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Abstract. A key question in cooperative game theory is that of coalitional sta-
bility, usually captured by the notion of thecore—the set of outcomes such that
no subgroup of players has an incentive to deviate. However,some coalitional
games have empty cores, and any outcome in such a game is unstable.
In this paper, we investigate the possibility of stabilizing a coalitional game by
using external payments. We consider a scenario where an external party, which
is interested in having the players work together, offers a supplemental payment
to the grand coalition (or, more generally, a particular coalition structure). This
payment is conditional on players not deviating from their coalition(s). The sum
of this payment plus the actual gains of the coalition(s) maythen be divided
among the agents so as to promote stability. We define thecost of stability (CoS)
as the minimal external payment that stabilizes the game.
We provide general bounds on the cost of stability in severalclasses of games, and
explore its algorithmic properties. To develop a better intuition for the concepts
we introduce, we provide a detailed algorithmic study of thecost of stability in
weighted voting games, a simple but expressive class of games which can model
decision-making in political bodies, and cooperation in multiagent settings. Fi-
nally, we extend our model and results to games with coalition structures.

1 Introduction

In recent years, algorithmic game theory, an emerging field that combines computer
science, game theory and social choice, has received a lot ofattention from the multi-
agent community [15, 6, 18, 16]. The reason for this interestis that multiagent systems
research focuses on designing intelligent agents, i.e., entities that can coordinate, coop-
erate and negotiate without requiring human intervention.In many application domains,
such agents areselfish, i.e., they are built to maximize the rewards obtained by their cre-
ators and can therefore be modeled by means of game theory. Moreover, as agents often
have to function in rapidly changing environments, computational considerations are of
great concern to their designers as well.

In many settings, such as online auctions and other types of markets, agents act indi-
vidually. In this case, the standard notions of noncooperative game theory, such asNash
equilibriumor dominant-strategy equilibrium, provide a credible prediction of the out-
come of the interaction. However, another frequently occurring type of scenario is that



agents need to form teams to achieve their individual goals.In such domains, the focus
turns from the interaction between single agents to the capabilities of subsets, orcoali-
tions, of the agents. Thus, a more appropriate modeling toolkit for this setting would be
that ofcooperative, or coalitional, game theory [2], which studies what coalitions are
most likely to arise and how their members distribute the gains from cooperation. When
the agents are selfish, the latter question is obviously of great importance. Indeed, the
total utility generated by the coalition is of little interest to individual agents; rather,
each agent aims to maximize her own utility. Thus, astablecoalition can be formed
only if the gains from cooperation can be distributed in a waythat satisfies all agents.

The most prominent solution concept that aims to formalize the idea of stability in
coalitional games is thecore. Informally, anoutcomeof a coalitional game is apayoff
vectorwhich for each agent lists her share of the profit of thegrand coalition, i.e., the
coalition that includes all agents. An outcome is said to be in the core if it distributes
the gains so that no subset of agents has an incentive to abandon the grand coalition
and form a coalition of their own. It can be argued that the concept of the core captures
the intuitive notion of stability in cooperative settings.However, it has an important
drawback: the core of a game may be empty. In games with empty cores, any outcome
is unstable, and therefore there is always a group of agents that is tempted to abandon the
existing plan. This observation has triggered the invention of less demanding solution
concepts, such asε-core and the least core, as well as an interest in noncooperative
approaches to identifying stable outcomes in coalitional games [3, 14]

In this paper, we approach this issue from a different perspective. Specifically, we
examine the possibility of stabilizing the outcome of a gameusing external payments.
Under this model, an external party, which can be seen as a central authority interested
in stable functioning of the system, attempts to incentivize a coalition of agents to co-
operate in a stable manner. This party does this by offering the members of a coalition a
supplemental payment if they cooperate. This external payment is given to the coalition
as a whole, and is provided only if this coalition is formed.

Clearly, when the supplemental payment is large enough, theresulting outcome is
stable: the profit that the deviators can make on their own is dwarfed by the subsidy
they could receive by sticking to the prescribed solution. However, normally the exter-
nal party would want to minimize its expenditure. Thus, in this paper we define and
study thecost of stability, which is the minimal supplemental payment that is required
to ensure stability in a coalitional game. We start by considering this concept in the con-
text where the central authority aims to ensure thatall agents cooperate, i.e., it offers
a supplemental payment in order to stabilize the grand coalition. We then extend our
analysis to the setting where the goal of the center is the stability of a coalition struc-
ture, i.e., a partition of all agents into disjoint coalitions. In this setting, the center does
not expect the agents to work as a single team, but nevertheless wants each individual
team to be immune to deviations. Finally, we consider the scenario where the center is
concerned with the stability of a particular coalition within a coalition structure. This
model is appropriate when the central authority wants a particular group of agents to
work together, but is indifferent to other agents switchingcoalitions.

We first provide bounds on the cost of stability in general coalitional games. We then
show that for some interesting special cases, such as super-additive games, these bounds



can be improved considerably. We also propose a general algorithmic technique for
computing the cost of stability. Then, to develop a better understanding of the concepts
proposed in the paper, we apply them in the context ofweighted voting games(WVGs),
a simple but powerful class of games that have been used to model cooperation in
settings as diverse as, on the one hand, decision-making in political bodies such as the
United Nations Security Council and the International Monetary Fund and, on the other
hand, resource allocation in multiagent systems. For such games, we are able to obtain
a complete characterization of the cost of stability from analgorithmic perspective.

The paper is organized as follows. In Section 2, we provide the necessary back-
ground on coalitional games. In Section 3, we formally definethe cost of stability for
the setting where the desired outcome is the grand coalition, prove bounds on the cost
of stability and outline a general technique for computing it. We then focus on the
computational aspects of the cost of stability in the context of our selected domain,
i.e., weighted voting games. In Section 4.1, we demonstratethat computing the cost of
stability in such games iscoNP-hard if the weights are given in binary. On the other
hand, for unary weights, we provide an efficient algorithm for this problem. We also
investigate if the cost of stability can be efficiently approximated. In Section 4.2, we
answer this question positively by describing a fully polynomial-time approximation
scheme (FPTAS) for our problem. We complement this result byshowing that, by dis-
tributing the payments in a very natural manner, we get within a factor of 2 of the
optimal adjusted gains, i.e., the sum of the value of the grand coalition and the external
payments. While this method of allocating payoffs does not necessarily minimize the
center’s expenditure, the fact that it is both easy to implement and has a bounded worst-
case performance may make it an attractive proposition in certain settings. In Section 5,
we extend our discussion to the setting where the center aimsto stabilize an arbitrary
coalition structure, or a particular coalition within it, rather than the grand coalition. We
end the paper with a discussion of related work and some conclusions.

2 Preliminaries

Throughout this paper, given a vectorx = (x1, . . . , xn) and a setC ⊆ {1, . . . , n} we
write x(C) to denote

∑

i∈C xi.

Definition 1. A (transferable utility) coalitional gameG = (I, v) is given by a set of
agentsI = {1, . . . , n} and acharacteristic functionv : 2I → R

+ that for any subset
(coalition) of agents lists the total utility these agents achieve by working together.

A coalitional gameG = (I, v) is called increasingif for all coalitions C′ ⊆ C
we havev(C′) ≤ v(C), andsuper-additiveif for all disjoint coalitionsC, C′ ⊆ I
we havev(C) + v(C′) ≤ v(C ∪ C′). Note that sincev(C) ≥ 0 for anyC ⊆ I, all
super-additive games are increasing. Many multiagent domains can be viewed as super-
additive coalitional games. Further, a coalitional gameG = (I, v) is calledsimpleif
v(C) ∈ {0, 1} for all C ⊆ I. In a simple game, we say that a coalitionC ⊆ I wins
if v(C) = 1, andlosesif v(C) = 0. Finally, a coalitional game is calledanonymousif
v(C) = v(C′) for anyC, C′ ⊆ I such that|C| = |C′|.



