Finding Min-Repros in Database Software

Nico Bruno
Microsoft Research
nbruno@microsoft.com

ABSTRACT

Testing and debugging database system applications is often
challenging and time consuming. A database tester (or DB
tester for short) has to detect a problem, determine why it
happened, set up an environment to reproduce it, and then
create a fix to resolve the problem. In many cases, problems
appear in very complex scenarios, and thus the reproduction
of a problem may be large and difficult to understand. This
makes the task of finding the root cause of the problem very
difficult. As a consequence, a very time-consuming task for
DB testers is finding a min-repro — a process of weeding out
irrelevant inputs and finding the simplest way to reproduce a
problem. Currently, a great deal of searching for a min-repro
is carried out manually, which is both slow and error-prone.
In this paper, we present a system designed to ease find-
ing min-repros in database-related products. The system
employs a number of tools for min-repro search, including:
novel simplification transformations, a high-level script lan-
guage to automate sub-tasks and to guide the search, record-
and-replay functionality, and an intuitive representation of
results and the search space. These tools can save hours
of time (for both customers and testers to isolate the prob-
lem), which could lead to faster fixes and large cost savings
to organizations. Our min-repro system can be executed in
two modes: (1) application mode and (2) game mode. The
complexity and the tediosness of debugging has prompted us
to explore the potential for a “game-like” approach to min-
repro search. Inspired in part by the fact that humans enjoy
“fun applications” and by the prevalence of long-term play
of computer games, we believe that a game-like approach
could help make the process of searching for a min repro
more enjoyable and possibly help find min-repros faster.

1. INTRODUCTION
Database Systems Testing and Debugging

Database software is complex along many dimensions, as it
is comprised of a large number of features and execution

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Rimma V. Nehme
Purdue University

rnehme@cs.purdue.edu

components. An implicit assumption is that the underlying
DBMS services are well tested, reliable and correct.

To ensure bug-free data management services, testing and
debugging are the two processes that are used hand in hand
together. Testing can demonstrate the presence of a “bug,”
and debugging is used to identify what caused it and how
to fix it. Too often, the starting point for the debugging
process is a very large setup with a lot of irrelevant inputs
and variables. This is a consequence of either automatic
randomized test generators, or real-world application sce-
narios. Of course, the shorter and more concise is the setup
to reproduce a problem, the more likely it is to understand
the root cause of the problem and effectively fix it. Con-
ceptually, we try to obtain a min-repro, i.e., the “simplest
possible” version of the input variables that still reproduce
the original problem. Further removing or simplifying any
input in a min-repro would make the problem disappear.

Figure 1 illustrates a conceptual idea of a min-repro. Here
an input configuration C' on the left hand-side consists of a
set of inputs {l..n}. A DBMS component illustrated in
the middle takes this set of inputs and produces an output,
considered (by a DBA or a DB tester) a “problem” or a “fail-
ure”. The set of inputs in C' may contain a lot of inputs that
are irrelevant to the problem cause, i.e., their presence (or
lack of presence) will not make any difference in whether
the problem will appear or not. Hence the user needs to see
only those inputs that are relevant to reproduce the prob-
lem (inputs 2, 3 and 5 in Figure 1). Furthermore, it may
be far more beneficial to the user to see the “simplest pos-
sible” version of inputs in C' in order to reproduce the same
problem.

Input DBMS

) . Problem
Configuration component

— .exe — Output

[I

Inputs
X

n D alternatively

C 2. 3. 5
ST >
Min Repro

Figure 1: Min repro: main idea.

