
SSV 2008

A Precise Yet Efficient Memory Model For C

Ernie Cohen 1,2

Microsoft Corp., Redmond, WA, USA

Micha l Moskal3

European Microsoft Innovation Center, Aachen, Germany

Stephan Tobies4

European Microsoft Innovation Center, Aachen, Germany

Wolfram Schulte5

Microsoft Research, Redmond, WA, USA

Abstract

Verification for OO programs typically starts from a strongly typed object model in which distinct object-
s/fields are guaranteed not to overlap. This model simplifies verification by eliminating all “uninteresting”
aliasing and allowing the use of more efficient frame axioms. Unfortunately, this model is unsound and
incomplete for languages like C, where “objects” can overlap almost arbitrarily. Sound verification for
C therefore typically starts from an untyped memory model, where memory is just an array of bytes).
The untyped model, however, adds substantial annotation burden, and reasoning in the untyped model is
computationally expensive.
We propose a sound typed semantics for C that provides the annotational and computational advantages of
the typed object model while remaining sound and complete for C. We maintain in ghost state a predicate
identifying where the “valid” objects are, and introduce invariants and proof obligations that guarantee
that the valid objects are suitably antialiased, and that (almost) all objects appearing in the program are
valid. We describe the implementation of this approach in VCC (a sound verifier for C being used to verify
the Microsoft Hypervisor) and the resulting performance gains.

Keywords: Please list keywords from your paper here, separated by commas.

1 Thanks to everyone who should be thanked
2 Email: ernie.cohen@microsoft.com
3 Email: michal.moskal@microsoft.com
4 Email: stephan.tobies@microsoft.com
5 Email: schulte@microsoft.com

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:ernie.cohen@microsoft.com
mailto:michal.moskal@microsoft.com
mailto:stephan.tobies@microsoft.com
mailto:schulte@microsoft.com


Cohen, Moskal, Schulte, Tobies

void foo(int *p, short *q)
{

*p = 12;
*q = 42;
assert(*p == 12);

}

void bar(int *p, int *q)
requires(p != q) {
*p = 12;
*q = 42;
assert(*p == 12);

}

Fig. 1. Partial overlap of primitive pointers

1 Introduction

When writing a program verifier for an imperative language, a fundamental design
decision is how to model program state. In typesafe languages like Java and C#,
the state consists of a collection of objects, each with its own fields, some of which
might be pointers to objects. Thus, aliasing can arise only through two pointers
(of the same type) pointing to the same object. This allows a convenient logical
representation of state, e.g., as a mapping from (object, field) pairs to values, and
easily mechanized frame axioms, where a write to a field of an object leaves the
map unchanged at all other points.

C deviates from this view of state in fundamental ways. First, C has no real
“objects”; types merely give a way of interpreting a chunk of memory. Thus, in C,
objects can overlap arbitrarily (within the limits of object alignment). Second, in
C, there is no distinction between objects and fields. A struct can contain another
struct as a member, and a pointer can point to a member of a struct.

Because of these differences, we cannot soundly use the typed (object) repre-
sentation directly for C programs. For example neither of the assertions in Fig. 1
is valid - in each case, the parameters might point to overlapping memory blocks.
In the case of function bar even though we explicitly rule out the possibility of the
pointers being equal, because the size of the int type is bigger than one, the memory
blocks pointed to by p and q might partially overlap.

An alternative is to work directly in the “official”, untyped model of C, where
memory is essentially a sequence of bytes 6 . The size of each type, as well as offsets
of members within structs, is given by the application binary interface, so access
addresses and widths can be computed from the type definitions; two objects are
disjoint if they occupy disjoint memory ranges. However, this model has several
disadvantages. First, object disjointness is more complicated: in the object model,
two objects alias iff their addresses are the same, whereas in the C model, we have a
more complex condition depending on both their addresses and their sizes. Second,
it greatly increases the annotation burden on the code. For example, in the examples
above, we would have to add additional assertions guaranteeing that p and q are
disjoint. Moreover, doing this naively leads to a situation where the number of
disjointness assertions grows quadratically with the number of objects.

The key to rescuing the typed memory model lies in the slogan, “In every un-
typed program, there is a typed program trying to get out” 7 . We maintain in
ghost program state a set of “valid” typed pointers that point to the “real” objects
of the state. Our C memory model does retain one difference from the object model,

6 The real model is actully a collection of byte sequences, with pointer arithmetic allowed only within a
single sequence. This distinction is irrelevant for our purposes.
7 “Inside every large program, there is a small program trying to get out.” (Hoare)

2



Cohen, Moskal, Schulte, Tobies

struct A { short x, y; };
struct B { short z, *pz; };
struct C1 { A a1; short w1; };
struct C2 { short w2; A a2; };
void baz(A *a, B *b) {

a->x = 1; a->y = 2;
b->z = 3;
assert(a->y == 2 &&

b->z == 3);
}

void qux(C1 *c1, C2 *c2) {
c1->a1.x = 1; c2->a2.x = 2;
assert(c1->a1.x == 1 &&

c2->a1.x == 2);
}
void should_fail(C1 *c1, A *a)
{

c1->a1.x = 1; a->x = 2;
assert(c1->a1.x == 1);

}

Fig. 2. Overlaps impossible in well typed C programs, unless typing allows aliasing

arising from the fact that C does not distinguish between objects and fields: if the
state contains a valid object whose type is a struct, then the members of the struct
are also valid objects 8 Thus, our aliasing invariant is slightly weaker: if two valid
objects overlap, then one is a structural “descendent” of the other.

