

Group-by clauses: Group-by clauses are generated by pa-
rameters G (the number of group-by clauses) and T (the
number of random tables that are required in the group-by
input signature).
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(a) Snowflake topology.
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GB(T2,T3) sel=0.08

(b) Chain topology.

Fig. 7. Synthetically generated queries.

An Example

The generation procedure described above is rather flex-
ible, and many combinations are possible. We can produce
star, linear, and snowflake topologies respecting foreign key
constraints, as well as cycles simulating M-N joins. Figure 7
shows examples generated with this approach. We generated
the snowflake query in Figure 7(a) using NT = 10 tables
with Z = 4 tuple distribution (sorted by cardinality), a join
graph with 10 joins (the first 9 using JL = 0, JR = 0.5 and
MinMax selectivity values, and the last one introducing a cycle
with N-M selectivity), and filter predicates on the fact table.
Figure 7(b) shows a chain query generated with NT = 5 tables
with Z = 0.5 tuple distribution (shuffled tables), a join graph
with 4 joins using JL = JR = 1 and Max selectivity values,
and a group-by clause over two tables.



B. Index Configurations

A configuration is defined a set of indexes. Each index
consists of a leading column and a boolean value which
specifies whether the index is covering during an index lookup.
A configuration is generated by two parameters: ProbIndex
(which gives the probability that an join column or single table
predicate has a backing index) and ProbCover (which gives
the probability of an index being covering).

C. Optimizers

To simplify the presentation, we encode an optimizer by a
three-part name E-R-M, where:

- E identifies the search space, which can be L (linear trees
with no cross products) or B (bushy trees with cross
products).

- R identifies the ranking function and can be Sel (rank
by minSel), Size (rank by minSize), and ST (rank by
smallestTable5).

- M identifies the merging approach. It could be empty if
only the trivial merge is used, + if Switch-HJ and Switch-
Idx are used, and PP if additionally Pull/Push is used.

Using this notation, our experiments use subsets of the
following optimizers: LSel, LSel+, LST, LST+, BSel, BSel+,
BSize, BSize+, BSizePP. We additionally implemented the
following exhaustive optimizers:

- LEx: Exhaustive optimizer that considers linear trees and
no cross products.

- BEx: Exhaustive optimizer that considers bushy trees and
cross products.

- LIKKBZ, LIKKBZ+: Optimizer that returns optimal linear
trees for acyclic queries and no indexes, augmented with
minimum spanning trees for cyclic queries [12].

D. Metrics

For a given workload, index configuration, and set of
optimizers, we proceed as follows. We optimize each query
by all optimizers. We cost each resulting execution plan using
Microsoft SQL Server’s cost model. We then divide the cost of
each plan by the cost of the best plan found by any optimizer
in our set. The value that we assign to a given optimizer is this
ratio, which goes from one (optimal) upwards, and quantifies
how much worse the solution is compared to the optimal one.
After repeating this procedure for all queries in a workload,
we report the minimum, maximum, average, median, and the
95%-quantile of the ratio for each optimizer. These quality
numbers are precise if an exhaustive optimizer is in the mix,
since the optimal execution plan would be found. While we
can evaluate exhaustively for small number of tables (<15), it
is not possible to do so for a large number of tables. In that
case we do not know what the optimal plan is, but we always
include LIKKBZ in the set of optimizers (which is guaranteed
to produce optimal linear trees for acyclic queries, and thus is
a baseline).

5This is another heuristic found in the literature [16], where at each iteration
we choose that smallest table that can be joined.

E. Summary of Results

The sections below show a sample of experiments per-
formed on a 3GHz dual core machine. We focused on general
trends and insights, and omit several additional variants that
we tried due to space constraints.

Execution times

We first report execution times for the techniques discussed
in this paper. Note that our prototype is not optimized for
speed (instead, we tried to reuse as much code as possible to
implement all variants, which results in performance limita-
tions). Therefore, performance numbers should be interpreted
as trends rather than in absolute terms. Figure 8 shows elapsed
times for all techniques (note the logarithmic scale). All
heuristic implementations show the same trend and finish
in less than 200 milliseconds for 60 tables, and in tens of
milliseconds for up to 30 tables (query graphs were generated
randomly in this experiment, as we just wanted to measure av-
erage performance). In contrast, exhaustive techniques quickly
become too slow over 10 seconds for as little as 13 tables.
Also note that exhaustively exploring bushy trees can be an
order of magnitude slower than just exploring linear trees.
The results in Figure 8 do not consider indexes. We ran the
experiment again but adding 50% of relevant indexes to the
physical design, and the results (while slower than the ones
reported in the figure) showed the same trends.
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Fig. 8. Performance of different optimization alternatives.

