
Lazy Solid Texture Synthesis

Yue Dong, Sylvain Lefebvre, Xin Tong, George Drettakis

To cite this version:

Yue Dong, Sylvain Lefebvre, Xin Tong, George Drettakis. Lazy Solid Texture Synthesis. 19th
Eurographics Symposium on Rendering, Jun 2008, Sarajevo, Bosnia and Herzegovina. Euro-
graphics Association and Blackwell Publishing Ltd, 27, no. 4, 2008, Computer Graphics Forum
(Proc. of Eurographics Symposium on Rendering). <inria-00606812>

HAL Id: inria-00606812

https://hal.inria.fr/inria-00606812

Submitted on 18 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00606812

Eurographics Symposium on Rendering 2008
Steve Marschner and Michael Wimmer
(Guest Editors)

Volume 27 (2008), Number 4

Lazy Solid Texture Synthesis

Yue Dong1,2, Sylvain Lefebvre3, Xin Tong1 and George Drettakis3

1 Microsoft Research Asia 2 Tsinghua University 3 REVES / INRIA Sophia-Antipolis

Abstract

Existing solid texture synthesis algorithms generate a full volume of color content from a set of 2D example images.
We introduce a new algorithm with the unique ability to restrict synthesis to a subset of the voxels, while enforcing
spatial determinism. This is especially useful when texturing objects, since only a thick layer around the surface
needs to be synthesized. A major difficulty lies in reducing the dependency chain of neighborhood matching, so
that each voxel only depends on a small number of other voxels.
Our key idea is to synthesize a volume from a set of pre-computed 3D candidates, each being a triple of interleaved
2D neighborhoods. We present an efficient algorithm to carefully select in a pre-process only those candidates
forming consistent triples. This significantly reduces the search space during subsequent synthesis. The result is a
new parallel, spatially deterministic solid texture synthesis algorithm which runs efficiently on the GPU.
Our approach generates high resolution solid textures on surfaces within seconds. Memory usage and synthesis
time only depend on the output textured surface area. The GPU implementation of our method rapidly synthesizes
new textures for the surfaces appearing when interactively breaking or cutting objects.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Color, shading, shadowing, and texture;

1. Introduction

Texture mapping greatly improves the visual appearance of
object surfaces without additional geometry. This is typi-
cally achieved by parameterizing the surface in the plane,
and by defining color content in a flat image. However, one
has to compensate for the distortion and discontinuities in-
troduced by the mapping when creating the texture content.

Instead, solid textures define the texture content directly in
3D, hence removing the need for a planar parameterization
and producing the unique feeling that the object has been
carved out of a block of matter. This was first proposed in
the context of procedural texturing [EMP∗94]: The color in
a point of the volume is computed by a small algorithm. This
uses very little memory since only the algorithm is stored.
However, the most desirable property is that the color com-
putation at any point is independent from other points. This
local evaluation allows the restriction of color computations
to the visible surface points. Unfortunately, procedures can
only be defined for a limited set of materials, such as marble,
wood and cellular patterns.

Recent work on texture synthesis from example alleviates

this problem [Wei02,QY07,KFCO∗07]: A 3D volume is au-
tomatically generated from 2D images provided as exam-
ples. However, existing approaches typically solve a global
problem: The dependency chain to compute the color of any
voxel potentially involves all other voxels. A direct conse-
quence is that synthesis cannot be restricted to a subset of the
volume. On surfaces, storage is orders of magnitude more
expensive than a 2D texture map of similar resolution. In ad-
dition to being wasteful in terms of memory, the inherently
cubic size of the volume data results in high computational
complexity, when ideally the complexity in time and space
should only depend on the surface area to be textured.

Our new synthesis algorithm fills the gap between pro-
cedural textures, that are limited but can be evaluated at
display time, and solid synthesis, which requires the pre-
computation and storage of an entire volume. Our approach
starts from 2D images and synthesizes a solid texture on a
surface, as if it was carved out of a volume of matter. How-
ever, only the required parts of the volume are effectively
synthesized. To determine the color of a voxel, our method
only has to compute the color of a small number of surround-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Y. Dong & S. Lefebvre & X. Tong & G. Drettakis / Lazy Solid Texture Synthesis

Figure 1: Lazy solid synthesis starts from 2D images and synthesizes a solid texture on a surface. Only the required parts of the
volume are effectively synthesized. a) A gargoyle textured by a 10243 volume. b) Thanks to spatial determinism, the object may
be broken and the interior textured in a consistent manner. c) 0.42% of the voxels are synthesized by our algorithm, requiring
only 5.4 seconds for synthesis and 17.9MB of storage, instead of 3GB for the full volume. d) Our approach enables interactive
cutting of objects with on demand synthesis for the appearing surfaces. New textures are synthesized in about 8 milliseconds.

ing voxels. The result for an entire surface is computed once,
usually in a few seconds, and stored for later display. Our
GPU implementation is fast enough to synthesize textures on
demand, in a few milliseconds, for surfaces appearing when
interactively cutting or breaking objects.

The key idea making our approach possible is to pre-
compute a small number of carefully selected 3D candi-
dates, later used in our solid synthesis algorithm. Each can-
didate is formed by interleaving three well-chosen 2D neigh-
borhoods from the example images. Our pre-computed 3D
candidates improve synthesis efficiency and significantly re-
duce the dependency chain required to compute voxel colors.
This allows us to develop our new parallel, spatially deter-
ministic solid texture synthesis algorithm.

