Model Generation for Horn Logic with Stratified
Negation

Ethan K. Jackson and Wolfram Schulte

Microsoft Research,
One Microsoft Way, Redmond, WA
{ejackson,schulte}@microsoft.com

Abstract. Model generation is an important formal technique for find-
ing interesting instances of computationally hard problems. In this pa-
per we study model generation over Horn logic under the closed world
assumption extended with stratified negation. We provide a novel three-
stage algorithm that solves this problem: First, we reduce the relevant
Horn clauses to a set of non-monotonic predicates. Second, we apply a
fixed-point procedure to these predicates that reveals candidate solutions
to the model generation problem. Third, we encode these candidates into
a satisfiability problem that is evaluated with a state-of-the-art SMT
solver. Our algorithm is implemented, and has been successfully applied
to key problems arising in model-based design.

1 Introduction

Informally, model generation is a procedure that takes as input some mathe-
matical statement 1, and produces as output some data M (a model) that,
when substituted back into v, makes the statement true. For example, if v is a
boolean satisfiability problem, then M is an assignment of boolean variables to
truth values. Similarly, if ¢ is a set of linear inequalities, then M is an assign-
ment of variables to the real numbers. Note that model generation can be used
to check satisfiability, but not all techniques for checking satisfiability are able
to generate models. In this paper we study model generation for an important
type of non-classical logic called Horn logic with stratified negation.

Horn logic has important applications in computer science and new applica-
tions continue to arise. Recently, Horn logic extended with negation as failure
was used to formalize the non-context-free languages arising in modern software
engineering methodologies[1] such as Model Driven Architecture[2][3] (MDA),
Model Integrated Computing[4] (MIC), and Platform-based Design[5][6] (PBD).
This particular application adds a new and interesting twist: An effective means
of model generation is essential if the Horn paradigm is to be truly useful.

In this paper we present a novel approach to model generation for non-
recursive Horn logic extended with stratified negation. Our approach employs a
three stage process:

1. We simplify the problem by reducing the relevant Horn clauses to a set of
non-monotonic predicates that we call non-monotonic acceptors.

2. We apply a fixed-point procedure to the non-monotonic acceptors that re-
veals the candidate solutions to the model generation problem.

3. We encode these candidates into a satisfiability problem that is evaluated
with the state-of-the-art SMT solver Z3.

We show that this procedure is sound, but incomplete.

This paper is organized into six sections. Section 2 informally describes the
class of Horn logic targeted for model generation. Section 3 provides the key
formal definitions. The first stage of the algorithm is explained in Section 4 as
a modified form of backwards chaining. Section 5 describes the elimination of
quantification over closed-worlds and the reduction to a boolean satisfiability
problem. We conclude in Section 6.

2 Background and Running Example

| Constraint
T onstrain

TaskMap

Processor :

Fig. 1. (Left) Scheduling abstraction (Right) Example scheduling instance

Model-based approaches to software engineering rely on high-levels of ab-
straction to simplify the design process. The left-hand side of Figure 1 shows a
metamodel describing a simple abstraction layer. This diagram defines an ab-
stract language for scheduling problems without regard to the particular de-
tails of the tasks being scheduled. This language contains objects of type Task
and Processor. Tasks can be assigned to processors by directed edges of type
TaskMap. Resource constraints between tasks prevent two tasks from being sched-
uled on the same processor. Resource constraints are modeled as undirected
edges of type Constraint connecting tasks. The right-hand side of Figure 1
shows a member of this language. There are three tasks 17,75, T3 and two pro-
cessors Py, Py. Tasks T7 and T, have a resource constraint, as do tasks Ty and
T5. Tasks T1,T5 are scheduled on processor P; while T5 is scheduled on Ps.

Metamodels (and other artifacts) can expressed a set of axioms using Horn
logic with stratified negation [7]. Consequently, model generation on this logic is
a key tool for reasoning about abstraction layers. For example, we might demand
a model generator to “Construct a model that contains three tasks and two pro-
cessors”. The procedure must find a model satisfying the rules of the abstraction
that also meets this goal. Model generation is a difficult problem, as this exam-
ple illustrates. A correct mapping from tasks to processors is precisely a graph

coloring problem[8] where the processors are the colors. This illustrates that
any procedure capable of constructing non-trivial instances must solve difficult
subproblems.

The task scheduling language is defined with the following set of non-recursive
and stratified Horn clauses:

task(x) « taskmap(z,y) (1)

processor(y) «— taskmap(z,y) (2)

task(z) < constraint(x,y) ®3)

task(y) < constraint(z,y) (4)

no_map(task(x)) — task(x), ~taskmap(z, y) (5)
bad.map(tash(x), task(y)) — taskmap(s, 2), taskmap(y, 2), constraint(w,y) (6)

The first four clauses declare that the end-points of task mappings and resource
constraints always exist. Clause 5 deduces a term no_map(task(z)) for any task
x that is not mapped to a processor. Clause 6 deduces bad_map(task(x),task(y))
anytime two tasks x, y are improperly scheduled. We now examine the semantics
of this logic in detail.

