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Abstract. A key question in cooperative game theory is that of coal#icsta-
bility, usually captured by the notion of tlere—the set of outcomes such that
no subgroup of players has an incentive to deviate. Howseene coalitional
games have empty cores, and any outcome in such a game iblansta

In this paper, we investigate the possibility of stabilgzia coalitional game by
using external payments. We consider a scenario where amakparty, which
is interested in having the players work together, offeragpkemental payment
to the grand coalition (or, more generally, a particularlitioa structure). This
payment is conditional on players not deviating from theialgion(s). The sum
of this payment plus the actual gains of the coalition(s) rtten be divided
among the agents so as to promote stability. We definedkeof stability (CoS)
as the minimal external payment that stabilizes the game.

We provide general bounds on the cost of stability in seveaalses of games, and
explore its algorithmic properties. To develop a bettewitian for the concepts
we introduce, we provide a detailed algorithmic study of ¢bet of stability in
weighted voting games, a simple but expressive class of garhieh can model
decision-making in political bodies, and cooperation inltragent settings. Fi-
nally, we extend our model and results to games with coalgiouctures.

1 Introduction

In recent years, algorithmic game theory, an emerging fiedd tombines computer
science, game theory and social choice, has received a &ttesftion from the multi-
agent community [15, 6, 18, 16]. The reason for this inteieitat multiagent systems
research focuses on designing intelligent agents, i.ttiemthat can coordinate, coop-
erate and negotiate without requiring human interventiomany application domains,
such agents argelfish i.e., they are built to maximize the rewards obtained bir tire-
ators and can therefore be modeled by means of game theorgollr, as agents often
have to function in rapidly changing environments, comfioiteal considerations are of
great concern to their designers as well.

In many settings, such as online auctions and other typesidats, agents act indi-
vidually. In this case, the standard notions of noncoopergame theory, such &&ash
equilibriumor dominant-strategy equilibriupprovide a credible prediction of the out-
come of the interaction. However, another frequently odogrtype of scenario is that



agents need to form teams to achieve their individual gtmsuch domains, the focus
turns from the interaction between single agents to thelibies of subsets, ocoali-
tions of the agents. Thus, a more appropriate modeling toolkitfis setting would be
that of cooperative or coalitional, game theory [2], which studies what coalitions are
most likely to arise and how their members distribute thegfiom cooperation. When
the agents are selfish, the latter question is obviously edtgmportance. Indeed, the
total utility generated by the coalition is of little interest tadividual agents; rather,
each agent aims to maximize her own utility. Thustablecoalition can be formed
only if the gains from cooperation can be distributed in a Weat satisfies all agents.

The most prominent solution concept that aims to formakzeidea of stability in
coalitional games is theore Informally, anoutcomeof a coalitional game is payoff
vectorwhich for each agent lists her share of the profit of ¢gin@nd coalition i.e., the
coalition that includes all agents. An outcome is said torbhe core if it distributes
the gains so that no subset of agents has an incentive to abamel grand coalition
and form a coalition of their own. It can be argued that theceq of the core captures
the intuitive notion of stability in cooperative settingsowever, it has an important
drawback: the core of a game may be empty. In games with enop&gcany outcome
is unstable, and therefore there is always a group of ageaitsttempted to abandon the
existing plan. This observation has triggered the inventibless demanding solution
concepts, such ascore and the least core, as well as an interest in noncodyera
approaches to identifying stable outcomes in coalitioaahgs [3, 14]

In this paper, we approach this issue from a different petspge Specifically, we
examine the possibility of stabilizing the outcome of a gamimg external payments.
Under this model, an external party, which can be seen asteatanthority interested
in stable functioning of the system, attempts to incengivazcoalition of agents to co-
operate in a stable manner. This party does this by offehiagrtembers of a coalition a
supplemental payment if they cooperate. This external jgayims given to the coalition
as a whole, and is provided only if this coalition is formed.

Clearly, when the supplemental payment is large enougheidting outcome is
stable: the profit that the deviators can make on their owwarfitd by the subsidy
they could receive by sticking to the prescribed solutioowiver, normally the exter-
nal party would want to minimize its expenditure. Thus, irsthaper we define and
study thecost of stability which is the minimal supplemental payment that is required
to ensure stability in a coalitional game. We start by comsid) this concept in the con-
text where the central authority aims to ensure #ibagents cooperate, i.e., it offers
a supplemental payment in order to stabilize the grand tooaliWe then extend our
analysis to the setting where the goal of the center is th@ligyeof a coalition struc-
ture, i.e., a partition of all agents into disjoint coalitions.this setting, the center does
not expect the agents to work as a single team, but nevesthetents each individual
team to be immune to deviations. Finally, we consider theade where the center is
concerned with the stability of a particular coalition vittta coalition structure. This
model is appropriate when the central authority wants aqaar group of agents to
work together, but is indifferent to other agents switchinglitions.

We first provide bounds on the cost of stability in generalitioaal games. We then
show that for some interesting special cases, such as adgéive games, these bounds



can be improved considerably. We also propose a generalithigdéc technique for
computing the cost of stability. Then, to develop a bettataratanding of the concepts
proposed in the paper, we apply them in the contestaifhted voting gamed8VvVvGs),
a simple but powerful class of games that have been used t@lntodperation in
settings as diverse as, on the one hand, decision-makingjitical bodies such as the
United Nations Security Council and the International MangFund and, on the other
hand, resource allocation in multiagent systems. For saofieg, we are able to obtain
a complete characterization of the cost of stability fronakgorithmic perspective.
The paper is organized as follows. In Section 2, we provigerntbcessary back-
ground on coalitional games. In Section 3, we formally defireecost of stability for
the setting where the desired outcome is the grand coglpimve bounds on the cost
of stability and outline a general technique for computingNe then focus on the
computational aspects of the cost of stability in the contéxour selected domain,
i.e., weighted voting games. In Section 4.1, we demonsthatecomputing the cost of
stability in such games isoNP-hard if the weights are given in binary. On the other
hand, for unary weights, we provide an efficient algorithmtfds problem. We also
investigate if the cost of stability can be efficiently apgroated. In Section 4.2, we
answer this question positively by describing a fully paymial-time approximation
scheme (FPTAS) for our problem. We complement this resu#thowing that, by dis-
tributing the payments in a very natural manner, we get withifactor of 2 of the
optimal adjusted gains, i.e., the sum of the value of thedjcaralition and the external
payments. While this method of allocating payoffs does remtessarily minimize the
center’s expenditure, the fact that it is both easy to imgletand has a bounded worst-
case performance may make it an attractive propositionritaicesettings. In Section 5,
we extend our discussion to the setting where the center tairsiabilize an arbitrary
coalition structure, or a particular coalition within igther than the grand coalition. We
end the paper with a discussion of related work and some gsiocls.

2 Preliminaries

Throughout this paper, given a vector= (z1,...,z,) andaseC C {1,...,n} we
write 2(C') to denote) , . x;.

Definition 1. A (transferable utility) coalitional gamé = (I,v) is given by a set of
agents] = {1,...,n} and acharacteristic functiom : 2/ — R* that for any subset
(coalition) of agents lists the total utility these agenthigve by working together.