The result is a lazy solid synthesis scheme, only comput-
ing colors in voxels actually being used (see Fig. 1). High
resolution solid textures are applied to objects in seconds, at
low memory cost. Our GPU implementation is fast enough
to synthesize textures on demand, enabling interactive cut-
ting and breaking of objects. Our synthesis scheme is spa-
tially deterministic: The same color is always generated at
the same location in space. Hence, the textures synthesized
for appearing surfaces remain consistent.

2. Previous Work

Background on texture synthesis from example. Planar
textures are typically synthesized from an example image
(or exemplar) by pasting together small pixel neighbor-
hoods [EL99, WL00, KEBK05] or entire patches of texture
content [EF01,KSE∗03]. The parallel per-pixel synthesis al-
gorithms of [WL03, LH05] are of particular interest to us:
They enable efficient synthesis of subsets of an image while
enforcing spatial determinism. This is exactly the property
we want to obtain for solid synthesis. However, the exten-
sion to 3D is not straightforward: No full volume is available

as input. Even if such a volume were available, its cubic size
would imply both a large increase in computation and mem-
ory consumption.

Most per-pixel algorithms follow a same approach: In
each pixel, a small neighborhood representing its current
surrounding is extracted. The exemplar is then searched for
the pixel with the most similar neighborhood, and the pixel
color is copied to the output. To achieve fast synthesis, re-
cent schemes make use of k-coherent candidates [Ash01,
TZL∗02]. The key idea is to pre-compute a set of candidates
in each exemplar pixel: Typically the coordinates of the k
pixels having the most similar neighborhood. During synthe-
sis, the search for a best matching neighborhood is limited to
candidates in the pre-computed sets of already synthesized
pixels. This provides a significant speed-up. Of course, com-
puting good candidates is key to fast, high quality synthesis.

Solid (3D) texture synthesis from example. We now focus
on the existing approaches for volume texture synthesis from
example. For a detailed overview of the topic we also invite
the reader to refer to [DG01].

The pyramid histogram matching of [HB95] and the
spectral analysis methods of [GD95, GD96] pioneered the
work on solid texture synthesis from example. The for-
mer reproduces global statistics of the 2D example im-
ages in the volume, while the latter two create a procedu-
ral solid texture from the spectral analysis of multiple im-
ages. [QY07] synthesizes a volume by capturing the co-
occurrences of grayscale levels in the neighborhoods of 2D
images. [JDR04] proposed a solid synthesis method targeted
at aggregates of particles, whose distribution and shape is an-
alyzed from an input image. [ONOI04] adapted constrained
2D synthesis [HJO∗01] to illustrate object interiors. Spatial
determinism is however not enforced and seams appear at
transitions between different cuts.

[Wei02] first adapted 2D neighborhood matching syn-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Dong & S. Lefebvre & X. Tong & G. Drettakis / Lazy Solid Texture Synthesis

Ex

Ez

Ey

Definitions.pdf 20/01/2008 19:43:40

Figure 2: Left: The three exemplars Ex, Ey, Ez and a cor-
responding 3-neighborhood. Right: the crossbar defined by
the 3-neighborhood.

thesis schemes to 3D volumes. The key idea is to consider
three 2D exemplars, one in each direction. In each pixel of
the output volume (voxel), three interleaved 2D neighbor-
hoods are extracted (see Fig. 2). The best matches are found
independently in each of the three exemplars. A local op-
timization step then attempts to converge toward the best
color for all three directions. [KFCO∗07] relies on similar in-
terleaved neighborhoods, but uses a global optimization ap-
proach [KEBK05]. A histogram matching step is also intro-
duced, further improving the result. Both these approaches
search for best matching neighborhoods independently in
each direction. Consequently, a large number of iterations
are required before the algorithm stabilizes into a satisfac-
tory result.

While these approaches produce impressive results, none
is appropriate for fast synthesis of subsets of the volume:
they either rely on sequential generation or global optimiza-
tion. In both cases, the dependency chain in the computa-
tions implies that a complete volume has to be computed,
even if the user is only interested in a small subset of the
voxels.

3. Overview and terminology

Our goal is to generate high-quality, high-resolution solid
textures given three 2D exemplars - often the same image re-
peated thrice. Since we target texturing of surfaces, we want
our approach to allow very fast synthesis of subsets of the
volume.

A first idea would be to revisit the solid synthesis ap-
proach of [Wei02], adapt it to be parallel and use the 2D
k-coherent candidates mechanism to achieve a significant
speed-up. However, it is important to realize that 2D can-
didates are not likely to be meaningful for 3D synthesis:
Each candidate will represent a correct 2D neighborhood in
its image, but once put together they are likely to introduce
color inconsistencies. This will both reduce synthesis qual-
ity, and require a long time for the iterative synthesis process
to produce good results. As many iterations of neighborhood
matching will be required, the dependency chain to compute
the color of a voxel will involve a large number of other
voxels, making subset synthesis impractical. For a detailed
comparison between this approach and ours, please refer to
Sec.6.4.

Instead, our novel scheme pre-computes 3D candidates
given three 2D example images. Each candidate is made
of three interleaved 2D neighborhoods, and is carefully se-
lected to provide both quality and speed during synthesis
(Sec. 4). This is done as a pre-computation, and only once
for a given set of three 2D exemplars. The candidates are
later used during the neighborhood matching step of our
parallel solid synthesis scheme (Sec. 5). Our algorithm per-
form multi-resolution synthesis in a sparse volume pyramid,
only synthesizing the small subset of the voxels necessary to
texture the surface. Synthesis is performed within seconds,
and the result is stored for display. Our GPU implementation
generates textures on demand, in a few milliseconds, for in-
stance for new surfaces appearing when interactively cutting
or breaking objects (Sec. 6).