Consider the following concrete min-repro examples:
Example 1: Query Processor Cost Changes. A DBMS ven-
dor may want to determine a simple workload for which the
cost estimates produced by the current and the previous
versions of the query optimizer differ by more than a spec-

ified percent threshold ¢ (e.g., 6 = 10%). Similarly, it may
be useful to determine queries for which the execution time
differs by more than § percent.
Example 2: Physical Design Tuning. In the context of
physical design tuning, given two different ways to perform
what-if calls (specifically, the existing what-if API described
in [1] and a new alternative described in [3]), a DB tester
may want to find a min-repro, where the difference in the
output is larger than a given tolerance thus indicating a
problem in some of the alternatives, can be found.
Currently, there is a missing link between testing (where
a problem is found but the repro can be very large and
complex) and debugging (where the bugs are fixed). We
propose to fill this gap in the database context with our
proposed system in this paper.

Min-Repro Usage Scenarios

DBMS testing and debugging. In any testing or debug-
ging domain, when it comes to problem repeatability it is
essential to reduce a problem to the smallest and least com-
plicated number of steps that can produce the bad result.
Once the problem is reproduceable and the fix is created,
the min-repro configuration may become a part of an auto-
mated test suite for future testing and verification that the
problem is not recurring.

Benchmarking. Min-repros can be used to isolate the root
cause of performance difference between successive releases
of a database engine, or even to crisply contrast the perfor-
mance/capabilities of different engines.
Privacy-preserving technical assistance. Often, enter-
prises encounter issues in their environments and need as-
sistance from their database vendor. This naturally raises
a number of legal and technical issues that must be ad-
dressed to preserve private and business-sensitive informa-
tion through the control of the information flow amongst
different entities. Min-repro can serve as a technical solu-
tion for preserving privacy in DBMS technical assistance. In
order to not reveal business-sensitive information, an enter-
prise can create a smaller and simpler, and info-preserving
configuration for the vendor to reproduce the same problem.

Challenges

e Scope. The scope of potential problems in database
software is extremely large, making the task of design-
ing a general system for finding min repros a challeng-
ing task.

e Complexity. Due to the complexity of the modern
database management systems, potentially a signifi-
cant number of parameters and their interaction may
effect the search for a min-repro.

e Non-determinism. Similar problems don’t guaran-
tee to have the same min-repros.

Contributions

The contributions of our proposed system can be summa-
rized as follows:
1. Model. We propose a general repro model that cap-
tures both inputs and a problem definition.
2. Transformations. We present novel simplification
transformations.
3. High-Level Language. We present a high-level lan-
guage for creating customized scripts for min-repro
search.

4. Execution. We discuss how the search for a min-
repro can be performed in both application and game
modes.

2. MIN-REPRO SEARCH SYSTEM
21 Overview

Figure 2 illustrates the high level overview of the system
execution. A DB tester creates a user-defined test function
(or short UDTF), that models the original repro (e.g., a set
of inputs, the execution components in the database and the
specification of a problem). The min-repro system takes the
UDTF as an input (Step 1 in the figure), executes the search
algorithm interacting with the DBMS (Step 2), prompts the
DB tester for feedback (if applicable) to guide the search
(Step 3), and finally returns a min-repro for the problem
specified in the UDTF as a result (Step 4).

User

wore D@
__________________ System DBMS
€ ————m—

' ®

Figure 2: Overview of min-repro system execution.

For simplicity of presentation, we focus on two database-
specific input types in repros, namely DML statement (e.g.,
SQL queries) and physical structures. For physical struc-
tures, we consider indexes, however other physical structures
can be handled similarly. Indexes consist of a sequence of
key columns optionally followed by a sequence of suffix (in-
clude) columns.

2.2 Modding an Initial Repro and a Problem

The initial (large) repro and the problem is specified us-
ing a user-defined test function (UDTF). UDTF provides a
complete facility for users to specify their repro information
and has the following three main parts (see Figure 3 left):
(1) a set of inputs (e.g., a complex query workload), (2) a set
of execution components (e.g., successive releases of query
optimizer in a database engine), and (3) a set of rules de-
scribing the problem (e.g., the new optimizer costs differ by
more than 10% compared to the old one).