A coalitional gameG = (I,v) is calledincreasingif for all coalitionsC’ C C
we haveuv(C’) < v(C), andsuper-additiveif for all disjoint coalitionsC,C’ C I
we havev(C) + v(C") < v(C U C"). Note that sinces(C') > 0 foranyC C I, all
super-additive games are increasing. Many multiagent donecan be viewed as super-
additive coalitional games. Further, a coalitional gathe= (I,v) is calledsimpleif
v(C) € {0,1} forall C' C I. In a simple game, we say that a coalitiohC I wins
if v(C) = 1, andlosesif v(C') = 0. Finally, a coalitional game is callehonymou#f
v(C) =v(C") foranyC,C’ C I suchthaiC| = |C’].



A particular class of simple games considered in this payptéait ofweighted voting
gameqWVGSs). In these games, each agent has a weight, and a cpalftagents wins
the game if the sum of the weights of its members meets or dga@eertain threshold.

Definition 2. A weighted voting gamé a simple coalitional game given by a set of
agentsl = {1,...,n}, a vector of agentsieightsw = (w1, ..., w,) and athreshold

q. Theweight of a coalitionC' C I'isw(C) = >, - w;. A coalitionC wins the game
(i.e.,v(C) = 1) if w(C) > ¢, andloses the gam@.e.,v(C) = 0) if w(C) < q.

We denote the WVG with the weights = (w1, ws,...,w,) and the threshold
as[w; q| or [wy,wa, ..., wy; q]. AlSO, We Setwm.x = max;cs w;. Itis easy to see that
WVGs are simple increasing games; however, they are nosearly super-additive.
Throughout this paper, we assume th&f) > ¢, i.e., the grand coalition wins.

The characteristic function of a coalitional game defindg the total gains a coali-
tion achieves, but does not offer a way of distributing themoag the agents. Such a
division is called an imputation (or sometimes, a payofftoec

Definition 3. Given a coalitional gamé&' = (1, v), avectorp = (p1,...,pn) € R"is

called animputationfor G if it satisfiesp; > 0 for eachi, 1 <i < n,and}. , p; =

v(I). We callp; the payoff of agent; the total payoffof a coalitionC C I is given by
p(C). We writeZ(G) to denote the set of all imputations fG¥.

For an imputation to be stable, it should be the case that heeswf players has
an incentive to deviate. Formally, we say that a coalitibblocksan imputationp =
(p1,-..,pn) if p(C) < v(C). Thecoreof a coalitional game7 is defined as the set
of imputations not blocked by any coalition, i.eare(G) = {p € Z(G) | p(C) >
v(C) foreachC C I}. Animputation in the core guarantees the stability of thengr
coalition. However, the core can be empty, in which caseyepessible gain division
is blocked by some coalition and the grand coalition is ieh#ly unstable.

In WVGs, and, more generally, in simple games, one can cteaiae the core using
the notion of veto players, i.e., players that are indispblesfor forming a winning
coalition. Formally, given a simple coalitional gare= (I, v), a playeri € I is said
to be avetoplayer if for all coalitionsC' C I'\ {i} we havev(C') = 0. The following is
a folklore result regarding nonemptiness of the core.

Theorem 1. Let G = (I,v) be a simple coalitional game. If there are no veto agents
in G, then the core o7 is empty. Otherwise, lef = {i1,...,%,} be the set of veto
agents inG. Then the core of is the set of imputations that distribute all the gains
among the veto agents only, i.eore(G) = {p € Z(G) | p(I’) = 1}.

So far, we have tacitly assumed that the only possible outcofra coalitional
game is the formation of the grand coalition. However, oftenakes more sense for
the agents to form several disjoint coalitions, each of Wiiian focus on its own task.
For example, WVGs can be used to model the setting where epgit has a certain
amount of resources (modeled by her weight), and there isrdauof identical tasks
each of which requires a certain amount of these resourcedded by the threshold)
to be completed. In this setting, the formation of the graodliion means that only
one task will be completed, even if there are enough reseldoteseveral tasks.



The situation when agents can split into teams to work onraétasks simulta-
neously can be modeled using the notion of a coalition gtrecti.e., a partition of
the set of agents into disjoint coalitions. Formally, we sagt CS = (C',...,C™)
is a coalition structureover a set of agents if U™ ,C* = I andC* N C7 = () for
all i # j; we write CS € CS(I). Also, we overload notation by writing(CS) to
denote}" ., - v(C7). If coalition structures are allowed, an outcome of a game is
not just an imputation, but a pafiC's, p), wherep is an imputation for the coalition
structure C'S, i.e., p distributes the gains of every coalition ifiS among its mem-
bers. Formally, we say that = (p1, ..., p,) is animputation for a coalition structure
CS = (C*,...,C™)inagameG = (I,v)if p; > 0foralli, 1 < i < n, and
p(C7) = v(CY) forall j, 1 < j < m; we writep € Z(CS,G). We can also gener-
alize the notion of the core introduced earlier in this setto games with coalition
structures. Namely, given a garGe= (I, v), we say that an outcom&'S, p) is in the
CS-coreof G if CS is a coalition structure ovef, p € Z(CS,G) andp(C) > v(C)
forall C C I, we write (CS, p) € CS-coréG). Note that ifp is in the core ofG then
(I,p) is in the CS-core ofs; however, the converse is not necessarily true.

3 The Cost of Stability

In many games, forming the grand coalition maximizes sae&fare; this is the case,
for example, if the game in question is super-additive. Hewghe core of such games
may still be empty. In this case, it would be impossible tdribste the gains of the
grand coalition in a stable way, so it may fall apart despéiad socially optimal. Thus,
an external party, such as a benevolent central authoriy, want to incentivize the
agents to cooperate, e.g., by offering the agents a supptahpaymentA if they stay
in the grand coalition. This situation can be modeled aagjosted coalitional game
derived from the original coalitional gande

Definition 4. Given a coalitional gamé& = (I,v) andA > 0, theadjusted coalitional
gameG(A) = (I,v') is given by’ (C) = v(C) if C # I, andv’'(C) = v(C) + A if
C=1I

We callv'(I) = v(I) + A theadjusted gain®f the grand coalition. We say that a
vectorp € R” is asuper-imputatiorfor a gameG = (I,v) if p; > 0foralli € T and
p(I) > v(I). Furthermore, we say that a super-imputatiois stableif p(C) > v(C)
for all C C I. A super-imputatiorp with p(I) = v(I) + A distributes the adjusted
gains, i.e., it is an imputation fa&(A); it is stable if and only if it is in the core of
G(A). We say that a supplemental paymehstabilizesthe grand coalition in a game
G if the adjusted gamé&'(A) has a nonempty core. Clearly,f is large enough (e.g.,
A = nmaxccyv(C)), the gameaz(A) will have a nonempty core. However, usually
the central authority wants to spend as little money as plesdience, we define the
cost of stability as themallestexternal payment that stabilizes the grand coalition.

Definition 5. Given a coalitional game&> = (I,v), its cost of stability CoS(G) is
defined agloS(G) = inf{A | A > 0 and core(G(A)) # 0}.