Terminology. We now introduce some terminology. We re-
fer to pixels in 2D images, while the term voxel is used
for pixels located in a volume. In this work we consider
neighborhoods made of three interleaved 2D neighborhoods:
Three N×N 2D neighborhoods embedded in three orthogo-
nal planes and meeting at their center (see Fig. 2 (middle)).
In our implementation we choose N = 5, which provides
both good quality and performance. We refer to these triples
of 2D neighborhoods as 3-neighborhoods, and name them
3D candidates after selection. We define the crossbar to be
the set of pixels which are contained in more than one 2D
neighborhood (Fig. 2 (right)).

Ex, Ey, Ez are the three 2D exemplars corresponding to
each one of the three orthogonal planes (Fig. 2 (left)). The
term triple indicates a triple of 2D coordinates, defining a 3-
neighbourhood: Each coordinate is the center of a 2D neigh-
borhood in the corresponding exemplar.

Our algorithm performs multi-resolution synthesis in a
volume pyramid, noted V . Each level is designated by V l

where l ∈ [O...L] and L is the maximum (finest) resolution.

4. 3D candidates selection

In each pixel of each exemplar we compute a small candidate
set of 3-neighborhoods represented as coordinate triples.
These sets are used during synthesis as candidates for best
matching neighborhoods. Hence, they must capture the ap-
pearance of the 3D neighborhoods implicitly described by
the input images.

Given the exemplars Ex, Ey, Ez, the search space for pos-
sible candidates is huge: it contains all possible triples of
coordinates. The key novelty of our approach is to drasti-
cally prune the search space prior to synthesis. The major
difficulty is that we cannot explicitly test whether a candi-
date triple forms a neighborhood representative of the not-
yet-synthesized volume. This information is only implicitly
given by the input images.

We hence propose to select candidate triples following

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Dong & S. Lefebvre & X. Tong & G. Drettakis / Lazy Solid Texture Synthesis

xy

z

Ex

Ey

Ez u v

v
u

v
u

p

CrossbarMatch.pdf 21/01/2008 14:03:10

Figure 3: Each candidate consists of three exemplar coordi-
nates defining a 3-neighborhood. Consistent triples have low
color differences along the crossbar. We seek to minimize the
color differences along the three pairs of pixel strips, shown
here with the same color.

two important properties: First, a good triple must have
matching colors along the crossbar of the 3-neighborhood.
This provides an easy way to only select triples with good
color consistency (see Sec. 4.1). The second property is less
obvious. A major step forward in 2D texture synthesis speed
and quality was achieved by giving a higher priority to can-
didates likely to form coherent patches from the example
image [Ash01, HJO∗01]. This notion is however not trivial
to extend to 3D, as three exemplars are interleaved. Candi-
dates providing coherence in one exemplar are not likely to
provide coherence in the other two. Here, our approach of
forming candidates prior to synthesis gives us a crucial ad-
vantage: We are able to consider coherence across all three
exemplars, keeping only those triples likely to form coher-
ent patches with other neighboring candidates in all three
directions (see Sec. 4.2).

Since our synthesis algorithm is multi-resolution, we first
compute an image pyramid of each 2D exemplar and apply
the candidate set construction independently on each level
of the pyramid of each exemplar. For clarity, the following
description is for a single level.

4.1. Color consistency

Our first observation comes from the fact that a suitable can-
didate should be consistent across the crossbar. We use this
observation to build first sets of potential candidates in each
pixel of each exemplar.

As illustrated in Fig. 3, we seek to minimize the color
disparity between the lines shared by interleaved 2D neigh-
borhoods. We compute a L2 color difference between pairs
of 1-dimensional “strips” of pixels (i.e., a Nx1 or 1xN vec-
tor) from the appropriate exemplars (Ex, Ey, or Ez). The sum
of color differences for the three pairs of pixel strips defines
our crossbar error CB for any candidate triple.

In each pixel of each exemplar, we form triples us-
ing the pixel itself and two neighborhoods from the other
two exemplars. We select the triples producing the smallest
crossbar error. For efficiency, we approximate this process

first by separately extracting the S most-similar pixel strips
from each of the two other exemplars, using the ANN li-
brary [MA97]. For the example of Fig. 3, assuming we are
computing a candidate set for p in Ex, we would first find in
Ey the S pixel strips best matching the orange line from Ex,
and in Ez the S pixel strips best matching the green line from
Ex. We then produce all possible S2 triples - using the cur-
rent pixel as the third coordinate - and order them according
to the crossbar error CB. In our results, we keep the 100 best
triples and typically use a value of S = 65, experimentally
chosen to not miss any good triple.

4.2. Triples of coherent candidates

Color consistency is only a necessary condition and many
uninteresting candidate triples may be selected. As a con-
sequence, if we directly use these candidates our algorithm
will be inefficient as many will be always rejected.

After constructing candidates based on color consistency,
we obtain a set of candidate triples at each pixel of each ex-
emplar. Our key idea is to check whether a candidate may
form coherent patches in all directions with candidates from
neighboring pixels. This is in fact a simple test. We consider
each coordinate within a candidate triple and verify that at
least one candidate from a neighboring pixel has a continu-
ous coordinate. Fig. 4 illustrates this idea for pixels in Ex. We
only keep candidates finding continuous coordinates for all
three entries of the triple. Note that one is trivially true, i.e.
by definition neighboring candidates in Ex have a continuous
coordinate in Ex.