2.1 Classical Horn Logic

Classical Horn logic restricts first-order logic by requiring each conjunct of a DNF
(disjunctive normal form) formula ¢ to have at most one non-negated literal.
A collection of Horn formulas has a more natural representation in implicative
normal form, as shown below:

YV, y, z taskmap(x, z), taskmap(y, z), constraint(z,y) = bad_sched(x,y) (7)

This classical clause looks similar to Clause 6, however its meaning is quite
different. For the sake of discussion, assume that taskmap(-,-), constraint(-,-),
bad_sched(-,-) are predicates. From this clause we know that bad_sched(x,y)
must be true for tasks x and y that have resource constraint between them
and are scheduled onto the same processor. Given two particular tasks ti,
to without a resource constraint between them, what can we conclude about
bad_sched(t1,t2)? Rewriting Equation 7 yields:

Vz, —taskmap(ty, z)V —taskmap(ta, 2)V —constraint(ty, ta) Vbad_sched(ty, t2)
(8)
Since —constraint(ty,ts) is true, Equation 8 is satisfied without forcing a par-
ticular truth value to bad_sched(ty,tz2). In other words, there exists a model
satisfying Equation 7 for which tasks 1 and 2 are badly scheduled, but there
also exists a model where they are not badly scheduled. Both of these possibil-
ities exist because we have used classical implication. However, there exists a
commonly employed extension to Horn logic that closes this loop-hole.

2.2 Closed World Assumption

The Closed World Assumption (CWA) is applied whenever a set of Horn clauses
is intended to capture all the necessary information for a domain[9]. In order
for CWA to work properly there must exist some information known to be true
from the outset. These pieces of information are called facts, which are of the
form true = h where h is a non-negated literal. For example:

true = taskmap(ty,p;) (9)

Intuitively, a predicate f(x,y,z) is true for some z,y, z if f(x,y,2) is a fact or
if there is a sequence of derivations starting at facts that force f(z,y,z) to be
true. If there is no such derivation, then f(z,y, z) is false. This rule eliminates
the case where tasks t; and ts are badly scheduled.

This slight adjustment to classical implication profoundly effects the under-
lying formal machinery by introducing a fixed-point operator I'. This operator,
called the immediate consequence operator, deduces new facts from existing facts
using the clauses. All facts not deduced by I" are false, so any model generation
procedure must reason over this operator. If M is an initial set of facts and A is
a set of non-fact Horn clauses, then the set of facts deducible by A is the least
set X such that M C X and X = I'(X). CWA can also be understood from a
different angle under the name existential fized-point logic [10].

The Closed World Assumption is used in most applications of Horn logic,
so it must be taken into account by any model generation procedure. However,
CWA forces a rephrasing of the model generation problem: Let A be a set of
non-fact Horn clauses and a goal G = {l1,l2,...,l,} be a set of non-negated
literals. Loosely speaking, the finite model generation problem is to find a finite
set of facts M so that (1) M C X, (2) X is a least fixed-point of I', and (3) X
contains the goal literals (with respect to some substitution.) Thus, any model
generation procedure must reason carefully about the fixed-points of I.

2.3 Negation-as-Failure

Classical Horn logic (without CWA) restricts the use of negation, which restricts
the expressiveness of the fragment. Negation-as-failure (NAF) attempts to rein-
troduce a form of negation that is compatible with CWA and does not recreate
full first-order logic. However, this new form of negation is very different from
its classical counterpart. Intuitively, a negated literal —[is true if [cannot be
proved true under Horn logic with CWA. Thus, negation is defined in terms of
a proof procedure.

In order to distinguish our Horn clauses from the classical fragment we write
a clause this way:

h<_817827"'78’ma _‘tlv_'t25"'7_'tk (10)

The literal h is called the head of the clause and {s1,...,8m,t1,...,t;} is the
tail of the clause. Each —t; is a negated literal where negation refers to non-
classical NAF. Consider Clause 5 containing the negated term —taskmap(z,y).

This negation does not directly ask if taskmap(x, y) is false for some x, y. Instead,
it asks if taskmap(x,y) ¢ (M) for some z,y. Unlike classical negation, NAF
must be used carefully otherwise logical inconsistencies can arise. For example,
under NAF we might simultaneously conclude f € I'(M) A f ¢ I'(M) for some
fact f. This is a more dangerous inconsistency than b A —b for some boolean
variable b, which has a well-defined meaning. Much work has been done on
generalized forms of NAF that do not suffer from inconsistencies [11][7][12]. We
avoid these problems by using only a restricted form of NAF called stratified
negation. Our approach to handling NAF is similar to the non-monotonic rules
described in [13].

3 Definitions

We now formally describe the style of Horn logic for which we generate models;
this logic incorporates both CWA and NAF. Note that our definitions are biased
to make the presentation of model generation simpler.

3.1 Basic Concepts

Let T denote a finite signature, X' an infinite alphabet of constants, and V a
infinite alphabet of variable names. We use the letters f, g, h for variables ranging
over function symbols of some signature . We use typewriter script to denote
constants from Y. Finally, we use x,y, z for variables ranging over terms. Let
arity(f) denote the arity of some function symbol f. A term is a combination
of function symbols, constants, and variables:

Definition 1. Given T, X', and V, the set of all finite terms T is defined in-
ductively

1. Each c € X is a term
2. Fach x €V is a term
8. Iff e and ty,ty,. .. tariys) €T then f(ti,ta, ... tariy(s)) s a term.

If it is unclear from context, we write 7 (1) to denote the finite terms constructed
from function symbols of signature 1". A ground term is a term without variables;
we use 7g to denote the set of all ground terms. If ¢ is a term, then s is a subterm
of t (written s C t) if s = t or s is a subterm of one of the arguments of t. If ¢ is a
term, then vars(t) is the set of subterms that are also variable names. Similarly,
consts(t) is the set of subterms that are also constants. These functions are
extended to sets of terms S C 7 in the natural way: vars(S) (or consts(S)) are
the variables (or constants) appearing in a set of terms.

3.2 Substitutions and Unifiers

Terms are related to one another through special homomorphisms called substi-
tutions.

