P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent
Object-Oriented Programs

BART JACOBS, FRANK PIESSENS, and JAN SMANS
Katholieke Universiteit Leuven

and

K. RUSTAN M. LEINO and WOLFRAM SCHULTE
Microsoft Research

Reasoning about multithreaded object-oriented programs is difficult, due to the nonlocal nature of
object aliasing and data races. We propose a programming regime (or programming model) that
rules out data races, and enables local reasoning in the presence of object aliasing and concurrency.
Our programming model builds on the multithreading and synchronization primitives as they are
present in current mainstream programming languages. Java or C# programs developed according
to our model can be annotated by means of stylized comments to make the use of the model explicit.
We show that such annotated programs can be formally verified to comply with the programming
model. If the annotated program verifies, the underlying Java or C# program is guaranteed to
be free from data races, and it is sound to reason locally about program behavior. Verification is
modular: a program is valid if all methods are valid, and validity of a method does not depend on
program elements that are not visible to the method. We have implemented a verifier for programs
developed according to our model in a custom build of the Spec# programming system, and we have
validated our approach on a case study.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.1.5 [Programming Techniques]|: Object-oriented Programming; D.2.4 [Software Engi-
neering]: Software/Program Verification—Class invariants; Correctness proofs; Formal methods;
Programming by contract; F.3.1 [Logics and Meanings of programs]: Specifying and Verifying
and Reasoning about Programs—Assertions; Invariants; Logics of programs; Mechanical verifica-
tion; Pre- and post-conditions; Specification techniques

General Terms: Verification

Additional Key Words and Phrases: Aliasing, data races, local reasoning, modular reasoning, own-
ership, verification condition generation
ACM Reference Format:

Jacobs, B., Piessens, F., Smans, J., Leino, K. R. M., and Schulte, W. 2008. A programming model for
concurrent object-oriented programs. ACM Trans. Progam. Lang. Syst. 31, 1, Article 1 (November
2008), 48 pages. DOI = 10.1145/1452044.1452045 http://doi.acm.org/10.1145/1452044.1452045

Author’s address: B. Jacobs; email: bart.jacobs@cs.kuleuven.be.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2008 ACM 0164-0925/2008/11-ART1 $5.00 DOI 10.1145/1452044.1452045 http:/doi.acm.org/
10.1145/1452044.1452045

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:2 o B. Jacobs et al.

1. INTRODUCTION

Writing correct multithreaded software in mainstream languages such as Java
or C# is notoriously difficult. The nonlocal nature of object aliasing and data
races makes it hard to reason about the correctness of such programs. Moreover,
many assumptions made by developers about concurrency are left implicit. For
instance, in Java, many objects are not intended to be used by multiple threads,
and hence it is not necessary to perform synchronization before accessing their
fields. Other objects are intended to be shared with other threads and accesses
should be synchronized, typically using locks. However, the program text does
not make explicit if an object is intended to be shared, and as a consequence it
is practically impossible for the compiler or other static analysis tools to verify
if locking is performed correctly.

We propose a programming regime (or programming model) for concurrent
programming in Java-like languages, and the design of a set of program annota-
tions that make the use of the programming model explicit. For instance, a de-
veloper can annotate their code to make explicit whether an object is intended to
be shared with other threads or not. These annotations provide sufficient infor-
mation to static analysis tools to verify if locking is performed correctly: shared
objects must be locked before use, unshared objects can only be accessed by the
creating thread. Moreover, the verification can be done modularly; hence, veri-
fication scales to large programs. We describe a particular modular verification
approach, based on generating verification conditions suitable for discharge by
an automatic theorem prover.

Several other approaches exist to verify race- and deadlock-freedom for mul-
tithreaded code. They range from generating verification conditions [Detlefs
et al. 1998; Flanagan et al. 2002; Freund and Qadeer 2004; Flanagan et al.
2005; Qadeer et al. 2004; Abraham-Mumm et al. 2002; Rodriguez et al. 2005], to
type systems [Boyapati et al. 2002; Flanagan and Qadeer 2003]. (See Section 7
for an overview of related work.) Our approach is unique in proposing a way
to reason about concurrent code that enables abstraction through invariants
and ownership and that enables advanced forms of ownership transfer, such as
appending two linked lists.

The contributions of this article are as follows:

—We present a programming model and a set of annotations for safe concurrent
programming in Java-like languages.

—Following our programming model ensures absence of data races.

—The generated verification conditions allow sound local reasoning about pro-
gram behavior.

—We have prototyped a verifier as a custom build of the Spec# programming
system [Barnett et al. 2004; Barnett et al. 2006], and in particular its program
verifier for sequential programs.

—Through a case study we show the model supports useful, nontrivial programs
and we assess the annotation overhead.

The present approach evolved from Jacobs et al. [2005a], Jacobs et al. [2006],
and Jacobs [2007]. It improves upon this prior work by adding a formalization of

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:3

the approach with invariants and ownership. (A soundness proof Jacobs et al.
[2005b] accompanies Jacobs et al. [2005a], but it does not formalize verifica-
tion condition generation, and it does not formalize or prove the method effect
framing approach.) As did the prior work, the present approach builds on and
extends the Spec# programming methodology [Barnett et al. 2004] that enables
sound reasoning about object invariants in sequential programs. For brevity,
we omit the description of the deadlock prevention approach and the approach
for verification of immutable objects, static fields, and lazy class initialization
[Jacobs 2007] from this article.

The rest of the article is structured as follows. We introduce the methodology
in two steps. The model of Section 2 prevents low-level data races on individual
fields. In this first model, a shared object’s lock protects only its own fields.
Section 3 adds prevention of races on data structures consisting of multiple
objects through an object invariants and ownership system. Here, a shared
object’s lock protects its own fields as well as those of the objects it transitively
owns. Section 4 deals shortly with lock re-entry. The remaining sections discuss
experience (Section 5), limitations (Section 6), and related work (Section 7), and
offer a conclusion (Section 8). Table II at the end of the article summarizes the
notations used.

2. PREVENTING DATA RACES

In this section, we present our programming model and associated modular
static verification approach for verification of the absence of data races in Java-
like programs.

A data race occurs when multiple threads simultaneously access the same
variable, and at least one of these accesses is a write access. Data races are
usually programming errors, since they are a symptom of a lack of synchro-
nization between concurrent operations on a data structure. Developers can
protect data structures accessed concurrently by multiple threads by associ-
ating a mutual exclusion lock with each data structure and ensuring that a
thread accesses the data structure only when it holds the associated lock. How-
ever, mainstream programming languages such as Java and C# do not force
threads to acquire any locks before accessing data structures, and they do not
enforce that locks are associated with data structures consistently.

A simple strategy to prevent data races is to lock every object before accessing
it. Although this approach is safe, it is not used in practice since it incurs a major
performance penalty, is verbose, and is prone to deadlocks. Instead, standard
practice is to lock only the objects that are effectively shared between multiple
threads. However, it is hard to distinguish shared objects (which should be
locked) from unshared objects based on the program text. As a consequence,
without additional annotations, a compiler cannot enforce a locking discipline
where shared objects can only be accessed when locked.

An additional complication is that in order to decide whether a particular
field access is correctly protected by a lock, it is not sufficient to inspect the
method that contains the field access; indeed, the lock that protects the field
might be acquired by the method’s direct or transitive callers instead of by the

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:4 o B. Jacobs et al.

method itself. Therefore, method contracts that specify which locks are held on
entry are required for modular verification.

In this section, we describe a simple version of our approach that deals with
data races on the fields of shared objects. The next section develops this ap-
proach further to deal with high-level races on multiobject data structures.

The approach is presented in two steps. First (Section 2.1), a programming
regime (or programming model) that prevents data races is presented without
regard to modular static verification. It is proven that if a program complies
with the programming model, then it is data-race-free. In the second step (Sec-
tion 2.2), the modular static verification approach is presented.

2.1 Programming Model

This section presents the programming model, without regard to modular static
verification. Section 2.1.1 describes the model informally. Section 2.1.2 formal-
izes the syntax for a subset of Java augmented with the annotations required
by the approach. Section 2.1.3 defines a small step semantics for execution of
programs in this language, which tracks the extra state variables (specifically,
access sets and shared sets) required by the programming model. The section
also defines a set of legal program states that comply with the programming
model. Section 2.1.4 proves that programs that reach only legal program states
are data-race-free.

2.1.1 Informal Description. We describe our programming model in the
context of Java, but it applies equally to C# and other similar languages. In the
following sections, we formalize the approach with respect to a formally defined
core subset of Java.

In our programming model, accesses to shared objects are synchronized us-
ing Java’s synchronized statement. A thread may enter a synchronized (o)
block only if no other thread is executing inside a synchronized (o) block;
otherwise, the thread waits. In the remainder of the paper, we use the follow-
ing terminology to refer to Java’s built-in synchronization mechanism: when
a thread enters a synchronized (0) block, we say it acquires o’s lock or, as a
shorthand, that it locks o; while it is inside the block, we say it holds o’s lock;
and when it exits the block, we say it releases 0’s lock, or, as a shorthand, that
it unlocks o. Note that, contrary to what the terminology may suggest, when
a thread locks an object, the Java language prevents other threads from lock-
ing the object but it does not prevent other threads from accessing the object’s
fields. This is the main problem addressed by the proposed methodology. While
athread holds an object’s lock, we also say that the object is locked by the thread.

An important terminological point is the following: when a thread tid’s pro-
gram counter reaches a synchronized (o) block, we say the thread attempts
to lock 0. Some time may pass before the thread locks o, specifically if another
thread holds o’s lock. Indeed, if the other thread never unlocks o, tid never
locks o. The distinction is important because our programming model imposes
restrictions on attempting to lock an object.

Our programming model prevents data races by ensuring that no two threads
have access to a given object at any one time. Specifically, it conceptually

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:5

associates with each thread an access set, which is the set of objects whose
fields the thread is allowed to read or write at a given point, and the model
ensures that no two threads’ access sets ever intersect. Access sets can grow
and shrink when objects are created, objects are shared, threads are created,
or when a thread enters or exits a synchronized block. Note that these access
sets do not influence program behavior and therefore need not be tracked by
a virtual machine implementation: we use them to explain the programming
model, and to implement the static verification.

—Object creation. When a thread creates a new object, the object is added to
the creating thread’s access set. This means the constructor can initialize the
object’s fields without acquiring a lock first. This also means single-threaded
programs just work: if there is only a single thread, it creates all objects, and
it can access them without locking.

—ODbject sharing. In addition to access sets, our model introduces an addi-
tional global state variable called the shared set, which is a set of object
identities. We call the objects in the shared set shared and objects in the
complement unshared. The shared set, like the access sets, is conceptual: it
is not present at run time, but used to explain the model and implement the
verification.

A new object is initially unshared. Threads other than the creating thread
are not allowed to access its fields. In addition, no thread is allowed to at-
tempt to lock an unshared object: our programming model does not allow
a synchronized (o) {...} operation unless o is shared. In our programming
model, objects that are not intended to be shared are never locked.

If, at some point in the code, the developer wants to make the object available
for concurrent access, they have to indicate this through an annotation (the
share o; annotation). From that point on, the object o is shared, and threads
can attempt to acquire the object’s lock. At the point where an object is shared,
the object is removed from the creating thread’s access set and added to
the shared set. If, subsequent to this transition, any thread, including the
creating thread, wishes to access the object, it must acquire its lock first.
Once shared, an object can never revert to the unshared state.

—Thread creation. Starting a new thread transfers the accessibility of the
receiver object of the thread’s main method (i.e., the Runnable object in Java,
or the ThreadStart delegate instance’s target object in the .NET Framework)
from the starting thread to the started thread. This is necessary since other-
wise, the thread’s main method would not be allowed to access its receiver.

—Acquiring and releasing locks. At the point where an object becomes
shared, it is removed from the creating thread’s access set and added to
the shared set. Since the object is now not part of any thread’s access set, no
thread is allowed to access it. To gain access to such a shared object, a thread
must lock the object first. When a thread locks an object, the object is added
to the thread’s access set for the duration of the synchronized block.

As illustrated in Figure 1, an object can be in one of three states: unshared,
free (not locked by any thread and shared) or locked (locked by some thread

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

16 o B. Jacobs et al.

shared

Fig. 1. The three states of an object.

and shared). Initially, an object is unshared. Some objects eventually undergo
a share operation (at a program point indicated by the developer). After this
operation, the object is not part of any thread’s access set and is said to be
free. To access a free object, it must be locked first, changing its state to locked
and adding the object to the locking thread’s access set. Unlocking the object
removes it from the access set and makes it free again.

Let us summarize. Threads are only allowed to access objects in their cor-
responding access set. A thread’s access set consists of all objects it created or
whose lock it acquired, plus the receiver of its main method (if any), minus the
objects on which it subsequently performed a share operation or which it used
as the target in a thread creation, or whose lock it released. Our programming
model prevents data races by ensuring that access sets never intersect.

2.1.1.1 Lock Reentry. dJava’s synchronized blocks are reentrant; that is,
if a thread already holds an object o’s lock, then another, nested attempt by
the same thread to enter a synchronized (o) block succeeds immediately. For
simplicity, we rule out lock reentry in the programming model. However, in
Section 4, we show how our approach can be extended to support lock reentry.

2.1.2 Programs. To formalize the rules imposed by our programming
model, we first define a small language consisting of a subset of Java (minus
static typing) plus two kinds of annotations (indicated by the gray background):
share statements and method contracts. Its syntax is shown in Figure 2. An ex-
ample program in this language is shown in Figure 3. We discuss the language
and define well-formedness of programs.

A program 7 consists of a number of classes and interfaces and a main rou-
tine. A class may declare zero or more fields, and both classes and interfaces
may declare zero or more methods. Interface methods consist of a header only,
whereas class methods consist of a header and a body. Each method header
includes a method contract, consisting of a precondition (requires clause) and
a postcondition (ensures clause). The precondition and postcondition spec-
ify an assertion that must hold in the pre-state and the post-state of method
calls, respectively. Since method contracts are used only for verifying modularly
whether a given program complies with the programming model, and are not
part of the programming model itself, it is safe to ignore them in this section.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs .

C class names
Z interface names

iface ::
mh

class ::
field ::
meth ::

M method names ¢ logical formulae
F field names O object references
X variable names © thread-relevant states

CeCIcI,meM,feEF,zeX,ped 00,00

(iface | class)* s*

interface I { mh* }

m(z*) requires ¢; ensures @;

null | o

this |z | v

class C implements I* { field* meth* }

i
mh { s* }
clI

if (g =g) { s* } else { s* } | assert g instanceof T;

lz:=g.f; | g.f == g; | 2 := new C; | z:= g.m(g*); | start g.m();
| share g; | synchronized (g) { s* }

| return g; | 2 := receive [0] o.m(v*); | unlock o;

1.7

Fig. 2. Syntax of a small Java-like language without static typing, but with two kinds of annota-
tions (indicated by the gray background): method contracts and share statements. The underlined
elements appear only as part of continuations during program execution (see Section 2.1.3) and are
not allowed to appear in well-formed programs. The syntax of the logical formulae used in method
contracts is given in Section 2.2.

class Counter { count; }

class Session {
counter;
run()

requires Ly = () A this € A;

/ * wait for event * /;
¢ := this.counter;
assert ¢ instanceof Counter;
synchronized (c¢) { n := c.count; c.count :=n+1; }
this.run();
}
}

¢ := new Counter;
share c;

s := new Session; s.counter := c¢; start s.run();
s := new Session; s.counter := c¢; start s.run();

Fig. 3. An example program in the formal syntax of Figure 2. (Note: the example also uses inte-
ger values and integer operations; these are omitted from the formal development for simplicity.)
Method run’s precondition states that the thread’s lockset is empty and that the receiver is in the

thread’s access set. The syntax and semantics of method contracts is detailed in Section 2.2.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:8 o B. Jacobs et al.

In addition to method contracts, the syntax supports a second type of an-
notations, namely share statements. Using share statements, a programmer
indicates when an object transitions from unshared to shared.

The language is not statically typed. Rather, to avoid formalizing a type
system, type mismatches are considered runtime errors. The static verifica-
tion approach detailed in Section 2.2 guarantees the absence of programming
model violations as well as runtime errors (i.e., null dereferences and type mis-
matches).

For simplicity, the language does not include subclassing (i.e., Java’s extends
keyword). However, it does include dynamic binding. A program with subclass-
ing could be encoded using delegation. Since the language also does not include
inheritance among interfaces, the subtype relation is very simple: a type 77 is
a subtype of a type 1o if either t; = 75 or 77 is a class and 15 is an interface and
71 mentions 13 in its implements clause.

Our static verification approach performs modular verification. This means
that for each method, all executions of that method are considered, not just
those that occur in executions of the program. For example, for method run
of class Session in Figure 3, all executions that satisfy run’s precondition are
considered, including those where the count field contains a null value, even
though there is no execution of the program of Figure 3 where the method is
called in a state where count is null. It follows that in the absence of the assert
statement, the method would be considered invalid since in an execution where
count is null, the synchronized statement would cause a null dereference.
This limits the usefulness of the approach, since users are not interested in
errors that do not occur in program executions. To alleviate this limitation,
the programmer may restrict the set of executions considered by the static
verification approach, by inserting assert statements into the program. If an
assert statement’s condition evaluates to false, the statement is said to fail. If
in a given execution an assert statement fails, the execution is stuck (in Java,
an exception is thrown), but for purposes of static verification, the execution
is considered to be valid (or in other words, the execution is not considered
further), since the failure is assumed to mean that the method execution never
appears in an execution of the whole program. Other verification approaches
outside the scope of this article, such as code review, model checking, or testing,
may be used to verify such assumptions. (Note that the assert statement of
this article, like the assert statement introduced in Java 1.4 and the assert
macro in C, is a run-time assertion, rather than a verification-time assertion.
In this unfortunate clash between the syntax of Java and that of Spec# [Barnett
et al. 2004], where run-time assertions are denoted using the assume keyword
and verification-time assertions using the assert keyword, we adhere to Java
syntax.)

Note: in this article, we allow only assert statements of the form

assert g instanceof 7;

which assert that g is a non-null object reference of type 7. We do not allow
arbitrary expressions because the provided form is functionally complete and
avoids the need to formalize expression syntax and semantics.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:9

We only consider well-formed programs. Well-formed programs have noname
clashes. To simplify the formalisation, we require even fields and methods de-
clared in different classes or interfaces to have different names, except when a
class method implements an interface method. Also, local variables need not be
declared before they are assigned (in fact, our language does not have local vari-
able declarations) but they must be assigned before they are used. By requiring
that both branches of a conditional statement assign to the same variables, we
can define a notion of free variables at each program point by considering an
assignment to bind the variable occurrences that occur after it in the control
flow and that are not hidden by a later assignment. Further, a well-formed pro-
gram must not contain any of the syntactic forms that are intended to appear
only during program execution (i.e., the constructs underlined in Figure 2).
Lastly, classes must implement all methods of their declared interfaces, and if
a method is used to start a new thread, its precondition must be as prescribed
below.

Definition 1. A program r is well-formed if all of the following hold:

—No two interfaces have the same name. No two classes have the same name.
No interface has the same name as a class. No two parameters of a given
method have the same name. No two fields have the same name (even if they
appear in different classes). No two interface methods have the same name
(even if they appear in different interfaces). If two class methods have the
same name m, then the methods are in different classes and the program
declares an interface I that declares a method with name m and both classes
implement interface I.

—If one branch of an if statement contains an assignment to a variable x, then
so does the other branch.

—If a statement uses a variable x, then an assignment to x appears before the
statement in the method body (ignoring the other branch of an enclosing if
statement), or x is a parameter of the enclosing method or this.

—The last statement of a method body and of the main routine is a return
statement and a return statement does not appear anywhere else.

—The program does not contain any receive or unlock statements or object
references.

—If a class implements an interface I and this interface declares a method
with name m then the class declares a method with name m and its header
is identical to the header of the method named m declared by interface I.

—Each class name, interface name, field name, and method name that appears
in the program is declared by the program.

—The number of arguments specified in a call equals the number of parameters
declared by the corresponding method.

—If a method is mentioned in a start statement, then its requires clause is
exactly Ly = 0 A this € A. (Note: the semantics of method contracts is defined
in Section 2.2.)

Notice that the example program of Figure 3 is well-formed.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:10 o B. Jacobs et al.

All concepts in the remainder of this paper are implicitly parameterized by
a program 7.

2.1.3 Program Executions. We now formalize the semantics of our anno-
tated Java subset. While remaining faithful to Java semantics, our semantics
additionally tracks the extra state variables (specifically, access sets and shared
sets) required by the programming model. We also define a set of legal program
states. A program state is legal if all thread states are legal. A thread is in a le-
gal state if it is not about to violate the programming model or cause a runtime
error (in particular, a null dereference or a type mismatch). In Section 2.1.4,
we show that programs that reach only legal states are data-race-free. Note:
we define legality as a separate judgment rather than encoding it as absence
of progress (i.e., thread execution getting stuck) since in concurrent executions,
on the one hand stuckness of a thread might not be due to an error in that
thread (for example, if the thread is waiting for a lock that is never released),
and on the other hand a thread that is stuck due to an error might become
unstuck again as a result of actions of other threads (for example, if the thread
is attempting to lock an unshared object and the object is subsequently shared
by another thread).

We use the following notation. 7 denotes the set of thread identifiers. Fur-
thermore, v represents a value (i.e., v € O U {null}) and o represents an ob-
ject reference (i.e., a nonnull value). fields(C) represents the set of fields de-
clared by class C. We use C < I to denote that class C implements interface
1. declaringClass(f) denotes the name of the class that declares field f, and
declaringType(m) denotes the name of the interface that declares method m, or
the name of the class that declares m if no interface declares a method m. Also,
we assume the existence of a function classof that maps object references to
class names. We assume that for each class name C € C, there are infinitely
many object references o € O such that classof(o) = C. mbody(o.m(v)) denotes
the body of method m declared in class classof(o), with o substituted for this and
U substituted for the method’s parameters. objectRefs(¢) and free(¢) denote the
free object references and free variables, respectively, in syntactic entity ¢. We
use f[x — y] to denote the update of the function f at argument x with value
y. Specifically, f[x — yl(z) equals y if z = x and f(z) otherwise. Similarly,
f\ {(x, ¥)} removes the mapping of x to y from f, and thereby removes x from
the domain of /. We use the notation s[v/x] to denote substitution of a value v
for a program variable x in a thread continuation (i.e., sequence of statements)
3. This substitution replaces only the free occurrences of x, i.e., the ones that
are not bound by an assignment inside 5. We denote the empty list as € and a
list with head & and tail ¢ as & - £. As in Java, we use juxtaposition to denote
the concatenation of two statements or sequences of statements.

The dynamic semantics is defined as a small step relation on program states.

Definition 2. A program state
oc=H,LS,T

consists of:

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:11
[LEcaL-TF] H,L,SF (tid, A, (if (v1i =v2) {51 } else {52 } 5) - F) : legal
[LEcaL-Assert] H,L,SF (tid, A, (assert v instanceof 7; 3) - F) : legal

v # null v €A classof (v) = declaringClass(f)
H,L,St+ (tid, A, (z :=v.f; 8) - F) : legal

[LEGAL-READ]

v1 # null vy €A classof (v1) = declaringClass(f)
H,L,S (tid, A, (vi.f := v2; 3) - F) : legal

[LEGAL-WRITE]

[LEGAL-NEW] H,L,SF (tid, A, (z := new C; 3) - F) : legal

v # null veEA v ¢S

[LEGAL-SHARE] - —
H,L,S | (tid, A, (share v; 3) - F) : legal

v#null vgL7i(tid) wveES
H,L,S I (tid, A, (synchronized (v) { 3 } 3) - F) : legal

[LEGAL-SYNCHRONIZED]

o€A (o,tid) € L
H,L,S F (tid, A, (unlock o; 3) - F) : legal

[LEGAL-UNLOCK]

v # null classof (v) < declaringType(m)
H,L,S F (tid, A, (z := v.m(D); 35) - F) : legal

[LEGAL-CALL]

[LEGAL-RETURN] H,L,SF (tid, A, (return v;) - F) : legal

v # null veEA classof (v) = declaringType(m)
H,L,S | (tid, A, (start v.m(); 5) - F) : legal

[LEGAL-NEWTHREAD)]

Fig. 4. Legal thread states.

—the heap H, a partial function that maps object references to object states. An
object state is a partial function that maps field names to values.

H: O < (F< OU/{null})
The domain of H consists of all allocated objects. The domain of an object

state H(o) consists of the declared fields of the class classof(o) of o.

—the lock map L, a partial function that maps a locked object to the identifier
of the thread that holds the lock

L:O—T

—the shared set S, the set of shared objects

—the thread set T. Each thread state (tid, A, F) € T consists of a unique thread
identifier tid € 7, an access set A C O and a list of activation records F € (s*)*.

We shall sometimes use uncurried syntax for the heap: H(o, /) is shorthand
for H(o)(f), and Hl[(o,) + v] is shorthand for Hlo + H(o)[f ~ v]].

Figure 4 shows the definition of legality H,L, S - ¢ : legal of a thread state
t with respect to heap H, lock map L, and shared set S. Legality captures the
rules of the programming model, as well as absence of run-time errors (i.e., null
dereferences and type mismatches). Figure 5 shows the definition of the small
step relation — on program states.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01 ACM-TRANSACTION November 7, 2008 21:4

1:12 o B. Jacobs et al.

v1=1)2:>§/=§1 1}17&1}2:>§l= 2
(H,L,S, T «(tid, A, (if (v1 =wv2) {51 }else {52 } 3)-F)) — (H,L,S, T« (tid, A, (3' 5) - F))

(1¥]

v # null classof (v) <X 7
(H,L,S, T « (tid, A, (assert v instanceof 7; 35)-F)) — (H,L,S, T <« (tid, A, (3) - F))

[ASSERT]

[REap] (H,L,S, T«(tid,A, (z:=wv.f; 5)-F)) — (H,L,S, T < (tid, A, (S[H(v, f)/z]) - F))
(Writg] (H,L,S, T <(tid, A, (vi.f :=v2; 5) - F)) — (H[(v1, f) — v2],L,S, T < (tid, A, (3) - F))

o & dom(H) classof(o0) = C fields(C) = {f1,..., fn}
(H,L,S, T« (tid, A, (z := new C; 3) - F))
— (Hlo — {(f1,null), ..., (fn,nul)}],L,S, T < (tid, AU {0}, (S[o/z]) - F))

[NEW]

[Suare] (H,L,S, T« (tid, A, (share v; 35)-F)) — (H,L,SU{v}, T« (tid,A\ {v},(3) - F))

v ¢ dom(L)
(H,L,S, T < (tid, A, (synchronized (v) {5 } 5) - F))
— (H,L[v — tid], S, T < (tid, AU {v}, (' unlock v; 3) - F))

[SYNCHRONIZED]

[Uncock] (H,L,S, T« (tid, A, (unlock o; 5)-F)) — (H,L\ {(o,tid)},S, T <« (tid, A\ {o}, (3) - F))

5 = mbody(v.m(7))
(H,L,S, T« (tid, A, (z := v.m(v); 3) - F))
— (H,L,S, T a(tid, A, (3') - (z := receive [(H,L™!(tid), S, A)] v.m(T); 3) - F))

[CaLy)

: (H,L,S, T < (tid, A, (return v;) - (z := receive ...; 3)-F))
[ReTURN] — (H,L,S, T < (tid, A, (5[v/a]) - F))
NEWT] V(tid”,_,.) € T etid’ # tid” tid" # tid
EW 1 HREAD

(H,L,S, T« (tid, A, (start v.m(); 5) - F))
— (H,L,S, T« (tid’, {v}, (mbody(v.m())) - €) < (tid, A\ {v}, (3) - F))

Fig. 5. Execution steps. (T<¢ =TU {¢}).