Figure 4: Two candidates of neighboring pixels in Ex. Each
candidate is a triple with coordinates in Ex, Ey and Ez. The
first triple is shown in orange, the second in green. Notice
how the coordinates of the candidates in Ey are contiguous:
Along both vertical pixel strips, the candidates form a coher-
ent patch from Ey. This is not the case in Ez. Note that the
orange and green triples will only be kept if another neigh-
boring triple with a contiguous coordinate in Ez is found.

To formalize this notion, let us only consider exemplar Ex
without loss of generality. We note xC (resp. yC, zC) the set
of candidates for exemplar Ex (resp. Ey, Ez). xCk[p] is the
k-th candidate triple for pixel p in Ex. We note xCk[p]y and
xCk[p]z the coordinates in respectively exemplar Ey and Ez
for the candidate triple.

In a given pixel p, we iteratively update the set of candi-
dates as:

xCi+1[p] =

c ∈ xCi[p] : ∃k1,k2, |δ1|= 1, |δ2|= 1 s.t.

 |xC
k1
i [p+δ1]y− cy|= 1

and

|xC
k2
i [p+δ2]z− cz|= 1

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Dong & S. Lefebvre & X. Tong & G. Drettakis / Lazy Solid Texture Synthesis

where i is the iteration counter, k1, k2 indices in candidate
sets and δ1, δ2 offsets to direct neighbors. We perform sev-
eral iterations of this process, reducing the number of candi-
dates with every pass. In our current implementation we iter-
ate until having no more than 12 candidates per pixel, which
typically requires 2 iterations. If more candidates remain, we
keep the first 12 with the smallest crossbar matching error.
While it is possible that no candidate coherency exists, this
happens rarely in practice.

4.3. Candidate Slab

After candidate generation, we obtain a set of candidate
triples at each pixel. These candidates are not only useful
for neighborhood matching, but also provide a very good
initialization for the synthesis process.

Let us consider a single exemplar. Recall that each candi-
date triple defines a 3-neighborhood, that is three interleaved
N ×N 2D neighborhoods. One 2D neighborhood is in the
plane of the exemplar, while the two others are orthogonal
to it (see Fig. 5, left) and intersect along a line of N vox-
els above and below the exemplar. This provides a way to
thicken the exemplar and to form candidate slabs. To ini-
tialize synthesis we create such a slab using the best (first)
candidate at each pixel (see Fig. 5, right).

Please note, however, that the slab is formed using a single
candidate among the several available per exemplar pixel.
Using the slab directly as a 3D exemplar would be very lim-
iting: This would ignore all other candidates. Instead, our al-
gorithm exploits the full variety of the candidates for neigh-
borhood matching and uses a slab only for initialization.
This is very different from using a 3D exemplar as input,
which would require a large example volume to offer a sim-
ilar variety of candidates.

Figure 5: Left: Exemplar thickening. Right: Candidate slab
obtained from the first candidates. The slab is shown from
top and bottom view. Notice how coherent structures appear
around the exemplar. (This is not a synthesis result - simply
a visualization of the candidates).

5. Lazy Solid Synthesis

For each pixel of each 2D exemplar, we now have a set of
pre-computed 3D candidates, which we will use to perform
efficient solid synthesis. Our parallel deterministic synthesis
is inspired by the 2D parallel algorithm of [LH05]. While it
has the same overall structure, it does adapt and extend it in
several ways.

5.1. Parallel solid texture synthesis

A first evident change to the original 2D algorithm is that
our algorithm performs synthesis in a multi-resolution 3D
volume pyramid, instead of operating on a 2D image pyra-
mid. Only part of this volume pyramid may be visited by the
algorithm, depending on the subset of desired voxels.

We perform two successive steps at every resolution level:
upsampling which increases the resolution of the previous
level result, and correction which applies several passes of
neighborhood matching using our pre-computed 3D candi-
dates. Contrary to the original scheme we found it unnec-
essary to add variation at every level, and perturb the result
through jitter only once, after initialization. If finer control
is desired, jitter could be explicitly added after each upsam-
pling step.

This is summarized below:

1. Synthesize(lstart, Vinit, Ex,Ey,Ez, xC,yC,zC, DesiredVoxels)

2. Masklstart ← ComputeMask(DesiredVoxels,lstart)
3. V lstart ← tiling of Vinit
4. V lstart ← Jitter(V lstart)
5. For l = lstart ... L
6. If l > lstart then V l,Maskl ← Upsampling(V l−1,Maskl−1)
7. For p = 1...2
8. V l ,Maskl ← Correction(V l,Maskl,xC,yC,zC)
9. End

lstart is the level at which synthesis starts. ComputeMask
computes the mask of voxels that have to be synthesized at
level lstart (see Sec. 5.2). Vinit is an initial result from which
to begin synthesis, as explained below.

In every voxel of the synthesis pyramid we maintain a co-
ordinate triple, representing a 3-neighborhood. For a voxel
at coordinates v in the volume of level l we note the stored
triple coordinates V [v]lx, V [v]ly and V [v]lz. The color of a
voxel is obtained by averaging the three colors at coordinates
V [v]lx, V [v]ly and V [v]lz in respectively Ex, Ey and Ez.

Figure 6: Quality of solid texture synthesis is improved by
using candidate slabs for initialization (right), compared to
random initial values (left). This is especially the case on
structured exemplars.

Initialization

To reduce synthesis time, multi-resolution synthesis algo-
rithms can start from an intermediate level of the image pyra-
mid. The initial result given as input is then iteratively re-
fined, with successive passes of neighborhood matching. A
good initialization is key to achieve high-quality synthesis.