Definition 2. A substitution @ : T — T is a mapping from terms to terms such
that:

1. ¢ fizes constants, i.e. Ve € X, ¢(c) = c.
2. @ is a term homomorphism, i.e. o(f(t1,t2,...,tn)) = f(o(t1),o(t2), ..., 0(tn))-

Let @ be the set of all substitutions for some 7. Two terms s, ¢ are said to unify if
there exists a substitution ¢ that makes them the same: ¢(s) = o(t). Essentially,
a substitution makes two terms the same by replacing variables in the terms with
new subterms. The essence of this replacement is easily characterized in terms
of the kernel of .

Definition 3. The kernel of a homomorphism ¢ (e.g. a substitution) is:

ker ¢ = {(s,t) € T* | p(s) = ¢(t)} (11)

The kernel characterizes which subterms are equated by a substitution without
regard to the particular values assigned to variables. Some important properties
of kernels are: (1) Every kernel is an equivalence relation. (2) The intersection of
two equivalence relations is also an equivalence relation. (3) The least equivalence
relation @ containing two equivalence relations @1, ©5 is the transitive closure
of (61 U ©O3). This shall be written © = O @ Os.

The most general unifiers (mgu) of two terms s,t is an equivalence relation
between the variables of s and ¢ that must hold for any substitution unifying s
and t. This equivalence relation represents the weakest set of constraints over
the variables of s and ¢ that ensures unification. The most general unifiers have
the following properties:

Lemma 1. Given two terms s,t that unify, let mgu(s,t) denote the most general
unifiers.

1. The mgu(s,t) is unique.

2. mgu(s,t) = m{ker @ | pls)=¢(t)}

If terms s and ¢ do not unify, then we write mgu(s,t) = 0.

3.3 Horn Logic with CWA and NAF

Given 7, X,V a Horn clause A is a triple A = (h, P, N) where h is a term and

P, N are sets of terms. P = {s1,...,Sp,} is the set of non-negated tail terms and
N = {t1,...,tr} is the set of negated tail terms. A Horn clause is written:
h<—81782,...,5m, ﬁthﬁtg,...,ﬁtk (12)

Furthermore, P must be non-empty and vars(h) C vars(P). (We shall explain
these restrictions shortly.) Let A be a finite set of Horn clauses, then there exists
a binary relation < over clauses, where (h', P, N') < (h, P, N) if there exists
some s; € P or t; € N that unifies with h'.

Definition 4. Let A be a finite set of clauses, then A is non-recursive and strat-
ified if < is a strict partial order.

Restricting < to a strict partial order yields a simple semantics for evaluating
the set of facts derivable by A. Order the clauses A1, Aa,..., A; so that Ay < A;
implies i < j, then for each clause define an immediate consequence operator:

LX) = J{e(h) | (Pi Niyp, X)} U X (13)

This equation states that the facts deducible by a single clause A; are calculated
by finding all the substitutions that satisfy a special predicate «;(P;, N;, v, X);
each substitution is applied to the head h; to derive a new fact. Earlier we
restricted the variables of h; to be a subset of the variables of P;, so each sub-
stitution maps h; to a well-defined ground term.

The predicate a(P;, Ny, p, X) captures the CWA and NAF semantics.

Definition 5. a: P(7)? x & x P(7) — B is called a non-monotonic acceptor:

(PN, 0, X) “ (p(P) € X)AYS | (9(P) = ¢'(P)) = (¢'(N)NX = 0)| (14)

The acceptor a(P, N, ¢, X) is true for some substitution ¢ and some set of terms
(e.g. facts) X if the positive terms P can be found in the set of facts through
the substitution . The negative terms N must not be found in the facts X for
any extension of ¢ to ¢’ that agrees on P.

Lemma 2. Let A be a finite set of non-recursive and stratified Horn clauses, and
M a finite set of ground terms. Let the clauses of A be ordered A1, o, ..., A\; to
respect < then:

1. The set of all facts deducible from M by A is I'(M) where:
D(M) =Ty(... (I (M))...) (15)

2. It can be decided in finite time if any ground term t, € I'(M), i.e. the logic
is decidable.

3.4 The Model Generation Problem

Solving the model generation problem requires the construction of a set of facts
M that satisfies a goal. A goal G = (Pg, Ng) is comprised of two sets of terms: the
positive terms Pg, and the negative terms Ng. A goal is satisfied if there exists
some M such that all the facts deduced from M (i.e., I'(M)) include Pg and do
not include N¢. More precisely, M satisfies the goal if 3p, a(Pg, Ng, ¢, ['(M))
holds.

In order to construct meaningful solutions, the model generation procedure
must know which terms are allowed to appear as facts. Consider the problem of
creating a badly scheduled set of tasks for the scheduling abstraction:

G = ({bad_map(x,y)},0)

then we expect the model generation procedure return a solution similar to this
one:
task(t1),task(tz2), processor(p,), }

M= { taskmap(t1,p,), taskmap(tz, p,), constraint(ty, t2)

Without additional information, the solution M = {bad_-map(c,c)} is also triv-
ially valid. This extra information is expressed by partitioning the signature 1°
into two parts: the fact signature Tr and the derived signature Tp. We call a
term t € T(Yr) a fact term and call all other terms derived terms. The model
generation procedure only considers solutions that are sets of fact terms. For
example, the partitioning:

Tr = {task(-), processor(-), taskmap(-,), constraint(-,-)},
Tp = {no-map(-), bad map(,)}

forces all solutions to be built from tasks and processors. The goal G contains
a derived term bad_map(z,y), but the solution M will never contain this term
directly. We now define the finite model generation problem.