By default, every object appearing in a program is typed. (Here, an object
means a nonnull pointer, or the address of an lvalue.) That is, pointers in function
arguments are assumed to be typed, and objects appearing elsewhere are asserted
(i.e., checked by the verifier) to be typed. This yields the desired antialiasing prop-
erties. For example, the function foo in Fig. 1 verifies because p and q (both assumed
to be valid, because they are parameters) cannot alias because they have different
types, and neither can be a structural descendent of the other (because they are
both base types). The function bar verifies because two objects of the same type
can alias only if they are identical 9 . The function baz (Fig. 2) verifies because a

and b cannot overlap (because the types A and B are unrelated in the type con-
tainment hierarchy). Similarly, the function qux verifies because c1 and c2 cannot
overlap (hence &c1->a1 and &c2->a2 cannot overlap). Finally, in function should_fail

the pointer a can indeed be equal to &c1->a1, so verification of the assertion fails.

1.0.1 Contribution
We introduce a typed memory model for C, where pointers to structs are interpreted
as implicitly non-overlapping objects with implicitly disjoint fields (Sect. 4). This
model is sound (Sect. 5.1) and complete (Sect. 5.2) with respect to the untyped (C)
memory model, but places significantly lower burden on the programmer and the
theorem prover (Sect. 7). We also show how other C types like unions, arrays, and
bitfields are incorporated into the typed model (Sect. 6.0.4) and how we deal with
performance issues bit-vector reasoning is typically too slow for verification.

In addition to improving making verification more convenient and efficient, this
work lays the foundation for applying object-oriented verification techniques (such
as ownership []) to C programs.

2 A Toy Language

Fig. 3 lists the constructs of a toy programming language supporting pointer arith-
metic and updates at arbitrary locations in the memory (but not conditionals, it-
erations or procedural abstractions, extensions which can be added using standard

8 This does not include bitfields,see section 6.0.3.
9 This is sound only because we do not consider arrays to be objects; see section 6

3



Cohen, Moskal, Schulte, Tobies

TI ::= i8 | u8 | i16 | . . . | u64

TP ::= TI | T∗

S ∈ TS ::= S1 | . . . | Sn

t ∈ T ::= TP | TS

f ∈ F ::= f1 | . . . | fm

e ∈ E ::= E⊕ E | E F | (T)E | V | N

ψ ∈ Ψ ::= E⊗ E

s ∈ S ::= assert Ψ | assume Ψ | ∗E := E | V := ∗E | split E | join E

ss ∈ S∗ ::= S; S∗ | ε

tp(e1 ⊕ e2) = tp(e1) where tp(e1) = tp(e2) ∧ tp(e1) ∈ TI

tp(e1 f) = t∗ where tp(e1) = S∗ ∧ struct S {. . . f : t; . . .}

tp((t)e1) = t where t ∈ TP ∧ tp(e1) ∈ TP

tp(c) = u64

tp(v) = u64

Fig. 3. The language

techniques [10]). The language supports integer (TI), pointers (i.e., t∗ is pointer to
t), and struct types (TS , ranged over by S). Integer and pointer types are collec-
tively called primitive types (TP ). Expressions (E) are side-effect free and consist
of binary expressions e1 ⊕ e2 (where ⊕ is any C binary integer operator), field ad-
dress computation e f (in C it would be written &e->f), type casts (which allow
for casting between pointers and integers and thus arbitrary pointer arithmetic),
variable references, and literals. Constants and variables are restricted to unsigned
64 bit integers (but may be used to hold pointers with suitable casting). Formulas
(Ψ) consist of binary relations (⊗) applied to expressions. Statements (S) consist of
assertions, assumptions, memory write, memory read, and the type reinterpretation
operations split and join; programs (S∗) are sequences of statements.

Struct types are defined as part of the program environment. We use
struct S {f1 : t1; . . . ; fn : tn} as a predicate meaning that the struct S is part
of the program environment and contains fields f1, . . . , fn of types t1, . . . , tn. As in
C, struct types are acyclic, i.e., a struct S cannot contain a field of type S at any
level of nesting (but it can contain fields typed S∗).

Typed programs S∗T are ones where every expression e occurring in the program
has a defined type tp(e), see Fig. 3 for the definition of tp. Statements have to be
typed as well: for ∗e1 := e2 we require tp(e1) = tp(e2)∗, for v := ∗e we require
tp(e) = t∗ for some t ∈ TP , and for split e and join e, tp(e) = t∗ for some t.