@ 1. Inputs UDTF) 1. Workload + Physical Configuration
I
2. Exe Components NG Query Optimizer (old version) and

‘ 3. Problem Rules Query Optimizer (new version)
3. Costs differ by > 10%

(a) Conceptual view (b) Example (query optimization)

Figure 3: Modeling a repro.

Users can specify UDTF in our system using XML language
or using a declarative language like SQL.

2.3 Transformations

The modifications to a repro are carried out via transfor-
mations. We distinguish between two types of tranforma-
tions, namely the inter-transformations that are applicable
to a set of inputs and the intra-transformations that appli-
cable to the “internal” content of an input.

The inter-transformations supported by min repro system
are illustrated in Table 1.

Removal: Any input ¢ in a configuration C' can be removed
to obtain a new configuration C’ = C - {i}.

1. Remove inputs
2. Make inputs immutable
3. Partition inputs

Macros

Table 1: Inter transformations

Immutability: Inputs ¢ in a configuration C' can be made

immutable (to transformations). This may be useful, when

no more simplification of certain inputs is desired.

Partitioning: Inputs 7 in a configuration C' can be par-

titioned into a set of input groups to obtain a set of new

configurations C* = {{C'},{C"}...} whereV C' € C*, C' C
k

Cand 3 |Ci| = |C*| = |C].
i=1

The intra-transformations are more fine-grained and input-
specific, e.g., we have query intra-tranformations and index
intra-transformations. The list of intra-transformations sup-
ported by our min-repro system is depicted in Table 2.

Query intra-transformations

. SELECT simplification

. FROM simplification

. WHERE removal

. WHERE simplification

. GROUP BY simplification
. GROUP BY removal

. ORDER BY simplification
. ORDER BY removal

. Sub-query simplification
10. Sub-query removal
11. SQL parse-tree based
Index intra-transformations

1. Column removal
Macros 2. Column order change
3. Column conversion

4. Column value change

Macros

OO0 Uk W~

Custom

Table 2: Intra transformations

In addition to transformations defined as macros, users
can perform arbitrary intra-transformations on queries using
SQL parse tree (see Figure 4). A visual representation of
the query parse tree is exposed to the user, and the user can
select a node in the parse tree and a transformation (e.g.,
edit, remove, simplify) to be applied to the node and its
children.

24 Min-Repro Search Strategy

The general strategy for a min-repro search can be de-
scribed as follows:

1. Simplify: Input set is either partitioned into subsets
or internal contents of inputs are modified. Both op-
erations results in a “simpler” input configuration.

2. Test: The simpler configuration is tested. (In the case
of partitioning, individual subsets are tested).

3. Choose: The search will continue with a simpler con-
figuration (e.g., a subset) that reproduces the problem.

4. Backtrack: Otherwise, if the current “simpler” con-
figuration does not reproduce the problem, the search
should backtrack and try another simplification method.

Users can control the search strategy, by manipulating the
following logical steps: (1) how to simplify (e.g., how to par-
tition input set into subsets and how to simplify each input),
(2) what to test (e.g., which “simpler” subset to test), (3)
what to keep (if multiple simpler configurations reproduce
the problem, which configuration should the search continue
with), (4) when and where to backtrack (if the problem can

SqlCoordinates [Start] = ...
SELECT... SqlCoordinates [End] = ...

WHERE a = (b + 2)

Transformations
| Edit
Renove
Sinplify

SqlCoordinates [Start] = ...
SqlCoordinates [End] = ...

Figure 4: SQL Parse tree.

no longer be reproduced after a simplification, which earlier
state to backtrack to).
The strategies for simplifying, partitioning, testing and
handling of multiple min-repros are depicted in Tables 3-6.
Strategies for simplifying a repro are shown in Table 3.

Heuristic
Partition-First

Description

partition configuration first, then
test different subsets

simplify individual inputs first and
then procede with partitioning

Simplify-First

Table 3: Simplification strategies

Table 4 illustrates partitioning strategies in a repro.

