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Abstract

During the last century, many general purpose program-
ming languages have been developed, all having rigid syn-
tax and often a von-Neuman view of the world. With the
rise of model-based development this changes: Feature-
oriented programming, domain specific languages, and
platform-based design use rich and custom syntaxes to
capture domain specific abstractions, refinement mappings,
and design spaces. In this paper we show how a formal-
ization of rich syntax can be used to compose abstractions,
validate refinement maps, and construct design spaces. We
describe a tool FORMULA for computing these properties,
and present a series of examples from automotive embedded
systems.

1. Introduction

Research in model-based development has produced
new approaches to architecting and modularizing software
systems. Promising approaches include: model-driven
architecture [45], platform-based design [54], domain-
specific languages [29], feature-oriented design [51] and
aspect-oriented programming [30]. Though many of these
approaches overlap [34], each offers unique strengths from
a unique perspective. However, all of these perspectives
makes it unclear how to compare, reuse, and generalize ac-
complishments in model-based development.

We observe that a key commonality exists across the
spectrum of approaches: Design artifacts are captured us-
ing (1) rich and customizable syntactic constructs and (2)
expressive constraints over syntax. By rich syntactic con-
structs we mean notations that are (at least) set-based and
relational, e.g. graph-theoretic [18]. By expressive con-
straints we mean well-formedness rules limiting syntax via
type-constraints and context-dependent invariants, e.g. OCL
[46]. We use the term rich syntax as a loose shorthand
for these properties. Unlike traditional programming lan-
guages where syntax is fixed for all problems, model-based
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approaches encourage rich custom syntaxes to be created on
a per problem basis. This new dimension of expressiveness
allows engineers to capture design invariants and abstrac-
tions using custom expressive notations.

In this paper we provide a novel framework for rich syn-
tax arising in model-based development. We define:

e domains as a formalization of rich syntax, utilizing ex-
tended Horn logic to represent the constructs and in-
variants of modeling artifacts (Section 3).

e composition operators for building new domains from
existing ones. We also check that compositions do not
contain contradictions (Section 4).

e transformations as translation procedures between do-
mains. We check that transformations are well-
behaved, i.e. well-formed inputs are always translated
to well-formed outputs (Section 5).

e design spaces as sets of syntactic instances over do-
mains. Design spaces can be compactly represented
and elements can be enumerated (Section 6).

We have developed a tool called FORMULA that implements
these tasks. This implementation uses a model finding pro-
cedure to construct sets of rich syntax satisfying key prop-
erties [24]. The examples in this paper are written in the
notation of FORMULA.

2. Rich Syntax in Model-based Development

The automotive community has been an important earlier
adopter of modeling technology[52, 61]. Many modeling
approaches converge in the automotive domain, making it
an ideal place to study modeling foundations. In this section
we introduce three automotive examples, each of which is
constructed using a different modeling technique. Along the
way, we show that rich syntax spans all of these modeling
styles, providing a common substrate for composition and
analysis. This overview focuses on rich syntax, and does
not attempt to be exhaustive in any sense.



2.1 Features and Aspects

Feature-oriented design [51, 5] and aspect-oriented pro-
gramming [30] are attempts to modularize and reuse soft-
ware components even when the components have complex
coupling between them. Feature-oriented design partitions
a system into features, where each feature represents some
slice of the overall system. Distinct features utilize overlap-
ping parts of the implementation (e.g. classes, components,
etc...) and thus have coupling between them. The goal of
feature-oriented design is to mix and match features to cre-
ate variants (product lines) of a large software system. This
vision requires mechanisms to reason about which sets of
features are compatible.

A feature diagram abstracts the coupling between fea-
tures allowing the engineer to reason about the possible sys-
tem variants. Figure 1 shows some features in a car. The
diagram describes a tree of features and the interactions be-
tween features. For example, the car feature must have a
maneuvering feature, but cruise control is optional. The
acceleration feature requires exactly one of the manual or
automatic features. If cruise control is in the car then the
automatic feature must be selected.

Let F' be a set of features, then a legal program vari-
ant V' C F'is a subset of F' satisfying the feature diagram.
It was observed in [6] that each feature diagram induces a
BNF grammar, and this provides a formal basis for check-
ing if a program variant V is legal. Table 1 shows a partial
grammar induced by the car feature diagram. Leaf nodes in
the diagram become terminal tokens in the grammar (writ-
ten in upper-case); internal nodes are non-terminals (written
in lower-case).

More complex forms of coupling are difficult to cap-
ture if feature diagrams are formalized as BNF grammars.
For example, the implication from Cruise Control to Auto-
matic transmission is problematic. Consequently, various
extensions and formalizations have been pursued [13]. For
instance, in [36] feature diagrams are reduced to first-order
propositional formulas permitting Boolean constraints be-
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Figure 1. Feature diagram of a car’s subsys-
tems.

car: maneuvering [CRUISE CONTROL]
maneuvering:  acceleration deceleration
acceleration:  MANUAL | AUTOMATIC
deceleration:  [ABS] [BREAK-BY-WIRE]

Table 1. Feature diagram as a grammar.

tween features. This is an exemplar of rich syntax in model-
based development.

2.2 Domain-specific Languages

Domain-specific languages (DSLs) evolved from the ob-
servation that software development is application-specific
and the application context imposes strong constraints on
the structure of software [26, 55]. DSLs capture domain-
specific concepts, and come in two parts: The abstract syn-
tax, which is a rich syntax, and the behavioral semantics,
which formally assigns behaviors to instances of the ab-
stract syntax. The behavioral semantics is often expressed
using a mathematical description of behaviors and can also
be domain-specific [11].

For example, in the automotive domain software exe-
cutes on embedded processors called ECUs (electronic con-
trol units). ECUs communicate with each other through
local-area networks, called buses, that have strict rules on
the structure, duration, and frequency of messages sent
between ECUs. Any software system must take such
application-specific constraints into account. Figure 2
shows a metamodel describing the abstract syntax for an
automotive DSL. The diagram is an extended type of UML
diagram, called a MOF (meta-object facility) metamodel
[44]. Tt explains that a Car is a basic concept parameter-
ized by data indicating the make and model. Every Car
contains one or more ECU entities, and each ECU may
contain Message entities. A Car contains Buses that link
ECUs together. Buses come in two varieties: CAN and
FlexRay [56]. Additionally, metamodels can be annotated
with constraints, often written in the object constraint lan-
guage (OCL). For example, we may add the OCL-like con-
straint:

VECUe, VBuUsb, (e.isCritical Ab.dst = e) = bis CAN

i.e. every ECU containing a safety-critical task communi-
cates on a CAN bus. Loosely speaking, an instance of the
abstract syntax is a set of entities that conform to the meta-
model, including its constraints.

This simple example shows that rich syntaxes are preva-
lent in DSLs. At first glance, DSLs resemble graph-
theoretic objects. For example, ECUs are vertex-like and
Buses are edge-like. This has lead to significant work in ex-
tending graph-grammars to capture the rich syntax of DSLs



[7, 48]. These extensions must address data-types, con-
tainment hierarchies, non-binary relations, and hierarchy-
crossing constructs.

2.3 Platform-based Design and Model-
Driven Architecture

Platform-based design and Model-Driven Architecture
(MDA) focus on migrating abstract specifications to imple-
mentations through incremental translation steps [45, 54].
The engineer begins by developing a functional model of
the system, also called a platform-independent model (PIM)
in MDA. The functional model is an abstract description of
what the system should do. Along side the functional model
is an architectural model specifying what the system can
do. The goal of platform-based design is to find an appro-
priate platform mapping (translation) from the function to
the architecture so that the system is correctly implemented
[50].

The left-hand side of Figure 3 shows a functional model,
architectural model, and platform mapping. The functional
model consists of three tasks (gray circles) S, T, and U. The
undirected edges between the tasks are resource constraints.
A pair of tasks with resource constraints cannot execute on
the same processor, because local resources (e.g. memory
capacity) are insufficient to support both tasks. The archi-
tectural model consists of three processors (squares) P1,
P2, and P3 indicating the processing capability of the im-
plementation. The platform mapping must place tasks onto
processors without violating resource constraints. The fig-
ure shows one such mapping. In this example finding a plat-
form mapping is equivalent to the NP-hard coloring prob-
lem. This is typical in platform-based design, and is a man-
ifestation of the difficulty in changing abstraction levels.
(This example is adapted from the problem of scheduling
tasks with conflict graphs over multiple processors [38].)

Car
model: string|
make: string|
1.*
0.* src ECU
Bus | _____ isCritical: bool
T memorySize: integer]
0.*
Message
maxSize: integer|
CAN FlexRay ecuSends: bool
ecuReceives:  bool

Figure 2. Metamodel of ECU/bus architecture.

