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Abstract

In facility games, public facilities are placed based on the reported locations of the agents. The
cost of an agent is measured by the distance from its location to the nearest facility. In this paper,
we consider the one dimensional facility games where all locations for agents and the facilities are on
the real line.

We study the approximation ratio of social welfare for strategy-proof mechanisms, where no agent
can benefit by misreporting its location. The social welfare function studied in this paper is the total
cost of the agents. We mainly study two extensions of the simplest version as in [10]: two facilities
and multiple locations per agent. In both cases, no lower bound for randomized strategy-proof
mechanisms was previously known. We prove the first lower bound of 1.045 for two-facility games
and the first lower bound of 1.33 for multiple locations per agent setting. Our later lower bound is
obtained by solving a related linear programming problem, and we believe that this new technique
of proving lower bounds for randomized mechanisms may find applications in other problems and is
of independent interest.

We also improve several approximation bounds in [10]. In particular, we give a tighter analysis of
a randomized mechanism proposed by [10]. This analysis is quite involved and confirms a conjecture
in [10]. We also give a simple randomized mechanism for the two-facility games with approximation
ratio n/2, improving the naive n — 2 ratio from the deterministic mechanisms. For deterministic
mechanisms for two-facility games, we improve the approximation lower bound to 2 from 1.5.

1 Introduction

In a facility game, a planner is building public facilities while agents (players) are submitting their
locations. In this paper, we study the facility game in one dimension, i.e., the locations of the agents
and the facilities are in the real line. Let the position reported by agent ¢ be x; € R; C R. Assume the
number of agents is n and the number of public facilities available is k. A (deterministic) mechanism
for the k-facility game is simply a function

fiRIXRyx xRy — RE.

In this paper, we assume R; = R for all agents. The cost of an agent is the distance from its true
location to the nearest facility. Let {l1,l2,...,lx} be the set of locations of the facilities. The cost of
agent ¢ is cost({l1,..., Ik}, x;) = minj<j<p|z; — ;. A randomized mechanism returns a distribution
over R¥. Then the cost of agent i is the expected cost over the distribution returned by the randomized
mechanism.
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An agent may misreport its location if it can reduce its own cost. A usual solution concept is
strategy-proofness, which is also the focus of this paper. In a strategy-proof mechanism, no agent can
unilaterally misreport its location to reduce its own cost. For x = {x1,x9,..., 2, ..., 25} € R", we
define x_; = {z1,...,%i—1,%it1,...,2n}. A mechanism is strategy-proof if for any z; and z, # z;,
cost(f(x—i,x;), x;) < cost(f(x_;,2}),x;). In other words, no matter what other agents’ strategies are,
one of the best strategies for agent i is reporting its true location.

The facility game problem has a rich history in social science literature. Consider the case that we
are building one facility in a discrete set of locations (alternatives). Agents are reporting its preference
for the alternatives. The renowned Gibbard-Satterthwaite theorem [6, 11] showed that if the preference
on alternatives for each agent can be arbitrary, the only strategy-proof mechanisms are the dictatorships
when the number of alternatives are greater than two.

In the facility game, however, the preferences on facility locations are not arbitrary. In particular, if
the location of agent ¢ is z;, for locations x < y < x;, it prefers y over x, while if z; < & < y, it prefers =
over y. In other words, agent ¢ has a single preferred location x;. When two locations are on the same
side of x;, agent ¢ will always prefer the one closer to x;. This kind of admissible individual preferences
are defined as single-peaked preferences, which was first discussed by Black [3].

Since the Gibbard-Satterthwaite theorem does not hold in the setting for single-peaked preferences,
the facility game admits a much richer set of strategy-proof mechanisms. For example, in case of an
odd number of agents with one facility, the mechanism choosing the median location of the agents is a
non-dictatorial strategy-proof mechanism.

Moulin [9] characterized the class of all strategy-proof mechanisms for one facility game in the
real line. (One unnecessary assumption in the proof is dropped by Barbera and Jakson [2], and
Sprumont [13].) In particular, a generalized median voter scheme is sufficient to characterize all
strategy-proof mechanisms. Interested readers may refer to the detailed survey by Barbera [1]
The characterization for the strategy-proof mechanisms with two or more facilities is widely open.
Miyagawa [8] characterized the strategy-proof, Pareto-optimal, and continuous mechanisms for two
facilities. This characterization, though interesting, only covers two simple mechanisms.