4



Cohen, Moskal, Schulte, Tobies

Je1 ⊕ e2KE = Je1KE ⊕ Je2KE

Je1 fKE = Je1KE +̂ offset(f)

J(t)e1KE = cast(Je1KE , t)

JvKE = E(v)

JcKE = c

Je1 ⊗ e2KE = Je1KE ⊗ Je2KE

〈E ,B, (assert ψ; ss)〉 B if JψKE then 〈E ,B, ss〉 else ⊥

〈E ,B, (assume ψ; ss)〉 B if JψKE then 〈E ,B, ss〉 else >

〈E ,B, (v := ∗e1; ss)〉 B 〈E [v := read(B, Je1KP
E)],B, ss〉

〈E ,B, (∗e1 := e2; ss)〉 B 〈E ,write(B, Je1KP
E , Je2KE), ss〉

〈E ,B, (split e1; ss)〉 B 〈E ,B, ss〉

〈E ,B, (join e1; ss)〉 B 〈E ,B, ss〉

where JeKP
E = (t, JeKE) where tp(e) = t∗

Fig. 4. untyped semantics

3 Untyped Semantics.

Next, we define a small-step semantics of our language, where memory is modelled
as a sequence of bytes (as in a conventional semantics for C).

The size of a type | · | : T → N is the number of bytes the representation of type
occupies in memory. We assume that the size is known for primitive types, e.g.
|u8| = 1, u64 is the biggest primitive type and for every type t we have |t∗| = |u64|.
Given a struct S {f1 : t1; . . . ; fn : tn}, we define |S| = Σi≤n|ti|, i.e. we assume
all padding has been made explicit. The size is well-defined and finite because the
structs are acyclic.

Let B = 0, 1, . . . , 255 be the set of bytes, and B∗ be the set of sequences of bytes.
The function

[
·
]
N : B∗ → N returns the natural number represented by the given

byte sequence; the function
[
·
]n

B : N → Bn for n ≥ 0 defines the sequence of bytes
encoding the lowest 8n bits of a natural number. These functions are defined by

[
b0, b1, . . . , bn

]
N = Σn

i=0bi · 28i[[
k
]n

B
]
N = k for k < 28n

A pointer is a pair of type and memory address, i.e. the set of pointers P =
T× B|uP|. A primitive pointer is one with primitive type: PP = TP × B|uP|.

The function offset : F → N computes the distance of field f in bytes from the
beginning of the struct containing f ; the function · · : P × F → P computes the
address of a field within a struct. Given struct S {f1 : t1; . . . ; fn : tn}, we define
offset(fi) = Σj<i|tj | and (S, r) fi = (ti, r +̂ offset(fi)), where r +̂ o =

[[
r
]
N+o

]|uP|
B .

The support of a pointer is a sequence of pointers to bytes where the pointer
representation is stored, i.e.: support(t, r) = (u8, r), (u8, r +̂ 1), . . . , (u8, r +̂(|t|−1)).

The semantics of expressions and statements is defined with respect to an envi-
ronment E : V → B∗ and byte memory B : P → B∗. Reading and writing of byte

5



Cohen, Moskal, Schulte, Tobies

memory via a (typed) pointer (t, r) is defined by:

read(B, (t, r)) = B(u8, r), . . . ,B(u8, r +̂(|t| − 1))

write(B, (t, r), (v1, . . . , v|t|)) = B[(u8, r) := v1] . . . [(u8, r +̂(|t| − 1)) := v|t|]

Note that hese operations assume little-endian (least significant byte first) byte
order and need to be redefined for big-endian architectures.

Figure 4 defines the semantics of expressions and formulas via the function J·KE :
E → B∗, and predicate J·KE ⊂ Ψ, respectively. Note that downcasts result in taking
subsequences, upcast result (potentially) in (sign) extensions and interpretations
of different ⊕ operators return values in the proper range. See Sect. 6 for detailed
description of how these operations map to the primitives supported by the theorem
prover.

Fig. 4 also defines the semantics of programs by the standard transition relation
B. Given a state (E ,B) and a statement s from a typed program, the new state
is computed according to the B relation defined in Fig. 4. There are two special
states of the execution: > means that the program is stuck (i.e., the execution
was no longer possible due to some external constraints), while ⊥ means that the
program has gone wrong (i.e., there has been an error in the program). The relation
B∗ is the smallest transitive and reflexive relation containing B. The state ⊥ has
a special meaning in verification: the verification conditions we generate state that
the program never goes wrong, i.e. ∀E ,B. ¬((E ,B, ss) B∗ ⊥). Note that in the byte
memory model, the split and join operations are no-ops.

4 Typed Semantics

Next, we present a semantics like that of the last section, but where memory is a
collection of typed objects rather than a sequence of bytes.

The extent of a pointer p = (t, r), written extent(p), is the set of pointers that
can be obtained from p by applying · · zero or more times:

extent(p) =

 {p} ∪
⋃

i=1...n extent(p fi) where t ∈ TS , struct t {f1 : t1; . . . ; fn : tn}

{p} where t /∈ TS

Note that this is not pointer chasing: the extent is always well-defined and finite
because of the acyclicity of struct containment. A set of pointers has the disjoint
roots property iff its elements have disjoint supports. Let us take a set of pointers
T with disjoint roots property and define T ∗ =

⋃
p∈T extent(p).