[y Constraint
Task
0.7
TaskMap
¢ ------
1
Processor

Figure 3. (Left) Function, architecture, and
platform mapping, (Right) Metamodel of
problem domain.

Rich syntax also plays a key role in platform-based de-
sign. It is used to describe the functional and architectural
abstraction layers, and to define the valid platform map-
pings. The right-hand side of Figure 3 shows the meta-
model defining exactly this problem domain. According
to this metamodel, Tasks are connected by resource Con-
straints and each Task is mapped to exactly one Proces-
sor. This metamodel also has a constraint (not shown in fig-
ure) that two tasks connected by Constraint edges cannot
be mapped to the same Processor. This well-formedness
rule is expressed within the rich syntax, and does not require
any knowledge of the computations performed by tasks and
processors. The set of all instances conforming to this meta-
model is exactly the set of possible functions/architectures
with valid mappings.

The observation that the legal syntactic instances corre-
spond to behaviorally meaningful designs has lead to new
techniques for design space exploration [8]. For exam-
ple, given a set of tasks 7" with resource constraints, then
there is an associated set of architectures that admit valid
platform mappings. This design space of legal architec-
tures/mappings can be characterized once the rich syntax
is formalized. Design-space exploration using rich syntax
has been realized for specific problem domains [43, 27].

2.4 Rich Syntaxes for Composition

We have shown that rich syntaxes span model-based de-
velopment. More importantly, rich syntax can be used to
compose modeling approaches. Figure 4 illustrates how de-
velopment styles realistically interact through rich syntax.
This figure shows an instance of Car from the DSL pre-
sented in Figure 2. The squares labeled E; » . are instances
of ECUs connected by Buses. (Messages and other data
are not shown.) The network of ECUs and Buses forms



Figure 4. Composition of modeling styles
through rich syntax.

an architectural model, in the sense of platform-based de-
sign. Any functionally correct software system must respect
this architecture. The arrows show the platform mapping of
Tasks to Processors, where the Processors are actually
ECUs.

The shaded areas show subfeatures of the Cruise Con-
trol feature. The tasks L, R correspond to sensors on the
left/right side of the vehicle. The task S calculates engine
dynamics, while T is the main controller used by the cruise
control. The two subfeatures span the implementation and
overlap at their intersection: {S, T, E;, Es}.

Though composition of modeling styles seems natural,
there are theoretical issues that must be resolved. First, con-
sider the “replacement” of Processors with ECUs. This re-
placement binds the two rich syntaxes in a non-trivial way:
ECUs inherit constraints on Processors and vice-versa. In
general, this composition may be ill-defined, i.e. no legal
instance exists in the composition. Second, syntaxes can
be related in more complex ways than replacement, i.e. by
transforming from one syntax to another. However, trans-
formations may themselves contain mistakes in the form
of nonsensical rewrites. For example, we must ensure that
any transformation process always produces well-scheduled
Tasks. Third, modeling provides a means to explore archi-
tectures before implementation. For instance, the possible
schedules of Tasks to ECUs represents a large space of ar-
chitectural variants. The challenge is to compactly represent
and explore these design choices.
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Figure 5. Overview of examples

2.5 Roadmap of Examples

In the remainder of this paper we develop the three pre-
ceding examples, initially given in isolation, using a unified
framework enabling early end-to-end analysis. These ex-
amples are expressed in the language of FORMULA (Formal
Modeling Using Logic Analysis). FORMULA is a new tool
using Horn logic extended with stratified negation as a basis
for integrating and analyzing rich syntaxes and transforma-
tions occurring in model-based development [24]. Figure
5 shows the parts that we develop and their interrelation-
ships. We begin by developing a rich syntax for platform-
based design of automotive systems, as shown in the fig-
ure by the block labeled Platform-based Design. First,
we define a generic platform devoid of any automotive-
specific concepts. This is formalized with the TaskMap
domain. Next, we construct a domain, called CarWare,
for automotive-specific hardware architectures that does not
support platform-based design. Third, these two domains
are composed to form the CarTask domain, which can be
used to perform automotive-specific platform-based design.
This example shows how composition and theorem prov-
ing can be used to incrementally build domains with known
properties.

The second example builds a feature language for auto-
motive systems. (See the CarFeat block in Figure 5.) The
CarFeat domain captures the grammar of the feature dia-
gram in Figure 1. Next, a transformation (syntax translator)
called FeatMap is defined, which converts feature sets into
partial architectures. In the figure a feature set F' it trans-
lated into a partial architecture Ay. This example shows



how to construct transformations and prove that certain er-
rors are absent from the transformations.

The third example uses FORMULA for design space ex-
ploration. We define the CarExplore domain as a subset of
the legal CarTask instances. CarExplore instances corre-
spond to a set of interesting architectural variants for auto-
motive embedded systems. All of these examples are linked
together to perform design space exploration for a particular
feature set. In the figure A, Ao, and Ag are architectural
variants of Ag that were calculated by FORMULA. This real-
izes the vision of Figure 4, which integrates many different
modeling approaches in a consistent manner.

3 Domains and Model Generation
3.1 Elements of Rich Syntax

We have shown that rich syntaxes are built from data-
types, relations over sets/relations, and expressive context-
sensitive constraints. We formalize rich syntax by:

1. Using terms (i.e. uninterpreted function symbols and
typed constants) to encode problem-specific sets and
relations,

2. Capturing language invariants through logic program-
ming,

3. Building new syntaxes through formal first-class com-
position operators.

We illustrate this approach by formalizing the rich syntax
of the task mapping language (Figure 3).

3.1.1 Signatures and Terms

A function symbol, e.g. f(+), is a symbol denoting a unary
function over a universe U. We say that f stands for an
uninterpreted function if f satisfies no additional equalities
other than Vz € U, f(z) = f(x). Let ¥ be an infinite
alphabet of constants, then a ferm is either a constant or
an application of some uninterpreted function to a term.
For example, {1, f(2), f(f(3))} are all terms assuming
{1,2,3} C X. Henceforth, our function symbols will be
n-ary to capture relations and other constructs. Construct-
ing terms generalizes for arbitrary arity.

Uninterpreted functions form a flexible mechanism for
capturing sets, relations, and relations over relations without
assigning any deeper interpretations (behavioral semantics)
to the syntax. A finite signature Y is a finite set of n-ary
function symbols. The term algebra Ty (X) is an algebra
where all symbols of T stand for uninterpreted functions.
The universe of the term algebra is inductively defined as
the set of all terms that can be constructed from ¥ and Y.

1. imodel SchedExample : Taskmap {
2. /// Tasks and Processors
&k tl= Task("S"), t2= Task("T"),
4. t3= Task("U"), pl= Processor("P1l"),
5. p2= Processor ("P2"),
6. p3= Processor ("P3"),
/// Constraints
8. Constraint (tl,t2), Constraint(t2,t3),

9. Constraint (t3,tl),

/// Task mappings

11. Taskmap (tl,pl), Taskmap(t2,p2),
12. Taskmap (£3, p3)

13. i}

Figure 6. Task scheduling instance as a set of
terms.

It is standard to let 7y (X) either denote the term algebra or
its universe.

We view a rich syntax as providing a term algebra whose
function symbols characterize the key sets and relations
through uninterpreted functions. For example, the task
mapping language can be encoded using the following sig-
nature:

- _ Task(-), Processor(-), 0
Taskmap = Constraint(-, -), Taskmap(-, -)

The Constraint(-,-) symbol is used to encode a binary re-
lation over tasks, while the Taskmap(-,-) symbol is a re-
lation over tasks and processor. (We assume a countably
infinite alphabet 3.)

A syntactic instance of some rich syntax is a finite set
of terms over its term algebra T (X). The set of all syn-
tactic instances is then the powerset of its term algebra:
P(7x(X)). For example, Figure 6 shows the task schedul-
ing instance of Figure 3 encoded as a syntactic instance with
FORMULA. The keyword model (Line 1) denotes a syn-
tactic instance, the contents of which are terms. This dec-
laration also names the instance as SchedExample, and
identifies the specification that contains the associated term
algebra. (We describe the Taskmap specification shortly.)
Lines 1-6 instantiate the three Tasks and three Processors.
The notation:

t1 = Task(“S”)

allows the identifier t1 to stand for the term Task(*U”)
where “U” is a string constant. Therefore, Line 8 includes
the term:

Constraint(Task(“S”), Task(“T”))

after expanding the identifiers t1 and t2.



3.1.2 Terms With Types

The powerset of terms contains many unintended instances
of the syntax. For example, the term

Taskmap(Constraint(Task(“S”), Task(“T")), Task(“U”))

never belongs to a meaningful task mapping instance, be-
cause Taskmaps are not intended to relate Constraint
terms with Task terms. Erroneous terms can be eliminated
by typing the arguments of uninterpreted functions:

Taskmap : (Task, Processor).