A particular class of simple games considered in this paper is that ofweighted voting
games(WVGs). In these games, each agent has a weight, and a coalition of agents wins
the game if the sum of the weights of its members meets or exceeds a certain threshold.

Definition 2. A weighted voting gameis a simple coalitional game given by a set of
agentsI = {1, . . . , n}, a vector of agents’weightsw = (w1, . . . , wn) and athreshold
q. Theweight of a coalitionC ⊆ I is w(C) =

∑

i∈C wi. A coalitionC wins the game
(i.e.,v(C) = 1) if w(C) ≥ q, andloses the game(i.e.,v(C) = 0) if w(C) < q.

We denote the WVG with the weightsw = (w1, w2, . . . , wn) and the thresholdq
as[w; q] or [w1, w2, . . . , wn; q]. Also, we setwmax = maxi∈I wi. It is easy to see that
WVGs are simple increasing games; however, they are not necessarily super-additive.
Throughout this paper, we assume thatw(I) ≥ q, i.e., the grand coalition wins.

The characteristic function of a coalitional game defines only the total gains a coali-
tion achieves, but does not offer a way of distributing them among the agents. Such a
division is called an imputation (or sometimes, a payoff vector).

Definition 3. Given a coalitional gameG = (I, v), a vectorp = (p1, . . . , pn) ∈ R
n is

called animputationfor G if it satisfiespi ≥ 0 for eachi, 1 ≤ i ≤ n, and
∑n

i=1 pi =
v(I). We callpi thepayoff of agenti; the total payoffof a coalitionC ⊆ I is given by
p(C). We writeI(G) to denote the set of all imputations forG.

For an imputation to be stable, it should be the case that no subset of players has
an incentive to deviate. Formally, we say that a coalitionC blocksan imputationp =
(p1, . . . , pn) if p(C) < v(C). Thecore of a coalitional gameG is defined as the set
of imputations not blocked by any coalition, i.e.,core(G) = {p ∈ I(G) | p(C) ≥
v(C) for eachC ⊆ I}. An imputation in the core guarantees the stability of the grand
coalition. However, the core can be empty, in which case every possible gain division
is blocked by some coalition and the grand coalition is inherently unstable.

In WVGs, and, more generally, in simple games, one can characterize the core using
the notion of veto players, i.e., players that are indispensable for forming a winning
coalition. Formally, given a simple coalitional gameG = (I, v), a playeri ∈ I is said
to be avetoplayer if for all coalitionsC ⊆ I \ {i} we havev(C) = 0. The following is
a folklore result regarding nonemptiness of the core.

Theorem 1. Let G = (I, v) be a simple coalitional game. If there are no veto agents
in G, then the core ofG is empty. Otherwise, letI ′ = {i1, . . . , im} be the set of veto
agents inG. Then the core ofG is the set of imputations that distribute all the gains
among the veto agents only, i.e.,core(G) = {p ∈ I(G) | p(I ′) = 1}.

So far, we have tacitly assumed that the only possible outcome of a coalitional
game is the formation of the grand coalition. However, oftenit makes more sense for
the agents to form several disjoint coalitions, each of which can focus on its own task.
For example, WVGs can be used to model the setting where each agent has a certain
amount of resources (modeled by her weight), and there is a number of identical tasks
each of which requires a certain amount of these resources (modeled by the threshold)
to be completed. In this setting, the formation of the grand coalition means that only
one task will be completed, even if there are enough resources for several tasks.



The situation when agents can split into teams to work on several tasks simulta-
neously can be modeled using the notion of a coalition structure, i.e., a partition of
the set of agents into disjoint coalitions. Formally, we saythatCS = (C1, . . . , Cm)
is a coalition structureover a set of agentsI if ∪m

i=1C
i = I andCi ∩ Cj = ∅ for

all i 6= j; we write CS ∈ CS(I). Also, we overload notation by writingv(CS ) to
denote

∑

Cj∈CS
v(Cj). If coalition structures are allowed, an outcome of a game is

not just an imputation, but a pair(CS ,p), wherep is an imputation for the coalition
structureCS , i.e., p distributes the gains of every coalition inCS among its mem-
bers. Formally, we say thatp = (p1, . . . , pn) is animputation for a coalition structure
CS = (C1, . . . , Cm) in a gameG = (I, v) if pi ≥ 0 for all i, 1 ≤ i ≤ n, and
p(Cj) = v(Cj) for all j, 1 ≤ j ≤ m; we writep ∈ I(CS , G). We can also gener-
alize the notion of the core introduced earlier in this section to games with coalition
structures. Namely, given a gameG = (I, v), we say that an outcome(CS ,p) is in the
CS-coreof G if CS is a coalition structure overI, p ∈ I(CS , G) andp(C) ≥ v(C)
for all C ⊆ I; we write(CS ,p) ∈ CS-core(G). Note that ifp is in the core ofG then
(I,p) is in the CS-core ofG; however, the converse is not necessarily true.

3 The Cost of Stability

In many games, forming the grand coalition maximizes socialwelfare; this is the case,
for example, if the game in question is super-additive. However, the core of such games
may still be empty. In this case, it would be impossible to distribute the gains of the
grand coalition in a stable way, so it may fall apart despite being socially optimal. Thus,
an external party, such as a benevolent central authority, may want to incentivize the
agents to cooperate, e.g., by offering the agents a supplemental payment∆ if they stay
in the grand coalition. This situation can be modeled as anadjusted coalitional game
derived from the original coalitional gameG.

Definition 4. Given a coalitional gameG = (I, v) and∆ > 0, theadjusted coalitional
gameG(∆) = (I, v′) is given byv′(C) = v(C) if C 6= I, andv′(C) = v(C) + ∆ if
C = I.

We callv′(I) = v(I) + ∆ theadjusted gainsof the grand coalition. We say that a
vectorp ∈ R

n is asuper-imputationfor a gameG = (I, v) if pi ≥ 0 for all i ∈ I and
p(I) ≥ v(I). Furthermore, we say that a super-imputationp is stableif p(C) ≥ v(C)
for all C ⊆ I. A super-imputationp with p(I) = v(I) + ∆ distributes the adjusted
gains, i.e., it is an imputation forG(∆); it is stable if and only if it is in the core of
G(∆). We say that a supplemental payment∆ stabilizesthe grand coalition in a game
G if the adjusted gameG(∆) has a nonempty core. Clearly, if∆ is large enough (e.g.,
∆ = n maxC⊆I v(C)), the gameG(∆) will have a nonempty core. However, usually
the central authority wants to spend as little money as possible. Hence, we define the
cost of stability as thesmallestexternal payment that stabilizes the grand coalition.

Definition 5. Given a coalitional gameG = (I, v), its cost of stabilityCoS (G) is
defined asCoS (G) = inf{∆ | ∆ ≥ 0 and core(G(∆)) 6= ∅}.



We have argued that the set{∆ | ∆ ≥ 0 andcore(G(∆)) 6= ∅} is nonempty. There-
fore,G(∆) is well-defined. Now, we prove that this set contains its greatest lower bound
CoS (G), i.e., that the gameG(CoS (G)) has a nonempty core. While this can be shown
using a continuity argument, we will now give a different proof, which will also be
useful for exploring the cost of stability from an algorithmic perspective. Fix a coali-
tional gameG = (I, v) and consider the following linear programLP∗ with variables
p1, . . . , pn, ∆:

min ∆ subject to:

∆ ≥ 0 (1)

pi ≥ 0 for eachi, 1 ≤ i ≤ n, (2)
∑

i∈I

pi = v(I) + ∆ (3)

∑

i∈C

pi ≥ v(C) for all C ⊆ I (4)

It is not hard to see that the optimal value of this linear program is exactlyCoS (G).
Moreover, any optimal solution ofLP∗ corresponds to an imputation in the core of
G(CoS (G)) and therefore the gameG(CoS (G)) has a nonempty core.

Example 1.Consider a WVGG = [w; q] that satisfiesw1 = · · · = wn = w. For such
games, we will now provide an explicit formula for the cost ofstability.