Definition 6. The finite model generation problem - Given:

1. A finite signature T partitioned into Yr # 0 and Tp,
2. A finite set of clauses A that are non-recursive and stratified,
3. A goal G = (Pg, Ng) where Pg, Ng are finite subsets of terms.

Construct a finite set of ground terms M C Tg(YF) so that

3¢ a(Pa,Ng, ¢, I'(M)) (16)

4 Utilizing Backwards Chaining

The semantics of non-recursive and stratified Horn logic has a succinct charac-
terization in terms of I'. However, it is difficult to construct a set of constraints
from I' that guide model generation. Fortunately, there is a well-known tech-
nique for computing the truth values of goals, called backwards chaining, which
addresses this problem. Imagine that a set of facts M is already known, and the
only task is to check if a goal G is satisfied by these facts. Backwards chaining
works backwards from the goal, through the clauses, to the facts M to check
satisfiability. If the goal is satisfied, then the procedure yields a proof tree show-
ing exactly how the facts derive the goal. Formally, this process is called SLD
resolution [14] for Horn logic and SLDNF resolution [15] for Horn logic with
NAF. These resolution procedures are sound and complete for non-recursive
and stratified Horn logic. We modify SLDNF resolution to return “possible”
proof trees, and then search for models that satisfy these proof trees. We utilize
soundness/completeness results [16] to argue soundness for model generation.
The key modification to SLDNF is a new termination condition that does
not rely on M. Typical backwards chaining terminates when it encounters a fact,
i.e. a clause of the form f « true. This termination condition must be modified

for model generation because initially no facts are known. We modify backwards
chaining so that it terminates when a fact term is encountered, even though this
fact term may not exist in the solution M. Let a clause A € A be partitioned as
follows:

h(_pla"'7pma ULy ooy Umsy TNy e ey TN, WL, -0, Wy (17>

where (1) each p; is a positive fact term, (2) each u; is a positive derived term,
(3) each n; is a negative fact term, and (4) each w; is a negative derived term.

Associated with each clause) is a backwards chaining predicate G (¢, M, ©)
where M is a set of terms, ¢ is a substitution, and © is an equivalence relation.

Definition 7. Let \ be a clause, then associate with A a backwards chaining
predicate By(p, M,O):

de
ﬁ)\(§07M; 9) :f
1. (9 C ker go) A

2. a({plap2a" '7pk}7{n1an2a" '7nm}730aM> A

3. /\ \/ ﬁ)\’ (cp,M,@@mgu(ul,hx)) A

1<i<m’ \'mgu(u;,hy)#0

Yo € vars(Py) ¢'(v) = gp(v)) =

4. \V/go’

A A B (w’, M, © & mgu(w;, h,\,,)>
0

1< <Kk mgu(wj,hym)#

The backwards chaining predicate is defined recursively and terminates on
fact terms; these parts of the tail simplify to non-monotonic acceptors (Def.
7.2). On the other hand, derived terms must be understood through additional
clauses. The backwards chaining process recurses into derived terms by locating
clauses that unify with these terms. The equivalence relation © is used to collect
unification constraints during this process. For every positive derived w; there
must exist some unifying clause A’ so that 3y is satisfied (Def. 7.3). Contrarily,
every negative derived term w; must have no clause A" that derives w; for any
extension of ¢ to ¢’ agreeing on positive variables (Def. 7.4). It is possible that
some unification constraints cannot be satisfied by any substitution . If this
occurs then Def. 7.1 fails to hold. We assume that each time a clause X’ (or \”)
is examined for unification its variables are renamed to new variables that have
not appeared before. This is called standardizing apart, and it prevents clauses
from improperly interacting through variable names.

Backwards chaining is used to reduce any goal into a set of non-monotonic
acceptors. However, there is one problem with the simple definition presented

1 'We follow the convention that the OR of the empty set is false and the AND of the
empty set is true.

here: It does not recurse through clauses with heads that are fact terms. (Con-
sider clause 1 from the previous example.) This definition assumes that fact
terms do not appear as heads. Fortunately, we can always rewrite the clauses of
A to enforce this rule; this is discussed later. For the moment, assume that facts
do not appear as heads then the following important theorem holds:

Theorem 1. Given Tp,Tr, A such that fact terms do not appear as heads, and
a goal G, then

VM C T(Tp), V¢ o(Pa,Na, o, I'(M)) < Ba(p, M, ID7) (18)

for M finite and A non-recursive and stratified.

This theorem shows that evaluating the non-monotonic acceptor over all the
facts deducible from I” gives the same result as working backwards from the goal
G through the backwards chaining predicates. We use this result to eliminate
the fixed-point operator I" from the model generation problem. Note that the
backwards chaining process is initiated without any constraints on the variables
as described by the identity relation ZDr = {(¢,¢)|t € T }.

4.1 Simplification of Backwards Chaining

The backwards chaining formulation eliminates I', but generates many con-
straints across many recursions. In this section we show how to aggregate these
constraints into convenient pieces. To facilitate this discussion we give names to
particular parts of the backwards chaining predicate:

w(p, ¢, P) def (Vv € vars(P) ¢'(v) = @(v)) (19)

U (@ M,0) N\ AR (wl’M’@@mgu(wphx')) (20)
0

1< <K mgu(w; by)#

Definition 7.4 becomes V¢’ w(p, ¢, Px) = 1, (¢', M, 0).