This statement declares a binary function Taskmap where
the first argument must be a Task term and the second must
be a Processor term. The function is undefined when ap-
plied to badly-typed values, otherwise it behaves exactly
like an uninterpreted function.

This enrichment of the term algebra semantics with types
leads naturally to an order-sorted type system. We formal-
ize this type system now. An order-sorted alphabet >.c is a
structure:

Eg = <I7ju(2i)i61> (2)

The set I, called the index set, is a set of sort names (al-
phabet names). Associated with each sort name ¢ € [ is a
set of constants X; called the carrier of i. An order sorted
alphabet has the following properties:

s=UD (izi)eEicy) 3)
i€l

In other words, ¥ is the union of smaller alphabets and al-
phabets are ordered by set inclusion; the sub-typing relation
= is set inclusion. A type T is a term constructed from func-
tion symbols and elements of I or the special top type T.
Each type 7 identifies a subset [7] C 7+ (X) according to:

1. The top type is the entire term algebra:

[T] =7x(%) C5)
2. A sort name 7 € [ is just the carrier set X
Vrel, [r] =%, (5)

3. Otherwise 7 = f(71,72,...,7,) Where f is an n-ary

function symbol:

v = f(v1,v2,...,0p)A

N vieln]

1<j<n

[r]=4qveTx(X)

(6)

The sub-typing relation < is extended to arbitrary types:

V1,7 (1 2 79) & ([1] € [74]) (7

We now apply this type system to the specification of the
Taskmap abstraction, as shown in Figure 7. Specifications
of abstraction layers are called domains in FORMULA; Line
2 declares the Taskmap domain. Lines 4-7 declare unin-
terpreted function symbols with types. For example, Line
4 introduces a function for instantiating tasks, which has a
single argument that is the name of the task being instanti-
ated. The exact data format of a task’s name is unimportant,
so it is given the top type (T) with the keyword Any. For
convenience function arguments can be labeled, but these
labels do not affect the typing rules. The syntax:

Task : (name : Any).

assigns the label name to the single argument. Lines 6-7 re-
quire the Constraint and Taskmap functions to accept only
Task and/or Processor terms as arguments. The remainder
of the specification is described in the next section.

3.1.3 Expressive Constraints with Logic Programming

Rich syntaxes often contain complex rules on the construc-
tion of syntactic instances; these rules cannot be captured by
simple type-systems. One common solution to this problem
is to provide an additional constraint language for express-
ing syntactic rules (e.g. OCL). Unlike other approaches, we
choose logic programming (LP) to represent syntactic con-
straints because:

1. LP extends our term-algebra semantics while support-
ing declarative rules,

2. The fragment of LP supported by FORMULA is equiva-
lent to full first-order logic over term algebras thereby
providing expressiveness [14],

3. Unlike purely algebraic specifications, there is a clear
execution semantics for logic programs making it pos-
sible to specify model transformations in the same
framework

4. Many analysis techniques are known for logic pro-
grams; we have adapted these to analyze FORMULA
specifications [24].

FORMULA supports a class of logic programs with the
following properties: (1) Expressions may contain uninter-
preted function symbols, (2) The semantics for negation is
negation as finite failure, (3) All logic programs must be
non-recursive and stratified. We summarize this class now.



/// Platform mapping abstraction

2. .domain Taskmap {

/// Essential concepts
4. Task : ( name : Any ).
& Processor ( name : Any ).
6. Constraint : (Task,Task).
7. Taskmap (Task,Processor) .

/// Key Mapping Constraints

9. noMap :? t is Task, fail Taskmap(t,_) .
10. badMap :? Taskmap(s,p), Taskmap (t,p),
11. Constraint (s, t).

/// Shorthand for endpoints

13. Task (x)
14. Task (y)
15. Task (x)
16. Processor (y)

:— Constraint (Task (x), vy).
:— Constraint (x, Task(y)).
:— Taskmap (Task(x), V).

:— Taskmap (x,

17. Processor (y)) .
/// Model conformance

19. conforms :? !noMap & !badMap.

20. :}

Figure 7. ForMULA description of platform-
mapping problem

Definitions. Let V' be a countably infinite alphabet of
variables disjoint from basic constants: V N'Y = (). Let
the term algebra 7, be an extension of a term algebra with
these variables: 7y (X U V). For simplification, we write
7, for 7y (). A term t is called a ground term if it does
not contain any variables; 7, is the set of all ground terms.
A substitution ¢ replaces variables with ground terms. For-
mally, ¢ is a homomorphism from terms (with variables)
to ground terms that fixes constants. We write ¢(t) for the
ground term formed by replacing every variable x in ¢ with
¢(x). Two terms s and ¢ unify if there exists a substitution

¢ such that ¢(s) = ¢(t).

Expressions. Logic programs are built from expressions
of the form:

h 6—-t1,t2,...,tn,

81, 182, ...y S

where h € 7, is a term called the head. The sets
{t1,...,tn} C T, and {s1,...,5m} C 7, are sets of terms
collectively called the body. Each t; is called a positive term
and each s; is called a negative term. In the k' expression
an implicit relation symbol Rj, surrounds each body term;
an implicit relation symbol R} surrounds the head term h.

Ry (t1), Ri(t2), ..., Ri(tn),

R).(h) «— .
H0) = R (51), =Ru(52), - s Ru(sm)

Intuitively, this expression means the following: If there ex-
ists a substitution ¢ so that each ¢(¢;) is in relation Ry and

for each s; there is no substitution ¢’ that places ¢'(s;) in
Ry, then add ¢(h) to the relation R}, [1].

The semantics of logic programming languages vary on
how this intuition is formalized. The formalization must
take into account the generality of allowed expressions and
the mechanism by which the implicit relations are calcu-
lated. The fragment we utilize is a well-behaved fragment
called non-recursive and stratified logic programming with
negation as finite failure. Logic programs of this fragment
always terminate and have expressive power equivalent to
first order logic.

Semantics. Let < be a relation on expressions. Expres-
sions e; and e; are related (e; < e;) if the head h of e;
unifies with some term in the body of expression e;, regard-
less of whether the body term is positive or negative. A
finite collection of expressions (e;);c g is non-recursive and
stratified if < is an acyclic relation.

Leto : E — Z* U {0} be an ordering of non-recursive
and stratified expressions that respects <:

Vi,j,€ E, (e; < €j) = o(i) < o(j). 8)

Using this ordering, the k" expression tests for the pres-
ence and absence of body terms in a relation R, ;). When-
ever these tests succeed for some substitution ¢, then the
substituted head term ¢(h) is added to the relation Rz 1.

Roy+1(h) < Roy (t1), -+, 7 Roiy (51), -+ (9)

This rule is used in conjunction with the general rule: What-
ever can be found in relation RR; can also be found in relation
Riyy.

Vi > 0, (t S Rz) = (t S Ri+1)- (10)

Additionally, LP uses the closed world assumption: t € R;
if and only if it is in Ry or it is placed in R; by the appli-
cation of rules (9) or (10). The input to a logic program
is the initial relation I?y. The program executes by working
from smallest-to-largest expressions, as ordered by o, build-
ing the contents of the relations along the way. Note that for
non-recursive and stratified programs the choice of o does
not affect the results of the logic program.

Negation as Failure. Negation as failure (NAF) allows
an expression ey, to test for the absence of some terms in the
relation R, (jy. Developing a semantics for NAF in arbitrary
logic programs has been one of the biggest challenges for
the LP community. Fortunately NAF is well-behaved in our
fragment. The only question is how to interpret variables
appearing in negative terms. For example:

f(x) « g(z),~h(z,y). (1)

We use the interpretation consistent with the SLDNF-
resolution procedure found in standard PROLOG: The



variable y is effectively a wild card, so the body succeeds if
there exists a substitution ¢ such that ¢(g(z)) € Ry and
for all other substitutions ¢', ¢'(¢(h(z,y)) ¢ Rok). Sub-
stitutions fix constants, so this is equivalent to the condition
that: 36,V¢', f(d(z)) € Ropry A h(p(x),d'(y)) & Ror)-
More generally, let P be the set of all positive terms and
N be the set of all negative terms in an expression. We
write ¢(T') for the application of a substitution to each term
t € T'. The body of an expression succeeds if:

3p,¥¢', ¢(P) C Rory AN @' (¢(N)) N Rory = 0. (12)

We are interested in finite relations Ry, so we require that
the variables in the head term h appear in some term positive
termt € P.