Similarly as in the byte case, in Fig. 5 we define a transition relation I between
states consisting of the environment E , the memory M : P → B∗ and the root
pointer set T ⊆ P. This time the memory will only be read and written using prim-
itive pointers (including u8 pointers). There is however an additional requirement,
namely that memory can be only read or written at locations from T ∗. The only
operations modifying T in I are the two reinterpretation functions split and join,

6



Cohen, Moskal, Schulte, Tobies

〈E ,M, T , (assert ψ; ss)〉 I if JψKE then 〈E ,M, T , ss〉 else ⊥

〈E ,M, T , (assume ψ; ss)〉 I if JψKE then 〈E ,M, T , ss〉 else >

〈E ,M, T , (v := ∗e1; ss)〉 I if Je1KP
E ∈ T ∗ then 〈E [v := M(Je1KP

E)],M, T , ss〉 else ⊥

〈E ,M, T , (∗e1 := e2; ss)〉 I if Je1KP
E ∈ T ∗ then 〈E ,M[Je1KP

E := Je2KE ], T , ss〉 else ⊥

〈E ,M, T , (split e1; ss)〉 I if Je1KP
E ∈ T then 〈E , split(M, T , Je1KP

E), ss〉 else ⊥

〈E ,M, T , (join e1; ss)〉 I if support(Je1KP
E) ⊆ T then 〈E , join(M, T , Je1KP

E), ss〉 else ⊥

Fig. 5. typed semantics

w1:short

C1

x:short y:short

a1:A A

x:short y:short

A

x:short y:short w2:short

C2

x:short y:short

a2:A

Fig. 6. Example of an embedding forest

defined as follows:

split(M, T , p) = 〈write(M, p,M(p)), T \ {p} ∪ support(p)〉

join(M, T , p) = 〈M′, T \ support(p) ∪ {p}〉

where M′(q) = if q ∈ extent(p) then read(M, q) else M(q)

Intuitively split exchanges a pointer to its support in T ; join works the other way
round. Note that in each case the exchanged sets of pointers have equal sum of
supports, so that I maintains the disjoint roots property. Furthermore all the new
pointers in T ∗ are given an interpretation in M, based on values stored at the old
pointers.

4.0.2 Embeddings
Given a struct S {f1 : t1; . . . ; fn : tn} for any r the support(S, r) is a disjoint union
of support((S, r) fi) for i = 1 . . . n. Therefore different fields of an object can
never overlap, and neither can fields of objects with disjoint supports. Figure 6
describes this graphically. In each configuration the supports for pointers in T ∗

look like a set of disjoint boxes (T ) subdivided into smaller boxes (fields at level
one of nesting), subdivided into even smaller ones (fields at level two) and so on,
until we get to primitive types, with single-element extents (but possibly multi-byte
supports). Each box is labelled with a type. The boxes never overlap. So for each
inner box, there is a single smallest (in the sense of nesting, not support size) box
containing it (its embedding) and a single field name written on it (its path).

This intuition is captured by the notion of an embedding graph and forest. An
embedding graph of A ⊆ P is a directed multi-graph, vertices of which are pointers

7



Cohen, Moskal, Schulte, Tobies

drawn from A and there is an edge from p to q labelled f iff p f = q.

Lemma 4.1 If T has the disjoint roots property then the embedding graph of T ∗ is
a forest, with at most one edge between any two vertices.

Given T we define the function embedding(T , p) : P that returns the parent
of p in the embedding forest of T ∗. If p ∈ T (that is it has no parent) then
embedding(T , p) = p. Similarly the function path(T , p) : F ∪ {f⊥} returns the label
of the incoming edge ending in p, and f⊥ for p ∈ T . These function have the
following important property:

∀p, q, f. p ∈ T ∗ ∧ q = p f ⇒ p ∈ T ∗ ∧ embedding(T , q) = p ∧ path(T , q) = f

This injectivity like property (which describes how pointers resulting from field
accesses are related) is what we give to the theorem prover. And it is this property
what lets the prover easily discharge anti-aliasing for our typed memory model.

5 Equivalence of the Untyped and Typed Semantics

Next, we show that the two semantics we have defined are equivalent, in the sense
that the choice of model effect neither whether the program goes wrong nor the
final state.

5.1 Soundness

Soundness states that if the computation in the untyped model goes wrong then so
does the computation in the typed model.

We define the following correspondence between typed and untyped memories:

B ≈T M iff ∀p ∈ T ∗.M(p) = read(B, p).

Starting from corresponding memories, Lemma 5.1 says that a single transition in
both system that doesn’t get stuck or goes wrong has corresponding effects.

Lemma 5.1 If B ≈T M and 〈E ,B, ss〉 B 〈E ′,B′, ss′〉, 〈E ,M, T , ss〉 I
〈E ′′,M′, T ′, ss′′〉 then E ′ = E ′′, ss′ = ss′′ and B′ ≈T ′ M′.