Since we do not have an example volume, we rely on the
candidate slabs (Sec. 4.3) for initialization. They provide a

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Dong & S. Lefebvre & X. Tong & G. Drettakis / Lazy Solid Texture Synthesis

good approximation of the 3D content to be synthesized. We
simply choose one of the candidate slabs as Vinit and tile it
in the volume to initialize synthesis. In practice, we initial-
ize the process three levels above the finest (lstart = L− 3)
using the candidate slab from the corresponding level of the
exemplar pyramid.

Fig. 6 shows how our initialization improves quality com-
pared to a typical random initialization. In particular, it pre-
serves regularity present in the input images.

Jitter

Since we initialize with a tiling, we have to explicitly intro-
duce variations to generate variety in the result. We hence
perturb the initial result by applying a continuous deforma-
tion, similar to a random warp. We compute the distorted
volume J as:

∀v, J[v] = V [v+ ∑
i=0...G

Ai~di e
− ||v−ci ||2

2σ2
i]

where v are voxel coordinates, Ai is a scalar, ~di a random nor-
malized direction, ci a random point in space and σi controls
the influence of Gaussian i. G is typically around 200, with
values of Ai ranging from 0.1 to 0.3 and σi from 0.01 to 0.05
in unit volume space. While exact values do not matter - the
main purpose is to randomize - it is important for Ai to have
larger magnitude with smaller σi: This adds stronger per-
turbation at small scales, while adding subtle distortions to
coarser scales. Small scale distortions are corrected by syn-
thesis, introducing variety. The overall magnitude of the jit-
ter is directly controllable by the user.

Upsampling

Upsampling is a simple coordinate inheritance: Each of the
eight child volume cells inherits three coordinates from its
parent, one for each direction. The new coordinates of the
child at location i jk within the volume of level l are com-
puted as:

V [i jk]lx = 2 ·V [(b i
2 c,b

j
2 c,b

k
2 c)]

l−1
x +(j mod 2, k mod 2)

V [i jk]ly = 2 ·V [(b i
2 c,b

j
2 c,b

k
2 c)]

l−1
y +(i mod 2, k mod 2)

V [i jk]lz = 2 ·V [(b i
2 c,b

j
2 c,b

k
2 c)]

l−1
z +(i mod 2, j mod 2)

Correction

The correction step relies on our candidate sets to perform
fast neighborhood matching. It is performed on all synthe-
sized voxels simultaneously, in parallel. Input data is read
from the previous step result so that neighboring voxels do
not influence each other during correction.

The result from the previous step gives us a coordinate
triple in each voxel, from which we compute a color by aver-
aging the corresponding three colors from the exemplars. In

each synthesized voxel, we start by gathering its current 3-
neighborhood, that is the one that can be observed in the col-
ored version of the result. We will use this 3-neighborhood
to search for a best matching candidate.

Next, we gather a set of potential candidates for the
voxel. We visit each of its direct neighbors, and use the
stored coordinate triples to gather the candidate sets. This
relies on the coherent candidate idea introduced by [Ash01]
and [TZL∗02]. The final candidate set C (v) for voxel v is
computed as:

C (v) = Cx(v)∪Cy(v)∪Cz(v) where

Cx(v) = { xCk[V [v+Pxδ]x−δ] : k = 1...K,δ ∈ {−1,0,1}2}

Cy(v) = { yCk[V [v+Pyδ]y−δ] : k = 1...K,δ ∈ {−1,0,1}2}

Cz(v) = { zCk[V [v+Pzδ]z−δ] : k = 1...K,δ ∈ {−1,0,1}2}

xCk[p] is the k-th candidate at location p in Ex. Px, Py and Pz
are 3× 2 matrices transforming a 2D offset from exemplar
to volume space (see Fig.3).

Each candidate is itself a triple of coordinates forming
a 3-neighborhood. We search for the best matching candi-
date by considering the distance between the candidate 3-
neighborhood and the 3-neighborhood we extracted for the
current voxel. The distance is a simple L2 norm on color dif-
ferences. In practice, we speed up these comparisons using
PCA-projected neighborhoods.

We finally replace the coordinate triple in the current
voxel by the coordinate triple of the best matching candi-
date. Note that because the candidate triples have been pre-
computed and optimized, we are guaranteed that the color
disparity between the three colors in each voxel is kept low.

We perform two correction passes at every level of the
pyramid, and improve convergence of the correction process
by adapting the sub-pass mechanism of [LH05]. We simply
perform 8 sub-passes instead of 4 in 2D, processing inter-
leaved subsets of voxels one after the other.

Separation of the first candidate coordinate. While our
candidate selection is very efficient, we still end up with
many candidate comparisons: We gather 12 candidates from
the 33 = 27 direct neighbors (including the center), for a to-
tal of 324 candidates per voxel. We further reduce the search
space by performing a two step search.

During synthesis, the first step is to search for the best
matching 2D candidates in each of the three directions. The
second step is to gather the 3D candidates only from these
three best matching pixels. This greatly reduces the size of
the candidate set to consider, but still allows for a large num-
ber of candidate combinations. In practice we keep 4 2D and
12 3D candidates per exemplar pixel at coarse levels, while
we reduce to 2 2D and 4 3D candidates at the finest level for
maximum performance. At most, we thus perform a search
within 27×4 = 108 2D candidates and 3×12 = 36 3D can-
didates.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Dong & S. Lefebvre & X. Tong & G. Drettakis / Lazy Solid Texture Synthesis

5.2. Lazy Subset Synthesis

In order to synthesize the smallest number of voxels, we de-
termine, from a requested set of voxels at finest resolution,
the entire dependency chain throughout the volume pyramid.
This guarantees all necessary information is available to en-
sure spatial determinism. Fig. 7 illustrates this idea on a sim-
ple 2D example.