Queries. A query is just an expression that does not add
new terms to any relations. In FORMULA each query ¢ has a
name, which is a boolean variable that is true whenever the
body of the query is satisfied, otherwise it is false:

gname :?ty,to, ..., ty, TS1,782,...,78,.  (13)
Queries are identified by the special operator “:?”. Since
queries do not modify any relations, it is never the case
that ¢; < e;. Otherwise, queries are ordered like clauses
for the purpose of execution. As a convenience, queries
can be composed with standard boolean operators into new
queries, but this is only syntactic sugar.

Domain Constraints. We use logic programming to cap-
ture the complex rules of rich syntaxes. This is done by
writing a special query called conforms, which evaluates to
true exactly when a syntactic instance satisfies all the rules.
The process for testing if an syntactic instance X conforms
to the syntax is:

1. Set RQ = X.
2. Run the logic program.
3. Check if conforms evaluates to true.

Lines 9-10 of Figure 7 show the key subqueries for con-
formance testing of a Taskmap instance. The noMap
query tests for Task instances that have not been mapped to
Processors. The FORMULA notation “t is Task” is short-
hand for adding the positive body term Task(x) and declar-
ing a local identifier ¢ which stands for this term. The key-
word fail means negation as failure, so fail Taskmap(t,-)
tests that there is no appropriate mapping to any Proces-
sor. The underscore character is shorthand for a new vari-
able that does not occur anywhere else in the expression; it
emphasizes that this variable behaves like a wild-card.

p3 = processor(3),
constraint(tl,t2),
taskmap(tl, p3),
taskmap(t2, p3),

t1 = task(1),t2 = task(2),
D @

t4 = task(4),t5 = task(b),
p6 = processor(6),
constraint(t4,t5),

taskmap(t4, p6), 2
taskmap(t5, p6)

task(7)

Figure 8. Syntactic instance with bad task as-
signments and an unmapped task.

The badMap query checks for badly-scheduled tasks.
Line 19 builds the conforms query from a boolean combi-
nation of noMap and badMap. The expressions in Lines
13-17 allow the logic program to assume the existence of
Tasks and Processors terms appearing in Constraint and
Taskmap terms. Figure 8 shows a syntactic instance vi-
olating both of these rules. Task(7) satisfies the noMap
query, while the assignments (s = 1,t = 2,p = 3) and
(s =4,t =5,p = 6) satisfy the badMap query. However,
the instance in Figure 6 does conform to the domain.

3.2 Domains

We have used the term domain to describe a constraint
system, defined through logic programming, which cap-
tures the rich syntax of an abstraction layer. In this sec-
tion we formalize the concept of a domain. A domain D
is a structure consisting of: (1) a finite signature Y p of
primitive uninterpreted functions symbols (with typed ar-
guments), (2) a finite signature Y  of derived uninterpreted
function symbols and, (3) a set of logic programming ex-
pressions E, one of which must be the special query con-
forms.

D={(Yp, Tg, E) (14)

We assume that a fixed order-sorted alphabet ¥c is com-
mon to all domains. The additional signature Y r contains
function symbols used for the intermediate storage of data
during execution of the logic program. We call these de-
rived symbols, because they are always derived from an in-
put instance X and never appear directly in any syntactic
instance. In FORMULA derived symbols are not explicitly
declared and always start with a lower-case letter. Primitive
symbols (Y p) may appear in syntactic instances; they start
with an upper-case letter and must be explicitly declared.
All the examples until this point have used only primitive
symbols.

Previously we showed that domains can be automati-
cally extracted from metamodels and other modeling arti-
facts [25]. In this paper we do not focus on converting



/// Partial architecture
2. ‘resc :? Constraint(x,y), Constraint (y,z).

/// Finish the design for me...

4. threePath :? resc & conforms.

Figure 9. Queries for describing a design
space.

metamodels, feature diagrams, and platforms to domains,
but study how domains can be used once this translation is
accomplished.

3.3 Finite Model Finding

Throughout this paper we will show that domains can be
formally analyzed for many purposes. FORMULA provides
a powerful technique for supporting formal analysis called
finite model finding. Conceptually, the procedure is simple:

Input:
Output:

A domain D and query ¢ from D.

A finite syntactic instance X, such that ¢
is satisfied if Rp = X.

Or, report that no such X exists.

(A finite syntactic instance is a finite set of terms from
Ty, (£))

Finite model finding for first-order logic is undecidable,
so in some cases the procedure will neither be able to re-
port success nor failure. FORMULA implements a unique
model finding procedure [24] that combines abduction tech-
niques from logic programming [17] with state-of-the-art
SMT (SAT Modulo theories) solving [16]. The details of
this procedure are beyond the scope of this paper.

The Taskmap abstraction illustrates the power of model
fininding. Figure 9 shows two additional queries added to
the Taskmap domain. The resc query is satisfied if there
exists some resource constraints between tasks x, y and y, z.
The threePath query is satisfied if the resc and conforms
queries are both satisfied. The model finding procedure
for the threePath query must construct syntactic instances
containing at least three tasks that are well-scheduled. This
amounts to solving a range of coloring problems, where
the number of colors is the number of processors in the
instance. Figure 10 shows one instance returned by FOR-
MULA. It contains two colors (processors) and schedules
the tasks accordingly.

Our model finding procedure not only constructs satis-
fying instances, but also determines a range of finite solu-
tions by producing bounds on the number and types of terms
that can appear in a satisfying instance. This range can be
viewed as a design space of solutions to the query. Figure
11 shows the design space represented as an automatically

t1 = task(1),t2 = task(2),t3 = task(3) 1
constraint(tl,t2), 4
constraint(t2,t3),

p4 = processor(4), pb = processor(5), 2
taskmap(tl, p4),
) 9
)

taskmap(t2, p5),
taskmap(t3,p4), 3

Figure 10. Syntactic instance generated by
FORMULA

/// Restriction to finite models

. idomain ThreeSpace restricts Taskmap {

bounds {
tl=Task (x), t2=Task(y), t3=Task(z),
pl=Processor (u), p2=Processor(v),
p3=Processor (w), Constraint(tl,t2),
Constraint (t2,t3), Taskmap(tl,pl),
Taskmap (t2,p2), Taskmap(t3,p3)
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Figure 11. Design space generated by model
finding procedure.

generated domain called ThreeSpace. Line 2 declares the
ThreeSpace domain as a restriction of the Taskmap do-
main, meaning its conforming instances also conform to the
Taskmap domain. (This concept is explained fully in the
next section.) The bounds block in Line 3 contains a fi-
nite set B of primitive terms (with variables). An instance
X conforms to the ThreeSpace domain if X conforms to
Taskmap and:

3¢, ¢(B) = (Roo N T, (%)) (15)

In other words, if the logic program is executed for Ry = X
then R, contains all terms calculated by the logic program.
Throw out all the terms in R, that are not primitive terms,
then there must be a substitution ¢ where ¢(B) is exactly
the remaining terms. The design space above captures all
legal assignments of three tasks with constraints to any-
where from one to three processors. In summary, the model
finding procedure also produces design spaces with relevant
bounds on contents of satisfying models. Also, note that the
bounds construct does not increase the expressiveness of
FORMULA. It can be reduced to a finite set of LP expres-
sions.



4 Composition of Syntaxes

Composing syntaxes is the process of building larger
syntaxes from smaller ones. This process is important
in model-based development, because rich syntaxes corre-
spond to subproblems of the overall design problem. For
example, the Taskmap abstraction represents the prob-
lem of scheduling tasks onto processors. Similarly, the
ECU/Bus language (Figure 2) represents the problem of ar-
chitecting a hardware substrate. Both of these problems
must be solved to construct a complete system, and this
requires joining together the two rich syntaxes in a mean-
ingful way.

There already exists mechanisms for composing syn-
taxes, which are well-known to the model-based commu-
nity. Many composition mechanisms take their inspiration
from modern programming languages, borrowing concepts
like namespaces and interfaces to tie together pieces of syn-
tax. The package merge mechanism of UML 2.0 supports
many styles of composition, including these. Our goal is
neither to define the best mechanism for syntax composi-
tion, nor to provide a laundry-list formalizing all existing
mechanisms. Instead, we provide a basic set of composition
operators that can also be formally analyzed. Table 2 lists
the basic composition operators available in FORMULA.

Includes. The includes operator is used to import the
declarations of one domain into another domain:

domain D’ includes D { ... }.
The resulting domain D’ has

Y% 2 Yp, Y D TR, E' 2 Elconforms/D.conforms|

(16)
The notation E[z1 /Y, ..., x,/x}] denotes the expressions
formed by replacing every occurrence of x; in E with z}.
Thus, domain D’ has direct access to the declarations in D,
but does not necessarily utilize the conformance rules of D
because it is renamed to D.conforms. The includes oper-
ation is defined if the signatures of D’ do not contain con-
tradictory function symbol definitions, and the expressions
FE are non-recursive and stratified.