Heuristic
Partition-by-n
Partition-randomly
Partition-by-
similarity
Partition-by-rank

Description

partition into n subsets
partition randomly
partition by input similarity

partition by a rank function

Table 4: Partitioning strategies

Below we describe the partitioning strategies in more de-
tail.

Partition by n. This method breaks current input config-
uration into n subsets. If there are different input
types, each type is partitioned into n subsets.

Partition randomly by n. Here, current input configura-
tion is partitioned into n random subsets. One al-
ternative is random partitioning, in which groups of
inputs are formed by randomly selecting which input
goes into which partition. The advantage here is that
it is generally less work to construct test partitions.

Partition by similarity. Isolating problem-reproducing code

changes can greatly profit from syntactic knowledge.
All changes belonging to one class or one method can
be combined, thereby reducing the amount of unre-
solved tests that occur during the minimization pro-
cess. This is where a “similarity” function (per input
type) becomes useful. This partitioning approach is
similar in spirit to Equivalence Partitioning [6], Cate-
gory Partition [5], and Domain Testing [2] which are
based on the model that the input space of the test
object may be divided into subsets based on the as-
sumption that all points in the same subset result in

a similar behavior from the test object. This is called
partition testing. Typically, in partition testing, the
tester identifies test suites by selecting one or a few
cases from each subset. The goal is to minimize the
number of tests to run, yet to have a sufficient cover-
age.

Partition by rank. Inputs are characterized with respect
to a certain rank function (e.g., input size), and then
subsets are formed based on the rank of the inputs
(e.g., all subsets must have a size < 6, where 6 is a size
threshold).

Testing strategies (shown in Table 5) determine which
subset(s) should be tested. This is where domain-specific
combination strategies are useful. Search can benefit from
choosing “interesting” (for the current problem specification)
inputs combinations.

Heuristic
Choose-random
Choose-custom

Description
random selection strategy
custom heuristic

Table 5: Testing strategies

Table 6 depicts strategies dealing with multiple inde-
pendent inputs that each reproduce the problem.

Heuristic
First-Repro
Smallest-Repro

Description

Continue with the first failing subset
Continue with the smallest failing
subset

Table 6: Strategies to deal with multiple repros

2.5 High-Level Declarative Language

A high-level script language allows users to create cus-
tom scripts that are re-usable. The script language used
in the min repro system, called TLDB (short for Test Lan-
guage for Databases), uses XML as its primary syntax and
is similar in spirit to the XEXPR language [4]. TLDB has
several extensions (functions and keywords) specific to min
repro problem domain. Using TLDB, test scripts can be
created, and similar to transformations, can be applied to
either a set of inputs (inter-scripts) or a particular input
(intra-scripts). Scripts encapsulate a general logic that can
be then employed in the search for a min-repro in different
scenarios. Existing algorithms (e.g., delta debugging [8]) for
instance can be easily implemented in TLDB and applies in
the database contex.

Figure 5 illustrates a general structure of a custom script.
Each script begins and ends with a tag <T1db>. First, all in-
puts that are present in the current configuration! are spec-
ified and all variables used in the script are declared. All
variables have a global scope and must be defined before
the body of the script. The elements of the language are
themselves XML tags, e.g., <If>, <While>, <For>, etc.

2.6 Record-And-Replay Functionality

An intuitive way of debugging is when a user has tried
a number of steps over time and they have reproduced the
wanted results. Our min repro system features “record-and-
replay” functionality which records user actions, generalizes
them into a pattern, which is then available for replay, in

! Current configuration is the input configuration at the time of the
script invocation. It does not need to be the initial input configuration
with which the user has started the min repro search.

<Tldb>
<Inputs>...</Inputs>
<Variables>...</
Variables>

<Body>

TLDB start tag
Inputs specification

Variable declaration

NS

<While>
Body of the script
</While>
</Body>

TLDB end tag
</TIldb>

Figure 5: TLDB script structure.

either a manual min repro search or as a part of a script.
Simplification patterns, similar to transformations, can be
of two kinds: inter-patterns, as well as intra-patterns.