We have argued that the spt\ | A > 0 andcore(G(A)) # (0} is nonempty. There-
fore,G(A) is well-defined. Now, we prove that this set contains its ggstdower bound
CoS(G), i.e., thatthe gamé&(CoS(G)) has a nonempty core. While this can be shown
using a continuity argument, we will now give a different pfowhich will also be
useful for exploring the cost of stability from an algoritlmperspective. Fix a coali-
tional gameG = (I, v) and consider the following linear prografiP* with variables

pl)""pn)A:

min A subject to:

A>0 (1)
p; > 0foreach:,1 <i<mn, (2)
Zpi:U(I)JFA (3)
el
> pi>o(C)forallC C 1 (4)
eC

Itis not hard to see that the optimal value of this linear paogis exactlyCoS(G).
Moreover, any optimal solution ofP* corresponds to an imputation in the core of
G(CoS(@)) and therefore the gam@CoS(G)) has a nonempty core.

Example 1.Consider a WVGG = [w; ¢| that satisfiess; = - -+ = w,, = w. For such
games, we will now provide an explicit formula for the cosstdbility.

Theorem 2. Fora WVGG = [w,w, . ..,w;q|, we haveCoS(G) 1.

- fQ7w1 B
For example, ifw(n — 1) < ¢ < wn, thenCoS(G) = 0, i.e.,G has a nonempty core.
On the other hand, iiv = 1, n = 3k andq = 2k for some integek > 0, i.e.,q = %n

we haveCoS(G) =3 —1=1.

3.1 Bounds onCoS(G) in General Coalitional Games

Consider an arbitrary coalitional gamie = (I, v). Clearly, CoS(G) = 0 if and only
if G has a nonempty core. Further, we have argued@h&t(G) is upper-bounded by
nmaxccyv(C), i.e., CoS(G) is finite for any fixed coalitional game. Moreover, the
bound ofn maxccy v(C) is (almost) tight. To see this, consider a (monotone, siinple
gameG’ given by’ (9) = 0 andv’(C) = 1 forall C # . Clearly, we have®oS(G') =
n — 1: any super-imputation that pays some agent lesstlvet not be stable, whereas
settingp; = 1forall i € I ensures stability. Thus, the cost of stability can be gaitgd
relative to the value of the grand coalition.

On the other hand, we can provide a lower bound§ (G) in terms of the values
of coalition structures ovef. Indeed, for an arbitrary coalition structué& € CS(I),
we haveCoS(G) > v(CS) — v(I). To see this, note that if the total payment to the
grand coalition is less thafu(CS) — v(I)) + v(I), then for some coalitiod® € CS
it will be the case thap(C') < v(C). It is tempting to conjecture that'vS(G) =
max cgecs(r) v(CS)—v(I). However, a counterexample is provided by Example 1 with
w =1, ¢ = 2n: indeed, in this case we hav&$(G) = 3, maxcsecs(n v(CS) —

3
v(I) = 0. We can summarize these observations as follows.



Theorem 3. For any coalitional gamé& = (I, v), we have

max v(CS) —v(I) < CoS(G) < nmaxwv(C).
csecs(I) CcCl
For super-additive games, we can strengthen the upper lmoumsitierably. Note that in
such games the grand coalition maximizes social welfargsstability is particularly
desirable. Yet, as the second part of Theorem 4 implies regmgsstability may turn out
to be quite costly even in this restricted setting.

Theorem 4. For any super-additive gam@ = (I, v), |I| = n, we haveCoS(G) <
(v/n — 1)v(I), and this bound is asymptotically tight.

For anonymous super-additive games, further improvenagatpossible.

Theorem 5. For any anonymous super-additive gafie= (I, v), we haveCoS(G) <
2v(I), and this bound is asymptotically tight.

A somewhat similar stability-related concept is thast core which is the set of all
imputationsp that minimize the maximaleficitv(C) — p(C). In particular, thevalue
of the least core(G), defined ag(G) = min{maxccrv(C) —p(C) | p € Z(G)}, is
strictly positive if and only if the cost of stability is sttly positive. We can generalize
this observation as follows.

Proposition 1. For any coalitional gameé? = (I, v) with v(@) = 0 and|I| = n such
thate(G) > 0, we haveCoS(G) < ne(G), and this bound is tight.

3.2 Algorithmic Properties of CoS(G)

The linear progranCP* provides a way of computingoS(G) for any coalitional
gameG. However, this linear program contains exponentially meogstraints (one
for each subset of). Thus, solving it directly would be too time-consuming foost
games. Note that for general coalitional games, this isseree, inevitable: in general,
a coalitional game is described by its characteristic fiongt.e., a list of2™ numbers.
Thus, to discuss the algorithmic propertieg6fS (G), we need to restrict our attention
to games with compactly representable characteristiciume

A standard approach to this issue is to consider games thabealescribed by
polynomial-size circuits. Formally, we say that a clgssf games has eompact circuit
representationf there exists a polynomial such that for everyz € G, G = (I,v),
|I| = n, there exists a circui€ of size p(n) with n binary inputs which on input
(b1,...,by) outputsv(C), whereC = {i € I | b; = 1}.

Unfortunately, it turns out that having a compact circuipresentation does not
guarantee efficient computability 61oS(G). Indeed, it is easy to see that WVGs with
integer weights have such a representation. However, ingkesection we will show
that computingCoS (G) for such games is computationally intractable (Theorerdve).
can, however, provide sufficientcondition for CoS(G) to be efficiently computable.
To do so, we will first formally state the relevant computaibproblems. In the next
two descriptions, we assume th@tis given by its compact circuit representation.



SUPER-IMPUTATION-STABILITY : Given a coalitional gamé, a supplemental pay-
ment A and an imputatiorp = (pi,...,ps) in the adjusted gamé&'(A), decide
whetherp € core(G(A)).

CoS: Given a coalitional gamé and a parameted, decide whetheCoS(G) < A,
i.e., whetherore(G(A)) # (.

Consider first BPER-IMPUTATION-STABILITY . Fix a gameG = (I,v). For any
super-imputatiorp for G, let d(G,p) = maxccr{v(C) — p(C)} be the maximum
deficit of a coalition undep. Clearly,p is stable if and only i#Z(G, p) < 0. Observe
also that foranyA > 0 itis easy to decide whetheris an imputation for7(A). Thus, a
polynomial-time algorithm for computing(G, p) can be converted into a polynomial-
time algorithm for SPER-IMPUTATION-STABILITY . Further, we can computedS
via solving LP* by the ellipsoid method. The ellipsiod method runs in polyiel
time given a polynomial-timeeparation oraclei.e., a procedure that takes as input a
candidate feasible solution, checks if it indeed is feasibhd if this is not the case,
returns a violated constraint. Now, given a vegtoand a parametef,, we can easily
check if they satisfy constraints (1)—(3), i.e.pifis an imputation foiG(A). To verify
constraint (4), we need to checkgfis in the core ofG(A). As argued above, this can
be done by checking whethéfG, p) < 0. We summarize these results as follows.

Theorem 6. Consider a class of coalitional gamgswith a compact circuit represen-
tation. If there is an algorithm that for angg € G, G = (I,v), |I| = n, and for
any super-imputatiop for G computesi!(G, p) in timepoly(n, |p|), where|p| is the
number of bits in the binary repesentation f then for anyG € G the problems
SUPER-IMPUTATION-STABILITY andCoS are polynomial-time solvable.