The rule Ir is standard. An assert statement that fails (either because the
operand is null or because it is not of the specified type) causes the thread to
block forever (AsserT). For reading (READ) or writing (WRITE) a field f, the target
object must be nonnull, part of the current thread’s access set, and of the class
that declares the field. Note that field updates change the heap: the old value
of the field is replaced with the new value. When creating a new object (NEw),
an unused object reference is chosen from O, is inserted into the heap and all
its fields are initialized to the default value null. New objects are initially only
accessible to their creator and therefore the reference is added to the creating
thread’s access set. A thread may share (SHARE) an unshared object in its access
set. By doing so, it removes the object from its access set and adds it to the global
shared set S. Shared objects may be locked (SyncHRONIZED) provided they are
not locked yet. As noted in Section 2.1.1.1, we consider lock reentry to be illegal.
Our method effect framing approach, described in Section 2.2, relies on this.
For the duration of the synchronized block, the lock map L marks the current
thread as holder of the lock. The object is also added to the access set. When
the end of the synchronized block is reached (UnLock), the object must still be

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:13

in the thread’s access set. At this time, the object is removed from the access
set and its corresponding lock is released. Invoking a method m (CaLL) within
a thread tid results in the addition of a new activation record to tid’s call stack.
The activation record contains the body of m where all free variables (this
and parameters) are replaced with the corresponding argument values. In the
caller’s activation record, the method invocation is replaced with a receive
statement, which keeps a record of the call’s pre-state and arguments. The
operands of the receive statement are not used by the dynamic semantics;
they are used only in the soundness proof in Section 2.2.5. When a method
call returns (RETURN), the top activation record is popped and the return value
is substituted into the caller’s activation record. A new thread (NEwWTHREAD)
is started by performing a start o.m(); operation. Accessibility of object o is
transferred from the original thread to the new one. The new thread consists
of a single activation record containing the body of method m where this is
replaced by o.
Program execution starts in an initial state.

Definition 3. In a program’s initial state, there is only a single thread. It
has an empty access set and it executes the main routine. Moreover, the heap,
the lock map, and the shared set are all empty.

initial((4, @, 4, {(tid, @, program_main)}))
where program_main denotes the program’s main routine.

A thread’s execution is complete when the thread’s call stack consists of a
single activation record whose continuation is a return statement. Threads
whose execution is complete are not garbage collected in our semantics, since
this is irrelevant for the results of this paper.

The programs allowed by the programming model are the legal programs,
which reach only legal program states.

Definition 4. A program state (H,L, S, T) is legal if all thread states are
legal as per Figures 4:

legal(H,L,S,T) & (Vt e TeH,L,S+¢:legal)

Definition 5. A program is legal if it is well-formed and all program states
reached by execution of the program are legal:

program_legal < program_wf A (Voy, o e initial(cg) A 09 —* o = legal(o))

2.1.4 Data-Race-Freedom. The dynamic semantics defined above is an in-
terleaving semantics, which implies a sequentially consistent memory model.
This means that there is a total order on all field accesses such that each read
of a field o.f yields the value most recently written to o.f in this total order.
However, the Java Language Specification, Third Edition (JLS3) [Gosling et al.
2005] does not guarantee sequential consistency. In general, it allows threads to
see writes performed by other threads out of order, which is necessary to allow
efficient implementations involving optimizations at the level of the compiler,
the memory hierarchy, and the processor. Still, JL.S3 does guarantee sequential

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:14 o B. Jacobs et al.

consistency for correctly synchronized programs. These are programs where all
sequentially consistent executions are data-race-free.

In conclusion, in order for the dynamic semantics in this article to be sound
with respect to Java and for the programs we care about, we need to prove that
all executions of these programs under this semantics are data-race-free as per
JLS3.

In this subsection, we show that legal programs are data-race-free, by prov-
ing that — maintains well-formedness of the program state. Specifically, each
execution step maintains the property that the threads’ access sets and the free
set partition the heap.

Definition 6. The free set of a program state o consists of all shared objects
that are not locked.

Free(oc) = S\ dom(L)

Definition 7. A multiset of sets S partitions a set T (S « T') if all sets in
S are disjoint and their union equals 7.

S<«T & (Ws1e8S,s5eS—(si}esiNsy=MA| JS=T

Execution steps maintain well-formedness of the heap, the shared set, and
the lock map.

Definition 8. A heap is well-formed (F H : ok) if objects referenced from
fields are allocated.

Yo € dom(H), f € dom(H(0)) e H(0)(f) € dom(H) U {null}

Definition 9. A shared set is well-formed with respect to a heap (H - S : ok)
if shared objects are allocated.

S € dom(H)

Definition 10. A lock map is well-formed with respect to a heap and shared
set (H, S L : ok) if locked objects are shared.

dom(L) € S
Definition 11. A program state
oc=(H,LS,T
is well-formed (wf(o)) if the following conditions hold:
—The access sets and the free set partition the heap.

(|5 (ADW{S\dom(L)} « dom(H)
(A, DeT

—The heap, the shared set, and the lock map are well-formed.
FH:ok AHFS:0k A HSFL:ok

—The continuations in each thread’s call stack contain only references to allo-
cated objects and do not contain any free variables.

V(, ,F)eTeVscFe
(objectRefs(s) € dom(H) A free(s) = ¥)

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:15

Notice that well-formedness of a program state implies that access sets are
disjoint and that accessible objects are allocated.

THEOREM 1. In a legal program, the small step relation preserves well-
formedness.

program_legal = (Yo1, o2 @ (Wf(o1) A 01 — 02) = Wi(og))

Proor. By case analysis on the step from o7 to o2. We consider cases SHARE,
SYNCHRONIZED, and UNLOCK.

—Case SHARE. By legality, we have that the object being shared is in the access
set but not in the shared set. The step adds it to the shared set (and therefore
the free set since unshared objects are not locked) and removes it from the
access set. It follows that the partition is maintained.

—Case SYNCHRONIZED. Assume that the object being locked is 0. In o1, 0 is shared
and not locked, and therefore it is part of o7’s free set. Since in a well-formed
state the free set and the access sets partition the heap, o is not in any thread’s
access set. Adding o to a single access set and removing it from the free set (by
adding an entry for o to the lock map) maintains the proper partitioning of
the heap. Because locking an object modifies neither the heap nor the shared
set and both are well-formed in the pre-state, they are well-formed in the
post-state. Adding an entry for o (a shared object) to o1’s well-formed lock
set, preserves the fact that the lock set only contains shared objects. Finally,
the continuations in o3 contain neither free variables nor unallocated objects,
because o1 does not contain any and because locking did not introduce any.

—Case UnLocK. By legality, the object being unlocked is in the access set and
is locked by the current thread. The step removes it from the lock map (thus
adding it to the free set, since locked objects are shared) and from the thread’s
access set. It follows that the partition is maintained. O

THEOREM 2. States reached by legal programs are well-formed.

Proor. By induction on the number of execution steps: the initial state is
well-formed, and the induction step holds, as per Theorem 1. O

The notion of data race is defined in JLS3 in terms of the happens-before
relation on execution steps. We consider only finite executions, but we do not
require an execution’s last state to be a “final state.” In other words, we use the
term execution as a shorthand for execution prefix.

Definition 12 (Execution, Execution Step). An execution of a program is a
finite sequence of program states oy, ..., 0, where o¢ is an initial state and
consecutive program states are related by the step relation.

(00, ...,0,) € £ & initial(cg) A (Vi € {0,...,n—1} e 0; — 0j41)

The execution steps of an execution (oy, ..., 0,) are the integers 1, ..., n, where
step i denotes the step from state o;_1 to state o;. 0;_1 is called step i’s pre-state
and o; is called its post-state.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:16 o B. Jacobs et al.

We say a step is performed by a thread tid if tid’s thread state in the step’s
pre-state differs from tid’s thread state in the step’s post-state. It is easy to see
from the step rules that in all executions, in each program state there is at
most one thread state for each thread and in each execution step, exactly one
thread’s thread state changes.

Definition 13 (Happens-Before). Consider an execution of a legal program.
The happens-before relation on the execution is a partial order among the steps
of the execution. Specifically, it is the smallest transitive relation such that

—Each step performed by a thread tid happens-before each subsequent step
performed by tid.

—Each UnvLock step on an object o happens-before each subsequent
SYNCHRONIZED step on o.

—Each NEwTHREAD step that creates a thread tid happens-before each operation
performed by tid.

Definition 14 (Data Race). Consider an execution of a legal program. A pair
of steps of the execution constitutes a data race if one is a WRITE of a field o. f
and the other is a READ or WRITE of 0./ and the steps are not ordered by the
happens-before relation.

The following lemma states that in legal programs, no ordering constraints
exist on execution steps beyond those imposed by the synchronization con-
structs (i.e., thread creation and synchronized blocks).

LEmMa 1. In an execution of a legal program m, if two consecutive steps are
not ordered by happens-before, then swapping them results again in an execution

of .
Proor. By case analysis on the steps. We detail a few cases.

—The steps are not accesses of the same field, since this would mean access
sets are not disjoint, and by Theorem 2 we have that program states are
well-formed.

—A NEew step can be moved to the right. The other step does not access the
newly created object since the NEw step does not modify the thread state of
the other thread and well-formedness of the latter implies it does not mention
unallocated objects. O

We are now ready to prove the main theorem of this section.
THEOREM 3. Executions of legal programs do not contain data races.

Proor. By contradiction. Consider a legal program 7 such that at least one
of its executions contains a data race on a field o. /. Of all the data races in all
the executions of 7, pick one where the number of steps that intervene between
the steps that constitute the data race is minimal. Let those steps be S; and
Si+1+n-

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:17

Assume first that n = 0. In state o;_; (the pre-state of step S;) o is in the
access set of the thread tid; that performs S;. Since a field access does not modify
any access sets, this is still true in state o;. However, in this state, it is also true
that o is in the access set of thread tid;,; that performs S;,;. This contradicts
Theorem 2.

Assume now that n > 0. Call S; the last step preceding S; 1, that does
not happen before S; 1,. Since S; precedes S;,1., and does not happen before
S;:11.n, such a step exists, and eitheri = j ori < j. We consider two cases:

—Case i = j. By repeated application of Lemma 1, step S; can be moved
directly before S; 1., which results in a data race without intervening steps,
contradicting the minimality assumption.

—Casei < j. By repeated application of Lemma 1, step S; can be moved after
S;11.n, which results in a data race with n—1 intervening steps, contradicting
the minimality assumption. O

2.1.5 Noninterference. Inthissubsection, we introduce the notion of a non-
interfering state change and we prove that in executions of legal programs, with
respect to the access set of one thread, steps of other threads are non-interfering
state changes.

Definition 15. Two states are related by a noninterfering state change with
respect to a given access set if

—all objects that are allocated in the first state are also allocated in the second
state,

—all objects that are shared in the first state are also shared in the second
state, and

—if an object is in the access set, then its state in the heap is unchanged and
if additionally the object is unshared in the first state, then it is unshared in
the second state.

Formally:

H,9) 2 H,S)

¢
dom(H) € dom(H)AS C S AH|a=HIAAS NA=SNA

Note: the noninterfering state change relation 2L for a given access set A
relates two heap-shared set pairs rather than full program states. This allows
us to reuse this relation in the context of thread-relevant states (see Section 2.2).

The following theorem states a key property of the programming model.

Note: we write o -3 o’ to denote that program states o and ¢’ are related by an
execution step performed by thread tid.

THEOREM 4 (THREAD ISOLATION). In an execution of a legal program, with re-
spect to the access set of one thread, a sequence of steps of other threads constitutes

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:18 o B. Jacobs et al.

a noninterfering state change.

tidy tid,,

program_legal A initial(c®) A 6 =* 09 — 01+ = 0,
AN
(Vi €{0,...,n}e0; = (H;, L;, S;, T;< (tid, A, F))) Atid ¢ {tidy, ..., tid,}
{8

(Ho, So) & (Hy, S»)

Proor. Since the program is legal, by Theorem 2 we have that all program
states reached are legal and well-formed. We prove the theorem by induction
on n. The base case n = 0 is trivial. Assume n > 0. By induction we have

(Ho, So) & (Ha_1, Sn_1)

We perform case analysis on the rule used to derive the last step. We consider
case WRITE.

Suppose the step’s pre-state is well-formed and that the step writes value v
to field f of object 0. No new objects are allocated when assigning to fields, and
therefore the domain of the old and the new heap are equal. The old and the
new heap differ only at a single location, namely (o, /). From legality it follows
that o is an element of thread tid,’s access set, and by well-formedness it is not
an element of A. Finally, updating a field does not modify the shared set. O

2.2 Static Verification

The previous section proved that legal programs are data-race-free. However,
legality of a program is not a modular notion. Furthermore, the issue remains
of how to verify legality of a given program. In this section, we define the notion
of valid programs, which is a condition that is modular and that is suitable
for submission to an automatic theorem prover, and we show that valid pro-
grams are legal. It follows that valid programs are data-race-free and that they
perform no null dereferences or ill-typed operations.

The validity notion is based on provability of verification conditions in the
verification logic, that is, the logic used to interpret the verification conditions.

Before we define and prove the validity notion, we establish the verification
logic and we discuss the modular verification approach.

2.2.1 Verification Logic. We target multisorted first-order predicate logic
with equality. That is, a term ¢t is a logical variable y € Y or a function appli-
cation f(t1,...,t,) where f is a function symbol from the signature with arity
n. A formula ¢ is an equality t; = te, an inequality t; # te, a literal true or
false, an atom P(ty,...,t,) where P is a predicate symbol from the signature
with arity n, a propositional formula using the connectives A, v, =, and —, or
a quantification (Vy e ¢).

We use the signature shown in Figure 6, for a given program. Note:

—All sorts are countably infinite.

—We leave the sorts of quantifications, function symbols, and predicate symbols
implicit when they are clear from the context.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL

ACMBO080A-01 ACM-TRANSACTION

A Programming Model for Concurrent Object-Oriented Programs .