2.7 Search Space and Results Visualization

Simply knowing which repro is reproducing a problem is
one thing, but presenting it in an intuitive and understand-
able manner (especially in complex scenarios) is another. A
singularly bad feature of many current debugging systems
is the lack of attention that has been paid to the aspects of
the debugging interface. A simple (yet intuitive) visualiza-
tion of the search space and results can help DB testers in
understanding what and why might have caused the prob-
lem. This can facilitate in users providing a better feedback
to the search strategy, thus creating a better “dialogue” be-
tween a tester and the min-repro search system (especially
in the game execution mode described in Section 3.2) and
can help find the min-repro faster.

WYSIWYE Window

Feedback Drop Window (partially shown)
N

lni|

Inputs in repro

Feedback Toolbar

{mm Pattern Recorder

il || Y | sl o

Figure 6: Search space visualization.

Figure 6 illustrates the window showing the search space
for a problem. The search space diagram has two uses: (1)
User feedback drop and (2) “WYSIWYE” interface (“WYSI-
WYE”stands for “What You See Is What You Execute” and
is used to illustrate what will be executed, i.e., which changes
would be performed to the selected repro). The feedback
drop window is used by a user to “drop” the feedback to
guide the search.

3. EXECUTION MODES
3.1 Application Mode

Application mode, as the name suggests, runs min-repro
system as a normal application. Users specify a repro and
using available to them system tools try to find a min-
repro. Below we highlight several details regarding min-
repro search in the application mode.

The system uses the concept of sessions to differentiate
different attempts to find a min-repro. Each UDTF (a re-

pro instance) is executed in a separate session with a unique
identity. The session information is saved and is associated
with the UDTF. The session identifier can be used to reload
the session as and when needed. Sessions make the com-
parison of different runs (for the same UDTF) possible. A
session can be created through either a GUI form or an SQL
statement.

Users can execute the search either manually or by in-
tegrating semi-automated tasks using scripts. The manual
search for a min-repro uses feedback provided by the user
as it becomes available. Specifically, a user can explicitly
specify: (1) transform (to execute a simplification trans-
formation on a repro), (2) “record-and-replay” pattern (to
record and then apply a simplification pattern, which is a
simple script containing a list of actions without any loops
or conditionals predicates), (3) backtrack (to backtrack to a
particular repro in the search space), (4) ezecute script (to
execute a script on the current repro). System GUI facili-
tates in min-repro search, e.g., transformation window shows
a side-by-side before and after comparison of an input for a
particular transformation.

The power of min-repro system comes from performing
a semi-automated search for min-repro by running scripts
created in our high-level language. The script diagram form
in the system allows users to create diagrams of their test
methods by simply dropping and connecting script elements
to create a logic. Based on the diagram, the script code (in
TLDB language) will be generated. This interface allows
users to create a sophisticated search logic very easily. The
“pattern recording” supports an easy way of recording user
actions that can be used for immediate “playback” in the
search.

Using visualization tools in the system, the user can view
the search space and the results of the search strategy. The
execution component results viewer depicts the actual re-
sults returned by the execution component(s) (with their
respective physical parameters). Viewing these results can
help users make a better judgement regarding how the search
should proceed, i.e., what kind of feedback they should pro-
vide to the system.