Consider the action of the goal backwards chaining predicate Sg (¢, M, O),
as shown in Figure 2. The predicate [Bg introduces a non-monotonic acceptor
a7 and some constraints on the kernel of ¢ via ©;. (Note that we index the

6, Cker ¢ R O3 C ker ¢
al("'7§07M) ! O‘?("-v‘Pv]\/j)

Ba Ui B
Vo' wi(p, ¢, Pa) = e Vo' wa(p, ¢, Po) =
T/’f(@’vM, 91) " w;(‘p’»My 92)

Fig. 2. A single expansion of the backwards chaining predicate for some unification
choices of positive derived terms.

constraints 1,2, ... as the recursion proceeds.) Similarly, a subformula contain-
ing ¢, is introduced due to negative derived terms. The positive derived terms
U1, Us, - .., Uy act as choice-points, because there may exist many clauses that
unify with each u;. Consider some choice of unifications for each wu;, then the
recursion introduces more kernel constraints, non-monotonic acceptors, and neg-
ative subformulas. Let 8 be an expansion of some 3 for particular unification
choices of the positive derived terms appearing through the recursion. Then this
expansion has the following form:

Blp, M,0) =

Vo' wip, ¢, V") =
e N
(/\(61 7ker @)) /\ (/\a(Pz,NzaSDv) </\ (p M 8)
(21)
The following lemmas help to simplify the expansion.

Lemma 3. Non-monotonic acceptors compose over conjunction for fixed p and
X.
&(Pay No, o, X) A Py, Ny, 0, X) = a(P, U Py, Ny U Ny, 0, X) (22)

Lemma 4. Constraints on the kernel of ¢ compose over conjunction.

(O, Cker p) A (Op Cker) = (0, @ 6Oy) C ker ¢ (23)

Applying the lemmas simplifies Equation 21 to:

Ble, M,0) = (6' C ker o) Aa(P', N, (/\ i :‘i\f@"gﬂ) (24)

where
o =00 (@ 62-) (25)
=Ur. N={Jn~ (26)

In summary, for a particular set of unification choices the backwards chaining
reduces to:

1. Constraints on the kernel of ¢, which equate variables,
2. A single non-monotonic acceptor containing only fact terms,
3. A number of backwards chaining predicates for negative derived terms.

A clause A may have an exponential number of expansions B Label these
expansions (i,...,[.,, then they relate to the original predicate through dis-
junction:

5)\(90’M7@) = \/ BZ(@;MaQ) (27)

1<i<cy

This decomposition also allows the ¥~ terms to be rewritten in terms of the
expansion:

_ so,so,Vﬂ
(o, M,0) = V' { 28
() mgu(w{,\@,>¢@1<g/<\c, -3;(¢', M, 0 @ mgu(w;, hy)) (28)

The decomposition of 3y shows that each ¥~ term will expand into some
number of non-monotonic acceptors depending on the depth of the negation,
which is certainly finite. Unlike the positive derived terms, each 1)~ must examine
all the relevant § predicates to ensure that the negated derived term is not
satisfied. Furthermore, the simplification lemmas cannot be directly applied to
expansions of ¢~ because the non-monotonic acceptors appear in negated form.
In the following sections we use these expansions to generate models from the
backwards chaining proof trees.

4.2 Restratification

The previous analysis assumed that backwards chaining terminates at fact terms.
This assumption can be violated if A contains clauses with fact terms as heads.
The clause task(z) «— taskmap(z,y) is an example. Fortunately, there is a simple
syntactic operation that soundly manipulates A so that no fact terms appear as
heads. We call this process restratification, because it changes the ordering <.

Definition 8. Given T, Tp, A, and a goal G, then the restratified system is
Yr, Ty, A%, G* where:

1. Introduce a new unary derived function symbol restrat(-) to Tg.
Y5 =7Tp U {restrat(-)} (29)

2. For each clause A € A where the head h is a fact term, add the modified
clause * to A*:

restrat(h) < —h, $1,82,...,8n, —t1,ta,...,tm (30)

8. For each clause A € A where the head h is derived term, add X\ to A*
4. Modify the goal G = (Pg, Ng) to include the negative derived term —restrat(x)
where x is a variable that does not appear in G.

G* = (PG,NG U {restrat(x)}) (31)

Lemma 5. If A is a set of non-recursive and stratified Horn clauses, then the
restratified clauses A* are also non-recursive and stratified where no clause has
a fact term as head.

Theorem 2. The models that satisfy G are related to the models that satisfy G*
according to:

VM C Tg(rp)7 (FA(M) ﬂTg(Tp) = M> =
(32)
(3<p o(Pa, New o, Ta(M)) < 3! a(Pa,Na,so',rMM)))

If M is a set of ground fact terms such that I'y (M) does not grow the number of
fact terms, then the restratified system will be in agreement with G. Conversely,
when models are found that satisfy the restratified system, then these models do
not grow fact terms under the original system. Of course, ground derived terms
can still grow under either system. This is not a limitation, because solutions to
G that are not solutions to G* will accumulate fact terms under I'4 until the set
of ground fact terms is exactly a solution to G*.