Theorem 2. For a WVGG = [w, w, . . . , w; q], we haveCoS (G) = n
⌈q/w⌉ − 1.

For example, ifw(n − 1) < q ≤ wn, thenCoS (G) = 0, i.e.,G has a nonempty core.
On the other hand, ifw = 1, n = 3k andq = 2k for some integerk > 0, i.e.,q = 2

3n,
we haveCoS (G) = 3

2 − 1 = 1
2 .

3.1 Bounds onCoS(G) in General Coalitional Games

Consider an arbitrary coalitional gameG = (I, v). Clearly,CoS (G) = 0 if and only
if G has a nonempty core. Further, we have argued thatCoS (G) is upper-bounded by
n maxC⊆I v(C), i.e., CoS (G) is finite for any fixed coalitional game. Moreover, the
bound ofn maxC⊆I v(C) is (almost) tight. To see this, consider a (monotone, simple)
gameG′ given byv′(∅) = 0 andv′(C) = 1 for all C 6= ∅. Clearly, we haveCoS (G′) =
n−1: any super-imputation that pays some agent less than1 will not be stable, whereas
settingpi = 1 for all i ∈ I ensures stability. Thus, the cost of stability can be quite large
relative to the value of the grand coalition.

On the other hand, we can provide a lower bound onCoS (G) in terms of the values
of coalition structures overI. Indeed, for an arbitrary coalition structureCS ∈ CS(I),
we haveCoS (G) ≥ v(CS ) − v(I). To see this, note that if the total payment to the
grand coalition is less than(v(CS ) − v(I)) + v(I), then for some coalitionC ∈ CS

it will be the case thatp(C) < v(C). It is tempting to conjecture thatCoS (G) =
maxCS∈CS(I) v(CS )−v(I). However, a counterexample is provided by Example 1 with
w = 1, q = 2

3n: indeed, in this case we haveCoS (G) = 1
2 , maxCS∈CS(I) v(CS) −

v(I) = 0. We can summarize these observations as follows.



Theorem 3. For any coalitional gameG = (I, v), we have

max
CS∈CS(I)

v(CS) − v(I) ≤ CoS (G) ≤ n max
C⊆I

v(C).

For super-additive games, we can strengthen the upper boundconsiderably. Note that in
such games the grand coalition maximizes social welfare, soits stability is particularly
desirable. Yet, as the second part of Theorem 4 implies, ensuring stability may turn out
to be quite costly even in this restricted setting.

Theorem 4. For any super-additive gameG = (I, v), |I| = n, we haveCoS (G) ≤
(
√

n − 1)v(I), and this bound is asymptotically tight.

For anonymous super-additive games, further improvementsare possible.

Theorem 5. For any anonymous super-additive gameG = (I, v), we haveCoS (G) ≤
2v(I), and this bound is asymptotically tight.

A somewhat similar stability-related concept is theleast core, which is the set of all
imputationsp that minimize the maximaldeficitv(C) − p(C). In particular, thevalue
of the least coreε(G), defined asε(G) = min{maxC⊆I v(C) − p(C) | p ∈ I(G)}, is
strictly positive if and only if the cost of stability is strictly positive. We can generalize
this observation as follows.

Proposition 1. For any coalitional gameG = (I, v) with v(∅) = 0 and |I| = n such
thatε(G) ≥ 0, we haveCoS (G) ≤ nε(G), and this bound is tight.

3.2 Algorithmic Properties of CoS(G)

The linear programLP∗ provides a way of computingCoS (G) for any coalitional
gameG. However, this linear program contains exponentially manyconstraints (one
for each subset ofI). Thus, solving it directly would be too time-consuming formost
games. Note that for general coalitional games, this is, in asense, inevitable: in general,
a coalitional game is described by its characteristic function, i.e., a list of2n numbers.
Thus, to discuss the algorithmic properties ofCoS (G), we need to restrict our attention
to games with compactly representable characteristic functions.

A standard approach to this issue is to consider games that can be described by
polynomial-size circuits. Formally, we say that a classG of games has acompact circuit
representationif there exists a polynomialp such that for everyG ∈ G, G = (I, v),
|I| = n, there exists a circuitC of size p(n) with n binary inputs which on input
(b1, . . . , bn) outputsv(C), whereC = {i ∈ I | bi = 1}.

Unfortunately, it turns out that having a compact circuit representation does not
guarantee efficient computability ofCoS (G). Indeed, it is easy to see that WVGs with
integer weights have such a representation. However, in thenext section we will show
that computingCoS (G) for such games is computationally intractable (Theorem 7).We
can, however, provide asufficientcondition forCoS (G) to be efficiently computable.
To do so, we will first formally state the relevant computational problems. In the next
two descriptions, we assume thatG is given by its compact circuit representation.



SUPER-IMPUTATION-STABILITY : Given a coalitional gameG, a supplemental pay-
ment ∆ and an imputationp = (p1, . . . , pn) in the adjusted gameG(∆), decide
whetherp ∈ core(G(∆)).

COS: Given a coalitional gameG and a parameter∆, decide whetherCoS (G) ≤ ∆,
i.e., whethercore(G(∆)) 6= ∅.

Consider first SUPER-IMPUTATION-STABILITY . Fix a gameG = (I, v). For any
super-imputationp for G, let d(G,p) = maxC⊆I{v(C) − p(C)} be the maximum
deficit of a coalition underp. Clearly,p is stable if and only ifd(G,p) ≤ 0. Observe
also that for any∆ > 0 it is easy to decide whetherp is an imputation forG(∆). Thus, a
polynomial-time algorithm for computingd(G,p) can be converted into a polynomial-
time algorithm for SUPER-IMPUTATION-STABILITY . Further, we can compute COS
via solvingLP∗ by the ellipsoid method. The ellipsiod method runs in polynomial
time given a polynomial-timeseparation oracle, i.e., a procedure that takes as input a
candidate feasible solution, checks if it indeed is feasible, and if this is not the case,
returns a violated constraint. Now, given a vectorp and a parameter∆, we can easily
check if they satisfy constraints (1)–(3), i.e., ifp is an imputation forG(∆). To verify
constraint (4), we need to check ifp is in the core ofG(∆). As argued above, this can
be done by checking whetherd(G,p) ≤ 0. We summarize these results as follows.

Theorem 6. Consider a class of coalitional gamesG with a compact circuit represen-
tation. If there is an algorithm that for anyG ∈ G, G = (I, v), |I| = n, and for
any super-imputationp for G computesd(G,p) in timepoly(n, |p|), where|p| is the
number of bits in the binary repesentation ofp, then for anyG ∈ G the problems
SUPER-IMPUTATION-STABILITY andCOS are polynomial-time solvable.

4 Computing the Cost of Stability in Weighted Voting Games
Without Coalition Structures

In this section, we focus on computing the cost of stabilizing the grand coalition in
WVGs. We start by considering the complexity of exact algorithms for this problem.

4.1 Exact Algorithms

In what follows, unless specified otherwise, we assume that all weights and the thresh-
old are integers given in binary, whereas all other numeric parameters, such as the sup-
plemental payment∆ and the entries of the payoff vectorp, are rationals given in bi-
nary. Standard results on linear threshold functions [13] imply that WVGs with integer
weights have a compact circuit representation. Thus, we candefine the computational
problems SUPER-IMPUTATION-STABILITY -WVG and COS-WVG by specializing the
problems SUPER-IMPUTATION-STABILITY and COS to WVGs. Both of the resulting
problems turn out to be computationally hard.

Theorem 7. The problemSUPER-IMPUTATION-STABILITY -WVG is coNP-complete
and the problemCOS-WVG is coNP-hard.



The reductions in the proof of Theorem 7 are from PARTITION. Consequently, our
hardness results depend in an essential way on the weights being given in binary. Thus,
it is natural to ask what happens if the agents’ weights are polynomially bounded (or
given in unary). It turns out that in this case SUPER-IMPUTATION-STABILITY -WVG
and COS are in P. This can be shown using the technique of Section 3.2, i.e., by proving
that for WVGs with small weights one can computed(G,p) in polynomial time.