Quality results

We first generated a workload with NT = 10 tables with
Z = 4 cardinalities (not sorted by cardinality), and a chain
join topology (JL = JR = 1) where each join has a cardinality
given by MinMax. We did not consider any index. Figure 9
shows the quality metrics for all optimizers (ordered by
average ratio). We make the following observations:

1) BEx is (obviously) the best strategy in all cases.
2) With the exception of BSel, all bushy strategies are better

than linear strategies. This is a direct consequence of the
join topology, which is very restrictive and does not give
flexibility to recover from large intermediate results.

3) LEx is on average 4.2 times (up to 35.2 times) worse than
BEx, which shows that bushy trees can be substantially
better than optimal linear trees. It is interesting to note
that most bushy heuristics result in better plans than that
of the exhaustive linear tree.



4) LIKKBZ+ has almost the same quality as LEx (the slight
difference comes from small variations in the cost model
used by IKKBZ [12]).

5) Simple merging variants (+) generally pay off, resulting
in better quality than the corresponding technique with
naı̈ve merging..

6) Our technique BSizePP performs on average 6% worse
than the optimal bushy strategy (and 32% worse in 95%
of cases). The advanced merging operations Push and
Pull did not additionally improve quality over BSize+.

Avg Min Median 95% Max

BEx 1.000 1.000 1.000 1.000 1.000
BSizePP+ 1.060 1.000 1.001 1.328 1.880

BSize+ 1.060 1.000 1.002 1.328 1.880
BSize 1.367 1.000 1.131 2.462 4.096
BSel+ 3.764 1.006 1.509 15.184 69.812

LEx 4.288 1.000 1.533 17.345 35.278
LIKKBZ 4.295 1.000 1.533 17.345 35.278

LIKKBZ+ 4.295 1.000 1.533 17.345 35.278
BSel 11.241 1.033 3.156 51.432 234.573

LSel+ 12.074 1.005 4.169 43.504 129.153
LST+ 12.331 1.001 3.797 50.236 193.288

LST 13.061 1.037 4.779 50.371 193.604
LSel 45.256 1.012 12.420 177.877 536.407

Fig. 9. 10-table chain queries with no indexes.

We repeated the experiment increasing the number of tables
from 10 to 50. In this case, we could not obtain results for
LEx or BEx. However, LIKKBZ (which for acyclic queries and
no indexes is almost the same as LEx) was included in the set
of optimizers. The results are shown in Figure 10. We see that
results are amplified, and LIKKBZ+ (which would be almost
the same as an exhaustive optimizer considering linear trees)
is, on average, 62 times worse than BSizePP (and up to 477
times worse overall). We also see that BSizePP consistently
returns the best quality among the heuristics.

Avg Min Median 95% Max

BSizePP 1.000 1.000 1.000 1.000 1.000
BSize+ 1.004 1.000 1.000 1.003 1.320

LIKKBZ+ 62.615 1.000 20.991 279.523 477.828
LST+ 203.410 1.000 73.013 1056.145 2596.727
LSel+ 218.113 1.000 74.098 814.333 4295.878

Fig. 10. 50-table chain queries with no indexes.

Indexes

We repeated the previous experiments with three variations.
First, we added covering indexes for 25% of all join predicates.
Second, we added single-table predicates with 1% to 10%
selectivity to half the tables in the query. Finally, we added 2
additional join predicates (resulting in join cycles). The results
of this experiment, with NT = 10 tables, is shown in Figure 11.
In this case, we observe:

1) BEx is optimal, and LEx is a close second. This shows
that the presence of indexes changes the landscape of
optimal plans in subtle ways.

2) In general, non-trivial merges (+) result in better quality
than when using naı̈ve merges due to indexes.

3) Our proposed technique BSizePP results in 25% average
degradation compared to the optimal exhaustive opti-
mizer, and is 2.7 times worse for 95% of the queries.

Avg Min Median 95% Max

BEx 1.000 1.000 1.000 1.000 1.000
LEx 1.019 1.000 1.000 1.061 1.960

BSizePP 1.258 1.000 1.005 2.779 6.968
BSize+ 5.083 1.000 1.034 31.531 75.319

LIKKBZ+ 5.647 1.000 1.011 31.349 89.143
LSel+ 32.317 1.000 1.325 122.621 1689.996

LIKKBZ 34.782 1.000 1.159 148.631 928.081
LSel 76.965 1.000 3.613 262.510 3416.043

BSize 91.763 1.000 1.358 421.005 2640.823
BSel+ 107.132 1.002 1.504 122.950 7522.576
LST+ 180.787 1.000 1.033 72.599 16854.665

LST 269.542 1.069 3.351 645.925 16859.123
BSel 328.761 1.005 3.256 395.120 24734.621

Fig. 11. 10-table chain queries with 50% indexes and join cycles.

4) Previous techniques proposed in the literature (LSel,
LST, and BSize can be hundred times worse (and even
thousands in the worst case) than our approach.