Lemma 5.2 states that if a transition in the untyped model goes wrong, then so
does the corresponding transition in typed model:

Lemma 5.2 If B ≈T M and 〈E ,B, ss〉 B ⊥ then 〈E ,M, T , ss〉 I ⊥.

Let T1 = {u8} × B|uP|. Observe that B ≈T1 B.

Theorem 5.3 If 〈E ,B, ss〉 B∗ ⊥ then 〈E ,B,T1, ss〉 I∗ ⊥.

5.2 Completeness

Completeness states that if computation in the untyped memory model terminates,
then computation in the typed semantics terminates with a corresponding memory.

8



Cohen, Moskal, Schulte, Tobies

Let [·]1 : S∗ → S∗ be a transformation adding join/split around any memory
access, and removing explicit join/splits, i.e.:

[s; ss]1 =


join e1; s; split e1; [ss]1 where s ∈ {∗e1 := e2, v := ∗e1}

[ss]1 where s ∈ {join e1, split e1}

s; [ss]1 otherwise

[ε]1 = ε

Theorem 5.4 If 〈E ,B, ss〉 B∗ 〈E ′,B′, ss′〉 then 〈E ,B, T1, [ss]1〉 I∗ 〈E ′,B′,T1, [ss′]1〉.

Proof. If [ss]1 does not get stuck or go wrong, we have the correspondence from
Lemma 5.1. Otherwise the only difference between ss and [ss]1 are the additional
conditions on memory accesses. They are however always OK since for any newly
introduced join e1, T = T1 and for all other operations there was a preceding
join e1. 2

While using [·]1 on programs removes any advantage of using the typed memory, it
shows that when precision is needed, the typed model can be forced into a untyped
model thus allowing mixed untyped and type reasoning.

6 Extensions

In this section we discuss how our core language can be extended to capture other
C types and objects. But before doing so we investigate how sequences of bytes,
representing primitive values, are mapped into objects from a theory understood
by an automatic theorem prover. A natural candidate would be to use fixed size
bit-vectors as the underlying theory. While this is very precise (all the machine
arithmetic operations are modelled with bit-level precision), the resulting perfor-
mance was unsatisfactory. We therefore decided to represent primitive values, and
their corresponding operations, by a much weaker, but also much faster theory —
linear integer arithmetic. We map byte sequences of length n into integers between
−28n−1 and 28n−1 − 1 or between 0 and 28n − 1, depending if the type is signed
or unsigned. We introduce function symbols for each C operator on each integer
type t. Then we axiomatize all operations. Unsigned 64-bit integer addition, is for
example axiomatized as follows:

∀x, y. 0 ≤ x+ y ≤ 264 − 1 ⇒ addu64(x, y) = x+ y

∀x, y. 0 ≤ addu64(x, y) ≤ 264 − 1

This axiomatization, while incomplete, seems sufficient in most cases. We use a
similar trick for axiomatization of type conversions, which are only defined if the
given value falls within the cast’s target range.

Since many programmers miss overflows, we generate by default additional as-
sertions before each arithmetic operation requiring that the computed value will fit
into the target range. In fact, if the value fits range of u64, then addu64 coincides

9



Cohen, Moskal, Schulte, Tobies

with linear arithmetic operator +, so all the usual arithmetic laws hold. The gener-
ation of these assertions can be suppressed in case the user wants to reason about
overflows.

6.0.1 Arrays
We extend our core language to allow embedded arrays inside of structs, as in
struct S {. . . f : t[n] . . .}. We shall treat f as n separate fields f [0] : t . . . f [n−1] : t.
Therefore we extend the set of fields and expressions as follows:

F ::= . . . | F[N] E ::= . . . | E[E]

tp(e1[e2]) = t where tp(e1) = t∗, tp(e2) ∈ TI

Je1[e2]KE = Je1KE +̂(
[
Je2KE

]
N · |tp(e1[e2])|)

The relationship between embedding and index computation is similar to the normal
field address computation:

∀p, q, i, f. p ∈ T ∗ ∧ q = p f [i] ∧ 0 ≤ i ≤ n⇒

p ∈ T ∗ ∧ embedding(T , q) = p ∧ path(T , q) = f [i]

For cases where an array is allocated outside of a struct, we introduce a parametric
array type array : T× N → T, and treat the array of type t with n elements, as if
it was an embedded array of array(t, n).

6.0.2 Unions
For unions we have the additional complication that only one of the fields should
be considered typed at any given point. Therefore for union U with fields f1, ..., fn

we introduce n struct types U1, ..., Un and use the reinterpretation operations join
and split to switch between them. Note that this is only needed when a union is
used in the sense of discriminating union. Another common use of unions in C code
(and actually fairly common the OS code) is to interpret several fields of integer
types (particularly bitfields) as one integer type. This is covered below.