More recently, Procaccia and Tennenholtz [10] studied the facility game in a different perspective.
They consider the facility game as a special case of the game theoretic optimization problems where the
optimal social welfare solution is not strategy-proof. They treat the facility game in a broader concept
of the games that payments are not allowed or infeasible. Such mechanism design problems without
payments are rarely studied by computer scientists, except some special problems [12].

In a more algorithmic point of view, Procaccia and Tennenholtz studied strategy-proof mechanisms
that give provable approximation ratios on social welfare, when the optimal solution is not strategy-
proof. For the simplest case, only one facility is allocated, the median mechanism is both strategy-
proof and optimal for social welcome. Then Procaccia and Tennenholtz studied two extensions: (1)
there are two facilities to be located; (2) each agent controls multiple locations (one facility is to be
located). In both cases, the optimal solutions are no longer strategy-proof in general. Therefore, we are
interested in giving the best (from an approximate ratio point of view) strategy-proof mechanisms for
these extensions. This is also the focus of this paper. A strategy-proof mechanism has an approximation
ratio of « if for every input instance, the social cost for the output of the mechanism is always at most
« times the social cost for an optimal solution.

We remark that, if payment is allowed, then the well-know Vickrey-Clarke-Groves (VCG) mechanism
[14, 4, 7] will give both optimal and strategy-proof solutions for both extensions. However, in many real
scenarios, payment is not available as noted by Schummer and Vohra [12]. We focus on the strategy-
proof mechanisms without money in this paper.



1.1 Our result

We study the approximation ratios of social welfare for the strategy-proof mechanisms in the facility
game with one or more facilities. The social welfare function we use is the social cost, i.e., the total cost of
all agents. We mainly focus on the approximation ratios for social cost of the strategy-proof mechanisms,
where we improve most results in [10]. Furthermore, we also provide several novel approximation bounds
which are not previously available. Table 1 summarizes our contribution.

Two Facilities Multi-Location Per Agent (One Facility)
. UB: (n—2) UB: (3 [5])
Deterministic LB: 2(1.5) LB: (3 [3))
. 2min;c N w; [wi —wa] _
. UB: n/2 (n—2) UB: 3 — JEN T (2 + for n = 2 only)
Randomized 2jeN Wi witws
LB: 1.045(N/A) " LB: 1.33 (N/A)

Table 1: Our results are in bold. The numbers in brackets are previous results in [10] unless stated
otherwise. (N/A means no previous known bound.)

The organization of the paper is as follows. In Section 2, we provide improved upper and lower
bounds of both deterministic and randomized strategy-proof mechanisms for two-facility games. In
Section 3, we study the cases when each agent controls more than one location. We conclude our paper
in Section 4 with several open problems.

2 Two-Facility Games

In this section, we study strategy-proof mechanisms for two-facility games. We first provide a better
randomized mechanism achieving approximation ratio of n/2. The only previous know upper bound is
n — 2, which is from deterministic mechanisms. Then we study the lower bounds both for deterministic
and randomized cases. For deterministic mechanisms, the lower bound is improved to 2 from 1.5 in [10].
For randomized mechanisms, we provide the first non-trivial approximation ratio lower bound of 1.045.

2.1 A Better Randomized Mechanism

The following mechanism is inspirited by Mechanism 2 from [10]. However, our proof is different and
much simpler than theirs.

Mechanism 1. See Figure 1 for reference. Let x = {x1,x2,...,2,} be the reported locations of the
agents. Define lt(x) = min{z;}, rt(x) = max{z;} and mt(x) = (It(x) + rt(x))/2. We further define
the left boundary 1b(x) = max{z; : i € N,z; < mt(x)} and the right boundary rb(x) = min{z; : i €
N,z; > mt(x)}. Let dist(x) = max{rt(x) — rb(x),1b(x) — 1t(x)}. We set Ib(x) = It(x) + dist(x) and
rb(x) = rt(x) — dist(x). The mechanism return (It(x),rt(x)) or (Ib(x),rb(x)), both with probability
1/2.

Theorem 2.1. Mechanism 1 is strategy-proof. And the approximation ratio of Mechanism 1 is n/2 for
social cost.