Theorem 8. SUPER-IMPUTATION-STABILITY -WVG andCOS-WVG are in P when
the agents’ weights are polynomially bounded (or given in unary).

4.2 Approximating the Cost of Stability in Weighted Voting Games

For large weights, the algorithms outlined in the end of the previous section may not
be practical. Thus, the center may want to trade off its payment and computation time,
i.e., provide a slightly higher supplemental payment for which the corresponding stable
super-imputation can be computed efficiently. It turns out that this is indeed possible,
i.e.,CoS (G) can be efficiently approximated to an arbitrary degree of precision.

Theorem 9. There exists an algorithmA(G, ε) that, given a WVGG = [w; q] in which
the weights of all players are nonnegative integers given inbinary and a parameter
ε > 0, outputs a value∆ that satisfiesCoS (G) ≤ ∆ ≤ (1 + ε)CoS (G) and runs in
timepoly(n, log wmax, 1/ε). That is, there exists a fully polynomial-time approximation
scheme (FPTAS) forCoS (G).

Moreover, one can get a 2-approximation to the adjusted gains simply by paying
each agent in proportion to her weight. Formally, fix a weighted voting gameG = (I, v)
and letp∗ = (p∗1, . . . , p

∗
n) be a super-imputation given byp∗i = min{1, wi

q }.

Theorem 10. For any weighted voting gameG = (I, v) with CoS (G) = ∆ and any
p ∈ core(G(∆)), we havep∗(I) ≤ 2p(I).

It can also be shown that this bound is tight (see Appendix C).

5 Cost of Stability in Games with Coalition Structures

If a coalitional game is not super-additive, the formation of the grand coalition is not
necessarily the most desirable outcome: for example, it maybe the case that by splitting
into several teams the agents can accomplish more tasks thanby working together. In
such settings, the central authority may want to stabilize acoalition structure, i.e., a
partition of agents into teams. We now generalize our definition of the cost of stability
to such settings.

5.1 Stabilizing a Fixed Coalition Structure

We first consider the setting where the central authority wants to stabilize a particular
coalition structure.



Given a coalitional gameG = (I, v), a coalition structureCS = (C1, . . . , Cm)
overI and a vector∆ = (∆1, . . . , ∆m), let G(∆) be the game with the set of agentsI
and the characteristic functionv′ given byv′(Ci) = v(Ci) + ∆i for i = 1, . . . , m and
v′(C) = v(C) for anyC 6∈ {C1, . . . , Cm}. We say that the gameG(∆) is stable with
respect toCS if there exists an imputationp ∈ I(CS , G(∆)) such that(CS ,p) is in
the CS-core ofG(∆). Also, we say that an external payment∆ stabilizesa coalition
structureCS with respect to a gameG if there exist∆1 ≥ 0, . . . , ∆m ≥ 0 such that
∆ = ∆1 + · · · + ∆m and the gameG(∆) is stable with respect toCS . We are now
ready to define the cost of stability of a coalition structureCS in G.

Definition 6. Given a coalitional gameG = (I, v) and a coalition structureCS =
(C1, . . . , Cm) overI, thecost of stabilityCoS (CS , G) of the coalition structureCS

in G is the smallest external payment needed to stabilizeCS , i.e.,

CoS (CS , G) = inf{
m

∑

i=1

∆i |∆i ≥ 0 for i = 1, . . . , m and

∃p ∈ I(CS , G(∆)) s.t. (CS ,p) ∈ CS-core(G(∆))}.

Fix a gameG = (I, v) and setvmax = maxC⊆I v(C). It is easy to see that for any
coalition structureCS = (C1, . . . , Cm) the gameG(∆), where∆i = |Ci|vmax,
is stable with respect toCS , and thereforeCoS (CS , G) is well-defined and satisfies
CoS (CS , G) ≤ nvmax. Moreover, as in the case of games without coalition struc-
tures, the valueCoS (CS , G) can be obtained as an optimal solution to a linear pro-
gram. Indeed, we can simply take the linear programLP∗ and replace the constraint
∑

i∈I pi = v(I)+∆ with the constraint
∑

i∈I pi = v(CS )+∆. It is not hard to see that
the resulting linear program, which we will denote byLP∗

CS , computesCoS (CS , G):
in particular, the constraints∆i ≥ 0 for i = 1, . . . , m are implicitly captured by con-
straints

∑

i∈Ci pi ≥ v(Ci) in line (4) ofLP∗
CS .

We now turn to the question of computing the cost of stabilityof a given coali-
tion structure in WVGs. To this end, we will modify the decision problems stated in
Section 4.1 as follows.

COS-WVG-CS: Given a WVGG = [w; q] with the set of agentsI, a coalition struc-
tureCS overI and a parameter∆, decide whetherCoS (CS , G) ≤ ∆.

SUPER-IMPUTATION-STABILITY -WVG-CS: Given a WVGG = [w; q] with the set of
agentsI, a coalition structureCS = (C1, . . . , Cm) overI, a vector∆ = (∆1, . . . , ∆m)
and an imputationp ∈ I(CS , G(∆)), decide if(CS ,p) is in the CS-core ofG(∆).

The results of Section 4.1 immediately imply that both of these problems are com-
putationally hard even form = 1. Moreover, using the results of [7], we can show
that SUPER-IMPUTATION-STABILITY -WVG-CS remainscoNP-complete even if∆ is
fixed to be(0, . . . , 0). On the other hand, when weights are integers given in unary,both
COS-WVG-CS and SUPER-IMPUTATION-STABILITY -WVG-CS are polynomial-time
solvable. Indeed, to solve SUPER-IMPUTATION-STABILITY -WVG-CS, one needs to
check if there is a coalitionC with w(C) ≥ q, p(C) < 1. This can be done us-
ing the dynamic programming algorithm from the proof of Theorem 8. Moreover, to



solve COS-WVG-CS, we can simply run the ellipsoid algorithm on the linear program
LP∗

CS described earlier in this section, using the algorithm for SUPER-IMPUTATION-
STABILITY -WVG-CS as a separation oracle. Thus, we obtain the following result.

Theorem 11. When all players’ weights are integers given in unary, the problems
COS-WVG-CSandSUPER-IMPUTATION-STABILITY -WVG-CSare inP.

Finally, it is not hard to see that we can adapt the approximation algorithm presented in
Section 4.2 to this setting.

Theorem 12. There exists an FPTAS forCoS (CS , G) in WVGs.

5.2 Finding the Cheapest Coalition Structure to Stabilize

So far, we have focused on the setting where the external party wants to stabilize a
particular coalition structure. However, it can also be thecase that the central authority
simply wants to achieve stability, and does not care which coalition structure arises, as
long as it can be made stable using as little as money as possible. We will now introduce
the notion ofcost of stability for games with coalition structuresto capture this type of
setting. Recall thatCS(I) denotes the set of all coalition structures overI.

Definition 7. Given a coalitional gameG = (I, v), let thecost of stability forG with
coalition structures, denoted byCoSCS (G), bemin{CoS (CS , G) | CS ∈ CS(I)}.

Clearly, one can computeCoSCS (G) by enumerating all coalition structures overI
and picking the one with the smallest value ofCoS (CS , G). Alternatively, note that the
linear programLP∗

CS depends only on the value of the coalition structureCS . Hence,
stabilizing all coalition structures with the same total value has the same cost. Moreover,
this implies that the cheapest coalition structure to stabilize is the one that maximizes
social welfare. Hence, if we could compute the value of the coalition structureCS

∗ that
maximizes social welfare, we could findCoSCS (G) by solvingLP∗

CS∗ .
For WVGs, Theorem 2 in [7] shows that if weights are given in binary, it is NP-hard

to decide whether a given game has a nonempty CS-core. As thisquestion is equivalent
to asking whetherCoSCS(G) = 0, the latter problem is NP-hard, too.