6.0.3 Bit-fields
C allows the definition of bit-fields in structured types, which are interpreted as
a signed or unsigned integer type with the corresponding number of bits. Since
most architectures do not allow for direct access to arbitrary bit ranges in memory,
C compilers usually merge one or more consecutive bit-fields into a single under-
lying field of unsigned integer type. Accesses to particular bit-fields will then be
transformed into bit manipulations on the underlying field. That is why C does
not allow taking the address of a bit-field. We extend our expression language to

10



Cohen, Moskal, Schulte, Tobies

struct X64VirtualAddress {
i64 PageOffset:12; // <0:11>
u64 PtOffset : 9; // <12:20>
u64 PdOffset : 9; // <21:29>
u64 PdptOffset: 9; // <30:38>
u64 Pml4Offset: 9; // <39:47>
u64 SignExtend:16; // <48:64>

};

union X64VirtualAddressU {
X64VirtualAddress Address;
u64 AsUINT64;

};
union Register {

struct { u8 l, h; } a;
u16 ax;
u32 eax; };

Fig. 7. A structure with bit-fields, a union using it and a almost-bit-field union

accommodate for the additional bit manipulations:

E ::= . . . | E〈N :N〉 | E[〈N :N〉 := E] | e1±N

tp(e1〈a :b〉) = u64 where a ≤ b, tp(e1) = u64

tp(e1[〈a :b〉 := e2]) = u64 where a ≤ b, tp(e1) = tp(e2) = u64

tp(e1±b) = i64 where b > 0, tp(e1) = u64

where for simplicity we assume only 64 bit underlying fields. The operation e1〈a :b〉
extracts bits between a and b inclusive from e1; the operation e1[〈a :b〉 := e2] replaces
bits between a and b in e1 with e2; the operation e1±b performs a sign extension
from b to 64 bits. Formally:

Je〈a :b〉KE =
[
(JeKN

E div 2a) mod 2b−a+1
]8

B

Je±bKE = if JeKN
E < 2b−1 then JeKE else

[
− 2b + JeKN

E
]8

B

Je1
[
〈a :b〉 := e2

]
KE =

[
Je1KN

E mod2a + 2a · Je2〈0:b− a+ 1〉KN
E + 2b · (Je1KN

E div 2b)
]8

B
where JeKN

E =
[
JeKE

]
N

Consider struct X64VirtualAddress from Fig. 7. Our translation maps all bit-fields
into a single field bf0 : u64. Here are some resulting translations:

*q = p->PdOffset; ⇒ tmp := ∗p bf0; ∗q := tmp〈21:29〉

p->PdOffset = x; ⇒ tmp := ∗p bf0; ∗p bf0 := tmp[〈21:29〉 := x]

*q = p->PageOffset; ⇒ tmp := ∗p bf0; ∗q := tmp〈0:11〉±12

p->PageOffset = x; ⇒ tmp := ∗p bf0; ∗p bf0 := tmp[〈0:11〉 := (u64)x]

To discharge formulas involving bitfields, we had been using a decision procedure
for fixed size bit vector arithmetic. But as it turns out, this approach places a strong
burden on the SMT solver and leads to unacceptable performance for even moderate
complexity problems.

To our rescue it turns out that bit-fields are typically only used for compact
storage of related information or to exactly map hardware data structures. As
such, interaction between bit-fields and arithmetic is rather uncommon. (What is
the point in summing up page table entries?). Thus we axiomatized bit-selection

11



Cohen, Moskal, Schulte, Tobies

and concatenation:

0 ≤ n < 2b−a ⇒ v
[
〈a :b〉 := n

]
〈a :b〉 = n

−2c−b ≤ k < 2c−b ⇒ (v[〈b :c〉 := (u64)k]〈b :c〉)±c−b+1 = k

b′ < a ∨ b < a′ ⇒ v
[
〈a :b〉 := n

]
〈a′ :b′〉 = v〈a′ :b′〉

These properties are essentially the same as the usual select-of-store axioms [16]
used for array decision procedures – they are very suitable for modern theorem
provers supporting quantification.

On top of that we provide axioms for some limited interaction with arithmetic,
like special properties of 0 and bit-shifts:

0〈a :b〉 = 0

a ≥ n⇒ (2n · v)〈a :b〉 = v〈a− n :b− n〉

(v div 2n)〈a :b〉 = v〈a+ n :b+ n〉

6.0.4 Bitfields and Unions
Consider the union X64VirtualAddressU from Fig. 7. This is very typical use of a
union in operating system code: the AsUINT64 field is used to change the value of
all bit-fields at once. The struct X64VirtualAddress is used to access individual bits.
However after having applied the transformation introduced in the previous section
this struct is now also represented by a single backing field of type u64. As a
consequence we are currently looking at a union with two fields of the same type.
This allows further normalization: we simply express operations on one field in
terms of the other, which in effect eliminates the struct containing the bit-field and
the union altogether.

We also treat fields of small integer types used inside of unions, as if they were
bit-fields. For example consider union Register from Fig. 7. Member operations on
registers, whether they relate to the fields l,h,a,ax or eax are translated into bit-field
accesses and are thus completely compiled away.

These two simple transformation cover most unions within Microsoft’s Hyper-V.