4 Computing the Cost of Stability in Weighted Voting Games
Without Coalition Structures

In this section, we focus on computing the cost of stabitjizine grand coalition in
WVGs. We start by considering the complexity of exact aldnis for this problem.

4.1 Exact Algorithms

In what follows, unless specified otherwise, we assume thategghts and the thresh-
old are integers given in binary, whereas all other numeaiameters, such as the sup-
plemental payment\ and the entries of the payoff vectpr are rationals given in bi-
nary. Standard results on linear threshold functions [Ag]ly that WVGs with integer
weights have a compact circuit representation. Thus, walefine the computational
problems $PER IMPUTATION-STABILITY -WVG and GS-WVG by specializing the
problems SPER-IMPUTATION-STABILITY and GS to WVGs. Both of the resulting
problems turn out to be computationally hard.

Theorem 7. The problenSUPER IMPUTATION-STABILITY -WVG is coNP-complete
and the problen€oS-WVG is coNP-hard.



The reductions in the proof of Theorem 7 are froarPITION. Consequently, our
hardness results depend in an essential way on the weightsdieen in binary. Thus,
it is natural to ask what happens if the agents’ weights atgnpmnially bounded (or
given in unary). It turns out that in this cas@rE=R IMPUTATION-STABILITY -WVG
and @S are in P. This can be shown using the technique of Section&.,2y proving
that for WVGs with small weights one can compdté, p) in polynomial time.

Theorem 8. SUPER-IMPUTATION-STABILITY -WVG and CoS-WVG are in P when
the agents’ weights are polynomially bounded (or given iaryj

4.2 Approximating the Cost of Stability in Weighted Voting Games

For large weights, the algorithms outlined in the end of thevjpus section may not
be practical. Thus, the center may want to trade off its paytraed computation time,
i.e., provide a slightly higher supplemental payment foichthe corresponding stable
super-imputation can be computed efficiently. It turns bat this is indeed possible,
i.e., CoS(G) can be efficiently approximated to an arbitrary degree ofipren.

Theorem 9. There exists an algorithid (G, ) that, given a WVGF = [w; ¢] in which
the weights of all players are nonnegative integers givebiimary and a parameter
e > 0, outputs a valueA that satisfiesCoS(G) < A < (1 + €)CoS(G) and runs in
timepoly(n, log wmax, 1/¢). Thatis, there exists a fully polynomial-time approxiroati
scheme (FPTAS) faf'oS (G).

Moreover, one can get a 2-approximation to the adjustedsgamply by paying
each agentin proportion to her weight. Formally, fix a wedghtoting gamé&r = (1, v)
and letp* = (p7,...,p}) be a super-imputation given iy = min{1, “J?}

Theorem 10. For any weighted voting gam@ = (I, v) with CoS(G) = A and any
p € core(G(A)), we havep*(I) < 2p(I).

It can also be shown that this bound is tight (see Appendix C).

5 Cost of Stability in Games with Coalition Structures

If a coalitional game is not super-additive, the formatidriree grand coalition is not
necessarily the most desirable outcome: for example, itlmeaiie case that by splitting
into several teams the agents can accomplish more task®yhanorking together. In

such settings, the central authority may want to stabiliz®aition structure, i.e., a
partition of agents into teams. We now generalize our dedmivf the cost of stability

to such settings.

5.1 Stabilizing a Fixed Coalition Structure

We first consider the setting where the central authoritytsvém stabilize a particular
coalition structure.



Given a coalitional gamé&' = (I,v), a coalition structure’'S = (C*,...,C™)
over] and a vectorA = (Al ..., A™), letG(A) be the game with the set of agerits
and the characteristic functian given by’ (C?) = v(C%) + A fori =1,...,m and
v'(C) = v(C) foranyC ¢ {C*,...,C™}. We say that the gam@(A) is stable with
respect toCsS if there exists an imputatiop € Z(CS,G(A)) such that CS, p) is in
the CS-core of7(A). Also, we say that an external paymeftstabilizesa coalition
structureCS with respect to a gamé if there existA! > 0,..., A™ > 0 such that
A= Al + ...+ A™ and the gam&/(A) is stable with respect t6'S. We are now
ready to define the cost of stability of a coalition structgi®in G.

Definition 6. Given a coalitional gamé& = (I,v) and a coalition structureC'S =
(C1,...,C™) overI, thecost of stabilityCoS(CS, G) of the coalition structureC’S
in G is the smallest external payment needed to stabdiZei.e.,

CoS(CS,G) =inf{) A" |A" > 0fori=1,...,m and
=1

Ip € Z(CS,G(A)) st. (CS,p) € CS-cordG(A))}.

Fix a gameG = (I,v) and setv,.x = maxccyv(C). Itis easy to see that for any
coalition structureCS = (C1,...,C™) the gameG(A), where A; = |Ctlvpax,
is stable with respect t@’S, and thereforeCoS(CS, G) is well-defined and satisfies
CoS(CS,G) < nvmax. Moreover, as in the case of games without coalition struc-
tures, the valueCoS(CS, G) can be obtained as an optimal solution to a linear pro-
gram. Indeed, we can simply take the linear progeaRi and replace the constraint
> icr Pi = v(I)+Awith the constraind _,_; p; = v(CS)+ A. Itis not hard to see that
the resulting linear program, which we will denote B¢, computesCoS(CS, G):
in particular, the constraintd > 0 fori = 1,...,m are implicitly captured by con-
straints) ;.. p; > v(C") inline (4) of LP .

We now turn to the question of computing the cost of stabibtya given coali-
tion structure in WVGs. To this end, we will modify the deoisiproblems stated in
Section 4.1 as follows.

CoS-WVG-CS: Given a WVGG = [w; ¢] with the set of agent$, a coalition struc-
ture CS over! and a parameted,, decide whethe€oS(CS,G) < A.

SUPERIMPUTATION-STABILITY -WVG-CS: Given a WVGGH = [w; ¢] with the set of
agentd, a coalition structur€'S = (C*,...,C™) overl,avectorA = (Al,... A™)
and an imputatiop € Z(CS, G(A)), decide if(CS, p) is in the CS-core of7(A).

The results of Section 4.1 immediately imply that both ofstheroblems are com-
putationally hard even fom = 1. Moreover, using the results of [7], we can show
that SUIPER-IMPUTATION-STABILITY -WVG-CS remainsoNP-complete even ifA is
fixed to be(0, ..., 0). On the other hand, when weights are integers given in ubatly,
CoS-WVG-CS and BPER-IMPUTATION-STABILITY -WVG-CS are polynomial-time
solvable. Indeed, to solvVeUBER-IMPUTATION-STABILITY -WVG-CS, one needs to
check if there is a coalitiol’ with w(C) > ¢, p(C') < 1. This can be done us-
ing the dynamic programming algorithm from the proof of Thern 8. Moreover, to



solve @S-WVG-CS, we can simply run the ellipsoid algorithm on thmee&r program
LP¢g described earlier in this section, using the algorithm foPSR-IMPUTATION-
STABILITY -WVG-CS as a separation oracle. Thus, we obtain the follgwésult.

Theorem 11. When all players’ weights are integers given in unary, thebbems
CoS-WVG-CSand SUPER IMPUTATION-STABILITY -WVG-CSare inP.

Finally, it is not hard to see that we can adapt the approxanatigorithm presented in
Section 4.2 to this setting.