One might hope that computingCoSCS (G) is easy if the weights of all players are
given in unary. However, this does not seem to be the case. Indeed, our algorithms for
computing the cost of stability in other settings relied on solving the corresponding lin-
ear program. To implement this approach in our scenario, we would need to compute the
value of the coalition structure that maximizes social welfare. However, a straightfor-
ward reduction from 3-PARTITION, a classic problem that is known to be NP-hard even
for unary weights, shows that the latter problem is NP-hard even if weights are given
in unary. While this does not immediately imply that computingCoSCS (G) is hard for
small weights, it means that finding the cheapest-to-stabilize outcome is NP-hard even
if weights are given in unary.

5.3 Stabilizing a Particular Coalition

We now consider the case where the central authority wants a particular group of agents
to work together, but does not care about the stability of theoverall game. Thus, it wants



to identify a coalition structure containing a particular coalition C and the minimal
subsidy to the players that ensures that no set of players that includes members ofC
wants to deviate. We skip the formal definition of the corresponding cost-of-stability
concept, as well as its algorithmic analysis due to space constraints. However, we would
like to mention several subtle points that arise in this context.

First, one might think that the optimal way to stabilize a coalition is to offer pay-
ments to members of this coalition only. However, this turnsout to be not true (see Ex-
ample 2 in Appendix D). Second, stabilizing a given coalition may be strictly cheaper
than stabilizingany of the coalition structures that contain it (see Example 3 inAp-
pendix D). Thus choosing a good definition of the cost of stability of an individual
coalition is a nontrivial issue.

6 Related Work

The computational complexity of various stability concepts in coalitional games has
been studied in a number of papers (see, e.g., [4, 11, 5, 19]).In particular, paper [8] an-
alyzes computational aspects of stability in WVGs, provinga number of results on the
computational complexity of theε-core, the least core and the nucleolus. The computa-
tional complexity of the CS-core in WVGs is studied in [7].

Paper [12] is quite similar to ours in spirit. It considers the setting where an exter-
nal party intervenes in order to achieve a certain outcome using monetary payments.
However, [12] deals with the very different domain ofnoncooperative games.

One can also draw a parallel between the subject of this paperand the computational
analysis of bribery in elections [9], i.e., the setting where an external party, whose goal it
is to get a given candidate elected, pays the voters to changetheir preferences. However,
while in the context of our work it is natural to view the central authority as benevolent,
the usual interpretation of bribery is much less benign.

7 Conclusion

We have examined the possibility of stabilizing a coalitional game by offering the agents
additional payments in order to discourage them from deviating, and defined the cost
of stability as the minimal total payment that allows a stable division of the gains. We
then focused on the computational aspects of this concept for weighted voting games.
In the setting where the outcome to be stabilized is the grandcoalition, we provided a
complete picture of the computational complexity of the related decision problems. We
then showed how to extend our results to settings where agents can form a coalition
structure.

There are several lines of possible future research. First,while the focus of this
paper was on weighted voting games, the notion of the cost of stability is defined for any
coalitional game. Therefore, a natural research directionis to study the cost of stability
in other classes of games. Second, we would like to develop a better understanding of
the relationship between the cost of stability of a game, andits least core and nucleolus.
Finally, it would be interesting to extend the notion of the cost of stability to games with
nontransferable utility and partition function games.
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A Proofs for Section 3

Theorem 2 For a WVGG = [w, w, . . . , w; q], we haveCoS (G) = n
⌈q/w⌉ − 1.

Proof. First, note that by scalingw andq we can assume thatw = 1.
Set∆ = n

⌈q⌉ − 1 and consider the imputationp = (p1, . . . , pn) given bypi = 1
⌈q⌉

for i, 1 ≤ i ≤ n. Clearly, we havep(I) = n
⌈q⌉ , so p ∈ G(∆). Moreover, for any

winning coalitionC, we have|C| ≥ ⌈q⌉, sop(C) ≥ ⌈q⌉ 1
⌈q⌉ = 1. Therefore,p is in the

core ofG(∆), and henceCoS (G) ≤ ∆.
On the other hand, consider any stable super-imputationp. Sets = ⌈q⌉. Clearly,

for any coalitionC with |C| = s we havep(C) ≥ 1. Now, consider a collection of
coalitionsC1, . . . , Cn, whereCi = {i mod n, i+1 mod n, . . . , i+ s−1 mod n}:
for example, we haveCn−1 = {n − 1, n, 1, . . . , s − 2}. We have|Ci| = s for all i,
1 ≤ i ≤ n, sop(C1) + · · · + p(Cn) ≥ n. On the other hand, each playeri occurs
in exactlys of these coalitions, so we havep(I)s = p(C1) + · · · + p(Cn). Hence,
p(I) ≥ n/s = n

⌈q⌉ and thereforeCoS (G) ≥ ∆. ⊓⊔

Theorem 4 For any super-additive gameG = (I, v), |I| = n, we haveCoS (G) ≤
(
√

n − 1)v(I), and this bound is asymptotically tight.

Proof. Fix an arbitrary monotone super-additive gameG = (I, v) with v(∅) = 0 and
|I| = n. Consider the corresponding linear programLP∗. Observe that it can be re-
written as

min
∑

i∈I pi subject to:

pi ≥ 0 for i = 1, . . . , n,
∑

i∈C

pi ≥ v(C) for all C ⊆ I

The dual to this linear program has2n variables{λC}C⊆I and is given by

max
∑

C⊆I v(C)λC subject to:

λC ≥ 0 for all C ⊆ I
∑

C∋i

λC ≤ 1 for i = 1, . . . , n,

That is, we have to assign “weights”λC to all coalitions so that the total weight of all
coalitions covering any given point is at most1. Our goal is to maximize

∑

C⊆I v(C)λC

subject to this condition.
First, we claim that there exists an optimal solution to thismaximization problem

that satisfiesS ∩ T 6= ∅ for any S, T such thatλS > 0, λT > 0. Indeed, suppose
that this is not the case. Fix an arbitrary order≺ on coalitions in2I such that|S| <
|T | implies S ≺ T , and extend it to a lexicographic order on tuples of subsets of
I in the standard manner. For every optimal solution(λC)C⊆I to the dual program,
consider the vectorξ(λC)C⊆I

whose entries are the subsetsC ⊆ I with λC = 0, ordered
according to≺ (from the smallest to the largest). Among all optimal solutions to the



dual linear program, pick one with the lexicographically largest such vector and denote
it by (λ∗

C)C⊆I . By our assumption, there exists a pair of nonempty sets(S, T ) such that
λ∗

S > 0, λ∗
T > 0, butS ∩ T = ∅. Let ε = min{λ∗

S , λ∗
T }. Consider the vector(λ∗∗

C )C⊆I

given by

λ∗∗
C =











λ∗
C for C 6= S, T, S ∪ T,

λ∗
C − ε for C = S, T,

λ∗
C + ε for C = S ∪ T.

First, observe that sinceS andT are disjoint,(λ∗∗
C )C⊆I is also a feasible solution to the

dual program. Furthermore, by super-additivity we have
∑

C⊆I

v(C)λ∗∗
C =

∑

C⊆I

v(C)λ∗
C − v(S)ε − v(T )ε + (v(S) + v(T ))ε ≥

∑

C⊆I

v(C)λ∗
C ,

so (λ∗∗
C )C⊆I is an optimal solution to the dual program, too. Finally, observe that

ξ(λ∗∗
C

)C⊆I
is lexicographically greater thanξ(λ∗

C
)C⊆I

. Indeed, assume thatε = λ∗
S (a

similar argument works forε = λ∗
T ). Then, forC 6= S, T, S ∪ T , we haveλ∗

C = λ∗∗
C ,

and, moreover,λ∗
S 6= 0, λ∗∗

S = 0 and|S ∪ T | > |S|. This is a contradiction with our
choice of(λ∗

C)C⊆I .
Thus, there is an optimal solution(λC)C⊆I in which any two setsC andC′ with

λC 6= 0 andλC′ 6= 0 intersect. Now, suppose that there is a setS with |S| ≤ √
n,

λS > 0. Any setT with λT > 0 contains one of the points inS. Thus, we have
∑

C⊆I

λCv(C) ≤ v(I)
∑

i∈S

∑

T :i∈T

λT ≤ v(I)
∑

i∈S

1 ≤ √
nv(I).