November 7, 2008

21:4

1:19

Sort Notes
ref Object references
value Program values (object reference or null)
ref set Finite sets of object references
field Field names
class Class names
interface Interface names

objstate = (field, value) func

heap = (ref, objstate) func

Object states, i.e. finite partial functions
from field names to program values
Heaps, i.e. finite partial functions

from object references to object states

Predicate symbol Sorts Syntax Notes
in(ty,t2) a X « set t1 € ta
subtype(t1, t2) interface X class t1 <t2 subtype relation
Function symbol Sorts Syntax Notes
emptyset a set or (o, 3) func 0 empty set, empty function
insert(t1,t2) « set X o — « set t1 U {t2}
insertnonnull(t1,t2) ref set x value — ref set t1 U{t2} _nun
remove(ti,t2) « set X o — « set t1\ {t=2}
intersect(t1,t2) o set X o set — « set t1 Nto
setminus(t1, t2) o set X o set — « set t1 —to or t1 \ t2
apply(t1,t2) (o, B) func x oo — 3 t1(t2)
update(t1, t2,t3) (a’ﬁ) (f;lfg)xfuo;: A ty[ta — t3] function update
dom(t) (e, B) func — « set dom(t) function domain
null value null
classof () ref — class classof () class of an object
asvalue(t) ref — value t implicit widening
asobjref(t) value — ref t implicit narrowing

Fig. 6. Signature of the verification logic.

The widening and narrowing conversions are inserted implicitly to convert
between program values and object references. That is, where below we write
a term ¢ of sort ref in a location where a term of sort value is expected, ¢ should
be read as asvalue(#), and vice versa. Also, some of the function symbols are
overloaded. Specifically, implicitly there is a separate emptyset symbol for each
set or function sort, and there are separate apply, update, and dom symbols for
each function sort.

Additionally, the signature contains a nullary function symbol ¢ for each
class or interface t declared by the program, and a nullary function symbol f
for each field f declared by the program.

Note: we also use the following abbreviations:

Abbreviation Meaning
t1(t2, t3) t1(t2)(t3)
t1l(t2, t3) > t4l tilta > (t1(t2)lts > t4])]
t1 Cto (Vyey et = y €tg)
toly, = t3ls, (Vy ey et1 = tay) =t3(y))
t1 < 9 1 <taViL =1t

where y is a fresh logical variable.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:20 o B. Jacobs et al.

Throughout, we interpret the logic according to an interpretation J of the
signature, which is as expected. Corner cases are as follows. J(asobjref)(3(null))
yields some (fixed) object reference. If ey is not in the domain of e;, then
J(apply)(ey, e2) yields some (fixed) element of the range sort. J(subtype)(C, I)
holds if the program declares a class C that mentions an interface I in its
implements clause. (Remember that the language does not allow subclassing
or interface extension.) Function J(insertnonnull)(S, v) returns S if v is null, and
S U {v} otherwise.

Let X be an (incomplete) axiomatization of J. By the soundness of first-order
logic, it follows that if a formula ¢ is provable from X, then ¢ is true under J:

ifX-¢thenJF ¢
Note:

—A multisorted first-order logic where all sorts are countably infinite can be
reduced to a one-sorted first-order logic by having a universe of natural
numbers and mapping it to the various sorts as appropriate in the inter-
pretation. This allows us to use theorem provers for one-sorted logic, such as
Simplify.

—We will sometimes be loose with the separation between object logic and
metalogic. That is, we will sometimes write just ¢ instead of 3, V' E ¢, where
¢ is a formula of the verification logic, if it is clear what the intended valuation
V of the free variables of ¢ is. Also, we will sometimes write p[v/x] when we
mean J, V[x — v] F ¢.

2.2.2 Thread-Relevant States and State Predicates. The verification condi-
tions used by our modular static verification approach are stated not in terms of
entire program states, but in terms of just the state variables that are relevant
to the current thread, i.e. the thread-relevant state.

Definition 16. In a given program state, the thread-relevant state
(H, L, S, A) of a certain thread consists of the heap, the objects locked by the
thread, the shared set and the thread’s access set.

In order to enable modular verification, the verification approach imposes re-
strictions on program states beyond those imposed by program legality. Specifi-
cally, only references to shared objects may be stored in fields. This is discussed
further in Section 2.2.3.

Definition 17. A thread-relevant state (H, Li, S, A) is well-formed, written
F(H, L, S, A) : ok, if the heap is well-formed, the shared set is well-formed with
respect to the heap, the access set is a subset of the heap’s domain, the lock set
is a subset of the shared set, and non-null field values are shared.

F(H, L, S,A) : ok
¢
FH:ok AHFS:0k A Lt CS A AC dom(H)
A
(Vo € dom(H), € dom(H(0)) e H(o, f) = null v H(o,) € S)

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:21

A continuation, as it appears in a program text, may contain free program
variables. Consequently, the corresponding continuation verification condition
contains these program variables as free logical variables.

Definition 18. A program variable z € Var is either this, result, or a
method parameter or local variable x € X.

Var = {this, result} U X.

A continuation verification condition is a state predicate. A state predicate
may be a two-state predicate or a one-state predicate. A two-state predicate may
refer to the current thread-relevant state (using free variables H, L;, S, and A)
and to the old state (using free variables H°, Lgld, Sold and A°M). A one-state
predicate may refer only to the current state (using free variables H, L;, S, and
A). Since method postconditions are two-state predicates, so are continuation
verification conditions.

Definition 19. A two-state predicate (or state predicate for short) @ is a
formula of the verification logic, whose free logical variables are the current
and old thread-relevant state variables and program variables:

free(@) C {H, Ly, S, A, Hod, | old gold " Acldy) e,

A state predicate @ is called a one-state predicate if the old thread-relevant
state variables do not appear free in it.

free(Q) < {H, L, S, A} U Var.
A state predicate is program-closed if no program variables appear free in it.

We will use the notation J,H, L, S, A,V F @ to denote the truth of a state
predicate in a particular thread-relevant state and under a particular valuation
V that maps program variables to program values.

The verification conditions used by our approach are local.

Definition 20. A state predicate @ is local if it is preserved by a non-
interfering state change.

local(@) =
(Vﬁ, Hold, Lgld’ Sold7 Aold’ H, Lty S, A, H/, S e
Qlo/gl AH,S) 4 (H,S)= QIv/g,H/H,S/SD,
where g are the program variables that appear free in @.

2.2.3 Modular Verification. To determine validity of a method, one could
take the entire program into account at once. However, this approach is not mod-
ular, and hence does not scale to large programs. Instead, we propose a modular
approach where the validity of a method does not depend on the entire program,
but only on its body, its method contract, and the contracts of its callees.

A method contract is of the form

requires P; ensures @Q;

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:22 o B. Jacobs et al.

where P is a state predicate and @ is a two-state predicate. Specifically, the
free variables allowed in P are H,L;,S, and A, as well as this and the method’s
parameters. The free variables allowed in @ are H,L,S,A, H, Lold| Seld and
A4 as well as this, the method’s parameters, and result. P is called the
method’s precondition and @ is called the method’s postcondition.

To verify whether a method complies with the model and respects its method
contract and those of its callees, one may only assume that the method’s pre-
condition holds and that the program state is well-formed when the method is
called. Furthermore, note that methods cannot query the access set in the sense
that branching on whether an object is accessible or not is impossible. From this
we can derive a framing property: a method call does not modify or share an
object o that is allocated and accessible before the call, if the precondition does
not require o to be accessible. Thanks to this framing property, we do not need
explicit modifies clauses in method contracts.

Consider a formula ¢ in the verification logic such that free(p) C {A}. The
required access set A(p) of ¢ is defined as

foeO|VACODep=0cA}

That is, when interpreting ¢ as a set of access sets, we have

Alp)={e

In our verification approach, for a given method precondition P, we compute
a first-order expression for A(P) syntactically. This is possible if the syntax of
preconditions is restricted sufficiently.

We require method preconditions and postconditions to be local.

In this section, we impose the additional restriction that fields can only hold
shared objects. We verify that any field write stores a shared object; as a result,
we may assume that the objects read from fields are shared. The example of
Figure 3 shows a typical scenario that exploits this property. Method run at-
tempts to acquire the lock of the object stored in the counter field. Therefore,
this field must hold a shared object. However, this cannot be stated as part of
the method’s precondition, since method run is mentioned in a start statement
as the main method for a new thread, and therefore its precondition is fixed. To
solve this problem, we build the restriction that fields must hold shared objects
into the verification approach of this section.

This restriction is lifted in Section 3, where invariants offer a more flexible
way to specify that a given field holds a shared object. Another way to lift the
restriction is to introduce a shared modifier, which indicates that a certain
field can only hold shared objects. In the latter approach, it is verified that
at every field write o.f := v; where f is marked shared, v is either null or a
shared object. In return, it may be assumed that values read from fields marked
shared are either null or shared objects.

2.2.4 Valid Programs. In this section, we define which verification condi-
tions are generated for a given program. A verification condition is a closed
formula in the verification logic. A program is valid if its verification conditions
are provable from the verification logic’s theory X.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:23

We define program verification conditions in terms of continuation verifica-
tion conditions. A continuation verification condition vc(s, @) is a formula of the
verification logic that expresses conditions under which a continuation s (i.e.,
a list of statements to be executed next) executes correctly and satisfies post-
condition @ when started in a given program state. A continuation verification
condition depends only on the state variables relevant to the thread that exe-
cutes the continuation. These state variables appear as free logical variables
in the formula.

Figure 7 defines the predicate transformer vc, which maps a continuation
s and a state predicate @ to the continuation verification condition for s and
®. As noted above, vc(s, @) is a sufficient condition such that any thread in
a state satisfying vc(s, @) ends up in a state satisfying @ after executing the
continuation 5. Note: substitutions apply to predicates of the object logic; they
do not apply directly to predicate transformer applications of the metalogic.
Specifically, it is generally not the case that vc(s, @)[t/x] = ve(S[t/x], Q¢ /x]).
In other words, to compute a verification condition, first apply all verifica-
tion condition rules exhaustively and then apply the substitutions. pre(o.m(v))
and post(o.m(v)) denote the precondition and postcondition, respectively, de-
clared by method m, with o substituted for this and v for the method’s
parameters.

The intuition underlying the verification condition rules is as follows. The
verification condition for VC-IF is a standard weakest precondition. Since an
assert statement blocks forever if its condition is false, the statement’s contin-
uation is verified under the assumption that the condition is true. For a field
access (VC-REeaD or VC-WRITE), the target of the access must be nonnull and
accessible. A newly created object (VC-NEw) was previously unallocated and is
of the correct class. In order to share (VC-SHARE) a value, the value should be
nonnull, accessible and unshared. Locking (VC-SyncHRONIZED) is disallowed if
the object is unshared or already locked by the current thread. Moreover, since
between synchronized statements other threads may modify shared objects, we
should assume nothing about the fields of the newly locked object. The only
property we may assume is that the old state and the new state are related by
a noninterfering state change with respect to the thread’s access set. Unlocking
(VC-Unrock) is allowed only for locked and accessible objects. When invoking
a method (VC-CaLL), the target should not be null, the callee’s precondition
should hold and when returning (VC-RECEIVE) the postcondition should hold.
When a method call returns, we make some assumptions about the post-state.
First of all, as per the method framing approach, we may assume that the post-
state is related to the pre-state by a noninterfering state change with respect to
the pre-state access set minus the callee’s required access set. Secondly, we may
assume the post-state is well-formed and satisfies the callee’s postcondition. Fi-
nally, we may assume the return value is allocated. Starting a new thread via
start (VC-NEwTHREAD) requires the target object to be accessible and nonnull.
Accessibility of the target object is transferred from the current thread to the
new thread.

An important property of continuation verification conditions is that they
are local.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01 ACM-TRANSACTION November 7, 2008 21:4

1:24 o B. Jacobs et al.

ve(if (v =v2) {51 }else {32 } 5,Q) = [VC-IF]
(v1 = v2 = vc(81 5,Q)) A (v1 # vy = ve(52 5,Q))

vc(assert v instanceof 7; 5,Q) = [VC-ASSERT]
(v # null A classof (v) < 7) = vc(3, Q)

ve(z :==v.f; 5,Q) = [VC-READ]
v # null A classof (v) = declaringClass(f) Av € A Avc(3, Q)[H(v, f)/x]

ve(vy.f =g 5,Q) = [VC-WRITE]
vy # null A classof (v1) = declaringClass(f) Av; € AA (va = null Vg €S)
A ve(s, Q)[H[(v1, f) — va]/H]

ve(z :=new C; 5,Q) = [VC-NEW]
Vo e 0 ¢ dom(H) A classof(0) = C' =

ve(s, Q)[o/x,Hlo w— O[f1 — null] - - - [f,, — null] /H, (AU {0})/A]
where fields(C) = {fi1, ..., fn}

vc(share v; 5,Q) = [VC-SHARE]

v#nullAve ANV ESAve(EQ)(A\{v})/A, (SU{v})/9]

vc(synchronized (U) { s } S, Q) = [VC-SYNCHRONIZED]
v#nullAveESAvELy
A (VH',S'e
((H,S) & (H',S)A F (H,Li,S',A) : ok)
=
ve(s unlock v; 5,Q)[H'/H, (AU {v})/A, (L U{v})/L,S’/S])

vc(unlock o; 3,Q) = [VC-UNLOCK]
o€ ANoE L AVe(E QAN {o})/A, (Le \ {o})/Li]

ve(z :=v.m(D); 5,Q) = [VC-CALL]
v # null A classof (v) =< declaringType(m) A pre(v.m(7v))
A vc(z := receive [(H,L,S,A)] v.m(7); 5,Q)

vc(start v.m(); 5,Q) = [VC-NEWTHREAD]
v # null A classof (v) < declaringType(m) Av € AAvc(5,Q)[(A\ {v})/A]

vc(return v;, Q) = [VC-RETURN]
Q[v/result]

Fig. 7. Continuation verification conditions (Part 1 of 2).

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:25
ve(x := receive [(HP™, L}, SPre, AP)] 0.m(D); §, Q) = [VC-RECEIVE]
VH', S, A, vye

((H,$) ™ (H, 8 A (- (H, Ly, S/, A : 0k)
AA'N Acaller =AnN Acaller
A Q'IH/H, S /S, A/A, LI /Ly, vy /result,
Hpre/Hold’ Lgre/Lgld, Spre/sold, Apre/Aold]
A (vy = null v vy € dom(H))
=
ve(s, Q)IH'/H, S'/S, A'/A, L¢' /Ly, vy /x]
where P’ = pre(o.m(70)) and @' = post(o.m(v))
and Acalter = AP™® — A(P'[HP™/H, LP™ /L, SP™®/S])

Fig. 7. Continuation verification conditions (Part 2 of 2).