4.3 Generating Schedules: Part 1

We now apply these techniques to the running example of a scheduling abstrac-
tion. Our goal is to find a model that contains three tasks 77,753,735 and two
processors P, P, so that the tasks are scheduled onto the processors. Further-
more tasks T7 and T cannot be on the same processor; the same constraint holds
for task T5 and T3. In order to make the example more interesting the tasks are
not introduced in the goal:

Pg = {processor(pl),processor(pg), constraint(ti,t2), constraint(tz, t3) }

Py = {no_map(z), bad_-map(y, z)} (33)
for Yr = {no_map(-),bad_map(-,-)} and all other function symbols in Tr.
Applying restratification to the original clauses yields:
restrat(task(x)) <« taskmap(z,y), ~task(z) (34)
restrat(processor(y)) «— taskmap(z,y), ~processor(y) (35)
restrat(task(x)) < constraint(z,y), ~task(x) (36)
restrat(task(y)) < constraint(z,y), task(y) (37)
no-map(task(z)) — task(z), ~taskmap(z,y) (38)
bad-map(task(z), task(y)) « taskmap(zx, z), taskmap(y, z), constraint(z,y) (39)

and the restratified goal is G* = (Pg, Ng U {restrat(w)}).

Next, the backwards chaining predicates are expanded until the goal is ex-
pressed by a system of non-monotonic acceptors defined with only fact terms.

In this example the w terms are trivial and have been removed.

3M7 3@ ﬂG* (SO?M’IDT) =
ElMa 3907 VQOI Oé(PG,@,QD,M) A

—or| {task(z1)}, {taskmap(ay,y1)}, ', M) A
—o| {taskmap(x2,y2)}, {task(z2)}, ', M | A

—a| {taskmap(xs,ys)}, {processor(ys)}, ¢, M) A (40)

—a| {constraint(zq, ya)}, {task(za)}, ¢, M) A

—a| {constraint(zs,ys)}, {task:(y5)},<p',M> A
-« {taskmap(xa, 22), taskmap(ys, 22), constraint(za, y2)}, 0, ¢, M>

After the goal has been reduced, the quantifiers must be eliminated from the
formula. This elimination procedure is described in the next section.

5 Eliminating the Closed World

The formula M, ¢ Ba (¢, M, D7) contains a second-order variable M ranging
over all the closed worlds, of which there are an infinite number. The next step
in model generation is the elimination of the variable M. The elimination of M
means that we construct a new formula 3¢ G (¢) that does not contain M, but
the solutions to this formula can be used to construct a finite set of facts M
satisfying the original formula.

Elimination is accomplished by constructing a finite candidate set Mg of
non-ground terms with the property that there exists a satisfying M if and only
if there exists a subset M/, C M¢ where 3¢ Sa(p, 9(M{),ZD1). Once M{. is
discovered, all that remains is to arbitrarily choose an assignment of variables
to constants to get a concrete M.

In the interest of space, we describe the solution when all backwards chaining
paths pass through at most one negated derived term. The results here are easily
generalized to arbitrary depth of negation. (The previous example fits into this
restricted case.) Consider any expansion BG of the goal predicate. The results
from the previous section guarantee that it has the following simplified form:

M, Jp (0" Cker ¢) A a(P',N', o, M) AV
—wi(p, ¢, Vi) v (6] L ker ¢') Voa(P{,N{, ¢, M)| A

ﬁwg(go,go’,V;r) V (04 € ker ¢') V(P Ny, o', M)| A (41)

—wi(p, @', V") v (6], L ker ¢') V —a(P, Ny, ¢, M)

The simplification results in exactly one non-negated acceptor «(P’', N, p, M),
where P’ and N’ are the composition of many non-monotonic acceptors accord-
ing to Lemma 3. Each negated derived term also creates a backwards chaining
tree according to Equation 28 and these trees can be simplified in the same way.
After simplification, the negative derived terms yield disjunctions of negated w
formulas, kernel constraints, and non-monotonic acceptors. These negated sub-
formulas are arbitrarily numbered 1, ...,k and primed to remind the reader that
they result from simplification.

Recall that every clause has a least one positive term in the tail, so every P/
must be non-empty. However, the goal G might not have positive terms, in which
case P’ = (). If this holds, let M =), then M trivially satisfies (0, N’, , () and
trivial satisfies V', —a(P], N/, ¢',0). Thus, we focus on the interesting case
where the goal G contains some positive terms, i.e. P/ # ().

Assume P’ # (), then by definition of « it must be that p(P’) C M. The
set P’ must have a homomorphic image in any solution M. Therefore, let the
candidate solution Mc = P’. It may be that the negative part N’ disallows
some of these terms, but this can be discovered later. Next, consider the negated
acceptors. It could be that some acceptor a(P/, N/,¢', M) is satisfied by the
candidate model Mc. A necessary condition for this to occur is:

3¢’ wilp, ¢’ Vi) A (O] S ker) A (¢'(P)) € Mc) (42)

This situation is only problematic if no term from N/ has a homomorphic image
in M. These problematic situations are mitigated by expanding Mo with the
maximum number of negative terms: MZ% = Mgl4 U ¢/(N]). This expansion
is performed for every possible ¢’, of which there are a finite number (if M¢ is
already finite). If N/ contains variables not found in P/, then these variables are
given new names.

Expanding M may provide new opportunities for negated acceptors to fail
(i.e. the acceptor evaluates to true, so its negation is false). These new opportu-
nities must be identified and may require further expansion of M. The strategy
is to add the maximum number of terms to M that allow all the negated
acceptors to succeed. For each negated acceptor assign an operator C; :

(o X) = {so'<N;>] wilips @ V) A (8] C ker @) A (¢ (Pl) X>} UX

o’
(43)
For the single non-negated acceptor a(P’, N’, o, M) assign the operator C:
CH(p, X) =X Ugp(P) (44)

The problem of finding the maximum M¢ can now be stated in terms of a least
fixed-point equation:

Mg = C*(p,Mc) = Cy (g, Mg) = Cy (o, M¢) = ... = C; (o, M¢c) (45)

These operators have two important properties: (1) monotonic: X C C+/~(X)
(2) extensive: X CY = Ct/=(X) C C*T/=(Y). These properties lead to the
important lemma:

Lemma 6. If the least fized-point Mo exists, then it is unique for a given .