On the other hand, if for anyC with λC > 0 it holds that|C| >
√

n, we have

√
n

∑

C⊆I

λCv(C) ≤
∑

C⊆I

λCv(C)|C| ≤ v(I)
∑

i∈I

∑

C:i∈C

λC ≤ nv(I),

so
∑

C⊆I λCv(C) ≤ nv(I)/
√

n =
√

nv(I). Consequently, in both cases we have
∑

C⊆I λCv(C) ≤ √
nv(I). Now, since the optima of the dual and the original linear

programs are equal, the optimal solution(p1, . . . , pn) to the original linear program
satisfies

∑

i∈I pi ≤
√

nv(I), and henceCoS (G) ≤ (
√

n − 1)v(I), as required.
To see that this bound is tight, consider a finite projective planeP of orderq, where

q is a prime number. It hasq2 + q + 1 points and the same number of lines, every line
containsq + 1 points, any two lines intersect, and any point belongs to exactly q + 1
lines. Now, consider a simple coalitional game whose players correspond to points in
P and whose winning coalitions correspond to sets of points inP that contain a line.
Observe that this game is super-additive: since any two lines intersect, there do not exist
two disjoint winning coalitions. Hence, for anyS, T ⊆ I such thatS ∩ T = ∅ either
v(S) = 0 or v(T ) = 0, and thereforev(S) + v(T ) ≤ v(S ∪ T ), as required. On the
other hand, for each lineC, we have

∑

i∈C pi ≥ 1. Summing over allq2 + q + 1 lines,
and using the fact that each point belongs toq + 1 lines, we obtain(q + 1)

∑

i∈I pi ≥
q2 + q + 1, i.e.,p(I) = q2+q+1

q+1 = q + 1
q+1 . Sincen = |I| = q2 + q + 1, we have

q ≥ √
n − 1, i.e.,CoS (G) ≥ (

√
n − 2)v(I). ⊓⊔



Theorem 5 For any anonymous super-additive gameG = (I, v), we haveCoS (G) ≤
2v(I), and this bound is asymptotically tight.

Proof. Fix an anonymous super-additive gameG = (I, v) with |I| = n. Consider a
super-imputationp = (p1, . . . , pn) given bypi = 2v(I)

n . Clearly, we havep(I) =
2v(I). It remains to show thatp is in the core of the adjusted gameG(v(I)).

For any coalitionC ⊂ I, there exists an integerk, 1 ≤ k ≤ n − 1, such that
n

k+1 ≤ |C| < n
k . For this value ofk, one can constructk pairwise disjoint coalitions

C1, . . . , Ck with C1 = C and |C1| = · · · = |Ck|. Super-additivity then implies that
v(C) ≤ v(I)

k . On the other hand, we have

p(C) = |C|2v(I)

n
≥ n

k + 1
· 2v(I)

n
=

2v(I)

k + 1
.

Since 2v(I)
k+1 ≥ v(I)

k for anyk ≥ 1, it follows thatp(C) ≥ v(C) for all C ⊂ I, sop is
stable.

To see that this bound is tight, consider a gameG = (I, v) with |I| = n = 2k + 1
given byv(C) = 0 if |C| ≤ k, andv(C) = 1 if |C| ≥ k + 1. Clearly, this game
is anonymous. Moreover, as any two winning coalitions intersect, this game is also
super-additive. Consider any stable super-imputationp for this game. For anyC with
|C| = k + 1, we have

∑

i∈C pi ≥ 1. There are exactly
(

n
k+1

)

coalitions of this size,

and each agent participates in exactly
(

n−1
k

)

such coalitions. Thus, summing all these
inequalities, we obtain

(

n−1
k

)

p(I) ≥
(

n
k+1

)

, or, canceling,p(I) ≥ n
k+1 = 2− 1

k+1 . ⊓⊔

Proposition 1 For any coalitional gameG = (I, v) with v(∅) = 0 and|I| = n such
thatε(G) ≥ 0, we haveCoS (G) ≤ nε(G), and this bound is tight.

Proof. Clearly, if ε(G) = 0, we haveCoS (G) = 0. Now, assumeε(G) > 0. Let p be
an imputation in the least core ofG. For anyC ⊆ I we havep(C) ≥ v(C) − ε(G).
Consider a super-imputationp∗ given byp∗i = pi + ε(G). Clearly, we havep∗(C) ≥
v(C) for anyC ⊆ I such thatC 6= ∅, i.e.,p∗ is stable. Further, it is easy to see that
p∗(I) = v(I) + nε(G), soCoS (G) ≤ nε(G).

To see that this bound is tight, reconsider the gameG = (I, v) with |I| = n,
v(∅) = 0, andv(C) = 1 for all C 6= ∅. It is easy to see thatε(G) = n−1

n , since the
imputation( 1

n , . . . , 1
n ) is in the least core ofG. On the other hand, as mentioned above,

CoS (G) = n − 1 = nε(G). ⊓⊔

B Proofs for Section 4.1

Theorem 7 The problem SUPER-IMPUTATION-STABILITY -WVG is coNP-complete
and the problem COS-WVG iscoNP-hard.

Proof. Both of our reductions will be from PARTITION, a well-knownNP-complete
problem [10], which is defined as follows: given a listA = (a1, . . . , an) of nonnegative
integers such that

∑n
i=1 ai = 2K, decide whether there is a sublistA′ of A such that

∑

ai∈A′ ai = K.



We first show that COS-WVG is coNP-hard. Given an instanceA = (a1, . . . , an)
of PARTITION, we construct a weighted voting gameG by settingI = {1, . . . , n},
wi = ai for eachi, 1 ≤ i ≤ n, andq = K. Set∆ = K−1

K+1 . We claim that(G, ∆) is a
“yes”-instance of COS-WVG if and only ifA is a “no”-instance of PARTITION.

Indeed, suppose thatA is a “yes”-instance of PARTITION, and letA′ be the corre-
sponding sublist. SetI ′ = {i | ai ∈ A′} andI ′′ = I \ I ′. Suppose for the sake of
contradiction thatG(∆) has a nonempty core, and letp be an imputation in the core of
G(∆). We havep(I) = 2K

K+1 < 2, and hence eitherp(I ′) < 1 or p(I ′′) < 1 (or both).
On the other hand, since

∑

i∈I′ ai = K, we havew(I ′) = w(I ′′) = K = q, i.e., at
least one of the coalitionsI ′ andI ′′ has a rational incentive to deviate, a contradiction.

On the other hand, suppose thatA is a “no”-instance of PARTITION, and consider
a vectorp∗ = (p∗1, . . . , p

∗
n), wherep∗i = wi

K+1 . We havep∗(I) = 2K
K+1 , and hence

p∗(I) − v(I) = K−1
K+1 . That is,p∗ is an imputation forG(∆). We will now show that

p∗ is in the core ofG(∆), and thereforeG(∆) has a nonempty core. Indeed, consider
any coalitionC ⊂ I such thatv(C) = 1. We havew(C) ≥ q. Moreover, asA is a
“no”-instance of PARTITION, there is no coalitionC ⊂ I whose weight is exactlyq, so
we havew(C) ≥ q + 1 = K + 1. Thus we havep∗(C) = w(C)

K+1 ≥ 1. Hence, the agents
in C have no rational incentive to deviate fromp∗ and thereforep∗ ∈ core(G(∆)).