THEOREM 5. If a state predicate @ is local, then the verification condition of
a continuation s with respect to @ is local as well.

local(®) = local(vc(s, Q))
Proor. By induction on s.

—Case 5 = synchronized (v) {5" } 5.

(1) We may assume that s is valid (i.e., vc(s, @) holds) in a state (H, L, S, A).

(2) It follows by VC-SyNcHRONIZED that the continuation 5” unlock v; s’ of 5
is valid in any state (H', Ly U {v}, S’, AU {v}) where (H, S) A H, 8.

(3) We need to prove that s is valid in any state (H”, Ly, S”, A) where (H, S) 4
(H”, 8").

(4) This requires that we prove that the continuation 5" unlock v; s’ of 5 is
valid in any state (H”, L; U {v}, S”, AU {v}) where (H", S") A (H”, 8").

(5) It is easy to see that the non-interfering state change relation is transi-
tive; therefore, from the assumptions in points 3 and 4 we have (H, S) 4
(H”,8"”). By instantiating the rule in point 2, we obtain the goal in
point 4.

—Case receive is analogous to case synchronized.
—The other cases are easy. O

Notice that in the verification conditions, inter-thread interference only sur-
faces in rules VC-SyncHroNIZED and VC-RECEIVE, even though operations from
other threads may be interleaved between any two operations of a given thread.
Informally speaking, this is sound because on the one hand each thread’s ver-
ification condition is local and therefore is preserved by noninterfering state
changes, and on the other hand, each thread’s actions constitute noninterfer-
ing state changes with respect to other threads. For example, a write by a thread
t1 cannot invalidate the continuation of another thread #,, since #; writes only
fields of objects in its own access set A1, and validity of o depends only on fields
of objects in its access set Ay, and both are disjoint. See cases WRITE and SHARE
in the proof of Theorem 7.

We are now ready to define program validity.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01 ACM-TRANSACTION November 7, 2008 21:4

1:26 o B. Jacobs et al.

Definition 21. A well-formed program is valid if all of the following hold:
—each method precondition or postcondition ¢ is local
¥ + local(p)

—each method m(¥) requires P; ensures @; {5 } in each class C is valid, i.e.,
it is provable from the verification logic that the precondition implies validity
of the method’s body with respect to the postcondition.

DR
Yo,U,H,L,S,A e
(F(H, L, S, A) : ok A classof(o) = C A {T} C {null} Udom(H) A Plo/this, 7/x])

vc(s, @)lo/this, v/x, H /Hl‘lﬂd, Ly/LOM, /S0l A/ACl]
—the main routine s is valid:
¥ ve(s, true)[d/H, 3/, B/S, 3/A
The example of Figure 3 is a valid program.

2.2.5 Soundness. In this subsection we define a notion of valid program
state and we prove that valid states are legal states. We then prove that program
states reached by valid programs are valid, by proving that the initial state is
valid and that execution steps preserve validity. It follows that valid programs
are legal programs and therefore they are data-race-free.

A program state is valid if each thread state is consistent and each activa-
tion record is valid. The latter means that the continuation verification condi-
tion of the activation record’s continuation holds with respect to the activation
record’s postcondition. An activation record’s validity is independent of actions
performed by other activation records. We prove this using the notion of acti-
vation record access sets. We prove that an activation record’s validity depends
only on the state of the objects in its access set, and actions of other activation
records are non-interfering with respect to this access set.

We use the following shorthands. We denote the components of a thread-
relevant state 6 as Hy, Ly, Sy, and Ay. That is, we have

0= (H97 L97 897 AG)

Furthermore, we use Argq(call, 0) to denote the required access set of call call
in pre-state 6:

Aeq(0.m(v), 0) = A(pre(o.m(v))[Hqs /H, Lg/Lt, So/SD.

We use post(call, 0) to denote the postcondition of call call with respect to pre-
state 6:

post(o.m(D),) = post(o.m(v))[Hy/H, L, /LM, S, /S0H].

Definition 22. An activation record’s access set is recursively defined as
follows:

—The top (i.e., active) activation record’s access set is the thread’s access set
minus the other activation records’ access sets.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4
A Programming Model for Concurrent Object-Oriented Programs . 1:27
—The access set of an activation record that is suspended while waiting for
a call to return, is the pre-state thread access set, minus the access sets of
transitive caller activation records, minus the call’s required access set.
Formally:

t = (tid, A, (51) - (xg := receive [6s] cally; 53)
“..- (x, :=receive [0,] call,; s,) - €)
I
A_U1<j§nAar(j)(t) ifi=1
AO' - Ui<_j§n Aar(J)(t) - Areq(CaZli, el) ifi >1

i

vViel{l,...,n} 'Aar(i)(t) = {

Definition 23. A thread state ¢ is consistent with respect to a given lockset
Ly, written L - consistent(z), if ¢ is of the form

(tid, A, (s1) - (x9 := receive [02] calls; S9)
... (x, :=receive [6,] call,; 5,) - €)

where all of the following hold:

—No unlock statement appears inside another statement in the thread’s acti-
vation records’ continuations
Viefl,...,n}es; #---if(---){--- unlocko; ---} ---)
Viefl,...,n}e5;#---if(---){---} else { ---unlocko; ---} --+)
(Vie{l,...,n}e5; # ... synchronized (---) { --- unlocko; ---} ---)

—The thread’s lockset is equal to the set of objects that appear in unlock
statements in the thread’s activation records’ continuations

Li={o| (3 e{l,...,n}es5 =--- unlocko; ---)}
—No object appears more than once in an unlock statement
—(51---8, = --- unlock o; --- unlocko; ---)

—A caller’s pre-state lockset is equal to the set of unlock statements in the
call’s continuation plus transitive caller continuations

(Vie{2,...,n}eLy ={0]|(3jefi,...,n}es; =--- unlocko; ---)})

—Each non-top activation record’s required access set is included in its pre-
state activation record access set

—Each non-top activation record’s pre-state access set includes the access sets
of transitive caller activation records

—The thread’s access set includes the non-top activation records’ access sets

n=1
vV (Areqlcally,, 0,) € Ay,
ANV e2,...,n—1)e
AGiH - Areq(CalliJrl, 9i+1) - Aei
N Areq(Calli, 0;) C Ay — (Aem - Areq(CallHl, 6;+1)))
A g, — Areglcalls, 62) € A)

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:28 o B. Jacobs et al.

Notice that if a thread state is consistent, then its activation records’ access
sets partition the thread’s access set.

Definition 24. An activation record’s postcondition @ a;)(t) is the postcon-
dition of the call stored in the receive statement in the caller’s continuation,
or true if the activation record has no caller.

Formally:

t = (tid, A, (51) - (x2 := receive [05] calls; 352)
... (x, :=receive [0,] call,; 5,) - €)

Y
Vi € {1’ SRR n} L4 Qar(i)(t) = {

pOSt(Calli_H, 9i+1) ifi <n
true ifi=n

Definition 25. An activation record is valid if the verification condition of
its continuation with respect to its postcondition holds under the current heap,
lock set, and shared set, and under the activation record’s access set. Formally:

t=(id, A, (s1)-...-(5,) - €)
= Mie{l,...,n}e
H, L, S F validg)(2)
< J,H, L_l(tid), S, Aarpy(@t) E ve(s;, Qar(£)))

Definition 26. A program state is valid, written valid(H, L, S, T), if all of the
following hold:

—it is well-formed
wf(H,L,S, T)

—for each thread state ¢t € T where ¢t = (tid, A,ry - --- - rp,), all of the following
hold:
—it is well-formed

- (H, L7X(tid), S, A) : ok
—it is consistent
L~L(tid) - consistent(#)
—each activation record is valid
Vie{l,...,n}eH, L, S validy)(t)
THEOREM 6. A valid program state is a legal program state.

Proor. One can easily prove that each thread is in a legal state by perform-
ing a case analysis on the first statement of the continuation of the top activation
record and for each case using the validity of the top activation record. O

TuEOREM 7. In a valid program m, the small step relation — preserves va-
lidity.
Vo1, 09 e (valid(oq) A 01 — 09) = valid(os)

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:29

Proor. By case analysis on the step. Note that preservation of well-
formedness is given by Theorem 1. We refer to the thread that performs the
step as the current thread and the top activation record of the current thread
as the current activation record. For each step rule, we have to prove that in
o9, thread states are well-formed and consistent and activation records are
valid.

Each step changes the current activation record’s continuation. We only note
other changes. Also, we only detail the argument for preservation of validity
of the current activation record if it does not follow easily from the verification
condition.

—Case Ir, AsserT. The step changes only the continuation of the current acti-
vation record. Therefore, thread state consistency and validity of the other
activation records is preserved trivially.

—Case WRITE. The step changes the heap at some location o. f, and the current
activation record’s continuation. Thread state consistency depends on neither
so it is preserved trivially. By VC-WRITE, we have that o is in the current
activation record’s access set. Well-formedness of the thread-relevant state
is preserved since the value written into the field is either null or a shared
object. Since activation record access sets are disjoint and, as a result of the
locality of continuation verification conditions (Theorem 5), activation record
validity depends only on heap locations in the activation record’s access set,
validity of other activation records is preserved trivially.

—Case SHARE. The step changes the shared set and the current thread’s access
set. Since the object being shared was in the current activation record’s access
set, it is not in the access set of any other activation record of the current
thread so the access set still contains those. This establishes thread state
consistency. The validity of an activation record is preserved by sharing an
object that is not in its access set, and by removing from the thread’s access
set an object that is not in the activation record’s access set, so the validity
of non-current activation records is preserved.

—Case CaLL. The step changes the current activation record’s continuation and
adds a new activation record. Since the precondition holds, its required access
set is contained in the caller’s pre-state access set. Therefore, thread state
consistency is preserved. Validity of existing noncurrent activation records
is preserved trivially. Since the program is valid, the method being called
is valid, and the method’s body is valid in any state that satisfies the pre-
condition. Note that the new activation record’s access set is equal to the
precondition’s required access set.

—Case REeTURN. The step replaces the caller and callee activation records with
an activation record containing the continuation of the call. Validity of the
caller activation record implies that the call’s continuation is valid in any
thread state that a) differs from the current state only as allowed by the
method’s frame condition and b) satisfies the postcondition. Validity of the
callee implies that the postcondition holds in state o;. Therefore the call’s
continuation is valid in state o7 and, therefore, in state os.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:30 o B. Jacobs et al.

—Case NEwTHREAD. The step adds a new thread with a single activation record,
and removes the target object from the creating thread’s access set. Thread
state consistency of the new thread is trivial. The new activation record is
valid since the method it executes is valid and its precondition, which by
well-formedness of the program must be Ly = ¢ A this € A, is satisfied.

—Case REaD. The step changes only the current activation record’s continua-
tion. Validity follows trivially from VC-READ.

—Case NEw. The step adds an object to the heap domain and the thread’s access
set. Since by well-formedness access sets contain only allocated objects, access
sets remain disjoint.

—Case SynNcHRONIZED. The step adds an object to the lock set and the access
set. Since by well-formedness the free set is disjoint from access sets and the
object was in the free set, access sets remain disjoint.

—Case UnvLock. The step removes an object from the thread’s access set. Since
in the current activation record’s access set, no other activation records are
affected.

This concludes the proof. O
THEOREM 8. A valid program is a legal program.

Proor. The initial state of a valid program is a valid state. It follows, by
Theorem 7, that all reachable states are valid. Therefore, by Theorem 6, all
reachable states are legal. Therefore, the program is legal. O

THEOREM 9 (MAIN THEOREM). Valid programs are data-race-free.

Proor. By combining Theorem 8 and Theorem 3. O

3. INVARIANTS AND OWNERSHIP

The approach as described in the preceding section ensures absence of low-level
data races. However, it does not prevent higher-level race conditions, where
the programmer protects individual field accesses, but not updates involving
accesses of multiple fields or objects that are part of the same data structure.
As a result, accesses may be interleaved in such a way that the data structure’s
consistency is not maintained.

3.1 Programming Model

To prevent race conditions that break the consistency of multi-object data struc-
tures, we integrate the Spec# methodology’s object invariant and ownership
system [Barnett et al. 2004] into our approach. The model supports objects
that use other objects to help represent their state, and object invariants that
express consistency constraints on such multi-object structures.

The programming model requires the programmer to designate a subset of
each class’s fields as the class’s rep fields. The objects pointed to by an object
o’s nonnull rep fields in a given program state are called o’s rep objects. An
object’s rep objects may have rep objects themselves, and so on; we refer to all
of these as the object’s transitive rep objects. The fields of an object, along with

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:31

those of its transitive rep objects, are considered in our approach to constitute
the entire representation of the state of the object; hence the name. As will be
explained later, a shared object o’s lock protects both o and its transitive rep
objects. (Formally, we have o repy p if a field f exists such that (o,) € dom(H)
and H(o, f) # null and H(o, f) = p and f is a rep field. We use rep}, to denote
the reflexive-transitive closure of repy. If R is a relation on elements x, then
we use R(x) to denote {y |x R y}.)

In addition to a set of rep fields, the programming model requires the pro-
grammer to designate, for each class C, an object invariant, denoted inv(C).
inv(C) is a predicate whose free variables are the heap H, the shared set S, and
the target object this. inv(C) must depend only on the state of this, that is, the
fields of this and of the transitive rep objects of this. Also, it must be preserved
by growth of the shared set. Formally:

WH, S, this, H', S inV(C) AH |rep this) = Hlrepithis) AS € S’ = inv(C)[H'/H, S'/S].

The object invariant for an object o need not hold in each program state.
Rather, the programming model introduces a new global state variable P, called
the packed set, which denotes a set of objects. The object invariant for an object
o needs to hold only in a state where o € P.