In fact, ¢ serves as a book-keeping mechanism to remember constraints over vari-
ables, and it can be constructed while solving the fixed-point equation. However,
in the interest of space we omit the algorithm that constructs the fixed-point
Mcg.

Theorem 3. For some expansion Bg, if the fized-point Mo exists, then

where @' assigns variables to constants, and M is a minimal solution.

This key theorem explains that if a least fixed-point M¢ exists for some
expansion of the goal (g, then a definite conclusion can be drawn about the
satisfiability of this expansion: If there is a finite model that satisfies the subgoal,
then there is some minimal model M that satisfies the subgoal. The minimal
model M is exactly some subset M{, C M¢ where the variables of M{, have
been assigned to constants. The least fixed-point M¢ is finite, so there are a
finite number of subsets M{.. Furthermore, there are only a finite number of
interesting ways that variables can be assigned constants. This result leads to
an algorithm for model generation:

Model Generation Algorithm

enumeration Results = { satisfiable, unsatisfiable, unknown };
let result := unsatisfiable;

s~ W o~

Restratify(Yr,Yp,A4,G);

s: let goal_expansions := {31,32, e ,Bk};
e for each BZ € goal_expansions {

7o if (fixed_point_exists(3;)) {

8 let Mc = fixed,point(ﬁi);

o for each M({ C M¢ and each interesting ¢’ {
s0: if (3¢ Bi(w, ' (M¢),ID)) {

11: result := satisfiable;

12: return ¢’ (M();

13: }

14: }

is: else result ;== unknown;

16: }

Fig. 3. Eliminating the closed world using fixed-points of goal expansions B\Z

5.1 Generating Schedules: Part 2

We apply these results to generate non-trivial models for the scheduling lan-
guage. Recall that Equation 40 is the simplification of the goal predicate Sg and
this predicate has only one expansion to (3. The task is the calculation of the
fixed-point M¢ from f. Initially Mo contains only the positive part of the goal:

M¢ = {processor(p1), processor(ps), constraint(ti, t2), constraint(ta, t3)} (47)

This candidate model may violate the negated acceptors:

Vo' ~a({constraint(za,ys)}, {task(za)}, ', M) A
Vo' —a({constraint(zs,ys)}, {task(ys)}, ¢, M)

The substitution ¢'(x4) = ¢'(x5) — t1, ¢ (Y1) = ¢'(y5) — t2 is a witness to this
possibility. (There exists a similar substitution for ¢, ¢3.) These substitutions
expand the candidate set to include the three tasks:

M¢& = M U {task(t1), task(t2), task(ts)} (48)

This candidate set does not contain taskmap terms from tasks to processors,
violating the subformula:

Yo' ~a({task(z1)}, {taskmap(z1,v1)}, ¢ , M)

The expansion of M introduces the taskmap terms and also new variables:

MZ = M¢ U {taskmap(ty,), taskmap(tz, y), taskmap(ts, z)} (49)

Finally, new processor terms are introduced for the end-points of the taskmap
terms:
Mg = ME U {processor(x), processor(y), processor(z)} (50)

This set is the fixed-point, i.e. Mg = Mg
The model generation problem can be solved by examining subsets of the
fixed-point M. Some subsets will not produce satisfying models:

task(t1), task(t2), task(ts),
Myou = taskmap(t1, x), taskmap(ta,y), taskmap(ts, z) (51)
constraint(t1,t2), constraint(ta, ts), processor(p1),

where x = y = z = p;. This subset will fail for any assignment of variables to
constants because there are not enough distinct processors. On the other hand,
the set

Muccess = Myai U {processor(pg)} (52)
where x = z = p; and y = p and = # y satisfies the goal. In fact, any choice of

constants that respects the equalities/disequalities satisfies the goal. In the next
section we show how these subsets can be calculated using boolean satisfiability.

5.2 A Better Algorithm Using SMT

The simple algorithm in Figure 3 is a brute force approach for finding a model
that satisfies the goal. It tries every subset of M and every interesting assign-
ment ¢’ of variables to constants. In general, there are an exponential number of
(M{, ¢") pairs to test. This exponential blow-up cannot be eliminated entirely,
but it can be mitigated by translating the problem into a SAT problem. Mature
SAT algorithms can be used to suppress the exponential blow-up. The encoding
described here assumes a modern solver capable of reasoning about equalities
among a set of non-boolean variables. We use an SMT solver (Satisfiability Mod-
ulo Theories) called Z3 [17] to accomplish this task. Z3 utilizes efficient SAT
algorithms to solve problems that are not purely boolean; e.g. problems with
equalities over non-boolean variables.

The first step of the encoding is the translation of complex terms to boolean
variables. At this stage all the terms that need to be considered already exist
in M¢, so the encoding is simple. Assign a boolean variable 7; to each term
t; in the candidate set M¢. If 7; is true then the corresponding term t¢; is in
the solution, otherwise ¢; is not in the solution. Furthermore, introduce a set of
non-boolean variables X, which are the variables occurring as subterms in M¢:
X =wars(Mc¢). We provide these non-boolean variables so the SAT solver can
decide if some variables x;, z; in M¢ should take the the same values (z; = z;),
or different values (z; # x;), or a fixed value (z; = c).