We can use the same construction to show that SUPER-IMPUTATION-STABILITY -
WVG is coNP-hard. Indeed, considerG, ∆ = K−1

K+1 , andp∗ defined above. It follows
from our proof thatp∗ is in the core ofG(∆) if and only if A is a “no”-instance of
PARTITION. Moreover, SUPER-IMPUTATION-STABILITY -WVG is clearly incoNP: to
verify that a given super-imputationp is unstable, it suffices to guess a coalitionC and
verify that it is winning, i.e.,w(C) ≥ q, but is paid less than one underp. ⊓⊔

Theorem 8 SUPER-IMPUTATION-STABILITY -WVG and COS-WVG are inP when
the agents’ weights are polynomially bounded (or given in unary).

Proof. As argued in Section 3.2, it suffices to show that given a WVGG = [w; q] and a
super-imputationp for G, we can computed(G,p) in time poly(n, wmax, |p|), where
|p| denotes the number of bits in the binary representation ofp.

For anyi, 1 ≤ i ≤ n, and anyw, 1 ≤ w ≤ w(I), let

Xi,w = min{p(C) | C ⊆ {1, . . . , i}, w(C) = w}.

We can compute the quantitiesXi,w inductively as follows. Fori = 1, we haveXi,w =
p1 if w = w1, andXi,w = +∞ otherwise. Now, suppose that we have computedXi′,w

for eachi′, 1 ≤ i′ ≤ i. We can then computeXi+1,w asXi+1,w = min{Xi,w, pi +
Xi,w−wi

}. Observe thatp∗ = min{Xn,w | w ≥ q} is the minimal payment that a
winning coalition inG can receive underp. As pi ≥ 0 for all i, 1 ≤ i ≤ n, we have
d(G,p) = 1 − p∗.

Clearly, the running time of this algorithm is polynomial inn, wmax and|p|. Ob-
serve that one can construct a similar algorithm that runs inpolynomial time even if the
weights are large, as long as all entries ofp can take polynomially many values. ⊓⊔



C Proofs for Section 4.2

Theorem 9 There exists an algorithmA(G, ε) that, given a WVGG = [w; q] in which
the weights of all players are nonnegative integers given inbinary and a parameter
ε > 0, outputs a value∆ satisfyingCoS (G) ≤ ∆ ≤ (1 + ε)CoS (G) and runs in
time poly(n, log wmax, 1/ε). That is, there exists a fully polynomial-time approxima-
tion scheme (FPTAS) forCoS (G).

Proof. We start by proving a simple lemma that will be useful for the analysis of our
algorithm.

Lemma 1. For any WVGG such thatCoS (G) 6= 0, we haveCoS (G) ≥ 1/n.

Proof. Consider a weighted voting gameG that does not have a veto player and hence
CoS (G) 6= 0. Suppose for the sake of contradiction thatCoS (G) = ∆ < 1/n, that
is, the gameG(∆) has a nonempty core. Letp = (p1, . . . , pn) be an imputation in the
core ofG(∆). As we havev′(I) = ∆ + 1 > 1, there must be at least one playeri such
thatpi > 1/n. Hence,p(I \ {i}) < 1 + ∆ − 1/n < 1. Therefore the coalitionI \ {i}
satisfiesv(I \ {i}) = 1 (sincei is not a veto player),p(I \ {i}) < 1, and hencep is not
stable, a contradiction. ⊓⊔
Our proof is inspired by the FPTAS for the value of the least core of WVGs [8].

We will first describe an additive fully polynomial-time approximation scheme for
CoS (G), i.e., an algorithmA′(G, ε) that, given a WVGG = [w1, . . . , wn; q] and
ε > 0, can compute a value∆ satisfyingCoS (G) ≤ ∆ ≤ CoS (G) + ε and runs
in time poly(n, log wmax, 1/ε). We will then show how to convert it into an FPTAS
using Lemma 1.

SetX = 2⌈1/ε⌉, and letε′ = 1/X . We haveε/4 ≤ ε′ ≤ ε/2.
Consider the linear programLP∗ given in Section 3. Instead of solvingLP∗ di-

rectly, we consider a family of linear feasibility programs(LFP) (Li)i=1,...,nX , where
thekth LFPLk is given by

pi ≥ 0 for i = 1, . . . , n,

p1 + · · · + pn ≤ 1 + ε′k,
∑

i∈C

pi ≥ 1 for all C ⊆ N such that
∑

i∈C

wi ≥ q.

As ε′nX = n, it follows that at least one of these LFPs has a feasible solution. Now,
let k∗ be the smallest value ofk for whichLk has a feasible solution. We haveε′(k∗ −
1) < CoS (G) ≤ ε′k∗, or, equivalently,CoS (G) ≤ ε′k∗ ≤ CoS (G) + ε′. Hence, by
computingk∗ we can obtain an additiveε′-approximation toCoS (G). Now, while it is
not clear if we could findk∗ in polynomial time, we will now show how to find a value
k that is guaranteed to be in the set{k∗, k∗ + 1}.

It is natural to approach this problem by trying to successively solveL1, . . . ,LnX .
However, just as the linear programLP∗, the LFPLk has exponentially many con-
straints (one for each winning coalition ofG). Moreover, an implementation of the
separation oracle forLk would involve solving KNAPSACK, which is an NP-hard prob-
lem when weights are given in binary. Hence, we will now take asomewhat different



approach. Namely, we will show how to design an algorithmS that, given a candi-
date solution(p1, . . . , pn) for Lk, either outputs a constraint that is violated by this
solution or finds a feasible solution forLk+1. The running time ofS(p1, . . . , pn) is
poly(n, log wmax, 1/ε).

The algorithmS first checks if the candidate solution(p1, . . . , pn) satisfies the first
n+1 constraints of the LFP. If no violated constraint is discovered at this step, it rounds
up the payoffs by settingp′i = min{ ε′t

n | t ∈ N, ε′t
n ≥ pi} for eachi, 1 ≤ i ≤ n. Note

that for eachi, 1 ≤ i ≤ n, we havepi ≤ p′i ≤ pi + ε′

n , and the rounded payoffp′i
can be represented asp′i = ε′

n ti, whereti ∈ {0, . . . , nX}. We can now use a variant of
the dynamic programming algorithm used in the proof of Theorem 8 to decide whether
there is a subset of agentsC that satisfies

∑

i∈C wi ≥ q,
∑

i∈C p′i < 1 (see the remark
in the end of that proof). If there is such a subset, the rounded vector(p′1, . . . , p

′
n)

violates the constraint that corresponds toC, and hence the original vector(p1, . . . , pn),
which satisfiespi ≤ p′i for all i ∈ I, violates it, too. Hence,S outputs the corresponding
constraint and stops. Otherwise, it follows that(p′1, . . . , p

′
n) satisfies all constraints of

Lk that correspond to the winning coalitions ofG. Moreover, we have

n
∑

i=1

p′i ≤
n

∑

i=1

pi + n
ε′

n
≤ 1 + ε′k + ε′.

Hence,(p′1, . . . , p
′
n) is a feasible solution forLk+1, soS outputs it and stops.

We are now ready to describe our algorithmA′. It tries to solveL1,L2, . . . (in this
order). To solveLk, it runs the ellipsoid algorithm on its input. Whenever the ellipsoid
algorithm makes a call to the separation oracle,A′ passes this request toS, which ei-
ther identifies a violated constraint, in which caseA′ continues simulating the ellipsoid
algorithm, or outputs a feasible solution forLk+1, in which caseA′ stops and outputs
ε′(k+1). If the ellipsoid algorithm terminates and decides that thecurrent LFP does not
have a feasible solution,A′ proceeds to the next LFP in its list. If the ellipsoid algorithm
outputs a feasible solution forLk, A outputsε′k.