The programming model requires an object to be in the packed set when a
thread shares the object or unlocks it, that is, when the object becomes free. It
follows that each free object is in the packed set and its object invariant holds.
As a result, when a thread locks an object, it may assume that the object is in
the packed set and its object invariant holds.

In the program’s initial state, the packed set is empty, and newly created
objects are not in the packed set. The programmer may move an object into or
out of the packed set using new pack o; and unpack o; annotations.

To ensure that whenever an object is in the packed set, its object invariant
holds, the programming model imposes the following restrictions:

—A thread may assign to an object’s fields only when the object is in the thread’s
access set and the object is not in the packed set. Furthermore, the remaining
restrictions ensure that whenever an object is in the packed set, then so are
its transitive rep objects. As a result, an object’s state (defined as the values
of its fields and those of its transitive rep objects) does not change while it is
in the packed set.

—A thread is allowed to perform a pack o; operation only when o is in the
thread’s access set, its object invariant holds, it is not yet in the packed set,
and its rep objects are in the thread’s access set and in the packed set. Further-
more, besides inserting the object into the packed set, the operation removes
0’s rep objects from the thread’s access set.

—A thread is allowed to perform an unpack o; operation only when o is in the
thread’s access set and in the packed set. The operation removes o from the
packed set and adds o’s rep objects to the thread’s access set.

We say that an object owns its rep objects whenever it is in the packed set.
It follows from the above restrictions that an object has at most one owner.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:32 o B. Jacobs et al.

Note that our approach supports ownership transfer; a rep object can be
moved from one owner to another by first unpacking both owners and then
simply updating the relevant rep fields.

The updated syntax rules are as follows:

class ::= class C implements I* { field" invariant ¢; meth™ }
field ::= rep’ f;
s = --- | pack; g; | unpack, g;

Note: pack. g; and unpack, g; require g to be of class C. By fixing the
class of g in the syntax, we can look up g’s rep fields and invariant at verifi-
cation condition generation time. This simplifies the verification logic and the
verification conditions.

The new step rules and the new and updated legality rules are as follows:

v # null veA repy(v) C A

[LEGAL-PACK] - =
H,L, S, P I (tid, A, (pack¢ v; 3) - F) : legal

[Pack] (H,L,S,P, T (tid, A, (packe v; 5)-F)) — (H,L, S, P U {v}, T< (tid, A\ repy(v), (5) - F))

v # null veANP
H,L, S, P (tid, A, (unpack¢ v; 5) - F) : legal

[LEGAL-UNPACK]

[UNPACK]
(H,L, S, P, T« (tid, A, (unpack¢ v; 5)-F)) — (H,L, S, P\ {v}, T< (tid, AUrepy(v), (3) - F))

vy # null vy € A\P classof(vy) = declaringClass(f)

[LEGAL-WRITE] - =
H,L, S+ (tid, A, (v1.f :=vg; 5) - F) : legal

More programs are legal in the programming model of this section (that is,
more programs can be augmented with share, rep, pack, and unpack anno-
tations so that the annotated program is legal under the programming model)
since objects may be protected against data races by the lock of a transitive
owner.

The definition of well-formedness of program states is updated as follows. The
rule saying that the access sets and the free set partition the heap is replaced
by a rule saying that the access sets, the free set, and the rep sets of packed
objects (that is, the sets repy(o) of objects o € P) partition the heap.

The definition of noninterfering state change is updated as follows:

Definition 27. Two states are related by a noninterfering state change with
respect to a given access set if

—all objects that are allocated in the first state are also allocated in the second
state,

—all objects that are shared in the first state are also shared in the second
state, and

—if an object is in the access set, then
—the values of its fields are unchanged, and
—if it is unshared in the pre-state, it is unshared in the post-state, and

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:33

—ifit is packed in the pre-state, it is packed in the post-state.
Formally:

H,8,P L H,8,P)

&
dom(H) € dom(H)AS C S AH|a=HaAS NA=SNAAP NA=PNA.

Note: the object invariants and the monitor invariant (i.e., the invariant that
says that free objects are packed) are not part of the programming model; they
are part of the modular verification approach.

3.2 Program Annotations

The example in Figure 8 shows the annotations required by the approach. A
Rectangle object is used to store the bounds of an application’s window. The
Rectangle’s state is represented internally using two Point objects, that repre-
sent the location of the upper-left and lower-right corner, respectively. If the
user drags the window’s title bar, the window manager moves the window, even
if the application is painting the window contents. Our methodology ensures
that the application sees only valid states of the Rectangle object.

Developers designate a class’s rep fields using the rep modifier, they define
a class’s object invariant using invariant declarations, and they insert pack
and unpack commands in method bodies. Additionally, the new global state
variable P may appear free in method preconditions and postconditions.

Another example is shown in Figure 9. It shows how an object may own an
unbounded number of objects. If a class declares regular rep fields only, the
number of owned objects is bounded by the number of rep fields. To remove
this restriction, the approach allows set-valued ghost rep fields. Specifically,
the approach allows the programmer to declare ghost fields, which are fields
required for static verification but not for execution. The approach additionally
allows ghost field assignments. Their right-hand side may be an arbitrary term
in the verification logic. A ghost field may hold either an object reference, a null
reference, or a set of object references. If a ghost rep field holds a set of object
references, all objects referenced by the field are considered to be rep objects.
This allows a LinkedList object to own all of its nodes, even though at run time
it holds direct references to the sentinel nodes only.

¢ ifv =null
objrefs(v) = 1 {v} ifveO
v ifv e P(O)

repy(0) = U objrefs(H(o, f)).

[erepfields(classof(o))

The example also shows how the approach supports ownership transfer.
Method append transfers ownership of the non-sentinel nodes of other to this.
Note: An alternative to using set-valued ghost rep fields is to exploit the
transitive nature of ownership. In the example, this would mean marking fields

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL

ACMBO080A-01 ACM-TRANSACTION November 7, 2008

1:34 o B. Jacobs et al.

class Point {
int z,y;
void move(int dz,int dy)
requires this € ANP;

ensures this € ANP;

unpackp, .., this; z:=x 4 dz;
y:=y+dy; packp,;,; this;

}

class Rectangle {
rep Point ul, lr;

invariant ul.z < lr.x A ul.y < Ir.y;
void move(int dz,int dy)
requires this € ANP;

ensures this € ANP;

unpack o1 this; ul.move(dz, dy);

lr.move(dz, dy)v paCkRect(m,gle this;

int getHeight()
requires this € ANP;
ensures this € ANP;

ensures 0 < result;

21:4

class Application {
Rectangle windowBounds;

invariant windowBounds € S;
void paint()
requires Ly = ();
requires this € ANP;
ensures this € ANP;

{
int height;
synchronized (windowBounds) {
height := windowBounds.getHeight();

}
=

class WindowManager {
Rectangle windowBounds;

invariant windowBounds € S;
void mouseDragged(int dz,int dy)
requires Ly = ();
requires this € ANP;
ensures this € ANP;

{

(synchronized (windowBounds) {

. windowBounds.move(dz, dy);
unpaCkRectangle this; })

int h = lr.y — ul.y; }
pacKpciange this; return h; }

}
}

Fig.8. Anexampleillustrating the data race prevention approach, combined with object invariants
and ownership. (In predicates, we abbreviate H(o, f) as o.f. Also, we abbreviate this.f as f, and
we show variable types and method return types as an aid to the reader. In the example, we use
integer values and operations in the program and in the verification logic. These are not in the
formal development as they pose no difficulties.).

first and next as rep. A difficulty with this approach, however, is that modifying
the i’th node requires i + 1 unpack and pack operations, to unpack the node’s
transitive owners and the node itself before the modification, and then pack
all of these objects in the reverse order afterwards. This practically imposes
the use of recursion, which may be undesirable, especially for constant-time
operations such as method append in the example.

In our approach, once an object is shared, it never reverts to the unshared
state. This has the advantage that, when verifying a method, it may be assumed
that if an object is shared at a given point in time, then it will be shared in all
subsequent program states, regardless of the actions of other threads. Note also
that this does not prevent scenarios where an object is passed from one thread

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:35

class Node { Node prev, next; int value; }

class LinkedList {
Node first, last;

ghost rep Set(Node) nodes;

invariant first # last;

invariant first € nodes A last € nodes;

invariant (V n € nodes e n = first V n.prev # null);
invariant (V n € nodes e n = last V n.next # null);
invariant first.prev = null A last.next = null;

invariant (V n € nodes @ n.next # null = n.next € nodes);

invariant (V n € nodes ® n.prev # null = n.prev € nodes);

)

)

(
invariant (V n € nodes e n.next = null V n.next.prev = n)
invariant (V n € nodes ® n.prev = null V n.prev.next = n)
void append(LinkedList other)
requires other # this;
requires this € ANP A other € ANP;
ensures this € ANP;

{

Node otherFirst := other.first;
Node otherLast := other.last;

unpack this;
unpack other;
if (otherFirst.next # otherLast) {
nodes := nodes U other.nodes \ {otherFirst, otherLast};

Node left := last.prev;
left.next := otherFirst.next;
last.prev := otherLast.prev;
left.next.prev := left;
last.prev.next := last;

}

pack this;

}

void appendSync(LinkedList other)
requires other # this;
requires this ¢ Ly A other € ANP;
{ synchronized (this) { this.append(other); } }

}

Fig. 9. An example illustrating ownership transfer of unbounded numbers of aliased objects.

to another and then accessed without locking. This is illustrated by the exam-
ple in Figure 10. In the example, an unshared Rational object is passed from a
producer thread to a processor thread and then on to a consumer thread. Each
thread accesses the object without locking. Each transfer proceeds via a shared
Rational Buffer object: first, the RationalBuffer object is locked and unpacked.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL

ACMBO080A-01 ACM-TRANSACTION November 7, 2008

1:36 o B. Jacobs et al.

class Rational {
int p, g;
invariant ¢ # 0;
void multiply(int z)
requires this € ANP;
ensures this € ANP;
{ unpack this; p := p X z; pack this; }
}
class RationalBuffer {
rep Rational element,;
void put(Rational z)

requires this € S\ Ly Az #nullAz € ANP;

ensures true;
{
synchronized (this) {
if (this.element = null) {
done := true;
unpack this;
this.element := x;
pack this;
} else {
done := false;
}
}
if (=done) { put(z); }
}
Rational get()
requires this € S\ Ly;
ensures result # null Aresult € ANP;
{
synchronized (this) {
unpack this;
x := this.element;
this.element := null;
pack this;

if (x =null) { z:= get(); }
return z;
}
}

21:4

class Producer {
RationalBuffer buffer;
invariant buffer # null A buffer € S;
void run()
requires Ly =) A this € ANP;
ensures true;

r := new Rational;
r.p:=1;

r.q:=1;

pack r;
buffer.put(r);
this.run();

}

class Processor {
RationalBuffer bufferl, buffer2;
invariant buffer! # null A buffer1’ € S;
invariant buffer2 # null A buffer2 € S;
void run()
requires Ly = 0 A this € ANP;
ensures true;

r = buffer!.get();
romultiply (7);
buffer2.put(r);
this.run();

}

class Consumer {
RationalBuffer buffer;
invariant buffer # null A buffer € S;
void run()
requires Ly = 0 A this € ANP;
ensures true;
{
r = buffer!.get();
// Print r.p and r.q (not shown)
this.run();
}
}

b1 := new RationalBuffer; pack b1; share b1,

b2 := new RationalBuffer; pack b2; share b2;

prod := new Producer; prod.buffer := bl; pack prod;

proc := new Processor; proc.bufferl := bl; proc.buffer2 := b2; pack proc;
cons := new Consumer; cons.buffer := b2; pack cons;

start prod.run(); start proc.run(); start cons.run();

Fig. 10. An example showing how the ownership system can be used to transfer unshared ob-
jects between threads. In methods get and put, tail-recursive busy waiting is used instead of the
conventional Object.wait loop because the latter are not part of the formal language of this article.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:37

Then, a reference to the Rational object is stored in the RationalBuffer object’s
element field, which is a rep field. Then, the RationalBuffer object is packed,
which causes the Rational object to be removed from the thread’s access set and
to become owned by the RationalBuffer object. Then, the Rational Buffer object
is unlocked. When the receiver thread subsequently locks the RationalBuffer
object, it unpacks it, which causes it to relinquish ownership of the Rational
object and causes the latter to be added to the receiver thread’s access set.
Finally, clearing the element field prevents the Rational object from again be-
coming owned by the RationalBuffer object when the latter is packed again.
Note: The example of Figure 10 shows how invariants can be used to state
that certain fields hold shared objects. This is why the built-in invariant of the
previous section that all fields hold shared objects, is no longer needed.

3.3 Static Verification

The definition of program well-formedness is updated as follows. The rule con-
cerning the method contract of a method used in a start statement is replaced
with the following: If a method is used in a start statement, then its precondi-
tion must be exactly Ly = # A this e ANP.

The definition of thread-relevant state is updated to include the packed set.

6=(MH,L,S,P,A)

The definition of well-formedness of a thread-relevant state is updated as
follows. The following conjunct is added: if an object is in the packed set, then
its object invariant holds and its rep objects are also in the packed set.

Vo € P e inv(C)[o/this] A repy(0) C P

Also, the conjunct that says that objects pointed to by fields are shared is
dropped, since now object invariants can be used to express this.

New and updated continuation verification condition rules are shown in Fig-
ure 11.

The definition of validity of a program state is updated by adding a conjunct
saying that free objects are packed.

S —dom(L) C P

TaEOREM 10. In the approach of this section, legal programs are data-race-
free, and valid programs are legal.