Proof. We first prove the approximation ratio assuming that all agents report their true locations. By
symmetry, we assume rt(x) — rb(x) < lIb(x) — 1t(x) as in Figure 1. Since we only have two facilities,
either 1t(x) and rb(x) or rb(x) and rt(x) are served by a same facility. Therefore the optimal solution



1t(x) Ib(x) 1b(x)

Figure 1: Mechanism 1 pick (1t(x),rt(x)) or (Ib(x),rb(x)) both with probability 1/2

is least min{|lt(x) — rb(x)|, |rb(x) — rt(x)|} = dist(x). On the other hand, for each agent, its expected
cost is exactly dist(x)/2 in this mechanism. So Mechanism 1 is F-approximate.

We then show that Mechanism 1 is strategy-proof. We first show that any point other than the
3 points defining lt(x),rt(x) and rb(x) cannot benefit by misreporting its location. Let the new
configuration is x’. Consider the 3 points defining the previous 1t(x), rt(x) and rb(x). No matter how the
3 points are partitioned by the new mt(x’), dist(x’) > rt(x) — rb(x), where x’ is the new configuration.
We know that the expected cost for any location in this configuration is at lease dist(x’)/2, which is at
least as large as the honest cost dist(x) = rt(x) — rb(x). The same argument also shows 1t(x) (resp.
rt(x)) does not have incentive of reporting positions on the left (resp. right).

Consider the point rb(x). Its expected cost is rt(x)girb(x) if it reports its true location. By lying,
it cannot move the left or right boundary towards itself, and as a result, its expected cost in any new
configuration is at least =2 lt(x)_rb(XQ) LirbGo—rtGal} rt(x);rb(x) . Therefore, the point at rb(x) has no
incentive to lie.

The only possible cases left to analyze is that the agent at 1t(x) (resp. rt(x)) reporting a location to
the right (resp. left). Its expected cost is rt(x);ilb(x) if it reports its true location. Reporting a location
on its right can only move Ib(x’) toward right, which will only hurt itself. Therefor the agent at 1t(x)
has no incentive to lie. Similar argument also holds if the agent at rt(x) reports its location on the left
of rt(x).

To sum up, no agent has incentive to lie. Therefore Mechanism 1 is strategy-proof. O

2.2 Lower Bounds

In this subsection, we prove improved lower bounds both for deterministic and randomized strategy-
proof mechanisms. Both bounds are proved by the following construction, which is similar to the 1.5
lower bound example in [10].

left node n—2 nodes right node
° (o) ° o o
-1 0 1 1+a 2 - %

Figure 2: Lower bound example for two-facility game.

Theorem 2.2 (Lower bound for deterministic mechanisms.). In a two-facility game, any deterministic
strategy-proof mechanism f : R" — R? has an approzimation ratio of at least 2 — ﬁ for the social
cost.

Proof. See Figure 2 for the configuration. We have n — 2 nodes at the origin and the left node at —1
and the right node at 1.



Assume to the contrary, there exists a strategy-proof mechanism with approximation ratio less than

2. Then this mechanism has to place one facility in the range (—%, %) Now consider the left node

and the right node at —1 and 1. At least one of them is 1 — 2/(n — 2) away from its closest facility.

Without loss of generality, assume the right node at 1 is at least 1 — % away from the facilities.

If there is one facility on the right of 1, it must be placed at a position right to 2 —2/(n — 2) by our
assumption. In this case, since the optimal cost is 1, the approximation ratio is at least 2 — % as one
facility is always close to the origin.

Now consider the case that the closest facility to the right node at 1 is on the left. Consider the
image set I of the closest facility to the right node when it moves while all other nodes remain fixed.
Clearly, by strategy-proofness, I N (%,2 - = 2) (). On the other hand, I N [2 — %2,—1—00) # 0,
otherwise the approximation ratio is unbounded when the right node moves to the infinity.

Take p as the left most point of IN[2— ﬁ’ +00). (p always exists, as I is a closed set.) If we place
the right node at p — 1+ = 2, the closest facility to x is at p. Therefore, the cost of the mechanism for
such a configuration is at least 2 — %, as the other facility has to be close to the origin. Because the
optimal cost is still 1, the approximation ratio is at least 2 — %. O

If the mechanism is randomized, the output is a distribution of R2. Notice that in a randomized
mechanism, the cost of an agent is measured by the expected distance from its true location to the closest
facility. We give the first non-trivial (greater than 1) approximation ratio lower bound of strategy-proof
mechanisms for social cost in Theorem 2.3.