6.0.5 Globals, Stack and Heap
Our memory models did not distinguish between heap, stack and the global memory,
however it introduced locals. In fact, they correspond to C’s local variables, provided
they are are never accessed through the address-of operator.

C’s global variables sit somewhere in memory, in a location that is typed when
the program starts. Global variables have the disjoint roots property.

The C language does not really have a notion of heap — all one can do is to
allocate chunks of possible varying size from the operating system (if there is one).
Since our model supports arbitrary reinterpretation of data, it is fine to allocate
array of bytes from the OS and then treat them as different types using join. Note
that each successful allocation extends the program’s disjoint roots.

12



Cohen, Moskal, Schulte, Tobies

If in C a local variable of type t is accessed via the address-of operator then the
translation introduces a local variable of t∗, which is initialized with the result of a
memory allocation of size |t|.

6.0.6 Memory Protection
We have no special treatment of memory protection in our memory models. We just
assume that every memory location can be accessed. However for most operating
systems, let alone application programs, this is not true. If necessary this restriction
is easy to enforce in the typed model — we just need to restrict the root pointer
set to allocated locations (from C memory allocator, the operating system or some
hardware memory management unit).

7 Evaluation

The aforementioned memory axiomatization has been implemented in the Verifying
C Compiler (VCC), a sound C verifier being used to verify the functional correct-
ness of the Hypervisor (the virtualization kernel of Microsoft’s Hyper-V product []).
VCC translates annotated C code into BoogiePL [9], an intermediate language for
verification. The verification condition generator Boogie [4] takes BoogiePL as in-
put, and feeds the generated verification conditions into the Z3 [8] SMT solver. VCC
is available for academic use and can be downloaded from the Microsoft Research
website. 10

VCC was originally built on top of the untyped memory model using the bit-
vector decision procedure (DP) in Z3 to perform precise split and join operations.
This resulted in very poor performance, particularly when combined with quantified
sub-formulas needed to prove functional correctness.

We next decided to drop bit-vector DP and instead go to the linear integer arith-
metic DP. Now we stored entire composite values in memory, but to work around
soundness problems with possibly overlapping regions, memory could no longer be
treated as a simple map. We introduced a Variable Sized Word (VSW) memory
model, characterized by axioms saying that writes through primitive pointers com-
mute as long as their supports are disjoint. This required extensive annotations
talking about disjointness of memory regions. We were however able to verify that
a C simulation of Windows based Smart Card (approx 1000 lines) runs in a sand-
box [12] and the memory safety as well as partial functional correctness of “baby”
hypervisor [2], which is a C simulation of a simple CPU architecture along with
a hypervisor (about 1000 lines). Additionally we verified parts of the Microsoft
Hypervisor, including the memory safety of approx 4500 lines of the x86 assembly
code by translating it into C and making the machine state explicit [14]. On the
other hand we were still unable to verify recursive data-structures, such as doubly
linked lists and red-black trees. The functional part of invariants was deeply buried
inside statements about disjointness of memory regions which confused both the
annotator and the prover.

This led to development of the memory model described in this paper. So far we

10Note to reviewers: we are in process of making the tool set available by the end of this year.

13



Cohen, Moskal, Schulte, Tobies

have been able to verify an implementation of doubly linked list with full functional
specification (about 500 lines, no function takes longer than 30s to verify). We have
also verified implementation of concurrency primitives like spin-locks and reader-
writer locks as well as some lock-free data structures (verification times are usually
in the couple-seconds range). Additionally we have ported the test suite of the old
VCC (about 10000 lines of code) to the new version. We are in process of porting
existing annotations in the Hypervisor to the new version and developing module
invariants.

The VSW model is easier on VCC than the untyped model, because each write
modifies memory at a single point. However, to check whether writes commute,
the prover still needs to reason about disjointness of memory regions. Various
statistics produced by the prover has shown that this was where majority of time
was spent. In the typed model we can treat memory as a simple map, which means
that updates happen at a single place, and proving commutativity of writes is as
easy as proving pointer inequality. Pointer inequality reasoning is simplified by
the inclusion of type information in the pointer (i.e., writes through pointers of
different types always commute) and by the fact that we have the embedding(·, ·)
and path(·, ·) functions.

8 Related And Future Work

Deductive verification of low level system’s code has recently received much atten-
tion. Here we only discuss directly comparable verifiers. VCC follows largely the
design of Spec# [5]. From Spec# we also adopted its verification machinery [4].
Havoc [1], another C verifier developed at Microsoft Research, also tries to ad-
dress the verification of low level system’s code. However it is not sound. The
architecture of VCC is similar to the architecture of Caduceus [11] and Escher’s C
compiler [7]. Caduceus, like ESC/Java maps field names to separately updateable
memories. This helps with antialiasing but hinders sound verification of low level,
address manipulating code. KeY-C [15] is a verifier for C that uses dynamic-logic in-
stead of our first-order framework. The L4 kernel verification [18] uses the untyped
memory model (based on the embedding of C0 in HOL [17]), but uses a simulation
of separation logic in HOL to achieve better alias control.