There are several variants of includes that make stronger
statements about D’. The restricts keyword requires that
no new primitives are introduces in D’ and D.conforms
is implicitly conjuncted onto the conforms of D’. Let the
models(D;) be the set of all finite syntactic instances that
satisfy the conforms query of domain D;. Then restricts
enforces that:

models(D") C models(D).

The extends variant implicitly disjuncts D.conforms onto
the conforms of D’, therefore:

models(D") 2 models(D).

a7

(18)
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Renaming. The renaming operator “as” gives new
names to the function symbols and queries in a domain. The
expression:

(D as X)

produces a domain D’ with the same signatures and expres-
sions as D, except that every occurrence of a function sym-
bol and query name is prepended by “X.”.
Pseudo-product. The pseudo-product operator “x” is a
precursor for building the categorical product of domains.
The expression:

(D1 * Do)

defines a domain D’ where:
Yo =TLUY% YT, =TLUT%,
E'" = El[conforms/D;.conforms| U
E?[conforms/Dy.conforms] U
{conforms :?7 Dy.conforms & Ds.conforms.}
(19)
The pseudo-product has the property that if D; and D5 have
disjoint signatures and query names, then:

models(D") = models(D1) x models(Ds). (20)

This is called the categorical product; it means that every
model X € models(D’) can be uniquely partitioned into
two subsets X and X5 so that X; € models(D;). This con-
struct is important, because it combines two domains into a
larger one while guaranteeing no non-trivial interactions.

Pseudo-coproduct. The pseudo-coproduct operator “+”
is a precursor for building the categorical coproduct of two
domains. The expression:

(D1 + D»)
defines a domain D’ where:
Yo =TLUY%, Yr=TLUTZ,
E' = El[conforms/D;.conforms| U
E2[conforms/Dy.conforms| U
{conforms :? D;.conforms XOR Ds.conforms.}
(21
Let the models(D;) be the set of all finite syntactic in-
stances that satisfy the conforms query of domain D;. The

pseudo-product has the property that if D; and D5 have dis-
joint signatures and query names, then:

models(D") = models(D1) & models(Ds). (22)

This is called the categorical coproduct; it means that ev-
ery model X € models(D’) is either in models(D;) or
models(Ds), but never both. Again, this construct is im-
portant, because it combines two domains into a larger one
while guaranteeing no non-trivial interactions.



Operator Usage

Description

includes, restricts, extends operators D’ includes D,
D’ restricts D,

D’ extends D,
renaming operator “as” Das X
pseudo-product operator “x” Dy x Dy
pseudo-coproduct operator “+” D1+ Dy

Imports the declarations of D into D’ and while renaming
the conforms query of D’ to D’.conforms.

Produces a new domain from D by replacing every occurrence of a function
symbol f(...) with X.f(...) and every query name ¢ with X .q.
Produces a new domain D’ by combining the specifications of D; and D,
and then adding the query (conforms :? conformsp, & conformsp,).
Produces a new domain D’ by combining the specifications of Dy and D-,
and then adding the query (conforms :? conformsp, XOR conformsp,).

Table 2. Basic set of composition operators.

4.1 Properties of Compositions

Regardless of the approach, complex modeling pro-
cesses are often plagued by the non-local effects of com-
position. In our framework compositions may yield unex-
pected results due to interactions between declarations and
logic programs. A minimum requirement to ensure that
composition did not introduce inconsistencies it to check
non-emptiness of models(D). The model finding proce-
dure of FORMULA is suited for this task: Perform modeling
finding on the conforms query to check non-emptiness.

However, checking non-emptiness of models is only one
of the tools available in FORMULA. Many of the compo-
sition operators guarantee relationships between domains.
For example, recall the use of restricts in precisely defin-
ing the design space of Figure 11. The composition opera-
tors can also be combined to guarantee relationships by con-
struction. For example, given a family of domains (D;);cr
and an one-to-one renaming function r : I — X, then the
categorical product can always be built by the construction:

(D1 asr(l)«Dyasr(2)x...x D, as T(n)) (23)

where renaming is used to ensure disjointness of declara-
tions. The categorical coproduct can be formed by a similar
construction. In the next section we use the composition op-
erators to formally compose more aspects of our automotive
example.

4.2 Building the CarTask Domain

We put these techniques into practice to support
platform-based design in the automotive domain. The first
step is to specify the CarWare DSL (Figure 2). Figure 12
shows the primitive signatures for the CarWare DSL. The
Car, ECU, and Msg concepts are encoded as (n + 1)-
ary function symbols, where n is the number of attributes
(fields) per class in the metamodel. An extra argument is

/// Car hardware abstraction

2. idomain CarWare ({

& Car : (

4. name : Id,

& model : String,

6. make : String

7. ) o

8. Ecu : (

9. name 8 L@l

10. isCritical : Bool,

11. memorySize : PosInteger

12. ) .

13. Msg : (

14. name 8 el

15. maxSize : PosInteger,

16. ecuSends : Bool,

17. ecuReceives : Bool

18. ) .

19. Flex : (Ecu,Ecu). Can : (Ecu,Ecu).
20. Contains : (parent : Any,child : Any).

Figure 12. Symbols for CarWare domain.

added to each function symbol to store an identifier. The
relational concepts CAN and FlexRay are encoded as bi-
nary function symbols over terms. The bus class is abstract
in the metamodel, so it becomes a derived symbol that is
not explicitly declared. Finally, containment is captured by
the binary symbol Contains(-,-). A term Contains(z,y)
indicates that = contains y.

The CarWare domain is defined by the expressions
shown in Figure 13. Lines 25-27 derive the legal forms of
containment through the derived cancon (cancontain) sym-
bol. Lines 22-23 relate the concrete Can and Flex terms to
the abstract bus terms. Lines 29-35 give the domain con-
straints for this domain. Line 29 disallows Msgss that are
neither sent nor received. Lines 30-31 require at least one
Ecu per Car. Lines 32-33 require checks that all contain-
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/// Subtype relationships
22. bus(x) :— x is Can.
23. bus(x) :—- x is Flex.
/// Containment relationships
25. cancon(x,y) :— x 1s Car, y is Ecu.
26. cancon(x,y) :— x is Car, bus(y).
27. cancon(x,y) :— x is Ecu, y is Msg.
/// Domain constraints
29. badMsg :? Msg(id, sz, false, false).
30. nokECU :? x 1s Car,
31. fail Contains(x, Ecu(_,_,_)).
32. badCon :? Contains(x,y),
33. fail cancon (x,V) .
34. conforms :? !noEcu & !badCon &
35. !badMsg.
36. '}

Figure 13. Domain constraints in Carware.

/// Composition of abstractions
. idomain CarTask restricts

( Taskmap * CarWare) {
:? Ecu(id,_,_),

fail Processor (id).

noPrc

noEcu :? Processor (id),
fail Ecu(id,_,_).

conforms :?

'noPrc & !noEcu.

©®mND oA BN

Figure 14. Composition of Taskmap and Car-
Ware.

ments are proper. Lines 34-35 aggregate all of the rules into
the conforms query.

The CarTask domain combines the Taskmap and Car-
Ware domains. Both pseudo-product and restriction opera-
tions are used to carefully build the composition, as shown
in Figure 14. In Line 3 the product of the two domains is
constructed. The product composition is an ideal starting
point, because no interactions can occur between the do-
mains. Next, the CarTask domain adds additional queries
that restrict the product to models where Processors and
Ecus are related by their unique IDs. Lines 4-5 search for
Ecus without corresponding Processors; Lines 6-7 search
for Processors without corresponding Ecus. Therefore,
these additional domain constraints bind the two abstrac-
tions together by “equating” processors and ECUs.

The CarTask domain can be examined for consistency
using model finding. First, we prove that the composition
does not contain contradictions. Modeling finding on con-
forms yields the following well-formed model in the com-
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position:

¢ = CarWare.Car(0,“a”,“b”),
e = CarWare.Ecu(2, false,3),
CarWare.Contains(c,e),
TaskM ap.Processor(2)

In conclusion, disciplined composition operators combined with
model finding provides a framework to rigorously reuse rich syn-
taxes occurring in model-based development.