Theorem 2.3 (Lower bound for randomized mechanisms.). In a two facility game, any mndomz’zed

strategy-proof mechanism has an approzimation ratio of at least 1+ 1;[2\1[ — f > 1.045 — =5 for the

n
social cost for any n > 5.

Proof. Again, we consider the point set as in Figure 2. Let the expected distance from —1, 0 and 1 to
the closest facility be eq, eo and es respectively. Clearly, we have e; + 62 + e3 > 1. For any randomized

strategy-proof mechanism with approximation ratio at most 2, ez < —=5. Without loss of generality,

we assume e3 > % n£2.

Now we place the right node at 1 to a new position at 1 + a for some a € (0,1/2). Let e be the
expected distance from 1+ a to the nearest facility at the neW configuration by the same strategy- proof
mechanism. Because of strategy-proofness, e} > l — a — —. (The condition n > 5 guarantees e; > 0
for the optimal « chosen later.)

Let p(x) be the probability density function of the probability the closest facility to the right node
at 1+« is at = in the new oonﬁguration When & < ——5, the closest facility is at weighted distance at
least 1 to nodes at 0. When x > —;, for any placement of the other facility, the sum of the weighted
distances to the closest facility for the nodes at —1 and 0 is at least 1. In these two cases, the weighted

distance to nodes at —1 and 0 is at least 1. Denote P = f 7 () dz. Therefore, the total cost of the
2

mechanism in the new configuration is at least:

1 1
cost > (1—P)- 1—|—e3>1+7—a—72—P
On the other hand consider the distance to the node at 1 4+ a. When the closest facility to 1 + « is
e 2, P 2) the total weighted distance from the nodes to the closest facilities is at least 1 + a.
Therefore, we have
cost>(1—-P)-1+P-(14+a)=1+a-P.



1/2—a—1/(n—2)

Combining the two inequalities, the optimal ratio is achieved when P = e and the
approximation ratio is at least
1 1 1/2—a—1/(n—2 1 1 24+1/2
1+-—a- — [2=a-1/n )214—7— _oz+/'
2 n—2 14+« 2 n-—2 14+«
Define g(a) = aiila/ 2 The maximum ratio is achieved when ¢'(a) = 0 with o = %, and the
approximation ratio is at least 1 4 12\?2_\}5 - ﬁ O

Both lower bounds for deterministic and randomized strategy-proof mechanisms can be generalized
to k facilities for k > 3. (Consider the configuration that two nodes on the two sides, and k — 1 group
of nodes in between. Each group of nodes (including the two singletons) are at unit distance away.) We
have a direct corollary.

Corollary 2.1 (Lower bound for k-facility game.). In a k-facility game for k > 2, any deterministic
strategy-proof mechanism has an approximation ratio of at least 2 — % for the social cost, where m =

LZ—:%J Any randomized strategy-proof mechanism for k-facility game has an approximation ratio of at
VvV2-1 1 _ 1
least 1 + D2z m > 1.045 — -

3 Multiple Locations Per Agent

In this section, we study the case that each agent controls multiple locations. Assume agent ¢ controls
w; locations, i.e., x; = {x;1, Ti2, . . ., Tiw, }- A (deterministic) mechanism with one facility in the multiple
locations setting is a function f : RY! x --- x R¥» — R for n agents. Then, for agent 4, its cost is
defined as cost(l, x;) = > 7%, |l — x5, where [ is the location of the facility. As before, we are interested
in minimizing the social cost of the agents, i.e., 37,y > 0% |l — @], where N = {1,2,...,n}.

We first give a tight analysis of a randomized truthful mechanism proposed in [10]. This in particular
confirms a conjecture of [10]. Then we prove the first approximation ratio lower bound of 1.33 for any
randomized mechanisms. This lower bound even holds for the simplest case of two player and each
controls the same number of locations.

3.1 A Tight Analysis of a Randomized Mechanism

In [10], Procaccia and Tennenholtz proposed the following randomized mechanism in the multiple
locations setting:

Randomized Median Mechanism: Given x = {x1,X2,...,X,}, return med(x;) with probability
W/ (e wy)-

If w; is even, med(x;) will report either the %*th location or 5 +1st location of x;. In [10], Procaccia
and Tennenholtz gave a tight analysis for the case of two players(n = 2), which has an approximation
ratio of 2 + % They proposed as an open question for the bound in the general setting. In this
section, we give a tight analysis of this randomized mechanism in the general setting, which in particular

. . — 2 min, _
confirms the conjecture. Notice that 2 4+ =42l — 3 _ ZWMENW) wpoy 4y = 9,
w1 +ws 2 jeN Wy

Theorem 3.1. The Randomized Median Mechanism has an approzimate ratio of 3 — 2;”1]7;]\;% for
je J
social cost.