Theorem 12. There exists an FPTAS f@foS(CS, G) in WVGs.

5.2 Finding the Cheapest Coalition Structure to Stabilize

So far, we have focused on the setting where the externat pants to stabilize a
particular coalition structure. However, it can also bedase that the central authority
simply wants to achieve stability, and does not care whidilitton structure arises, as
long as it can be made stable using as little as money as p@3ak will now introduce
the notion ofcost of stability for games with coalition structurescapture this type of
setting. Recall tha€S(I) denotes the set of all coalition structures oler

Definition 7. Given a coalitional gamé& = (I, v), let thecost of stability forG with
coalition structuresdenoted byCoS ¢s(G), bemin{ CoS(CS,G) | CS € CS(I)}.

Clearly, one can comput€oS ¢s(G) by enumerating all coalition structures over
and picking the one with the smallest value@fS (CS, G). Alternatively, note that the
linear programCP.¢ depends only on the value of the coalition structG® Hence,
stabilizing all coalition structures with the same totdleshas the same cost. Moreover,
this implies that the cheapest coalition structure to $tabis the one that maximizes
social welfare. Hence, if we could compute the value of thadition structureC'S™* that
maximizes social welfare, we could firthsS cs(G) by solvingLP g«

For WVGs, Theorem 2 in [7] shows that if weights are given imdoy, it is NP-hard
to decide whether a given game has a nonempty CS-core. Agubstion is equivalent
to asking whethetoS ¢s(G) = 0, the latter problem is NP-hard, too.

One might hope that computin@.S cs(G) is easy if the weights of all players are
given in unary. However, this does not seem to be the caseethaur algorithms for
computing the cost of stability in other settings relied otving the corresponding lin-
ear program. To implement this approach in our scenario, mddneed to compute the
value of the coalition structure that maximizes social es&f However, a straightfor-
ward reduction from 3-ERTITION, a classic problem that is known to be NP-hard even
for unary weights, shows that the latter problem is NP-hamhdf weights are given
in unary. While this does not immediately imply that compgtCoS ¢s(G) is hard for
small weights, it means that finding the cheapest-to-stabiutcome is NP-hard even
if weights are given in unary.

5.3 Stabilizing a Particular Coalition

We now consider the case where the central authority wardagtizylar group of agents
to work together, but does not care about the stability obtherall game. Thus, it wants



to identify a coalition structure containing a particularatition C' and the minimal
subsidy to the players that ensures that no set of playersnttiades members aof’
wants to deviate. We skip the formal definition of the cormsfing cost-of-stability
concept, as well as its algorithmic analysis due to spacstrints. However, we would
like to mention several subtle points that arise in this ernt

First, one might think that the optimal way to stabilize alitam is to offer pay-
ments to members of this coalition only. However, this twasto be not true (see Ex-
ample 2 in Appendix D). Second, stabilizing a given coatitinay be strictly cheaper
than stabilizingany of the coalition structures that contain it (see Example 3jn
pendix D). Thus choosing a good definition of the cost of ditghof an individual
coalition is a nontrivial issue.

6 Related Work

The computational complexity of various stability concept coalitional games has
been studied in a number of papers (see, e.g., [4,11, 5hQarticular, paper [8] an-
alyzes computational aspects of stability in WVGs, provdngumber of results on the
computational complexity of the-core, the least core and the nucleolus. The computa-
tional complexity of the CS-core in WVGs is studied in [7].

Paper [12] is quite similar to ours in spirit. It considere getting where an exter-
nal party intervenes in order to achieve a certain outconregguronetary payments.
However, [12] deals with the very different domainrafncooperative games.

One can also draw a parallel between the subject of this @equkthe computational
analysis of bribery in elections [9], i.e., the setting wéan external party, whose goal it
is to get a given candidate elected, pays the voters to clibag@references. However,
while in the context of our work it is natural to view the cealtauthority as benevolent,
the usual interpretation of bribery is much less benign.

7 Conclusion

We have examined the possibility of stabilizing a coalitibgame by offering the agents
additional payments in order to discourage them from dimgatind defined the cost
of stability as the minimal total payment that allows a stattivision of the gains. We
then focused on the computational aspects of this conceptdighted voting games.
In the setting where the outcome to be stabilized is the gcaatition, we provided a
complete picture of the computational complexity of thetedl decision problems. We
then showed how to extend our results to settings where sagantform a coalition
structure.

There are several lines of possible future research. Ritsite the focus of this
paper was on weighted voting games, the notion of the cosabilisy is defined for any
coalitional game. Therefore, a natural research diredésiom study the cost of stability
in other classes of games. Second, we would like to develagitarlunderstanding of
the relationship between the cost of stability of a game ji@rldast core and nucleolus.
Finally, it would be interesting to extend the notion of tlestof stability to games with
nontransferable utility and partition function games.
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A Proofs for Section 3

Theorem 2 Fora WVGG = [w,w, ..., w;q|, we haveCoS(G) 1.

~ [a/w]
Proof. First, note that by scaling andg we can assume that = 1.

SetA = % — 1 and consider the imputatigh = (p1, ..., pn) given byp;, = %
for i, 1 < i < n. Clearly, we haven(I) = TaT» SOP € G(A4). Moreover, for any
winning coalitionC, we haveC| > [¢], sop(C) > (q]# = 1. Thereforep is in the
core of G(A), and henc&oS(G) < A.

On the other hand, consider any stable super-imputatiddets = [¢]. Clearly,
for any coalitionC with |C| = s we havep(C') > 1. Now, consider a collection of
coalitionsC?, ..., C", whereC® = {i mod n,i+1 mod n,...,i+s—1 mod n}:
for example, we have™~! = {n — 1,n,1,...,s — 2}. We have|C?| = s for all 4,
1 <i < n,sop(Ch) + -+ p(C™) > n. On the other hand, each playeoccurs
in exactly s of these coalitions, so we haygl)s = p(C') + --- + p(C™). Hence,
p(I)>n/s= Tq7 and therefor&oS(G) > A. O

Theorem 4 For any super-additive gan@ = (I, v), |I| = n, we haveCoS(G) <
(v/n — 1)v(I), and this bound is asymptotically tight.

Proof. Fix an arbitrary monotone super-additive ga@ie= (I, v) with v(()) = 0 and
|I| = n. Consider the corresponding linear program™. Observe that it can be re-
written as

min )., p; Subject to:
pi> 0 fori=1,...,n,

Zpi > o(C) forallCCI
ieC

The dual to this linear program has variables{\¢ }cc; and is given by

max )~ v(C)Ac subjectto:
Ao > 0 forallC C T

> e < 1 fori=1,...,n,
C3i

That is, we have to assign “weight&¢ to all coalitions so that the total weight of all
coalitions covering any given pointis at masOur goal is to maximiz® . ; v(C)Ac
subject to this condition.