5 Transformations and Validation

Rich syntaxes can also be related through translators; a trans-
lator T : models(D) — models(D'") takes a syntactic instance
from domain D and translates it into a syntactic instance in do-
main D’. In traditional programming languages a translator may
be a compiler that generates machine code from C++. In model-
based development translators, also called model transformations,
are used to: (1) Attach behavioral semantics to rich syntaxes [11]
(i.e. semantic anchoring), (2) weave collections of specifications
into a single whole [21] (i.e. aspect/model weaving), (3) and mi-
grate models between platforms/abstraction layers. Transforma-
tions can be constructed from parts of other transformations, pro-
viding a natural mechanism for reuse. For example, the transfor-
mation 7(X):

7(X) = 73(72(11 (X))

is 73 after 7o after 7.
5.1 Transformations

In our framework transformations are also described using non-
recursive and stratified logic programs. A transformation 7 is:

T=(D,D', Yy, E,) (24)

1. D is the input domain, and D’ is the output domain; domains
must have disjoint function symbols.

2. Yy is a finite signature contains helper function symbols
(disjoint from those in D, D’) used by the transformation.

3. E- is a LP that examines input terms from D and produces
output terms in D’. It must that EU E, U E’ is non-recursive
and stratified.

A transformation is executed over a syntactic instance X from
domain D. First, set Rg = X and execute the logic program
E U E; U E'. Next, drop all terms from R not in the output
domain; this is the syntactic instance X',
!
X' = Roo N'Tyy, () (25)
For example, let D = CareWare, D' = Taskmap, Ty =
0, and E; = {Processor(xz) «— Ecu(x,y,z)}. This transfor-
mation takes a network of ECUs from the CarWare syntax and
produces a set of processors in the Taskmap syntax with the same
identifiers.
Figure 15 shows the notation for writing this transformation.
Line 1 declares that the transformation Simple has input domain



1. itransform Simple (CarWare) returns
2. (Taskmap) {

3. Processor (id) :- Ecu(id,_,_).

4. i}

Figure 15. Simple transformation.

CarWare and output domain Taskmap. In this example no helper
symbols are needed. Line 3 contains the single expression that pro-
duces a Processor term for each Ecu term. Note that renaming
operators can be used when the input and output domains are not
sufficiently disjoint.

5.2 Structure Preserving Transformations

Transformations, like any other modeling artifact, may contain
mistakes. An incorrect transformation may manifest itself by con-
verting some well-formed input (w.r.t. D) to a malformed output
(w.r.t. D’). In this case the transformation does not respect the
rules of the rich syntax, which is a serious error. However, this
property is not easily established if the input/output domains are
rich syntaxes. For example, any transformation into the TaskMap
domain must always yield a well-colored set of tasks. In the Sim-
ple transformation this is true because every output contains zero
tasks, which is trivially well-colored. However, for more complex
transformations this fact is not obvious.

Formally, a transformation 7 characterizes a map:

17 :P(Txp) — P(’TT/P) (26)
between the powersets of the term algebras of the input and output
domains. We say that a transformation 7 is structure preserving
(SP) if:

VX € models(D), [X]™ € models(D"). (27)
In other words, every well-formed instance in D is mapped to a
well-formed instance in D’. Checking 7 for the SP property is a
form of validation; this guarantees that some properties are cor-
rect. However, there may be other errors not manifested at the
syntactic level, which require additional techniques to discover
[60, 28].

Our model finding procedure can determine if a transformation
is not structure preserving. Transformations that are not SP will
have some well-formed input that is malformed under the transfor-
mation. It is possible to search for such an input by constructing
an analysis domain D :

domain D~ includes (D * abstract(D’)) {
TH: ET!
notSP :? D.conforms & !D’.conforms.

}

D, is formed by constructing a modified product of the in-
put/output domains, and then combining this with the helper sym-
bols Y g and transformation rules E-. The operation abstract(-)
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creates a domain where all of the primitive symbols have been
changed to derived symbols:

abstract(D) = (0, Tp U TR, E). (28)

The query notSP is satisfied if there exists a syntactic instance
composed entirely of terms from the input domain, such that
D.conforms is satisfied and D’.conforms is not satisfied. If
notSP fails, then the transformation is structure preserving. This
property is due to the fact that all of the primitive symbols of D’
have been changed to derived symbols, which forces the model
finding procedure to consider only syntactic instances of the input
domain. Furthermore, the only relationship between the input and
output domains is through the transformation, therefore the model
finding procedure must reason through the transformation rules.
In the next section we show an application of to feature diagrams.

5.3 Example: Features

Features identify slices of a system that are not isolated from
each other. Though feature diagrams capture the legal combina-
tions of features, the engineer must relate each feature to a part of
the implementation. In this section we show that features can be
defined as transformations from a feature language to an imple-
mentation syntax. Transformations that are not structure preserv-
ing correspond to badly specified features.

Figures 16, 17 shows several features corresponding to slices
of an automotive embedded system. This example is adapted from
specifications developed by the AUTOSAR initiative, which is a
consortium whose goal is a standard automotive embedded sys-
tems platform [3]. Briefly, The Car feature requires a Dash-
boardECU which hosts the Alerter task. This task controls in-
dicators on the dashboard that alert the driver to problems. The
Maneuvering feature requires an EngineECU that hosts the En-
gineDynamics task. This task monitors the state of the engine,
e.g. locations of pistons and temperature. The TorqueCalculator
task, which must be located on a different ECU, consumes the en-
gine data to calculate the torque generated by the engine. Finally,
the CruiseControl feature needs a CruiseControl task residing
on the CruiseECU. Additionally, a LeftSensor and RightSen-
sor must be available to report exact conditions of the left/right
wheels. The PowerTrainCoordinator task takes input from the
Cruise Control and affects the state of the engine.

In this example features are both partial specifications and span
implementation. For example, the Maneuvering feature intro-
duces a TorqueCalculator, but does not specify where it must
reside. Notice how the Automatic feature, which is at the bottom
of the feature hierarchy, affects the TorqueCalculator task that
was introduced at the top of the feature hierarchy. This is typical
of the “cross-cutting” nature of features.

5.3.1 Defining the CarFeat Language

We begin by encoding the feature diagram as a domain, called
CarFeat. Figure 18 shows the encoding, which reuses the intu-
ition that a feature diagram is a grammar. The primitive symbol
Termin(-) names the terminal features and the derived symbol
nonter () names nonterminal features. Finally, the derived sym-
bol badimplies(-, -) is derived whenever feature x implies feature



FEATURE: Car

FEATURE: Maneuvering

Engine
Dynamics

FEATURE: Cruise Control

Dashboard
ECU

Engine
ECU

Torque
Calculator

Cruise
Control

PowerTrain
Coordinator

Right
Sensor

Cruise
ECU

Figure 16. Relationships between features
and implementation.

y, but y is not in the feature set. Lines 2-3 introduce a new fi-
nite type called Feats that enumerates the feature names. In the
interest of space, the Deceleration feature is treated as terminal.

The expressions of the domain closely resemble a set of gram-
mar productions. The Automatic and Manual features are mu-
tually exclusive; two expressions encode this property (Lines 10-
13). Implications between features are easy to capture with LP.
Lines 14-15 create a badimplies term when the Cruise feature
is used without the Autom feature. The nonterminal feature Car
is produced whenever the Maneuvering feature is produced with
no occurrences of badimplies. A set of features conforms to the
CarFeat domain if the nonterminal nontermin(“Car”) is pro-
duced (Line 16).

5.3.2 The FeatMap Transformation

In this section we represent the relationship between features and
partial specifications using FORMULA transformations. For in-
stance, the expressions below:

Task(“Alerter”) «— nonter(“Car”).
Processor(“DashboardECU”) < nonter(“Car”).
Taskmap(Task(“Alerter”),

Processor(“DashboardECU”)) <« nonter(“Car”).

generate the components associated with the Car feature. As a
shorthand, FORMULA allows expressions with the same body to
be combined into a single expression:

Task(“Alerter”), Processor(“DashboardECU”), ...
— nonter(“Car”).
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FEATURE: Acceleration

Pedal
Position

Driver
Request

Accelerator

ECU

FEATURE: Deceleration

Brake
Pressure

Dashboard
ECU

FEATURE: Manual

Engine
ECU

Torque
Calculator

FEATURE: Automatic

PTC
ECU

Torque
Calculator

PowerTrain
Coordinator

Figure 17. More features and implementation.

Figure 19 shows a partial specification on the FeatMap transfor-
mation. Lines 4-11 define the nonterminal Maneuvering feature
and Lines 13-20 define the terminal Automatic feature. The re-
maining features are omitted in the interest of space.

Though the FeatMap transformation is easily specified, its cor-
rectness depends on the input/output domains. For example, the
Cruise feature introduces the PowerTrainCoordinator task with-
out assigning it to a processor, which could indicate a mistake in
the specification. However, the Automatic feature always accom-
panies Cruise, and Automatic does assign PowerTrainCoordina-
tor to the PTC_ECU. Thus, correctness cannot be determined on a
per feature basis, but must take into account the constraints on the
feature language and the implementation syntax. This is precisely
the structure preserving property described earlier.