Pass 2
Desired voxels

Pass 1

Level L Level L-1 Level L-2

Pass 1Pass 2
Pass 1Pass 2

Figure 7: From a set of desired voxels at finest resolution,
we have to determine the entire dependency chain through-
out the volume pyramid. The neighborhood matching passes
performed at every level imply the dilation of the set of vox-
els to synthesize.

To restrict synthesis only on the necessary voxels, we
compute a synthesis mask. When Maskl

p[v] is true, it indi-
cates that voxel v at pass p and level l has to be synthesized.
Note that we only need to compute the mask for level lstart :
During synthesis, the mask for the next level or next pass
is trivially obtained through upsampling and correction (see
Sec. 5.1).

We compute the mask from from last to first pass, and
from fine to coarse levels. The number of required voxels
depends on the size and shape of the neighborhoods used
during synthesis. In the following pseudo-code, we note
Maskl

p
⊗

NeighborhoodShape the dilation of the mask by
the shape of the neighborhoods. Function Downsample re-
duces the resolution of the mask and flags a parent voxel as
required if any of its children are required. DesiredVoxels
contains the set of voxels requested by the user.

To compute a single voxel, with N = 5, 2 passes and syn-
thesis of the 3 last levels, our scheme requires a dependency
chain of 6778 voxels. Note that in a volume the size of the
dependency chain grows quadratically with the number of
passes.

1. ComputeMask (DesiredVoxels)
2. Mask f inestlevel

last pass ← DesiredVoxels
3. Foreach level l from finest to lstart
4. Foreach pass p from last to first
5. Maskl

p−1 = Maskl
p

⊗
NeighborhoodShape

6. end foreach
7. If l > lstart then Maskl−1

last pass = Downsample(Maskl
f irst pass)

8. end foreach
9. return Masklstart

6. Implementation and Results

We have implemented our solid texture synthesis approach
both entirely in software and using the GPU to accelerate the
actual synthesis. All our results are created on an Intel Core2
6400 (2.13GHz) CPU and an NVIDIA GeForce 8800 Ultra.

Note that we sometimes add feature distance [KFCO∗07]
to the RGB exemplars. Whenever this is the case, the feature
distance is shown along with the original image.

6.1. Candidate pre-computation

Apart from Fig. 9, all results in the paper are computed from
a single example image repeated three times. Depending on
the orientation chosen for the image in Ex, Ey and Ez, the
pre-computed candidates may be shared. This incurs savings
in computation and data structures since we can perform the
pre-computation only once. All reported sizes and timings
are for a single example image sharing a same candidate
data structure, using the orientation depicted in Fig. 3. The
entire pre-computation is fast: Typically 7 seconds for 642

exemplars, and 25 to 35 seconds for 1282 exemplars. This in-
cludes building the exemplar pyramids, computing the PCA
bases and building the candidate sets. Typical memory re-
quirement for our pre-computation data structure is 231KB
for a 642 exemplar.

After pre-computation we can quickly perform synthesis
on any surface, and generate many variations of a same tex-
ture as illustrated in the supplemental material. This affords
a very convenient tool to decorate objects from a database of
pre-computed exemplars.

6.2. GPU implementation

The synthesis algorithm is implemented in fragment shaders,
using the OpenGL Shading Language. We unfold volumes in
tiled 2D textures, using three 2-channel 16 bit render targets
to store the synthesized triples. We pre-compute and reduce
the dimensionality of all candidate 3-neighborhoods using
PCA, keeping between 12 and 8 dimensions. We typically
keep more terms at coarser levels since less variance is cap-
tured by the first dimensions. We finally quantize the neigh-
borhoods to 8-bits to reduce bandwidth. Hence, candidate
sets are stored in RGBA 8 bit textures.

Synthesizing around surfaces. When texturing objects,
our goal is to focus computations only around the vox-
els intersecting the surface. In order to minimize memory
consumption, we perform synthesis into a TileTree data
structure [LD07], but other approaches such as octree tex-
tures [BD02] could be used. After synthesis, rendering is
performed directly using the TileTree, or the texture can be
unfolded in a standard UV map.

The TileTree subdivides the sur-
face into a set of square tiles. Each
tile is in fact a height-field and corre-
sponds to the set of voxels intersect-
ing the surface. We enlarge the voxel
set as described Sec. 5.2, and perform
synthesis independently in each tile.
In order to reduce the size of the 3D texture used for synthe-
sis, we ’push’ the voxel columns at the bottom of the tile, as

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Dong & S. Lefebvre & X. Tong & G. Drettakis / Lazy Solid Texture Synthesis

illustrated in the inset. This slightly complicates addressing,
but greatly reduces memory consumption on the GPU.

Synthesizing tiles independently implies that many voxels
at coarse resolution are computed several times. This is espe-
cially unfortunate since these voxels only represent 10 per-
cent of the total number of voxels. We reduce this overhead
by emulating a very simple cache mechanism for coarse
level voxels. We first synthesize a small 323 volume up to
level L−1, and store this intermediate result. When synthe-
sizing the surface, we restart synthesis at level lstart = L−1
using a tiling of the intermediate result. Variety is added as
usual by perturbing the tiling with warping.