3.2 GameMode
321 Why?

An alternative mode of execution is a “game mode”, where
the search for a min-repro is presented in the form of a game.
Games naturally create an environment that intrinsically
motivates users to actively solve a problem, while simul-
taneously providing entertainment and facilitating learning.
There could be many motivations to a play game. Besides
a DB tester’s job responsibility (to find a min-repro), a DB
tester may use the system game mode for exploration, prov-
ing oneself, mental exercise, and competition. The diagram
below illustrates the potential for well-designed min-repro
game:

Faster Learning
Enjoyment
Game Mode — Play — Flow — Motivation —

Competition
Bragging Rights

Games foster play, which produces a state of flow, which in-
creases motivation, which ultimately leads to finding a min-
repro in addition to learning, enjoyment, acknowledgement,
etc. Furthermore, a game approach opens up possibilities for

Finding a Min Repro

Game start
time left = X

Transformation Not a min repro:

time left >0

Backtrack complete:
time left >0

Transformation | complete

no
[Backtrack }—(Test Repro

Problem is NOT
reproducible

Is it a Min Repro?

Problem is
reproduceable

Backtrack complete:

time left == 0 Game over

Figure 7: State diagram for min-repro game with
time challenge.

simultaneous learning in different database contexts. Play-
ers may learn from contextual information embedded in the
dynamics of the game, the process generated by the game
play, through the risks, benefits, costs, outcomes, and re-
wards of alternative strategies that result from decision mak-
ing while playing a min-repro game.

3.2.2 Essential Elements of a Good Game

Making a good game is a challenging task. One of the
core fundamentals of the games is that they are expected to
be fun. Fun coould be defined as “the act of mastering a
problem mentally,” and could be born from the analysis of a
problem and by solving that problem better and faster (e.g.,
through quantifiable outcome of getting a better time or a
score or breaking a personal record).

Below we highlight the essential elements that are ex-
pected of a game, and how we address them in our system’s
game mode (depicted in bold).

1. Pursuing and achieving goals
— Customzizable Challenges

2. Interactivity
— User feedback drop, “WYSIWYE?” interface

3. Feedback about position relative to goals
— Point System and Scoring Functions

4. Interesting choices required to achieve goals

— Stmplification Transformations, Patterns, Scripts

5. Consistency and fairness
— Reliance on Database System Consistency

6. Avoidance of repetition
— Caching and Memoization

Due to space limitations, we describe two key elements of a
game mode in the rest of the paper, namely the customizable
challenges and the point system.

3.2.3 Customizable Challengesin a Min Repro Game

The challenge is usually the central hub of a game play.
The barriers that prevent the player from achieving that ob-
jective, are what determine the challenge. Below we high-
light some of the challenges that can be enabled in a min-
repro game mode:

e Time Challenge: The player is allowed only a certain
amount of time to complete a task. A simple example
is finding the smallest repro within a certain time limit.
A state diagram for such a game is illustrated in Figure
7. This challenge can be combined with some other
challenge.

Found a min repro:
time left ==0

e Endurance Challenge: This is the opposite of a
timed challenge. Instead of having a limited amount of
time to complete a task, an endurance challenge tests
how far the player can go before he falters. In min-
repro game, this challenge can test how far the user
can go transforming inputs while still reproducing the
problem. This can be very useful in practicing accurate
weeding out of inputs that are likely not contribute to
a problem.

e Dexterity Challenge: The player must accomplish
some sort of feat that requires dexterity. It could be a
mental challenge, where the player has to make quick
decisions in order to overcome the obstacles he faces.
In min-repro game, a dexterity challenge can be a
choice for the most appropriate simplification trans-
formation given a set of inputs in a repro.

e Resource Control Challenge: Many games use re-
source control as the challenge. The player is given a
certain amount of a resource. He must use that re-
source to overcome an objective before it runs out.
In min-repro game, a resource could be repro-specific,
e.g., a bound on the memory size into which a repro
should fit, or a max count of inputs desired in a repro.

e Memory Challenge: This type of challenge requires
the player to know certain facts in order to win. In
min-repro game, it can mean teaching the player some
fact, like “transformation 71 on average (from past
runs) reduces repro size by 50%, while transformation
T> only by 5%” and then making him recall that fact
later on in the game, when given a choice between the
transformations. Other examples include making the
player memorize certain transformation patterns to ex-
ecute the most efficient search strategy, or remember
which types of intra-transformations work on certain
types of inputs.