Our example intentionally contained several mistakes. FOR-
MULA detects these mistakes by constructing the analysis domain
DrFeatMap and then performing model finding over the query
notSP. The procedure returns several interesting syntactic in-
stances:

X1 = {termin(“Manual”), termin(“Decel”)}  (29)
and
terman(“Autom”),
X2 =< termin(“Cruise”), (30)

termin(“Decel”)

It also easy to find out why these instances are not structure pre-
serving. Applying the FeatM ap transformation to X yields the
set of terms X{ = [X;]7°**™P  Next, we ask FORMULA to
report the terms that satisfy the notConforms query:

notConforms :? lconforms



domain CarFeat {

Feats {"Car", "Maneuv", "Cruise",
"Accel", "Decel", "Autom", "Manual"}.
Termin : ( Feats ).

/// Grammar derivations
nonter ("Car") :- nonter ("Maneuv"),
fail badimplies(_,_).

nonter ("Maneuv") :- nonter ("Accel"),
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termin ("Decel") .

10. nonter ("Accel") :- termin ("Autom"),
11. fail termin ("Manual") .

12. nonter ("Accel") :- termin("Manual"),
13. fail termin ("Autom") .

14. badimplies ("Cruise", "Manual") :-—

15. termin ("Cruise"), termin ("Manual").
16. conforms :? nonter ("Car").

17}

Figure 18. An automotive feature language.

This yields the following set of terms and query assignments:

} €1y

indicating that the TorqueCalculator and EngineDynamics tasks
violated a scheduling constraint. Similarly, evaluating notCon-
forms on X% = [X2]7¢**M?P produces the following trace:

conforms = false,badBap = true,
Task(“TorqueCalc”), Tusk(“EngineDyn”)

{conforms = false, noMap = true, Task(“LeftSensor”)}

{conforms = false, noMap = true, Task(“RightSensor”)}

(32)

In this case, the LeftSensor and RightSensor tasks were not as-
signed to processors.

6 Design-Space Exploration

The abstractions and analysis techniques of model-based devel-
opment are useful for automatically investigating many possible
system architectures. This process is called design-space explo-
ration (DSE). In order to apply DSE the user must characterize:
(1) a set of architectures, called the design space, and (2) a fit-
ness function that measures the optimality of a point design. DSE
prunes the design space, using the fitness function, to present a
near-optimal set of designs. The optimization of complex fitness
functions is not unique to model-based design and spans many
fields including nonlinear control theory [58], game theory [42],
and artificial intelligence [62]. However, the success of DSE de-
pends not only on the optimization techniques, but also on the rep-
resentation of the design space. It is easy for the size of the space
to become so large that it cannot be effectively explored. Existing
techniques reduce the size of the space by approximating the set of
all interesting designs with a set of syntactically related designs,
thereby making exploration feasible [43, 15].

We use the model finding procedure implemented in FORMULA
[24] to compactly represent design spaces defined over a rich syn-
tax. This procedure converts a goal/domain pair (G, D) to a
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1. itransform FeatMap (CarFeat) returns
2. (Taskmap) {

3. /// Maneuver mapping

4. Task ("TorqueCalc"),

5. Task ("EngineDyn"),

6. Processor ("EngineECU"),

7. Constraint (Task ("TorqueCalc"),

8. Task ("EngineDyn")),

9. Taskmap (Task ("EngineDyn"),

10. Processor ("EngineECU"))

11. :—nonter ("Maneuv") .
12. /// Automatic control mapping

13. Task ("PowerTrainCoor"),

14. Task ("TorqueCalc"),

15. Processor ("PTC_ECU"),

16. Taskmap (Task ("PowerTrainCoor"),

17. Processor ("PTC_ECU")),

18. Taskmap (Task ("TorqueCalc"),

19. Processor ("PTC_ECU"))
20. :—nonter ("Autom") .

Figure 19. Transformational specification of
features.

Boolean formula ¢¢ (%), where Z is a set of Boolean variables.
Each solution s to ¢ corresponds to an interesting instance solv-
ing the goal; ¢ may have an exponential number of solutions (in
the size of ). Thus, the Boolean formulas should be viewed as a
compact representation of a space of solutions. The n‘" point de-
sign can be lazily constructed by conjuncting the (Boolean) nega-
tion of the previous n—1 solutions s, . . ., Sp,—1 to ¢ and solving

On:
A (=s)

1<i<n—1

$1=9a, Pn>1=dc A (33)
Or, the formulas can be converted to Boolean decision diagrams
(BDDs) permitting easy enumeration of solutions. Both of these

approaches have been used in design space exploration.
6.1 A Design Space Representation

In this section we explore possible architectures for a network
of ECUs connected by Buses so that the overall system is (1) fault
tolerant, (2) minimizes cabling (physical length of wires), and (3)
maximizes throughput. We focus on constructing the design space
over which exploration takes place. Techniques for formulating
and evaluating a reasonable fitness measure can be found in [15].

The first step towards DSE is a suitable rich syntax for express-
ing relevant architectures. We have already developed such a rich
syntax, called the CarTask domain (Figure 14), which represents
networks of ECUs combined with tasks. Given a set of tasks T
and processors P, the design space should be a set of CarTask
instances, each of which contains 7" and P along with some bus
architecture. However, the original CarTask domain did not en-
force that ECUs should be connected; so additional expressions



/// Car exploration domain
2. .domain CarExplore restricts CarTask ({
3. hopl (x,z), hopl(z,x) :—
4. bus(x,z), x != z.
5. hop2 (x,y,z) :-—
6. hopl (x,y), hopl(y,z), x != z.
7. hop3 (w,x,y,2z) :— hop2(w,x,Vy),
8. hopl(y,z), z != w, z != x.
9. tooFar :? x 1s Processor,
10. y is Processor, z is Processor,
11. w is Processor, fail hopl (w,x),
12. fail hop2(w,x,y), fail hop3(w,x,vy,z).
13. tooClose :? hopl(x,y), hopl(y,z),
14. hopl (z,x) .
15. conforms :? !tooFar & !tooClose.
16. '}

Figure 20. Restricting the CarTask domain for
DSE.

1. hasFeats :? FeatMap ({Termin ("Cruise"),
2. Termin ("Autom"), Termin ("Decel")}).
&l explore :? hasFeats & conforms.

Figure 21. Constructing a design space

must be added to the CarTask domain to define a reasonable de-
sign space.

Figure 20 shows the additional expressions needed for DSE
over bus topologies. The derived symbols hopl, hop2, hop3
record the distance between any two processors in the network.
Two processors = and z that are farther than three hops will not
derive any of these terms. Lines 3-8 define hops using disequal-
ity constraints, which require two variables to take distinct values.
Topologies that are too weakly connected or too strongly con-
nected (too much cabling) are characterized with the tooClose
and tooFar queries. Two processors x and z are too far away if
they a farther than three hops (Lines 9-12). Three processors z, v,
and z are too close if they form a triangle (Lines 13-14). Line 2
declares that the CarExplore domain is a proper restriction of the
CarTask domain; conformance is modified with these additional
topology requirements (Line 15).

Constructing the design space is now a matter of writ-
ing a query in the CarExplore domain. Figure 21 shows
a query explore that constructs a design space for a Car
containing the Cruise control and Automatic transmis-
sion features. The query hasFeats is created by ap-
plying the the FeatMap transformation to the input terms
{Termin(“Autom”), Termin(“Cruise”), Termin(“Decel”) }.
The output of this transformation is the body of the query. The
explore query requires implementations of the feature set with
bus topologies that are neither too dense nor too sparse.
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Ground Term Variable
Processor(“EngineECU”) aq
Processor(“DashboardECU”) as
Processor(“CruiseECU”) as
Processor(“PTCECU”) a4
Task(“LeftSensor”) as
Task(“RightSensor”) ag
Constraint(. .. (“LeftSensor”), . .. (“RightSensor”)) ar

Table 3. Ground terms appearing in goal.

6.2 Details of the Design Space

We now summarize the resulting design space constructed by
model finding. The procedure attempts to calculate a finite set of
candidate terms S with the property that if there exists any solu-
tion to the query, then there must also exist a solution S’ C S.
Once the set S is calculated, each term ¢; € S is converted to a
Boolean variable b;, and a Boolean formula ¢¢ is generated over
these variables. If b; is true in satisfying assignment of ¢, then
the term ¢; is in the solution; otherwise ¢; is not in the solution.