Recall that we denote byk∗ the smallest value ofk for which Lk has a feasible
solution. Clearly,A will correctly report that neither ofL1, . . . ,Lk∗−2 has a feasible
solution. When solvingLk∗−1, it will either solve it correctly (i.e., report that it has no
feasible solutions) and move on toLk∗ , or discover a feasible solution forLk∗ . In the
former case,A′ will either solveLk∗ correctly, i.e., find a feasible solution, or discover
a feasible solution toLk∗+1. In either case, the outputε′k of our algorithm satisfies
k ∈ {k∗, k∗ + 1}.

We have shown thatCoS (G) ≤ ε′k∗ ≤ CoS (G) + ε′. Consequently, we have
CoS (G) ≤ ε′k ≤ ε′(k∗ + 1) ≤ CoS (G) + 2ε′ ≤ CoS (G) + ε. This proves thatA′ is
an additive fully polynomial-time approximation scheme for the cost of stability.

We will now show how to convertA′ into an FPTASA. Our algorithmA is given a
gameG = [w; q] and a parameterε. It first tests ifCoS (G) = 0 (equivalently, ifG has
a nonempty core). By Theorem 1, this can be done by checking ifG has a veto player,
i.e., whetherw(I \ {i}) < q for somei, 1 ≤ i ≤ n.

If CoS (G) 6= 0, A runsA′ on input(G, ε/n). Let ∆ be the output ofA′(G, ε/n);
we haveCoS (G) ≤ ∆ ≤ CoS (G) + ε/n. On the other hand, by Lemma 1 we have



CoS (G) ≥ 1/n, and therefore

CoS (G) + ε/n ≤ CoS (G) + εCoS (G) = (1 + ε)CoS (G).

Hence∆ satisfiesCoS (G) ≤ ∆ ≤ (1 + ε)CoS (G), as required. ⊓⊔
Theorem 10 For any weighted voting gameG = (I, v) with CoS (G) = ∆ and any
p ∈ core(G(∆)), we havep∗(I) ≤ 2p(I).

Proof. Set∆ = CoS (G) and fix a super-imputationp in the core ofG(∆). Let I ′ =
{i | wi ≥ q} and setk = |I ′|. Clearly, if i ∈ I ′, for any stable super-imputationp′ we
havep′i ≥ 1 = p∗i . On the other hand, it is clear that paying any agent more than1 is
suboptimal, sopi = 1 for anyi ∈ I ′.

Sort all agents inI\I ′ by decreasing weights, and partition them into setsC1, . . . , Cm

in the following way:
– Setj = 0;
– While there are unallocated agents:

– Setj = j + 1;
– Add agents toCj until w(Cj) ≥ q

or until there are no more agents;
– Setm = j;
– If w(Cj) ≥ q, setm = j + 1 andCm = ∅.

Note that this procedure guarantees thatw(Cm) < q, i.e., the last coalitionCm

loses. In particular, ifm = 1 thenw(C1) < q. Sincew(I) ≥ q, this means thatk ≥ 1
andC1 = I \ I ′. In this case, we have

p(I) ≥ k, p∗(I) = k +
∑

i∈C1

wi

q
< k +

q

q
= k + 1,

and hencep∗(I)/p(I) < (k + 1)/k ≤ 2. Therefore, throughout the rest of the proof we
can assumem > 1.

Setj′ = arg maxj≤m w(Cj), that is,j′ is the index of a maximum-weight coalition
amongC1, . . . , Cm. Observe that sincew(C1) ≥ q andw(Cm) < q, we havej′ 6= m.
To finish the proof, we consider two cases and show that in eachof themp∗(I) ≤ 2p(I).

Case 1: w(Cj′ ) + w(Cm) ≤ 2q. For eachj ≤ m − 1, we havew(Cj) ≥ q, and
thereforep(Cj) ≥ 1. Thus, we have

p(I) ≥ k +
∑

j 6=m

p(Cj) = k + m − 1.

On the other hand, we havew(Cj) ≤ 2q for all j, 1 ≤ j ≤ m, so

p∗(I) = p∗(I ′) +
∑

j 6=j′,m

p∗(Cj) + p∗(Cj′ ) + p∗(Cm)

≤ k +
∑

j 6=j′,m

w(Cj)

q
+

w(Cj′ ) + w(Cm)

q

≤ k + 2(m − 2) + 2 ≤ 2(k + m − 1) ≤ 2p(I).



Case 2: w(Cj′ ) + w(Cm) > 2q. We begin by computingp∗(I), as it may be slightly
larger in this case:

p∗(I) = k +
∑

j 6=m

w(Cj)

q
+

w(Cm)

q

≤ k +
(m − 1)2q + q

q
= k + 2m − 1.

Fortunately, we can provide a better lower bound forp(I). Let A1 be the set that
contains the last player inCj′ only, and setA2 = Cj′ \ A1 andA3 = Cm. We
havew(A1) < q, sinceA1 has just one agent, and we have already removed all
agents whose weight is at leastq. Furthermore, we havew(A2) < q, since we
move on to the next set as soon as a total weight of at leastq is reached in the
current set. On the other hand, we haveA = A1 ∪ A2 ∪ A3 = Cj′ ∪ Cm. As
w(Cj′ )+ w(Cm) > 2q, we havew(A1)+ w(A3) = w(A)−w(A2) ≥ 2q− q = q
andw(A2) + w(A3) = w(A) − w(A1) ≥ 2q − q = q.
Therefore, we havep(A1 ∪A2) ≥ 1, p(A1 ∪A3) ≥ 1, p(A2 ∪A3) ≥ 1, and hence
p(A1 ∪ A2 ∪ A3) ≥ 3/2. Thus, we have

p(I) =
∑

i∈I′

pi +
∑

j 6=j′,m

p(Cj) + p(Cj′ ) + p(Cm)

≥ k + (m − 2) + p(Cj′ ∪ Cm)

= k + m − 2 + p(A1 ∪ A2 ∪ A3)

≥ k + m − 2 +
3

2
=

1

2
(2k + 2m − 1) ≥ 1

2
p∗(I).

⊓⊔

To see that the analysis presented above is tight, consider the game[1− ǫ
3 , 1− ǫ

3 ; 1]
for any fixedε > 0. We havep∗(I) = 2 − 2ε

3 . On the other hand, this game has a
nonempty core, so we havep(I) = 1, and hencep∗(I) > (2 − ǫ)p(I).

D Examples for Section 5.3

Example 2.Consider the gameG = [1, 1, 1; 2] and the coalitionC = {1, 2}. If we
were to stabilizeC by paying its members only, we would have to ensure that each of
them receives a payment of 1, resulting in an external payment of 1: if, e.g., player 1
receivesp1 < 1, player3 could offer him to form the coalition{1, 3} and distribute the
payoffs asp′1 = p1+ 1−p1

2 > p1, p′3 = 1−p1

2 > 0 = p3. On the other hand, it is not hard
to see that the payoff vector(1

2 , 1
2 , 1

2 ) ensures that no group of players wants to deviate
from ({1, 2}, {3}), i.e., the central authority can stabilizeC by spending12 only as long
as it is willing to pay the players outside ofC. Thus, the cheapest way to stabilize a
particular coalition may involve paying agents who do not belong to that coalition.

Example 3.Consider the weighted voting gameG = [8, 8, 9, 9, 1; 10] and a coali-
tion C = {1, 2}. It is not hard to check thatG has an empty CS-core and therefore



CoSCS (G) > 0. However, no player inC has an incentive to deviate from the coali-
tion structureCS = ({1, 2}, {3, 4}, {5}) with the payoff vectorp = (.5, .5, .5, .5, 0).
That is, if the central authority is only interested in stabilizing C, it can achieve this goal
without spending any money. However, from a long-term perspective this approach may
be dangerous. Indeed, consider the coalition{4, 5} that has an incentive to deviate from
(CS ,p). If this deviation happens, player3 is left on her own, and will be happy to form
a coalition with player1 in which1 gets, e.g.,.9 and3 gets.1. Clearly, this proposition
would be attractive to player1 as well, which would cause the coalitionC to fall apart.
Thus, stabilizing a given coalition may be strictly cheaperthan stabilizingany of the
coalition structures that contain it.