When interactively cutting an object, synthesis occurs
only once for the newly appearing surfaces. Since the Tile-
Tree cannot be updated interactively, we store the result in
a 2D texture map for display. For simplicity our implemen-
tation only allows planar cuts: The new surfaces are planar
and are trivially parameterized onto the 2D texture synthe-
sized when the cut occurs. These textures are shown at the
top of the screen in the accompanying video.

6.3. Full volume synthesis and comparisons

While our scheme is designed for fast surface synthesis, we
can also use it to quickly generate full volumes of color con-
tent. Here we discuss this possibility and use it to compare
our algorithm with previous work.

Quality. For comparison purposes, we reproduce in Fig. 8
solid textures similar to those presented in [KFCO∗07]. As
can be seen, our new approach produces results which are at
least of comparable quality and often slightly better. Fig. 9
illustrates how complex structures are synthesized from dif-
ferent example images.

Timings. In Fig. 8, for the 642 examples of the first row
our method requires a total of 7.22 seconds for synthesiz-
ing the 643 volume (7 seconds for pre-computation and 220
milliseconds for synthesis). The memory requirement dur-
ing synthesis is 3.5MB. For the 1282 image of the last row,
our method requires a total of 28.7 seconds for synthesizing
the 1283 volume (27 seconds for pre-computation and 1.7
seconds for synthesis). In comparison, [KFCO∗07] reported
timings between 10 and 90 minutes.

6.4. Solid synthesis on surfaces

Fig. 10 shows results of synthesizing various solid textures
on complex surfaces. Performing synthesis using our lazy
scheme results in a very low memory consumption com-
pared to the equivalent volume resolution.

Synthesis speed ranges from 4.1 seconds (dragon) to
17 seconds (complex structure), excluding pre-computation.
Storage of the texture data requires between 17.1MB (statue)
and 54MB (complex structure), while the equivalent volume
resolution is 10243 which would require 3GB.

Figure 8: Comparisons to some of the result textures in
[KFCO*07]. For each comparison, our result is shown on
the right.

Figure 9: Left: A volume generated from two different im-
ages. Right: Transparency reveals shape distribution. Back-
ground gray voxels are transparent for the stones, green vox-
els for the spheres. For clarity we removed shapes crossing
the volume boundary.

While being slower than state-of-the-art pure surface tex-
ture synthesis approaches, our scheme inherits all the prop-
erties of solid texturing: No distortions due to planar pa-
rameterization, a unique feeling of a coherent block of mat-
ter, consistent texturing when the object is cut, broken or
edited. None of the pure 2D synthesis approaches can en-
force these properties easily. Our timings nonetheless allow
for on demand synthesis when cutting or breaking objects.
Fig. 10 shows four frames of a real-time explosion. The
texture has an equivalent resolution of 2563, while storage
requires 1.3MB. The average time for synthesizing a 2562

texture for a new cut is 8 ms. Please see the accompany-
ing video for several captured interactive cutting sessions. In
terms of memory, synthesizing a 2562 slice of texture con-
tent requires 14.4MB. The overhead is due to the necessary
padding to ensure spatial determinism (see Sec. 5.2).

Comparison with a simple tiling. A typical approach for
solid texturing is to pre-compute a full cyclic volume and
to tile it in space for texturing objects. As shown Fig. 11,
our scheme offers richer textures than a simple volume tiling
and avoids the appearance of repetitive patterns along some
particular directions. Recall that synthesis occurs only once:
There is no overhead for displaying the object.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Dong & S. Lefebvre & X. Tong & G. Drettakis / Lazy Solid Texture Synthesis

Figure 10: Results on complex surfaces. Top row: Surfaces textured with the equivalent of a 10243 volume. The bunny is
rendered with displacement mapping using synthesized feature distance. Bottom row: Three frames of the real-time explosion
of a gargoyle model. The interior surfaces are synthesized on demand, in 8 milliseconds on average, while the object explodes.
Notice the coherent structures across cut boundaries.

Comparison with a method using standard 2D candi-
dates. In order to experimentally verify that our 3D candi-
dates provide good quality results with fewer iterations, we
also implemented our synthesis algorithm using only stan-
dard 2D candidates. As can be seen Fig. 12, it takes roughly
twice the number of iterations to obtain a result of equiva-
lent visual quality (we obtain similar numbers on different
textures). Due to the increased number of iterations, the size
of the dependency chain for computing a single voxel grows
from 6778 voxels with 3D candidates to 76812 voxels with
2D candidates, hence a factor of 11.3 in both memory us-
age and speed. This makes local evaluation impractical, and
would not be useful for synthesis on surfaces.

7. Discussion and Conclusions

Our method is of course not without limitations. In partic-
ular, if the exemplars Ex, Ey, Ez do not define a coherent
3D volume, the quality of the result will be poor, as shown
Fig. 13 (left). An interesting direction of future research is
to exploit our pre-computation to determine whether three
exemplars are likely to generate a consistent 3D volume.

A related limitation is that it may be impossible to find co-
herent candidates during our candidate selection process for
some parts of the image. As shown in Fig. 13 (right) this will
introduce a bias in the algorithm, removing some features.

Figure 11: Left: Result of tiling a 1283 volume to texture a
surface. Obvious repetitions are visible along some particu-
lar directions. Right: Our approach does not exhibit visible
repetitions thanks to synthesis.

init 1 iter. 2 iter. 3 iter. 4 iter.

Figure 12: Comparison of 3D candidates (top) versus 2D
candidates (bottom). Using our 3D candidates, a visually
pleasing result is reached in 2 iterations. After 4 iterations
the 2D candidates barely reached the same quality.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Y. Dong & S. Lefebvre & X. Tong & G. Drettakis / Lazy Solid Texture Synthesis

Figure 13: Left: A case where the 2D example is incompat-
ible with a good solid texture definition. Right: A case where
a part of the exemplar has no coherent candidates: The red
feature is lost through synthesis.