As in the previous experiment, we increased the number
of tables from 10 to 50. The results are summarized in
Figure 12. The two main observations from this figure is
(i) BSizePP consistently ranks the best among polynomial
heuristics (including those that return optimal plans for acyclic
join trees), and (ii) the quality of the other heuristics is not
consistent across workloads (contrast LST+ and BSize+ in
Figures 10 and 12). As additional supporting evidence for
these two claims, Figure 13 shows the results of changing the
join topology to snowflake (JL = 0, JR = 0.3) and introducing
filter predicates (with selectivity between 1% and 50%) to
all dimension tables. In this case, BSizePP is still the overall
winner, while LST performs really poorly for the bottom 5-
percentile (note that LST was the second-best in Figure 12).

Avg Min Median 95% Max

BSizePP 1.336 1.000 1.000 2.452 16.551
LST+ 1.757 1.000 1.001 2.571 56.198

BSize+ 7.275 1.000 1.030 20.250 287.116
LIKKBZ+ 16.600 1.000 1.011 73.224 504.403

LSel+ 3477149.692 1.000 1.853 11348.939 347519317.250

Fig. 12. 50-table chain queries with 50% indexes.

Avg Min Median 95% Max

BSizePP+ 1.011 1.000 1.000 1.042 1.785
BSize+ 1.913 1.000 1.071 6.622 24.941

LIKKBZ+ 8.571 1.000 1.030 18.617 570.039
LSel+ 53993.686 1.001 2.131 6481.553 4954352.880
LST+ 3.6E18 1.156 70.655 9.6E13 3.6E20

Fig. 13. 50-table snowflake queries with 25% indexes.

Group-by Clauses

To evaluate group-by clauses we generated NT = 10 table
queries (Z = 4, not sorted by cardinality) with a join cycle
(JL = JR = 1 for the first 9 joins, and the last join closing
the loop). Additionally, we randomly chose a connected com-
ponent of size 3, and use it as the group-by clause with a
selectivity value between 5% and 95%. Figure 14 shows the
result of this experiment comparing LEx, BEx, BSizePP, and
two new optimizers: LExNoGB and BExNoGB. These last two
versions do not attempt to reorder group-by clauses. Instead,
they perform exhaustive join reordering of the connected join



components (separated by group-by clauses) in the query. This
represents the best possible behavior of a heuristic that does
not consider group-by clauses. BSizePP results in execution
plans that are 15% worse than the optimal on average (up
to 6 times worse in the worst case), which coincidentally is
almost the same performance that the exhaustive LEx. The
alternatives that do not handle group-by clauses are not robust.
While for 50% of the queries they perform very well (6% and
33% degradation with respect to the optimal plan), there are
situations in the bottom 5-percentile where the techniques are
tens of thousands of times worse than the optimal. The reason
for this behavior is that in some situations, the 3-way join that
covers the group-by tables results in a very big intermediate
result. By pulling the group-by above other joins, and then
reordering a larger join sub-graph, we can significantly reduce
the cardinality of intermediate results. This can be seen as
a group-by clause artificially restricting the search space of
join orders to be forced to go through a specific intermediate
result (the subset of tables in the group-by clause), which in
general can be a very bad choice. This behavior for LExNoGB
and BExNoGB is common for the cycle join topology that
we chose, but happens in a much lest extreme way for other
workloads (we omit these results due to space constraints).

Avg Min Median 95% Max

BEx 1.000 1.000 1.000 1.000 1.000
LEx 1.147 1.000 1.005 2.083 5.893

BSizePP 1.155 1.000 1.004 1.733 6.021
BExNoGB 17282.120 1.000 1.064 16875.686 1408364.416
LExNoGB 18290.878 1.000 1.332 17793.046 1415005.930

Fig. 14. 10-table join cycle with a group-by clause.

Real Data

We also experimented on real data and workloads. As an
example, Figure 15 shows the estimated cost of different
techniques for a data warehouse query that joins 15 tables
together using a shallow snowflake schema, and two different
index configurations (Clo and Chi correspond to lightly and
heavily indexed configurations, respectively). We see that
BSizePP is very close to the optimal plans returned by BEx
and LEx in both cases, and improves over the basic BSize+
that does not consider Pull and Push operations. We also see
that other heuristics are not robust (e.g., both LSel+ and LST+
range from close to BSizePP to being the worst alternative for
some index configuration.

Clo (opt. time) Chi (opt. time)

BEx 7.86 1.04
LEx 7.86 1.09

BSizePP 7.89 1.14
BSize+ 7.91 3.08

LIKKBZ+ 7.90 3.34
LSel+ 7.89 3.68
LST+ 908.72 1.58

Fig. 15. 15-table snowflake for using real data.

VI. Conclusions

Motivated by new requirements for query processing tech-
niques, in this paper we introduced polynomial-time heuristics

to optimize SQL queries. Our techniques generalize previous
approaches in the literature in a number of aspects. First,
we introduce the notion of merging, which can be seen as
a corrective action that helps recovering from early mistakes
in the greedy techniques. Second, we extend our techniques
to handle group-by clauses, semi-joins, and the availability of
indexes. Finally, we designed a realistic workload generator
and validated our hypothesis on both synthetic and real data.
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