4. LOCK REENTRY

In the programming model preceding sections, lock reentry is ruled out. That is,
a program that re-enters a lock is considered illegal and invalid. However, it is
not difficult to add support for lock reentry to the programming model of the pre-
ceding section. We show an approach where a lock reentry is treated like a no-op.
In this approach, the only modification required to the programming model is to
relax the legality rule and to add a second step rule for synchronized blocks,
and the only modification required to the static verification approach is to add

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01 ACM-TRANSACTION November 7, 2008 21:4

1:38 o B. Jacobs et al.

ve(vi.f :=v2; 5,Q) = [VC-WRITE]
v1 # null A classof (v1) = declaringClass(f) A vi € A\ P Ave(s, Q)[H[(v1, f) — v2]/H]

vc(share v; 5,Q) = [VC-SHARE]
vZnull A ve ANP A v g SA ve(5 Q)[(A\{v})/A, (SU{v})/S]

vc(synchronized (v) {3 } 5,Q) = [VC-SYNCHRONIZED)]
v#null A vES A vl
A (VH',S',P’e
((H,S,P) & (H, S, P") A F (H',Ly,S,P",A) : ok Aw € P')
=
vc(s' unlock v; 5,Q)[H'/H, (AU {v})/A, (Ls U {v})/L,S’/S, P’ /P])

vc(unlock o; 5,Q) = [VC-UNLOCK]
0€ANP A o€l A ves Q)[(AN{o})/A, (Lt \ {o})/Lt]

ve(z :=v.m(?); 35,Q) = [VC-CaLL]
v # null A classof(v) < declaringType(m) A pre(v.m(v))
A ve(z := receive [(H,Lt,S,P,A)] v.m(?); 35,Q)

ve(start v.m(); 5,Q) = [VC-NEWTHREAD]
v # null A classof (v) < declaringType(m) A v € ANP A ve(s5,Q)[(A\ {v})/A]

ve(z := receive [(Hol4, Lold sold pold acldy] o im(T); 5,Q) = [VC-RECEIVE]
YH,S", P’ A/, vye
old _ /
(H,5,P) 2 (W s Py A F (WY L, S, P AY) ok

A A N (A — A(P)) = AN (A°1d — A(P))

A Q'[H'/H,S'/S,P’ /P, A /A, L2V /Ly, vy /result]

A (vr = null V v; € dom(H’))

=

ve(s, Q)[H /H,S' /S, P /P A’ /A, Lgld/Lt, vy /]
where P’ = pre(o.m(7)) and Q' = post(o.m(v))

ve(packes v; 5,Q) = [VC-PAcCK]
v # null A classof(v) = CAv e A\PA (VY p€Erepy(v)epe AApEP)
A inv(C)[v/this] A ve(5, Q)[(A \ repy(v))/A, (P U{v})/P]

ve(unpacky v; 5,Q) = [VC-UNPACK]
v # null A classof (v) = C Av € ANP Ave(s, Q)[(AUrepy(v))/A, (P\ {v})/P]

Fig. 11. VC generation for Section 3.

a case split to the verification condition rule for synchronized blocks. The new
or updated definitions are shown in Figure 12.

5. EXPERIENCE

To verify the applicability of our approach to realistic, useful programs, we im-
plemented it in a custom build of the Spec# program verifier [Barnett et al. 2006]
and used it to verify four programs written in C# with annotations inserted in
the form of specially marked comments. The approach that we implemented
includes elements omitted from this article, including deadlock prevention and
immutable objects [Jacobs 2007]. Each program verifies successfully; this guar-
antees the following:

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:39

v # null vES
H,L,S + (tid, A, (synchronized (v) {3 } 3) - F) : legal

[LEGAL-SYNCHRONIZED)

[SYNCHRONIZED- REENTRANT]
v € L™1(tid)
(H,L,S, T < (tid, A, (synchronized (v) {3 }5)-F)) — (H,L,S, T« (tid,A, (5" 3) - F))

vc(synchronized (v) {3 } 5,Q) =
v#null A veS
N ('U € Ly =
(VH', S/, P’e
((H,s,P) L (H,S",P") A = (H,L,S",P",A) : ok Av € P)
=
vc(s’ unlock v; 5,Q)[H'/H, (AU {v})/A, (Ls U {v})/L¢,S'/S, P’ /P]))
A (v € Li = ve(3 5,Q))

[VC-SYNCHRONIZED]

Fig. 12. New or updated legality rule, step rule, and verification condition rule for lock reentry.

Table I. Annotation Overhead

Lines After
Lines Changed Defaults and
Program of Code | or Added | Overhead Inference Net Overhead
chat 344 117 34% 41 13%
phone 222 50 23% 14 6%
prod-cons 84 24 29% 0 0%
philosophers 64 21 33% 5 8%

—The program is free from data races and deadlocks.

—Object invariants, loop invariants, method preconditions and postconditions,
and assert statements declared by the program hold.

—The program is free from null dereferences, array index out of bounds errors,
and typecasting errors.

—The program is free from races on platform resources such as network sock-
ets. This is achieved by enforcing concurrency contracts on the relevant API
methods.

Table I shows the annotation overhead of the four programs which we anno-
tated and verified. Programs chat and phone were derived from the ones used
in Boyapati et al. [2002].

We assessed which lines containing annotations could be eliminated by
adopting common annotations implicitly by default and by inferring annota-
tions that can be inferred easily. The measures considered include inferring
that objects of a given class are always shared after construction (eliminates 38
lines across all four programs), adding unpack and pack statements at the start
and end of methods automatically (17 lines), inferring simple loop invariants
stating that certain objects are in the access set and the packed set (25 lines),
and a default method contract for a thread’s Run method (8 lines).

The estimated number of lines containing annotations remaining after these
and other simple measures are applied are shown in Column 5 in Table I. The
remaining annotations deal mainly with the lock order for deadlock prevention

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:40 o B. Jacobs et al.

(not discussed in this article) and the need to track the read and write channel
of network sockets separately, even though in the .NET Framework they are
represented by a single object. A more elaborate inference scheme might be
able to infer these annotations as well. This preliminary assessment indicates
that the annotation overhead of our approach can probably be brought to an
acceptable level; however, this needs to be confirmed through experiments on
larger codebases.

Our experiments gave us some insight into the consequences of our decision
to use a automatic theorem prover (specifically, the Simplify theorem prover).
On the one hand, the theorem prover successfully proved the verification con-
ditions generated from the abovementioned programs. On the other hand, per-
formance was less than stellar: verification of the chat server takes half an
hour. Furthermore, we experienced the theorem prover’s incompleteness: some
methods verified only after we manually inserted a number of well-chosen inter-
mediate proof obligations (using special annotations in the source code), which
the theorem prover, after proving them, could use as lemmas to prove subse-
quent proof obligations. It took some trial and error for us to find the right
intermediate proof obligations. Nine of them were needed in program chat, and
none in the other programs. An encouraging observation in this respect is that
ongoing theorem proving research continues to yield more powerful and more
efficient theorem provers.

The prototype verifier and the sample programs are available at the first
author’s home page at http://www.cs.kuleuven.be/"bartj/specleuven/.

6. DISCUSSION

In this article, we propose a programming model and verification approach
for multithreaded object-oriented programs. We focused on designing a sim-
ple approach to multithreading that integrated well with the Boogie approach
[Barnett et al. 2004] for object invariants and dynamic ownership, yielding
what we believe to be the first sound program verification approach that sup-
ports both multithreading, dynamic ownership, and object invariants over an
object and its transitively owned objects.

Our approach is not complete. That is, not every Java program that is data-
race-free can be annotated such that verification using our approach succeeds.
The incompleteness exists at three levels: the programming model, the verifi-
cation approach, and the theorem prover.

6.1 Programming Model

Not every program that is data-race-free complies with the programming model,
or can be made to do so by inserting share, rep, pack, and unpack annota-
tions.

A basic limitation is that objects, not fields, are in access sets; therefore, two
threads can never access distinct fields of a given object concurrently. We inher-
ited this limitation from the Boogie approach. One way to lift it would be to drop
the Boogie approach in favor of an approach based on dynamic frames [Kassios
2006], which subsume the Boogie approach’s support for dynamic ownership

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:41

and object invariants. However, the suitability of dynamic frames for automatic
verification has not been shown.

Our approach, as described in this article, does not distinguish between read
and write access. However, it is fairly easy to replace access sets with read sets
and write sets, and this has been implemented in the prototype verifier. Based
on read sets and write sets, it is easy to add support for unrestricted sharing of
immutable objects, and for reader-writer locks.

Programs that wuse synchronization constructs other than Java’s
synchronized blocks may or may not be supported. For example, in
Figure 10, a RationalBuffer object can be used as a binary semaphore, where
put and get calls correspond to V and P operations, respectively. However,
programs where volatile fields are used to protect data structures, for example,
are not supported. Still, in some cases it might be possible to encapsulate an
unsupported construct within a class and then enforce the correct use of the
class by annotating the class’s methods with appropriate method contracts
and verifying client code using our approach.

6.2 Static Verification

Even if a program complies with our programming model, it might not be a valid
program; that is, it might not be possible to annotate each method with a method
contract and each class with an invariant, so that in the resulting program, each
method’s verification condition holds. The main source of incompleteness on this
level is the imprecise modeling of inter-thread interference.

In our verification approach, when verifying a thread, the interference of
other threads is taken into account by generating verification conditions as
if on entry to a synchronized block, an arbitrary new value is assigned to
each field of each object that is not in the access set, with the only restric-
tion being that if an object is in the packed set, its object invariant holds.
This means that any monotonicity properties preserved by the program are
not taken into account. For example, if an integer field of a shared object is
only ever incremented, and never decremented, by threads that lock the ob-
ject, it is still not possible to prove, in our approach, that a value read by a
thread from the field is greater than or equal to a value read by that thread
in an earlier synchronized block. It seems possible to lift this source of in-
completeness by extending our approach with support for rely-guarantee con-
ditions. In this extended approach, a noninterfering state change would be
defined as one that, in addition to the current requirements, satisfies the rely
condition. The locality requirement on method preconditions and postcondi-
tions would become weaker accordingly: a contract may mention state outside
the access set, provided it is preserved by state changes that satisfy the rely
condition.

Note that the ability to insert ghost field declarations and ghost field updates
into the program is also essential for completeness. Indeed, a method’s correct-
ness may depend on the local states of other threads. For example, suppose one
thread initially only increments a shared counter, and then, after it receives a
message through some shared message queue, it only decrements the counter.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:42 o B. Jacobs et al.

A method executing in another thread may depend on the first thread being
in its initial state. However, since neither method contracts nor rely conditions
may mention threads’ local state (i.e., their call stacks), there is no way to ex-
press this, except by mirroring a thread’s local state in the global state using
ghost fields which are kept up to date by the thread.

Given rely conditions and ghost fields, we can now show completeness. Take
an arbitrary program that complies with the programming model. Insert a
single static integer-valued ghost field. It will at all times contain a Godel-
like encoding of the entire program state. Initialize it with an encoding of the
initial program state. After each statement in each method, insert a ghost field
update that updates the ghost field to reflect the new program state. As the
rely condition, take the condition that says that the old and new global state
corresponds to the program states encoded in the old and new values of the
ghost field, and that the program state encoded in the new value of the ghost
field is reachable from the program state encoded in the old value of the ghost
field through steps by threads other than the current thread. Remember that
reachability is definable in arithmetic. As a method’s precondition, take the
condition that says that the pre-state corresponds to the ghost field value and
that it is reachable from the initial state. As a method’s postcondition, take the
condition that says that the state corresponds to the ghost field value and that
the post-state is reachable from the pre-state.

6.3 Theorem Prover

The third source of incompleteness is the proof step. There are two aspects to
this: there is a theoretical limitation, and additionally, there is a practical lim-
itation. The theoretical limitation is that not all true statements in arithmetic,
and therefore in our verification logic, are provable from any given axiomatiza-
tion. Indeed, for any theory X, there is a program that is data-race-free and yet
its data-race-freedom is not provable from . (Consider the program that enu-
merates all proofs, and, if it finds a proof of its own data-race-freedom, performs
a data race.)

The practical limitation is that even provable statements are often not proved
within a reasonable time bound by automatic theorem provers. After all, even
propositional satisfiability is NP-complete. This is a serious concern for our
approach. In Section 5, we report on our initial experience in this respect.

7. RELATED WORK

The present approach evolved from Jacobs et al. [2005a, 2006], and Jacobs
[2007]. It improves upon this prior work by adding a formalization of the ap-
proach with invariants and ownership. (A soundness proof Jacobs et al. [2005b]
accompanies Jacobs et al. [2005a] but it does not formalize verification con-
dition generation, and it does not formalize or prove the method effect fram-
ing approach.) As did the prior work, the present approach builds on and ex-
tends the Spec# programming methodology [Barnett et al. 2004] that enables
sound reasoning about object invariants in sequential programs. For brevity, we
omitted the description of the deadlock prevention approach and the approach

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:43

for verification of immutable objects, static fields, and lazy class initialization
[Jacobs 2007] from this article.

The Extended Static Checkers for Modula-3 [Detlefs et al. 1998] and
Java [Flanagan et al. 2002] attempt to statically find errors in object-oriented
programs. These tools include support for the prevention of data races and
deadlocks. For each field, a programmer can designate which lock protects it.
However, these two tools trade soundness for ease of use; for example, they
do not take into consideration the effects of other threads between regions of
exclusion. Moreover, various engineering trade-offs in the tools notwithstand-
ing, the methodology used by the tools was never formalized enough to allow a
soundness proof.

Calvin-R [Freund and Qadeer 2004; Flanagan et al. 2005] is a static checker
for multithreaded Java programs. To use the tool, the developer first annotates
the program: for each field, they specify an access predicate, which may mention
the current thread tid. The tool checks through verification condition genera-
tion that whenever a thread reads or writes a field, the field’s access predicate
holds for that thread. The environment’s interference is taken into account by
assuming that between any two operations of the method being checked, the
environment performs an arbitrary set of field updates, constrained only by
the access predicates. Besides the access predicates, the developer may specify
for each method a performs annotation, which specifies a guarantee program,
which is a set of atomic action specifications composed using sequential com-
position, choice, and iteration operators. An atomic action specification is a
two-state predicate. The tool checks, again through verification condition gen-
eration, that each method’s performs annotation simulates the method’s body.
In summary, Calvin-R verifies the program’s compliance with the synchroniza-
tion policy specified in the access predicates, as well as the functional properties
specified in the performs annotations.