First, we claim that there exists an optimal solution to thisximization problem
that satisfiesS N T # @ for any S, T such that\s > 0, A\r > 0. Indeed, suppose
that this is not the case. Fix an arbitrary ordeon coalitions in2! such that S| <
|T'| implies S < T, and extend it to a lexicographic order on tuples of subskts o
I in the standard manner. For every optimal solutiga)ccr to the dual program,
consider the vectd, ..., whose entries are the subséts I with \¢ = 0, ordered
according to< (from the smallest to the largest). Among all optimal saos to the



dual linear program, pick one with the lexicographicallgkest such vector and denote
it by (Ay)ccr. By our assumption, there exists a pair of nonempty S&t€') such that
A5 >0, A7 > 0,butSNT = 0. Lete = min{\g, \-}. Consider the vectdi\&")ccr
given by
A& forC#ST,SUT,
Ao =8 As—e forC=85T,
Ao +e forC=SUT.

First, observe that sincg and7” are disjoint,(A\:")cc is also a feasible solution to the
dual program. Furthermore, by super-additivity we have

D u(@AE =) v(C)AG = v(S)e — v(T)e + (v(S) + v(T))e = Y v(C)AE,

cCI cCI ccI

S0 (AE)ccr is an optimal solution to the dual program, too. Finally, efve that
§irec, 1S lexicographically greater thayy:,).,. Indeed, assume that= A3 (a
similar argument works for = A%). Then, forC # S,T,5 U T, we have . = A\,
and, moreover\s # 0, Ag* = 0 and|S U T| > |S|. This is a contradiction with our
choice of(\5)ccr.

Thus, there is an optimal solutidt\¢)ccr in which any two set€ andC” with
Ac # 0 and)\e # 0 intersect. Now, suppose that there is a Satith |S| < /n,

As > 0. Any setT with Ar > 0 contains one of the points ifl. Thus, we have

D Acv(@) <o) D Ar <o) 1< V().

CcCI i€S THeT €S

On the other hand, if for ang’ with A > 0 it holds that/C| > \/n, we have

Vi Aou(C) < D Aev(O)C <o(D) Y Y Ao <no(D),

ccr ocI i€l C:ieC

S0 Y o Acv(C) < no(I)/+/n = /nu(I). Consequently, in both cases we have
Y ccrAev(C) < /no(I). Now, since the optima of the dual and the original linear
programs are equal, the optimal solutign, . ..,p,) to the original linear program
satisfiesy ;. ; pi < v/nv(I), and hence&oS(G) < (y/n — 1)v(I), as required.

To see that this bound is tight, consider a finite projectiem@P of orderq, where
q is a prime number. It hag® + ¢ + 1 points and the same number of lines, every line
containsg + 1 points, any two lines intersect, and any point belongs taiiyxa + 1
lines. Now, consider a simple coalitional game whose pkgerrespond to points in
P and whose winning coalitions correspond to sets of point8 that contain a line.
Observe that this game is super-additive: since any twe limersect, there do not exist
two disjoint winning coalitions. Hence, for arfyy " C I such thatS NT = 0 either
v(S) = 0oro(T) = 0, and therefore(S) + v(T) < v(S UT), as required. On the
other hand, for each lin€', we have) _, . p; > 1. Summing over alf® + ¢ + 1 lines,
and using the fact that each point belongg tp 1 lines, we obtair(g + 1) >, pi >

@ +q+1,ie,pl) = %’7?1 =q+ q%. Sincen = |I| = ¢®> + ¢ + 1, we have

q>+/n—1,ie.,CoS(G) > (v/n—2)v(I). O



Theorem 5 For any anonymous super-additive gaGie= (I, v), we haveCoS(G) <
2v(I), and this bound is asymptotically tight.

Proof. Fix an anonymous super-additive gaie= (I,v) with |I| = n. Consider a
super-imputatiorp = (p1,...,pn) given byp, = Q”T(I) Clearly, we haven(I) =
2v(I). It remains to show that is in the core of the adjusted gar6&v(I)).

For any coalitionC' C I, there exists an integér, 1 < k£ < n — 1, such that
1 < |C] < %. For this value ofi, one can construdt pairwise disjoint coalitions
Cy,...,Cr with C; = C and|Cy| = --- = |Ck|. Super-additivity then implies that

v(C) < # On the other hand, we have
n 20(I)  2v(I)

20(I)
= > . = .
p(€) =IC] n —k+1 n k+1

Sincei”—j{? > % foranyk > 1, it follows thatp(C) > v(C) forall C C I, sop is
stable.

To see that this bound is tight, consider a gathe: (I, v) with |[I| =n =2k +1
given byv(C) = 0if |C| < k, andv(C) = 1if |C| > k + 1. Clearly, this game
is anonymous. Moreover, as any two winning coalitions seet, this game is also
super-additive. Consider any stable super-imputgtidar this game. For ang' with

|C| = k+ 1, we haved ;. p; > 1. There are exactlﬁkil) coalitions of this size,
and each agent participates in exac(l’l‘;[l) such coalitions. Thus, summing all these

inequalities, we obtail", *)p(1) > (,t,). or, cancelingp(l) > 5 =2— 1. O

Proposition 1 For any coalitional gamé&' = (I,v) with v(#) = 0 and|I| = n such
thate(G) > 0, we haveCoS(G) < ne(G), and this bound is tight.

Proof. Clearly, ife(G) = 0, we haveCoS(G) = 0. Now, assume(G) > 0. Letp be
an imputation in the least core 6f. For anyC C I we havep(C') > v(C) — &(G).
Consider a super-imputatigsi* given byp! = p; + ¢(G). Clearly, we have*(C) >
v(C) for anyC' C I such thatC' # (), i.e.,p* is stable. Further, it is easy to see that
p*(I) =v(I) +ne(G), s0CoS(G) < ne(G).

To see that this bound is tight, reconsider the gae= (I,v) with |I| = n,
v(0) = 0, andv(C) = 1 forall C # 0. Itis easy to see that{G) = 2=, since the
imputation(L,..., 1) isinthe least core aff. On the other hand, as mentioned above,
CoS(G) =n —1=ne(G). O

B Proofs for Section 4.1

Theorem 7 The problem $PER-IMPUTATION-STABILITY -WVG is coNP-complete
and the problem 6S-WVG iscoNP-hard.

Proof. Both of our reductions will be from ARTITION, a well-knownNP-complete
problem [10], which is defined as follows: given a list= (ay, . . ., a,,) of nonnegative
integers such that_" , a; = 2K, decide whether there is a subli$t of A such that

ZaiGA/ a; = K



We first show that ©S-WVG is coNP-hard. Given an instande= (a1, ..., a,)

of PARTITION, we construct a weighted voting gamieby setting/ = {1,...,n},
w; = a; foreachi, 1 < i < n,andgq = K. SetA = g—;i We claim that(G, A) is a

“yes"-instance of ©S-WVG if and only if A is a “no”-instance of RRTITION.

Indeed, suppose that is a “yes"-instance of RRTITION, and letA’ be the corre-
sponding sublist. Set’ = {i | a; € A’} andI” = I\ I'. Suppose for the sake of
contradiction thatz(A) has a nonempty core, and febe an imputation in the core of
G(A). We havep(I) = I?—fl < 2, and hence either(I") < 1 or p(I"”) < 1 (or both).
On the other hand, since’,_; a; = K, we havew(I') = w(I”") = K = ¢, i.e., at
least one of the coalition8 and” has a rational incentive to deviate, a contradiction.