Proof. If n =1, then med (x1) is the optimal solution. So the mechanism has an approximate ratio of
3— 21% = 1. Now we consider the case for n > 2.

Without loss of generality, we can reorder the players so that med(x;) < med(xz2) < --- < med(xy,).
Then it must be the case that med(x;) < med(x) < med(x,). The idea here is to construct a worst
case instance for this mechanism and then analyze the approximate ratio for the worst case. Let ¢’ be

the largest i such that med(x;) < med(x).

Claim 1. We can assume that the worst case satisfies the following properties: (1) w; is even for all
i€ N; (2) for all i < i, med(x;) returns the 5t-th point of x;; (3) and for all i > i', med(x;) returns
the (5 + 1)-th point of x;.

We justify the claim as following: if some w; is odd, we can add one more point for agent i at the
global median med(x), then the original med(x;) is still one of i-th two medians after adding the new
point. We still return that value when we need to return med(x;). After the modification, the expected
cost can only increase while the optimal cost remain the same. So we can assume all w; are even in a
worst case. The properties (2) and (3) are obvious because returning the other point only improves the
performance of the mechanism.

Now we assume that our instance satisfies all properties in Claim 1. By symmetry, we can further
assume Zzlzl w; > Y3 wi. Let W =37,y w; and R(med(x;)) be the rank of med(x;) in the whole
set x. Let X be the ordered global set of x and X; be the ith location in X. We perturb the points so
that X; and R(med(x;)) are well defined. Then for all : < i', R(med(x;)) > E] 1 5 and for all i > ¢/,
R(med(x;)) < W — >0, 5. The worst case happens when the above two sets of inequalities all reach
equalities.

We further make the two sides more symmetric as follows. If w; > wn, previously, the mechanism
returns T with probability {3 and returns Xy, u with probability 7. We modify the mechanism

wy — wn

by returnlng X wn and Xy wn both with probability §# and returning Ty with probability
We continue thls process and ﬁnally we can get the followmg mechanism. There are 0 = kg < kl <

ko < --- < kp, and | < m. The mechanism returns X, and Xy 41_, both with probability kk l—ik
if 1 <4 < [; returns x, with probability ,; l Lif I <4 < m. (The meaning of k;s are roughly
k=>4 %t However due to the symmetrlzatlon process descried above, we also have k; = Z;:nf 5
for j <1.) We have k; = mm{“;l’w”} > mmJ;N Y and ky, + k= W/2.

The optimal solution is OPT = ZW/Q(XWH_i — X;). Let aj = Zfikj_l+1(Xw+1_,~ — X;). Then
OPT>s=3"a

j- Now we can compute the expected cost for this mechanism. For 1 < i <[, we
calculate the cost for X}, and Xy 41, together. They both have probability ol The cost for Xy,

ki—ki—1




is
W/2
D (X = Xl + [ Xwr1-j — Xa, )

j=1
ks W/2
= D (X = Xp |+ Xy — X )+ Y (X — X+ [Xwij — Xii)
j=1 j=k;+1
ki W/2
= D [ Xwa = X+ Y (X — Xp |+ [ Xwiij — X))
Jj= j=ki+1
w/2
= ZG’J Z |Xj - in‘ + |XW+1*J' - sz|)
J=k;+1
Similarly, we can show that the cost for X1y, is
W/2
Z% (X = Xwia okl + 1 Xwiy — Xwiag,)
j=ki+1

Combing the cost of X}, and X,,;1_, together, we have

i w/2
2> ai+ Y (1X = X + 1 Xwirj — Xi | + X5 — Xwyrr | + [ Xwroj — Xwiani|)
j=1 j=ki+1
W/2
= QZGJ+2 Z ’XW—H k; —Xk|
j=k;+1

= 2 Z a; + 2(km + k= k)| Xw1—r, — X |
j=1
a;

J J—

J=1

Now consider the case for [ +1 <i < m. The cost of X}, is

W/2
Za] Z (1 X5 — X, | + [ Xwy1—j — Xi,])
j=ki+1
i
.
< Zaj + 2k + ki — )| Xwia—k, — Xe,| <Y aj + 2(km + ki — ’”m
J J—

J=1 Jj=1



We are ready to derive the expected cost of the mechanism as follows.