Except for the L4 kernel verifier, none of these verifiers don’t deal with unions
and bit fields. The memory model presented here is similar to the embedding of C
in Coq developed as part of the ongoing certification of a moderately-optimising C
compiler [13]. The SPARK programming language, a subset of Ada, has its own
verifier [3]. SPARK avoids the issues with anti-aliasing and dangling pointers by
disallowing allocation at run time entirely.

The architecture and memory model [6] of HAVOC are both similar to ours. The
main difference is the goal: we aim at sound verifier for complex functional prop-
erties with whatever annotations are necessary, while HAVOC aims at (unsound)
property checking and bug finding with as little annotations as possible. The design
choices in the memory model thus reflect that: we offer byte granularity of pointer
values and precisely model partial overlaps (the HAVOC paper mentions that as a
possible extension, but does not discuss further) and allow for arbitrary changes of

14



Cohen, Moskal, Schulte, Tobies

type assignment at runtime, which is needed to prove correctness of components like
memory allocator but also for something as simple as implementation of byte-copy
of a struct. Additionally our modelling of embedded structs seems more natural
and slightly stronger, for example in the HAVOC model one would be unable to
prove the assertion in qux from Fig. 2. The direct performance comparison is dif-
ficult because of the unsound assumptions used in HAVOC, however as far as the
memory model is concerned, the tasks for the prover are rather similar.

8.0.7 Future Work
On top of the memory model described in this paper we have built an object model
supporting ownership and modular reasoning about concurrency. We are in process
of experimenting with it and preparing publications.

One item relevant to the low-level aspects of the memory model is how to inte-
grate proofs done using bit-vector decision procedure with proofs done using linear
arithmetic.

References

[1] The HAVOC property checker, 2008. http://research.microsoft.com/projects/havoc/.

[2] Eyad Alkassar and Wolfgang Paul. On the verification of a “baby” hypervisor for a RISC machine; draft
0, January 2008. http://www-wjp.cs.uni-sb.de/lehre/vorlesung/rechnerarchitektur/
ws0607/layouts/hypervisor.pdf.

[3] John Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison Wesley,
New York, NY, 2003.

[4] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for Components and Objects: 4th
International Symposium, FMCO 2005, volume 4111 of Lecture Notes in Computer Science, pages
364–387. Springer, September 2006.

[5] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An
overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean,
editors, CASSIS 2004, Construction and Analysis of Safe, Secure and Interoperable Smart devices,
volume 3362 of Lecture Notes in Computer Science, pages 49–69. Springer, 2005.

[6] Jeremy Condit, Brian Hackett, Shuvendu Lahiri, and Shaz Qadeer. Unifying type checking and property
checking for low-level code. Technical Report MSR-TR-2008-96, Microsoft Research, 2008. To appear
at POPL2009.

[7] David Crocker and Judith Carlton. Verification of c programs using automated reasoning. 2007. to
appear.

[8] Leonardo de Moura and Nikolaj Bjrner. Z3: An Efficient SMT Solver, volume 4963/2008 of Lecture
Notes in Computer Science, pages 337–340. Springer Berlin, April 2008.

[9] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language for checking object-
oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research, March 2005.

[10] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.

[11] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C programs. In Formal
Methods and Software Engineering, 6th International Conference on Formal Engineering Methods,
ICFEM 2004, volume 3308 of Lecture Notes in Computer Science, pages 15–29. Springer, 2004.

[12] Yuri Gurevich and Charles Wallace. Specification and verification of the windows card runtime
environment using abstract state machines. Technical Report MSR-TR-99-07, Microsoft Research,
1999.

[13] Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with a proof
assistant. In POPL ’06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 42–54, New York, NY, USA, 2006. ACM.

15

http://research.microsoft.com/projects/havoc/
http://www-wjp.cs.uni-sb.de/lehre/vorlesung/rechnerarchitektur/ws0607/layouts/hypervisor.pdf
http://www-wjp.cs.uni-sb.de/lehre/vorlesung/rechnerarchitektur/ws0607/layouts/hypervisor.pdf


Cohen, Moskal, Schulte, Tobies

[14] Stefan Maus, Michal Moskal, and Wolfram Schulte. Vx86: x86 assembler simulated in c powered by
automated theorem proving. In José Meseguer and Grigore Rosu, editors, AMAST, volume 5140 of
Lecture Notes in Computer Science, pages 284–298. Springer, 2008.

[15] Oleg Murk, Daniel Larsson, and Reiner Hahnle. Key-c: A tool for verification of c programs. In CADE
21, 2007. to appear.

[16] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245–257, October 1979.

[17] Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis,
Technische Universität München, 2006.

[18] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic. In Martin
Hofmann and Matthias Felleisen, editors, Proc. 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’07), pages 97–108, Nice, France, January 2007.

16


	Introduction
	A Toy Language
	Untyped Semantics.
	Typed Semantics
	Equivalence of the Untyped and Typed Semantics
	Soundness
	Completeness

	Extensions
	Evaluation
	Related And Future Work
	References