3.24 Point System

One of the most direct methods for motivating players is
by assigning points for each instance of successful output
(e.g., a smaller repro) produced during the game. For every
transformation that successfully minimizes a repro a user is
given points. If a transformation caused the problem to be
no longer reproduceable, some points get deducted. Using
points increases motivation by providing a clear connection
among effort in the game, performance (achieving the win-
ning condition), and outcomes (points). A score summary
following each game also provides players with performance
feedback, facilitating progress assessment on score-related
goals (such as beating a previous game score and complet-
ing all challenges).

To enable the above, we establish a point system in the
min-repro game for quantifying the merit of each possible
user action (e.g., execution of a transformation or a test
script or a recorded patern).

A general scoring function for a simplification transfor-
mation can be described as follows. The cost for a transfor-
mation in a repro should be based on complexity (or size)
of transformation or the time it takes to execute it (other-
wise, we might embark on exceptionally long routes to find
a min-repro). The score of a simplifcation transformation is
given by a formula of the following type:

B =0,if progblem is not reproduceable

S = —D+B,where kel

B=Dx1+ (1— ‘C‘)
where D is the cost of the transformation (determined by its
size, or complexity or its time cost): we will refer to this as
the base cost of a transformation; and B is the benefit of the
transformation, which depends on |C| — the size of the inputs
configuration before the transformation and |C’| — after the

. . c’
transformation. Correspondingly, (1 - %) represents the

improvement in the size of a repro.

There could be several scoring mechanisms all working at
the same time (e.g., one for inter-transformations and an-
other for intra-transformations), and each being responsible
for different strategic features of the game. Each separate
scoring mechanism is then combined into one overall score.
This can be as simple as adding scores together with a fixed
weight for each. In this sense, scoring functions are like the
tactical analysis: primitive tactics are combined into a more
sophisticated view of the quality of the situation.

4. CONCLUSION

Testing and debugging are one of the most expensive and
time consuming activities in any software development cy-
cle, including database systems. The process of identifying
and correcting a problem’s root cause remains very labor-
intensive, painful and costly to organizations. A DBA or
DB tester has to detect the problem, determine why it hap-
pens, set up an environment to reproduce it, and then cre-
ate a fix which must be confirmed to resolve the problem.
A great deal of current testing is still carried out manually
using general non-database-specific tools. An important as-
pect of reliable database services is the development of tools
and techniques that can simplify problems detected in test-
ing to be fixed in debugging. Our min-repro system is pre-
cisely such a tool, addressing the current gap between DB
testing and debugging. As a part of our system, we have
also suggested a game approach, inspired in part by the fact
that humans enjoy “fun” applications and by the successful
encouragement of long-term play of computer games. Al-
though there are several examples of successful “games with
a purpose” [7], none of them focus on database software, and
in particular on min-repro problem.

5. REFERENCES

[1] S. Agrawal, S. Chaudhuri, L. Kollar, A. P. Marathe, V. R.
Narasayya, and M. Syamala. Database tuning advisor for
microsoft sql server 2005. In VLDB, pages 1110-1121, 2004.

[2] B. Beizer. Software Testing Techniques. John Wiley & Sons,
Inc., New York, NY, USA, 1990.

[3] N. Bruno and R. V. Nehme. Configuration-parametric query
optimization for physical design tuning. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 941-952, New York,
NY, USA, 2008. ACM.

[4] http://www.w3.org/TR/xexpr/.

[5] T. J. Ostrand and M. J. Balcer. The category-partition method
for specifying and generating fuctional tests. Commun. ACM,
31(6):676-686, 1988.

[6] S. Reid. The art of software testing, second edition. Softw.
Test., Verif. Reliab., 15(2):136-137, 2005.

[7] L. von Ahn. Games with a purpose. Computer, 39(6):92-94,
2006.

[8] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. JEEE Trans. Softw. Eng., 28(2):183-200,
2002.