On the other hand, suppose thais a “no”-instance of RRTITION, and consider

a vectorp* = (p3i,...,p}), wherep! = g We havep*(I) = 2—51 and hence
p*(I) —v(I) = g—;i That is,p* is an imputation foiG(A). We will now show that

p* is in the core ofG(A), and thereforé&r(A) has a nonempty core. Indeed, consider
any coalitionC' C I such that(C) = 1. We havew(C') > ¢q. Moreover, as4 is a
“no”-instance of RRTITION, there is no coalitio C I whose weight is exactly, so

we havew(C) > ¢+ 1 = K + 1. Thus we have*(C) = %(—fl) > 1. Hence, the agents
in C' have no rational incentive to deviate frqim and therefor@* € core(G(A)).

We can use the same construction to show the#ER-IMPUTATION-STABILITY -
WVG is coNP-hard. Indeed, considér, A = g—;i andp* defined above. It follows
from our proof thatp* is in the core ofG(A) if and only if A is a “no”-instance of
PARTITION. Moreover, ¥ PER IMPUTATION-STABILITY -WVG is clearly incoNP: to
verify that a given super-imputatignis unstable, it suffices to guess a coaliti@rand

verify that it is winning, i.e.w(C) > ¢, butis paid less than one under O

Theorem 8 SUPER-IMPUTATION-STABILITY -WVG and @S-WVG are inP when
the agents’ weights are polynomially bounded (or given iaryh

Proof. As argued in Section 3.2, it suffices to show that given a WY& [w; ¢] and a
super-imputatiorp for G, we can computé(G, p) in time poly(n, wmax, |P|), Wwhere
|p| denotes the number of bits in the binary representatign of

Foranyi, 1 <i <n,andanyw, 1 <w < w(I), let

Xiw=min{p(C) | C C{1,...,i},w(C) = w}.

We can compute the quantitiés ,, inductively as follows. Fof = 1, we haveX; ,, =
p1 if w =wy, andX; ,, = +oo otherwise. Now, suppose that we have computed,
for eachi’, 1 < 4’ < i. We can then comput&; ,, asX;+1,,» = min{X; »,,p; +
Xi w—w, }- Observe thap* = min{X,, ,, | w > ¢} is the minimal payment that a
winning coalition inG can receive undgs. Asp;, > 0 forall 4, 1 < ¢ < n, we have
d(G,p) =1-—p*~.

Clearly, the running time of this algorithm is polynomialsn wy,.x and|p|. Ob-
serve that one can construct a similar algorithm that rupsipnomial time even if the
weights are large, as long as all entriepafan take polynomially many values. O



C Proofs for Section 4.2

Theorem 9 There exists an algorithtd(G, ) that, given a WVGG = [w; ¢] in which
the weights of all players are nonnegative integers givehimary and a parameter
e > 0, outputs a valued satisfying CoS(G) < A < (1 + €)CoS(G) and runs in
time poly(n, log wmax, 1/€). That is, there exists a fully polynomial-time approxima-
tion scheme (FPTAS) fo€0S(G).

Proof. We start by proving a simple lemma that will be useful for tinalgsis of our
algorithm.

Lemma 1. For any WVGG such thatCoS(G) # 0, we haveCoS(G) > 1/n.

Proof. Consider a weighted voting gani&that does not have a veto player and hence
CoS(G) # 0. Suppose for the sake of contradiction thfatS(G) = A < 1/n, that

is, the game&=(A) has a nonempty core. Let= (p1,...,p,) be animputation in the
core ofG(A). As we havey’(I) = A+ 1 > 1, there must be at least one playeuch
thatp; > 1/n. Hencep(I \ {i}) <14+ A —1/n < 1. Therefore the coalitiod \ {7}
satisfiesv(I'\ {i}) = 1 (sincei is not a veto playerk(I \ {i}) < 1, and hence is not
stable, a contradiction. O

Our proof is inspired by the FPTAS for the value of the leasead WVGs [8].

We will first describe an additive fully polynomial-time ajgximation scheme for
CoS(G), i.e., an algorithmA’(G, ¢) that, given a WVGG = [wy,...,wy,;q] and
e > 0, can compute a valug satisfying CoS(G) < A < CoS(G) + ¢ and runs
in time poly(n, log wmax, 1/€). We will then show how to convert it into an FPTAS
using Lemma 1.

SetX =2[1/e],and lets’ = 1/X. We have: /4 < ¢’ < ¢/2.

Consider the linear prografiP* given in Section 3. Instead of solvingP™* di-
rectly, we consider a family of linear feasibility prograft$P) (£;)i=1,... nx, Where
thekth LFP L is given by

p;>0fori=1,...,n,
pit-tpn <146k

Zpi > 1forallC C N such thatz w; > q.
iec iec

As e'nX = n, it follows that at least one of these LFPs has a feasibleisoluNow,
let £* be the smallest value @ffor which £, has a feasible solution. We havék* —

1) < CoS(G) < €'k*, or, equivalentlyCoS(G) < £'k* < CoS(G) + €. Hence, by
computingk™ we can obtain an additive-approximation toCoS(G). Now, while it is
not clear if we could find* in polynomial time, we will now show how to find a value
k that is guaranteed to be in the §ét, k* + 1}.

It is natural to approach this problem by trying to succesdgigolvel, ..., L, x.
However, just as the linear prograg¥*, the LFP L, has exponentially many con-
straints (one for each winning coalition 6f). Moreover, an implementation of the
separation oracle fof,, would involve solving KNAPSACK, which is an NP-hard prob-
lem when weights are given in binary. Hence, we will now tal®mewhat different



approach. Namely, we will show how to design an algoritBrthat, given a candi-
date solution(py, ..., p,) for Ly, either outputs a constraint that is violated by this
solution or finds a feasible solution fd; ;. The running time ofS(p1,...,pn) is
poly(n,log wmax, 1/€).

The algorithms first checks if the candidate solutidm, . . . , p,,) satisfies the first
n+ 1 constraints of the LFP. If no violated constraint is disaedkat this step, it rounds
up the payoffs by setting; = min{%t |t eN, ‘%t > p;} for eachi, 1 <1i < n. Note
that for eachi, 1 < i < n, we havep; < p, < p; + %/ and the rounded payoff;
can be represented gls= %ti, wheret; € {0,...,nX}. We can now use a variant of
the dynamic programming algorithm used in the proof of TkeoB to decide whether
there is a subset of agerdsthat satisfies ;.- w; > ¢, >, .~ p; < 1 (see the remark
in the end of that proof). If there is such a subset, the rodndetor (p},...,p.)
violates the constraint that correspond€t@and hence the original vectgr, . .., p,),
which satisfieg; < p; foralli € I, violates it, too. Hence§ outputs the corresponding
constraint and stops. Otherwise, it follows tfigt, . .., p/,) satisfies all constraints of
L that correspond to the winning coalitions@f Moreover, we have

n n ,
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Hence,(p!, ..., p) is a feasible solution fo€,, SOS outputs it and stops.

We are now ready to describe our algorithth It tries to solvelq, Lo, ... (in this
order). To solvely, it runs the ellipsoid algorithm on its input. Whenever tigsoid
algorithm makes a call to the separation oraglépasses this request & which ei-
ther identifies a violated constraint, in which ca$econtinues simulating the ellipsoid
algorithm, or outputs a feasible solution 6.1, in which caseA’ stops and outputs
g’'(k+1). If the ellipsoid algorithm terminates and decides thatiiveent LFP does not
have a feasible solutiotd’ proceeds to the next LFP inits list. If the ellipsoid alglonit
outputs a feasible solution fd, A outputss’k.