Expected Cost

l J J
kj — kj_l A (k + kl ) aj(km + kl - kj)
= Z:: km + ki (2;a’+2 kj — ki Zl;rl Em + ;GZ—FQ kj —kj—1 )
= 22 . + Za, Z e + Za, j(km + ki — kj)
=1 j=l+1 i=1 j=1
l l m m
S T ONDICELNIES 3 SIUEURIED o) SURVIED s RES
m i=1 =1 j=i+1 1=l Jj=t
l l m
— Y al =) + Y aln k) Y ailh u*2ZaJ ) +2s
m =1 =1 i=l+1
!
< kl(%Zaﬁ =) Dot b > az—%IZa] )+ 2
i=1 i=l+1
= i (kmtR) Zamtk‘ Zal—Qk‘lZa] ) +2s
i=l+1
2k 2min;en w;
: (3_km+kl)85(3_2j#w])ow

O]

The following corollary confirms a conjecture of [10] regarding the case where each agent controls
the same number of locations.

Corollary 3.1. If all the players control the same number of locations, the approximate ratio of

Randomized Median Mechanism is 3 — %

3.2 Approximation Lower Bounds for Randomized Strategy-proof Mechanisms

In this section, we consider the lower bound of the approximation ratios for randomized strategy-proof
mechanisms in the multiple locations setting. We first give a 1.2 lower bound of the approximation
ratio, based on a very simple instance. Then we extend to a more complicated instance, which we
derive a lower bound of 1.33 by solving a linear programming instance.

Theorem 3.2. Any randomized strategy-proof mechanism of the one-facility game has an approximation
ratio at least 1.2 in the setting that each agent controls multiple locations.

Proof. We assume to the contrary that there exists one strategy-proof mechanism M which has an
approximate ratio ¢ < 1.2. Consider the following three instances:

Instance 1 First player has 2 points on 0 and 1 points on 1; and second player has all 3 points on 1.
Instance 2 First player has all 3 points on 0; and second player has all 3 points on 1.

Instance 3 First player has all 3 points on 0; second player has 1 points on 0 and 2 points on 1;.



Let Pi, P, and Ps be the distribution of the facility the mechanism M gives for these three instance
respectively. For all x € R and a distribution P on R, we use cost(P,z) to denote Ey.p|y — x|. Then
we have (for all i =1,2,3)

cost(P;,0) + cost(P;, 1) > 1.

We use p1(z), p2(z) and p3(z) to denote the probability density function of P;, P> and Pj respectively.

Let
0

+0o0
Vie{l,2,3}, L; = / —zpi(x)dr and R; = / (x — 1)pi(z)dz.
1

— 0o
Now, we computer the cost of the players in each distribution. For the first player in Instance 1, its
cost in distribution P; is

2cost(P;,0) + cost(P;, 1)
= cost(P;,0) + (cost(P;,0) + cost(P;, 1))

—+00

= cost(P;,0) +/ (|lz| + |z = 1])pi(x)dz

—00

0 1

“+oo
= cost(P;,0) + (/ (1 —22)p;(z)dz +/0 pi(z)dz +/1 (2z — 1)pi(z)dz)

—0o0

0 +o0

+oo
= cost(P;,0) + (2/ (—x)pi(x)dx + / pi(z)dz + 2/1 (x — 1)p;i(z)dz)

—00 —00

= cost(P;,0)+2L; +2R; + 1

So the strategy-proofness (of the first player in Instance 1) requires the following inequality:
cost(P1,0) +2(L1 + Ry) < cost(Pa,0) 4+ 2(La + Ra).

Since L1, R1 > 0, we have
cost(Py1,0) < cost(Pa,0) 4+ 2(La + Ro). (1)

By symmetry, we also have
cost(Ps,1) < cost(Py,1) + 2(La + Ra). (2)
Using the similar calculation as above, we can get the expected cost of Instance 1 as follows.
2cost(Py,0) + 4cost(Py, 1) = 2cost(Py,1) +2(2L1 + 14+ 2Ry) > 2cost(Py, 1) + 2.
Since the optimal cost is 2 and the approximate ratio is less than 1.2, we have
2cost(P1,1) +2<2x1.2=24.
Therefore, we have cost(P;,1) < 0.2 and hence cost(P;,0) > 0.8. Substituting the above inequality into

(1), we get
cost(P2,0) + 2(La + Ry) > 0.8.