The non-negated acceptor a(P’, N', ¢, M) defines terms P’ that must be in
any solution. Let tT, t;, .,t;: be the terms in My that were added according
to P’, then the following boolean formula must be true:

N 7 (53)

1<5<k

Next, consider any negated acceptor —«a(P/, N/,¢', M). Let ¢’ be such that
wi(p, ¢, ViT) holds, O, C ker ¢, and ¢/ (P}) C Mc. Let o' (P!) = {t7,t5, ..., t; }.
(Note ¢’ may not exist.) The negated acceptor is satisfied if one of the following
holds:

1. One of the ¢ terms is not in the solution.

2. There exists a pair of variables (z,y) € vars(¢'(P})) that is also in the kernel
of ¢, but x # y.

3. There exists a variable z € vars(p’(P/)) and a constant ¢ where (z,c) €
ker ¢, but x # c.

4. There exists an extension of ¢’ to ¢” and some t+ € M so that t+ € " (N)).

Conditions (1)-(3) yield the following encoding:

1<j<k z,y € vars(p’'(P})), z € vars(p'(P})),c € X,
(z,y) € ker ¢’ (z,c) € ker ¢’

\/ oV \/ r#y |V \/ x#c)
4

(54)

Condition (4) has a more complicated encoding:

\/ A /\ =y | AN /\ r=c

t+ z,y € vars(p” (P])Uth)), z € vars(p’ (P)Uth)),
(z,y) € ker "’ ce X, (z,c) € ker "

Such an encoding must be generated for all relevant ¢’ and ¢”. A similar trans-
lation encodes the negative part N’ of the non-negated acceptor o’. We omit it
this in the interest of space.

In this discussion we have ignored the relationship between variables and
terms. For example, two terms f(x), f(y) are affected by equating (or dis-
equating) the variables: If = y (x # y) then f(z) = f(y) (f(x) # f(y)).
In this case the relationship can be easily encoded because all the variables in
M will only take constant values. Let ¢;,¢; be two terms that unify by equating
variables to other variables or constants. Then the following must hold:

(i & 15)V \/ rEy|V \/ T#c (56)

(z,y)Emgu(ti,t;) (z,c)Emgu(t;,t;)

Terms that unify by assigning some variables to complex terms are ignored.

6 Conclusion and Future Work

Model generation is an important tool for the model-based design of software
systems. It can be used to generate non-trivial solution instances from domain-
specific abstractions, perform design-space exploration, and reason about model-
transformations. We have given a sound algorithm that generates models from
non-recursive and stratified Horn logic. These algorithms have been implemented
in a tool called FORMULA (FORmal Modeling Using Logic Analysis). The SMT
(SAT Modulo Theories) solver Z3 is used to solve the SAT encodings output by
FORMULA.

Future work includes extending model generation to encompass constraint
logic programming (CLP) frameworks. CLP combines Horn logic with constraints,
as in the following clause:

bad_sched(critial _task(x)) «— critical task(x),task(y), priority(z) < priority(y)

Assume there is a new type of task called a critical_task. This clause states
that a bad schedule assigns a high priority to a non-critical task. Priorities are
expressed by the ordering < over integers, resulting in a combination of Horn
logic with the theory of integers. We will utilize additional theories available at
the SMT level to generate models for CLP extensions.

7 Acknowledgments
We would like to thank Nikolaj Bjgrner for his invaluable feedback and his insight
into Z3.
References
1. Jackson, E.K., Sztipanovits, J.: Towards a formal foundation for domain specific

10.

11.

12.

13.

14.

15.

16.

17.

modeling languages. Proceedings of the Sixth ACM International Conference on
Embedded Software (EMSOFT’06) (October 2006) 53-62

Object Management Group: Mda guide version 1.0.1. Technical report (2003)
Bezivin, J., Gerbé, O.: Towards a precise definition of the omg/mda framework. In
Proceedings of the 16th Conference on Automated Software Engineering (Novem-
ber 2001) 273-280

G. Karsai, J. Sztipanovits, A.L.T.B.: Model-integrated development of embedded
software. Proceedings of the IEEE 91(1) (January 2003) 145-164

J. Burch, R. Passerone, A.S.V.: Modeling techniques in design-by-refinement
methodologies. In: Integrated Design and Process Technology. (June 2002)

Lee, E.A., Neuendorffer, S.: Actor-oriented models for codesign: Balancing re-use
and performance. Formal Methods and Models for Systems, Kluwer (2004)
Przymusinski, T.C.: Every logic program has a natural stratification and an it-
erated least fixed point model. In: PODS ’89: Proceedings of the eighth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, New
York, NY, USA, ACM (1989) 1121

Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley-Interscience, New York,
ISBN 0-471-02865-7

Reiter, R.: On closed world data bases. In: Readings in nonmonotonic reasoning,
Morgan Kaufmann Publishers Inc. (1987) 300-310

Blass, A., Gurevich, Y.: Existential fixed-point logic. In: Computation theory and
logic, Springer-Verlag (1987) 20-36

van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic
programs. Journal of the ACM 38(3) (1991) 620-650

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R.A., Bowen, K., eds.: Proceedings of the Fifth International Conference
on Logic Programming, Cambridge, Massachusetts, The MIT Press (1988) 1070-
1080

Marek, V.W., Nerode, A., Remmel, J.B.: A context for belief revision: Forward
chaining - normal nonmonotonic rule systems. Ann. Pure Appl. Logic 67(1-3)
(1994) 269-323

Emden, M.H.V., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. J. ACM 23(4) (1976) 733-742

Apt, K.R., Doets, K.: A new definition of SLDNF-resolution. The Journal of Logic
Programming 18(2) (February 1994) 177-190

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3) (2001) 374-425

de Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver. In Proceedings of Four-
teenth International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2008) (March 2008)