Conclusion. We have presented a new algorithm for solid
synthesis, creating a consistent volume of matter from 2D
example images. Our algorithm has the unique ability to syn-
thesize colors for a subset of the voxels, while enforcing spa-
tial determinism. This affords efficient surface synthesis as
the complexity in both space and time only depends on the
area to be textured.

Our key idea is to pre-compute 3D candidates in a pre-
process, by interleaving three 2D neighborhoods from the in-
put images. Thanks to a careful selection, our pre-computed
candidates significantly improve synthesis efficiency and re-
duce the number of iterations required to produce good re-
sults. This is key in reducing the size of the dependency
chain when evaluating subsets.

Our GPU implementation is fast enough to provide on de-
mand synthesis when interactively cutting or breaking ob-
jects, enabling realistic texturing effects in real-time appli-
cations and physical simulations.

Acknowledgments

We would like to thank Baining Guo, Li-Yi Wei, and the
anonymous reviewers for their help in improving the paper,
as well as Su Wang for 3D modeling. This work is partly
supported by the NSFC (National Natural Science Founda-
tion of China), grant 10547002.

References

[Ash01] ASHIKHMIN M.: Synthesizing natural textures. In Pro-
ceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics (2001), pp. 217–226.

[BD02] BENSON D., DAVIS J.: Octree textures. In Proceedings
of ACM SIGGRAPH (2002), pp. 785–790.

[DG01] DISCHLER J.-M., GHAZANFARPOUR D.: A survey of
3d texturing. Computers & Graphics 25, 10 (2001).

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. Proceedings of ACM SIGGRAPH
(2001), 341–346.

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by
non-parametric sampling. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (Corfu, Greece, Septem-
ber 1999), pp. 1033–1038.

[EMP∗94] EBERT D., MUSGRAVE K., PEACHEY D., PERLIN

K., WORLEY: Texturing and Modeling: A Procedural Approach.
Academic Press, 1994. ISBN 0-12-228760-6.

[GD95] GHAZANFARPOUR D., DISCHLER J.-M.: Spectral anal-
ysis for automatic 3d texture generation. Computers & Graphics
19, 3 (1995).

[GD96] GHAZANFARPOUR D., DISCHLER J.-M.: Generation
of 3d texture using multiple 2d models analysis. Computers &
Graphics 15, 3 (1996).

[HB95] HEEGER D. J., BERGEN J. R.: Pyramid-Based texture
analysis/synthesis. In Proceedings of ACM SIGGRAPH (1995),
pp. 229–238.

[HJO∗01] HERTZMANN A., JACOBS C. E., OLIVER N., CUR-
LESS B., SALESIN D. H.: Image analogies. In Proceedings of
ACM SIGGRAPH (2001), pp. 327–340.

[JDR04] JAGNOW R., DORSEY J., RUSHMEIER H.: Stereolog-
ical techniques for solid textures. Proceedings of ACM SIG-
GRAPH (2004), 329–335.

[KEBK05] KWATRA V., ESSA I., BOBICK A., KWATRA N.:
Texture optimization for example-based synthesis. In Proceed-
ings of ACM SIGGRAPH (2005), pp. 795–802.

[KFCO∗07] KOPF J., FU C.-W., COHEN-OR D., DEUSSEN O.,
LISCHINSKI D., WONG T.-T.: Solid texture synthesis from 2d
exemplars. In Proceedings of ACM SIGGRAPH (2007).

[KSE∗03] KWATRA V., SCHÖDL A., ESSA I., TURK G., BO-
BICK A.: Graphcut textures: Image and video synthesis using
graph cuts. Proceedings of ACM SIGGRAPH (2003), 277–286.

[LD07] LEFEBVRE S., DACHSBACHER C.: Tiletrees. In Pro-
ceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (2007).

[LH05] LEFEBVRE S., HOPPE H.: Parallel controllable texture
synthesis. Proceedings of ACM SIGGRAPH 24, 3 (2005), 777–
786.

[MA97] MOUNT D., ARYA S.:, 1997. ANN: A library for ap-
proximate nearest neighbor searching. CGC 2nd Annual Fall
Workshop on Computational Geometry, http://www.cs.umd.
edu/~mount/ANN, 1997.

[ONOI04] OWADA S., NIELSEN F., OKABE M., IGARASHI T.:
Volumetric illustration: Designing 3d models with internal tex-
tures. Proceedings of ACM SIGGRAPH (2004), 322–328.

[QY07] QIN X., YANG Y.-H.: Aura 3d textures. IEEE Trans-
actions on Visualization and Computer Graphics 13, 2 (2007),
379–389.

[TZL∗02] TONG X., ZHANG J., LIU L., WANG X., GUO B.,
SHUM H.-Y.: Synthesis of bidirectional texture functions on ar-
bitrary surfaces. In Proceedings of ACM SIGGRAPH (2002),
pp. 665–672.

[Wei02] WEI L.-Y.: Texture synthesis by fixed neighborhood
searching. PhD thesis, 2002. Stanford University, Advisor-Marc
Levoy.

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis using
tree-structured vector quantization. In Proceedings of ACM SIG-
GRAPH (2000), pp. 479–488.

[WL03] WEI L.-Y., LEVOY M.: Order-independent texture syn-
thesis, 2003. Technical Report TR-2002-01, Computer Science
Department, Stanford University.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

http://www.cs.umd.edu/~mount/ANN