Recall that we denote by* the smallest value of for which £; has a feasible
solution. Clearly,A will correctly report that neither of4, ..., L« _o has a feasible
solution. When solvingC- 1, it will either solve it correctly (i.e., report that it hasn
feasible solutions) and move on fi.-, or discover a feasible solution fal-. In the
former caseA’ will either solvel,- correctly, i.e., find a feasible solution, or discover
a feasible solution tax-11. In either case, the outpatk of our algorithm satisfies
ke {k* k*+1}.

We have shown tha€oS(G) < ¢'k* < CoS(G) + ¢'. Consequently, we have
CoS(G) <e'k <e&'(k*+1) < CoS(G) +2¢’ < CoS(G) + €. This proves thatd’ is
an additive fully polynomial-time approximation schemetiwe cost of stability.

We will now show how to convertl’ into an FPTASA. Our algorithmA is given a
gameG = [w; q] and a parameter. It first tests if CoS(G) = 0 (equivalently, ifG has
a nonempty core). By Theorem 1, this can be done by checki@@dhis a veto player,
i.e., whethetw (I \ {i}) < ¢ for somei, 1 < i < n.

If CoS(G) # 0, Aruns A’ on input(G,e/n). Let A be the output ofd' (G, £/n);
we haveCoS(G) < A < CoS(G) + ¢/n. On the other hand, by Lemma 1 we have



CoS(G) > 1/n, and therefore
CoS(G) +e/n < CoS(GQ) +eCoS(G) = (1 +¢)CoS(G).
HenceA satisfiesCoS(G) < A < (1 +¢)CoS(G), as required. 0

Theorem 10 For any weighted voting gam@ = (I, v) with CoS(G) = A and any
p € core(G(A)), we havep*(I) < 2p(I).
Proof. SetA = CoS(G) and fix a super-imputatiop in the core ofG(A). LetI’ =
{i | w; > q} and setk = |I’|. Clearly, ifi € I’, for any stable super-imputatigs we
havep, > 1 = pf. On the other hand, it is clear that paying any agent more than
suboptimal, s@; = 1 foranyi € I'.
Sortall agents i\ I’ by decreasing weights, and partition theminto §&ts . ., C,,
in the following way:
—Setj =0;
— While there are unallocated agents:
—-Setj =5+ 1;
— Add agents t@’; until w(C}) > ¢
or until there are no more agents;
— Setm = j;
—If w(C;) > ¢, setm = j + 1 andC,, = 0.
Note that this procedure guarantees thét,,) < ¢, i.e., the last coalitiorC,,
loses. In particular, ifn = 1 thenw(C) < g. Sincew(I) > g, this means that > 1
andC; = I'\ I'. Inthis case, we have

p( >k p(D=k+ > <kt i=kt,
€Cq q
and hence*(I)/p(I) < (k+1)/k < 2. Therefore, throughout the rest of the proof we
can assumer > 1.
Setj’ = arg max;<,, w(C;), thatis,j" is the index of a maximum-weight coalition
amongCi, ..., Cy,. Observe that since(C;) > ¢ andw(C,,) < ¢, we havej’ # m.
To finish the proof, we consider two cases and show that inefttlemp* (1) < 2p(I).

Case 1: w(Cj) + w(Cy,) < 2q. For eachj < m — 1, we havew(C;) > ¢, and
thereforep(C;) > 1. Thus, we have

p) = k+ > p(Cj)=k+m-1.
J#Fm
On the other hand, we hawg(C;) < 2¢g forall j,1 < j <m, so
P =p I+ > p(C) + 0 (C) + 9" (Cm)
J#5m
<kt Y w(C;) +w(0j')+w(0m)
q

i#im 4
<k+2m-—2)+2<2(k+m—1) <2p(I).




Case 2: w(Cj) + w(Cy,) > 2¢. We begin by computing*(I), as it may be slightly
larger in this case:

Cin
ke Y UG wCn)
JjFm q
m—1)2
§k+w:k+2mfl.
q

Fortunately, we can provide a better lower boundyfaF). Let A; be the set that
contains the last player i@’;; only, and setd, = C; \ A; andAs = C,,,. We
havew(A4;) < g, sinceA; has just one agent, and we have already removed all
agents whose weight is at least Furthermore, we have(A2) < g, since we
move on to the next set as soon as a total weight of at le&streached in the
current set. On the other hand, we hate= A; U A, U A3 = Cy U Cp,. As
w(Cj) +w(Cp,) > 2q, we havew(A;) + w(As) = w(A) —w(A2) > 2¢—q=gq
andw(A;) + w(As) = w(A) —w(A1) > 29— q=q.
Therefore, we havp(A; U A2) > 1, p(A1 U A3) > 1, p(A2 U A3) > 1, and hence
p(A1 U Ay U A3z) > 3/2. Thus, we have

=> pi+ > p(C))+p(Cy)+p(Cn)
iel’ J#j’m
> k4 (m—2) +p(Cy UC)

:k+m—2+p(A1UA2UA3)

3 1 1
Zk+m—2+§= (2k+2m—1) > 5P p*(I).
O

To see that the analysis presented above is tight, considgame1 — 5, £:1]
for any fixede > 0. We havep*(I) = 2 — %. On the other hand, thls game has a
nonempty core, so we hay€l) = 1, and hence*(I) > (2 — €)p(I).

D Examples for Section 5.3

Example 2.Consider the gamé& = [1,1,1;2] and the coalitionrC = {1,2}. If we
were to stabilize” by paying its members only, we would have to ensure that ebch o
them receives a payment of 1, resulting in an external paywofeh if, e.g., player 1
receiveg, < 1, player3 could offer him to form the coalitiof1, 3} and distribute the
payoffs ag’, = p; + 2 > pl,pg 1’7”1 > 0 = p3. On the other hand, it is not hard
to see that the payoff vectQ%, 5 2 ensures that no group of players wants to deviate
from ({1,2}, {3}), i.e., the central authority can stabiliceby spending, only as long

as it is willing to pay the players outside 6f. Thus, the cheapest way to stabilize a
particular coalition may involve paying agents who do ndbhg to that coalition.

Example 3.Consider the weighted voting gante = [8,8,9,9,1;10] and a coali-
tion C = {1,2}. It is not hard to check thaf has an empty CS-core and therefore



CoS cs(G) > 0. However, no player irC’ has an incentive to deviate from the coali-
tion structureC'S = ({1, 2}, {3,4}, {5}) with the payoff vectop = (.5, .5,.5,.5,0).
That s, if the central authority is only interested in sliaiiig C, it can achieve this goal
without spending any money. However, from a long-term pectipe this approach may
be dangerous. Indeed, consider the coalifirb } that has an incentive to deviate from
(CS, p). If this deviation happens, play®iis left on her own, and will be happy to form
a coalition with playei in which 1 gets, e.g.,9 and3 gets.1. Clearly, this proposition
would be attractive to playdras well, which would cause the coalitignhto fall apart.
Thus, stabilizing a given coalition may be strictly cheafiem stabilizingany of the
coalition structures that contain it.