Again by symmetry, we also have

cost(Pa,1) + 2(La + Ry) > 0.8.

10



Adding these two inequalities, we have
cost(Pa,0) + cost(Pa, 1) + 4(La + Rg) > 1.6.

We also have
cost(Pa,0) + cost(Pa,1) =1+ 2(La + Ra).

Substituting this, we get
Lo+ Ry > 0.1.

On the other hand, the approximate ratio condition of Instance 2 requires that
1+2(Ly 4 Ry) < 1.2.
This is a contradiction. O

To prove the lower bound of 1.33, we extend the above instances as follows. We employ 2K + 1
(K >1is an integer) instances (for K = 1, this is exactly the same set of instances as above):

Instance ¢ (1 <i < K): First player has K + ¢ points on 0 and K + 1 — ¢ points on 1; second player
has all 2K + 1 points on 1.

Instance K + 1: First player has all 2K + 1 points on 0; second player has all 2K + 1 points on 1.

Instance i (K +2 <i < 2K + 1): First player has all 2K + 1 points on 0; second player has i — K — 1
points on 0 and 3K + 2 — ¢ points on 1.

Again, let P; be the distribution of output of the mechanism on Instance i¢. Define the variables as
X; = cost(P;,0) and Y; = cost(P;,1). Then, the strategy-proofness among the instances can be listed
as linear inequalities (constrains). Assume the approximation ratio is a. The approximation ratio can
also be bounded by linear constrains. In particular, we want to compute the minimal ratio « so that
all constrains are satisfied. It is then straightforward to formulate the following linear programming
problem.

Minimize: «
Subject to:

(K+)X;+ BK+2—-1)Y; < (K +1)a, i=1,2,--- ,K+1
(K +i)X; + (3K +2—1)Y; < (3K +2 —i)a, i=K+2,K+3,-- ,2K+1
(K+9)X; + (K +1-1)Y; < (K +49) X1 + (K +1—14)Yiy, i=1,2,- K
(—-K-1DX;+BK+2-3)Y; <(i—-K-1D)X; 1+BK+2—-14)Y,—1, i=K+2,K+3---,2K+1
X;+Y;>1, i=1,2,--- 2K +1
X;,Y; >0, i=1,2,--- 2K +1

First two sets of constrains come from the approximate ratio constrain. The next two sets of
constrains are enforced by strategy-proofness. And the last two sets of constrains are boundary
conditions.

Choosing K = 500, we can solve this LP problem by computer and the optimal value is greater
than 1.33. Therefore, if we set the approximation ratio to 1.33, there is no feasible solution for the
linear programming which implies no feasible strategy-proof mechanism for the instances. So we have
an approximation lower bound of 1.33.
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Theorem 3.3. Any randomized strategy-proof mechanism of the one-facility game has an approximation
ratio at least 1.33 in the setting that each agent controls multiple locations.

The numerical computation suggests that the optimal value for this LP problem is close to % when
K is large. It would be interesting to give an analytical proof for a lower bound of %. We leave it as an
open question.

Conjecture 1. Any randomized strategy-proof mechanism of the one-facility game has an approximation
ratio at least % — € for any € > 0 in the setting that each agent controls multiple locations.

4 Conclusion

In this paper, we study the strategy-proof mechanisms in facility games. In particular, we derive
approximation bounds for such mechanisms for social cost both in the two-facility game setting and the
multiple location setting. Our results improves several bounds previously studied [10]. We also obtain
some new approximation lower bounds which were not available before.

There are still a lot of interesting open questions. For example, in the two-facility game, we only
have a deterministic mechanism with approximation ratio of n — 2 for social cost, while the lower bound
is only 2. There is also a huge gap for the randomized strategy-proof mechanisms in the two-facility
game, with current upper bound n/2 and a lower bound of 1.045.

One more interesting research problem is providing a characterization for the class of strategy-proof
mechanisms for the two-facility games. The characterization for one-facility game has very elegant
mathematical structure. It would be interesting to give a similar characterization for the multiple
facility setting, even with certain assumptions (e.g., anonymity).
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