Intuitively, the set of candidate terms is built in several phases.
First, non-negated terms without variables, called ground terms,
appearing in the query must be part of any solution; these terms
are immediately included in S. Table 3 shows some of the
ground terms introduced by the FeatMap transformation. The
Variable column lists the Boolean variable associated with each
term. Next, the procedure finds ground terms that must be con-
sidered because of negations. For example, the query —toofar
will be considered for w = Processor(“CruiseECU”)
and * =  Processor(“EngineECU”). This causes
hopl(w,x) to be considered, resulting in the conclusion
that bus(... (“CruiseECU”), ... (“EngineECU”)) may be in
some solution. Table 4 shows ground terms introduced by this
process. Notice that these terms include all the possible Buses
that may appear in the architecture.

Model finding may also introduce terms that contain variables.
Recall that the Cruise control feature contained tasks LeftSensor
and RightSensor that were not assigned to any processor. How-
ever, these tasks must be assigned to processors, otherwise noMap
will be satisfied. In response, FORMULA introduces new variables
p1 and po that stand for these missing processors. Table 4 also
shows some of the non-ground terms.

After the candidate set S has been constructed, a Boolean for-
mula ¢ is produced that encodes the query. In the interest of
space, we only sketch ¢¢. The ground terms in Table 3 appear
in the query and must be in any solution, leading to the simple
encoding:

¢é:a1/\a2A.../\a7 34)

The domain constraints require an Ecu term for each Processor
term, and a Taskmap term for each Task. The encoding forces



Ground Term Variable
bus(... (“EngineECU”), ... (“DashboardECU")) b1
bus(. .. (“CruiseECU”), ... (“EngineECU")) ba
bus(. .. (“EngineECU”), PTCECU) bs
bus(PTCECU, ... (“DashboardECU”)) ba
bus(PTCECU, ... (“CruiseECU”)) bs
bus(. .. (“DashboardECU”), ... (“CruiseECU”)) be
Non-ground Term Variable
Ecu(“EngineECU", X1, yl) C1
Ecu(“CruiseECU”, 22, y2) &)
Processor(p1) c3
Processor(p2) c4
Taskmap(. . . (“LeftSensor”), Processor(p1)) cs
Taskmap(. . . (“RightSensor”), Processor(pz2)) Ce

Table 4. Terms implied by negations.

these terms to appear in pairs:

(a1 A 01) Vv (“(11 N —|C1) N
17 (a2 A c2) V (a2 A —c2) |A
(Z)G o [ (a5 AN 05) Vv (—|a5 AN —|65) }/\ (35)
[(aa/\CG)\/(—'(lﬁ/\—'CG)} A...

Care must be taken when mapping tasks LeftSensor and Right-
Sensor due to scheduling conflicts:

¢G " = (pr #p2) V (mar V =cs V —ce) (36)

This is not strictly a Boolean formula, because p1 # p2 is a dise-
quality over non-Boolean variables. These non-Boolean disequal-
ities can also be reduced to Boolean variables [10]; for simplicity
we write the formula in this extended form. Next, buses may be
too close:

(—|b1 V =by V —|b6) A\ (—|b1 V =bsz V —|b4)/\

IV _
¢ = (ﬁbg V —b3 V jb5) A\ (ﬁb4 V —bs V jbﬁ) VAN 37
Finally, processors must be close enough to each other. This rule

generates a large subformula; only a small portion is shown:

(]32:(a1/\a2/\b1)\/(a1/\a3/\a2/\b2/\b6)\/... (38)

The entire design space is represented by the conjunction of
these formulas:

I IT . JIIT , IV « ,V
oc = pa N Nog Nog N g

Currently the SMT solver Z3 [16] is used to evaluate these formu-
las. Z3 also chooses reasonable values for non-Boolean variables,
like processor IDs, when it returns a satisfying assignment.
Figure 22 shows some of the interesting architectures in this
design space. The first design is a star topology; all messages
pass through the EngineECU. The topology of the second de-
sign splits the system into two subnetworks with a strategically
placed bridge between the PTC and Accelerator ECUs. Without

(39)
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(iii)
Key Value Key Value
A DashboardECU 6 TorqueCalc
1 Alerter E AccelECU
2 BrakePress 7 DriverReq
B EngineECU 8 PedalPos
3 EngineDyn F p1
C CruiseECU 9 LeftSensor
4 Cruise G D2
D PTCECU 10 RightSensor

5 Coordinator

Figure 22. Members of the design space.

the bridge, some ECUs would be too far from each other. Design
three takes a different approach, and splits the network into two
star topologies with a bridge between the subnetworks. Finally,
the fourth design is the most serialized design possible. This archi-
tecture is possible because the left and right sensors are scheduled
onto existing ECUs, instead of instantiating new ones.

7 Related Work

Formalizations and applications of rich syntax have appeared
in many different forms. Within the domain-specific language
community, graph-theoretic formalisms [18, 7, 48] have received
the most research attention. However, the majority of work fo-
cuses on graph rewriting systems as a foundation for model trans-
formations. See [40, 32] for a taxonomy of existing graph-
theoretic model transformation approaches. The problems of cal-
culating properties of rich syntax, composing syntax with known



properties, and constructing design space representations have not
received the same attention from graph-theoretic methods. For ex-
ample, the model transformation tool VIATRA [12] supports ex-
ecutable Horn logic (i.e. Prolog) to specify transformations, but
does not focus on restricting expressiveness for the purpose of
analysis.

The visibility of UML has driven researchers to formalize it
semantics. This is a non-trivial task because UML includes many
capabilities (diagrams) including metamodeling, state machines,
activities, sequence charts (interactions), and use-case diagrams
[47]. Approaches for formalizing UML must tackle the temporal
nature of its various behavioral semantics, necessitating more ex-
pressive formal methods. Well-known tools/methods such as Al-
loy [22], B [37], and Z [19] have been used to varying degrees of
success. These approaches make trade-offs between expressive-
ness and the degree of automated analysis. For example, Z and
B proofs typically require interactive theorem provers [9, 4] and
model finding may not be supported. Z or B formalizations of
UML could be a vehicle for studying rich syntax, but automated
analysis is less likely to be found.

Alloy, like FORMULA, is less expressive than other methods,
thereby supporting automated analysis [23]; it also has a recently
improved model finding procedure [59]. However, the mathemat-
ical underpinnings of Alloy are quite different from FORMULA:
Alloy supports first-order logic with relations over atoms plus
transitive closure. Contrarily, our framework is based on a non-
monotonic extension of Horn logic [24]. One key difference is that
FORMULA specifications can be executed like standard logic pro-
grams [53]. Complexity-theory also offers a coarse-grained way
of comparing logic programs with other methods [14].

The BNF grammars of traditional programming languages can
be extended to capture richer syntaxes. Attribute grammars (AGs)
[49] , proposed by Knuth [31], could be the earliest example of
such a mechanism. AGs allow the productions of a BNF grammar
to trigger actions capable of examining tokens and attaching new
data to tokens. These actions can be specified programmatically,
thereby significantly increasing the power of the grammar. How-
ever, calculating properties of languages specified through AGs
depends on the expressiveness of the actions. Additionally, com-
posing AGs has proved to be a difficult task [20]. More recently,
pluggable type systems have been studied as a mechanism to com-
pose the type systems of traditional programming languages [2].

Tools for creating and editing models (CRUD tools) [33, 57]
intersect with databases, because they require a persistence layer
for storing many different models across many domains. Vari-
ous extensions of Horn logic have been utilized by the declara-
tive database community [41] as powerful query languages; this
work fits naturally with our notion of a domain. Functional pro-
gramming has also been used to declaratively operate on databases
[35]. The Language Integrated Query (LINQ) project extends this
work, allowing in-memory data structures to be queried just like
databases [39].

Numerous examples of structural representations for design
spaces can be found in the literature. For example, [27] per-
forms DSE for arbitrary algorithms by extracting a data depen-
dency graph from the steps of a given algorithm A. The design
space is the set all similar dependency graphs not contradicting the
dependencies of the original algorithm. Dependency graphs form

a syntactic construct approximating an ideal design space (con-
sisting of all algorithms A’ that compute the same function as A).
The model-based tool DESERT [43] compactly represents auto-
motive design spaces using AND-OR trees to encode architectural
choices. These trees are converted to BDDs allowing the design
space to be pruned without explicit enumeration of its elements.
Recent work on fitness functions for evaluating automotive design
spaces can be found in [15].

8 Conclusion

In conclusion, we have shown that Horn logic extended with
negation provides a powerful framework for integrating the rich
syntaxes and transformations occurring in model-based develop-
ment. By restricting our focus to a well-understood logic-based
kernel, we obtain many important and efficient analysis tech-
niques. Specifically, we provide sound mechanisms for composing
syntaxes, determining properties of compositions, detecting mis-
takes in model transformations, and constructing design spaces
over rich syntax. These techniques have been implemented in
FORMULA.
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