Like our approach, Calvin-R is thread-modular and method-modular and
based on verification condition generation. However, Calvin-R is strictly more
expressive: on the one hand, its access predicates enable verifying strictly more
synchronization patterns, such as patterns where different fields are protected
by different locks, or where semaphores, barriers, or wait-free constructs are
used instead of mutexes, or where hand-over-hand locking or other fine-grained
synchronization approaches are used. On the other hand, Calvin-R’s performs
annotations enable the specification and verification of functional properties
which cannot be expressed using our approach’s method contracts based on
pre- and postconditions. Indeed, if a program can be annotated and verified
using our approach, the annotations can probably be translated fairly straight-
forwardly into Calvin-R’s syntax and verified using Calvin-R, but not the other
way around.

The contribution of our work, then, is to propose a particular specification
approach, which ensures that, if a given class is specified using our approach,
an object of that class may initially be used by the creating thread without
synchronization, then shared and accessed through synchronization, or, alter-
natively, not shared but used as a rep object of some owner object. Furthermore,
our specification approach ensures that an object’s client code is independent of

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

1:44 o B. Jacobs et al.

the object’s internal structure, for example, whether or not it owns any rep ob-
jects. In other words, our work addresses the issue of data structure abstraction
and data structure composition, which is not addressed by the Calvin-R work.
(They do address a different type of abstraction: an atomic action specification
in a performs annotation abstracts over the particular operations performed to
implement the atomic action.)

A number of type systems have been proposed that prevent data races in
object-oriented programs. For example, Boyapati et al. [2002] parameterize
classes by the protection mechanism that will protect their objects against data
races. The type system supports thread-local objects, objects protected by a lock
(its own lock or its root owner’s lock), read-only objects, and unique pointers.
The system does not support forms of ownership transfer other than transfer
of unique pointers. For example, it cannot type the program of Figure 9. Also,
the type system does not support object invariants.

We enable sequential reasoning and ensure consistency of aggregate objects
by preventing data races. Some authors propose pursuing a different property,
called atomicity, either through dynamic checking Flanagan and Freund [2004],
by way of a type system Flanagan and Qadeer [2003], or using a theorem prover
Rodriguez et al. [2005]. An atomic method can be reasoned about sequentially.
However, we enable sequential reasoning even for non-atomic methods, by as-
suming only the object invariant for a newly acquired object (see Figure 7). Also,
Flanagan and Qadeer [2003] claim that data-race-freedom is unnecessary for
sequential reasoning. It is true that some data races are benign, even in the
Java and C# memory models; however, the data races allowed in Flanagan and
Qadeer [2003] are generally not benign in these memory models; indeed, the
authors prove soundness only for sequentially consistent systems, whereas we
prove soundness for the Java memory model, which is considerably weaker.

Abraham-Mumm et al. [2002] propose an assertional proof system for Java’s
reentrant monitors. It supports object invariants, but these can depend only on
the fields of this. No claim of modular verification is made.

The rules in our methodology that an object must be valid when it is released,
and that it can be assumed to be valid when it is acquired, are taken from
Hoare’s work on monitors and monitor invariants [Hoare 1974].

There are also tools that try dynamically to detect violations of safe concur-
rency. A notable example is Eraser [Savage et al. 1997]. It finds data races by
looking for locking-discipline violations. The tool has been effective in practice,
but does not come with guarantees about the completeness nor the soundness
of the method.

This article focuses on programs that use synchronized blocks for synchro-
nization. Significant research has been done on improving the implementation
of synchronized blocks in virtual machines and/or compilers, so that, while
preserving Java semantics, opportunities for parallelism are increased. For ex-
ample, some proposals infer, fully automatically or aided by annotations, fine-
grained locking schemes. Others propose applying a form of optimistic con-
currency, such as transactional monitors [Welc et al. 2004]. Typically, these
schemes require the input program to be data-race-free; therefore, our approach
is equally applicable in these settings.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:45

8. CONCLUSION

We propose a programming model for concurrent programming in Java-like
languages, and the design of a set of program annotations that make the use of
the programming model explicit and that enable automated verification of com-
pliance. Our programming model ensures absence of data races, and provides
a sound approach for local reasoning about program behavior. We have proto-
typed the verifier as a custom build of the Spec# programming system. Through
a case study we show that the model supports nontrivial, useful programs, and
we assess the annotation overhead.

Future work includes extending the programming model to encompass read-
write locks, reducing the annotation overhead, and obtaining further experi-
ence.

APPENDIX

Table II. Overview of notations used in the article

Notation Page Meaning

4 an object reference (Note: null is not an object reference)
a thread identifier

the set of class names

the set of interface names

the set of method names

the set of field names

the set of variable names

the set of logical formulae

the set of object references

the set of thread-relevant states

a class name

an interface name

a method name

a field name

a variable name

a statement

a logical formula

a thread-relevant state

a program

an expression (i.e., this or a variable name or or a literal)
a value (i.e., null or an object reference)

a lockset (i.e., the set of objects whose lock is held by the current thread)
an access set

the empty set or the empty function

the set of thread identifiers

NS>Ich I8 o8I ~Q008xNTNAFo

[NoREN IEN IR o2 e e 2l Mo Mo N Ml Jop Mo Nl e Mo oo Nie Mo Mo Pl e NI

fields(C) 10 the set of fields declared by class C
C<I 10 class C mentions interface [in its implements clause
X,0,8 10 a sequence of variables, values, statements
classof(o) 10 the name of the class of an object o
mbody(o.m(v)) 10 the body of method m declared by classof(o), with o substituted for this

and v for the method’s parameters
declaringClass(f) 10 the name of the class that declares field f

declaringType(m) 10 the name of the interface that declares method m, or the name of the class
that declares method m if no interface declares a method m
objectRefs(¢) 10 the set of object references in syntactic entity ¢
free(¢) 10 the set of free variables in syntactic entity ¢
fla +— b] 10 function update

slv/x] 10 substitution of a value for a variable in a statement list

olt/x] 10 substitution of a term for a variable in a formula
€ 10 the empty sequence

h-t 10 the sequence with head 4 and tail ¢
o 10 a program state
(continues)

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01 ACM-TRANSACTION November 7, 2008 21:4

1:46 o B. Jacobs et al.

Table II. Overview of notations used in the article (continued)

Notation Page Meaning
S— S 10 the set of finite partial functions from set S to set S’
H 10 a heap
L 10 a lock map
S 10 a shared set
T 10 a thread set
F 10 a call stack (i.e., a sequence of activation records)
H,L,St+¢:legal 10 thread state ¢ is legal in the given context
01 — 09 10 an execution step is possible from program state o; to program state o9
T 11 a class or interface name
1 <12 11 a shorthand forry < 3 V11 =19
51 82 11 the concatenation (i.e., sequential composition) of statement lists 5; and 5g
Tt 12 a shorthand for T U {¢}
initial(o') 13 program state o is an initial program state
legal(o) 13 program state o is a legal program state
program_wf 13 the program is well-formed (Note: Here and throughout, the program is
implicit)
program_legal 13 the program is legal
Vx o ¢(x) 13 statement ¢(x) holds for all x
R* 13 the reflexive and transitive closure of relation R
S\ S 13 set difference
S-S 13 multiset difference
S«T 13 the multiset of sets S partitions set T
HES:ok 13 shared set S is well-formed in the given context
=H:ok 14 heap H is well-formed
H,SkL:ok 14 lock map L is well-formed in the given context
wi(o) 14 program state o is well-formed
SwS’ 14 multiset union
(H,S) 2 (H,S) 17 a state with heap H and shared set S is related to a state with heap H and
shared set S’ by a non-interfering state change with respect to access
set A
fls 17 function restriction
t 18 logical term
7 18 the intended interpretation of the verification logic
= 19 an axiomatization of 7

= (H, L, S, A) : ok 20 thread-relevant state (H, L, S, A) is well-formed
I,H, L, S,AV E @ 20 the truth of a state predicate @ under interpretation Z, in thread-relevant
state Ly, S, A, and under program variable valuation V'

local(@) 21 state predicate @ is local
Alp) 21 the required access set of a formula ¢
ve(s, @) 22 the continuation verification condition of statement list s under
postcondition @
pre(o.m(v)) 25 the precondition of call 0.m(v)
post(o.m(v)) 25 the postcondition of call 0.m(v) (with unbound pre-state)
ko 25 formula ¢ is provable from theory ¥
post(o.m(v), 6) 26 the postcondition of call 0.m(v) with respect to pre-state 6
Ho, Lo, Sy, Ay 26 the heap, lockset, shared set, resp. access set of thread-relevant state 6
call 26 a method call (of the form 0.m(7))
Areq(call, 0) 26 the required access set of call call in pre-state 6
Aari (@) 26 the activation record access set of activation record i of thread state ¢
L¢ - consistent(z) 26 thread state ¢ is consistent in the given context
Qari(@) 27 activation record postcondition of activation record i of thread state ¢
H, L, S + validgr;)(¢) 27 activation record i of thread state ¢ is valid in the given context
valid(o) 27 program state o is valid
orepy p 30 p is a rep object of 0 in heap H
inv(C) 30 the object invariant declared by class C
P 30 a packed set
objrefs(v) 32 the object references in a value v
P(S) 32 the power set of set S
ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable
comments.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01

ACM-TRANSACTION November 7, 2008 21:4

A Programming Model for Concurrent Object-Oriented Programs . 1:47

REFERENCES

Asranim-Mumy, E., bE BoEr, F. S., bE Roever, W.-P., anD SterreN, M. 2002. Verification for Java’s
reentrant multithreading concept. In Proceedings of the Foundations of Software Science and
Computation Structures (FoSSaCS), M. Nielsen and U. Engberg, Eds. Lecture Notes in Computer
Science, vol. 2303. Springer, 5—20.

BarnEeTT, M., CHANG, B.-Y. E., DELINE, R., JAcoBs, B., aND LEINo, K. R. M. 2006. Boogie: A modular
reusable verifier for object-oriented programs. In Proceedings of the Formal Methods for Compo-
nents and Objects (FMCO), F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, Eds.
Lecture Notes in Computer Science, vol. 4111. Springer, 364—-387.

BarnETT, M., DELINE, R., FAHNDRICH, M., LEINO, K. R. M., AND ScHuLTE, W. 2004. Verification of
object-oriented programs with invariants. J. Obj. Techn. 3, 6, 27-56.

BarNETT, M., LEINO, K. R. M., AND ScHULTE, W. 2004. The Spec# programming system: An overview.
In Proceedings of the Construction and Analysis of Safe, Secure, and Interoperable Smart Devices
(CASSIS), G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, Eds. Lecture Notes
in Computer Science, vol. 3362. Springer, 49-69.

Bovarati, C., LEE, R., aND RivarDp, M. 2002. Ownership types for safe programming: Preventing
data races and deadlocks. In Proceedings of the Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), S. Matsuoka, Ed. SIGPLAN Notices 37, 11, 211-230.

DerrEFs, D. L., LEmNo, K. R. M., NELsoN, G., AND SaAXE, J. B. 1998. Extended static checking. Res.
Rep. 159, Compaq Systems Research Center.

Franacan, C. anD FreunD, S. N. 2004. Atomizer: A dynamic atomicity checker for multithreaded
programs. In Proceedings of the Principles of Programming Languages (POPL), X. Leroy, Ed.
ACM, 256-267.

Franacan, C., FReEUND, S. N., QADEER, S., AND SEsHIA, S. A. 2005. Modular verification of multi-
threaded programs. Theor. Comput. Sci. 338, 1-3, 153—-183.

Franagan, C., LEiNo, K. R. M., LiLLIBRIDGE, M., NELSON, G., SAXE, J. B., AND StaTA, R. 2002. Extended
static checking for Java. In Proceedings of the Programming Language Design and Implementa-
tion (PLDI), L. J. Hendren, Ed. SIGPLAN Notices 37, 5, 234—-245.

Franacan, C. AND QADEER, S. 2003. A type and effect system for atomicity. In Proceedings of the
Programming Language Design and Implementation (PLDI), S. Amarasinghe, Ed. ACM, 338—
349.

FreunD, S. N. AND QADEER, S. 2004. Checking concise specifications for multithreaded software.
J. Obj. Techn. 3, 6, 81-101.

GosLING, J., Joy, B., STEELE, G., AND BracHA, G. 2005. The Java Language Specification (3rd
Edition). Prentice Hall.

Hoagrg, C. A. R. 1974. Monitors: An operating system structuring concept. Comm. ACM 17, 10,
549-557.

Jacoss, B. 2007. A statically verifiable programming model for concurrent object-oriented pro-
grams. Ph.D. thesis, Department of Computer Science, Katholieke Universiteit Leuven.

Jacoss, B., Lemvo, K. R. M., Piessens, F., anp Scaurre, W. 2005a. Safe concurrency for aggregate
objects with invariants. In Proceedings of the Software Engineering and Formal Methods (SEFM),
B. K. Aichernig and B. Beckert, Eds. IEEE Computer Society, 137-147.

Jacoss, B, Lemo, K. R. M., Piessens, F., anD Scaurrte, W. 2005b. Safe concurrency for aggregate
objects with invariants: Soundness proof. Tech. rep. MSR-TR-2005-85, Microsoft Research.

Jacoss, B., Smans, J., Piessens, F., anp Scaurre, W. 2006. A statically verifiable programming
model for concurrent object-oriented programs. In Proceedings of the International Conference
on Formal Engineering Methods (ICFEM), Z. Liu and J. He, Eds. Lecture Notes in Computer
Science, vol. 4260. Springer, 420-439.

Kassios, I. T. 2006. Dynamic frames: Support for framing, dependencies and sharing without
restrictions. In Proceedings of the Formal Methods (FM), J. Misra, T. Nipkow, and E. Sekerinski,
Eds. Lecture Notes in Computer Science, vol. 4085. Springer, 268-283.

QADEER, S., Rajamant, S. K., AND REHOF, J. 2004. Summarizing procedures in concurrent programs.
In Proceedings of the Principles of Programming Languages (POPL),X. Leroy, Ed. ACM, 245-255.

RopricuEz, E., DwyEr, M., FrLanacaN, C., HATCLIFF, J., LEAVENS, G. T., AND RoBBY. 2005. Extending
sequential specification techniques for modular specification and verification of multi-threaded

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

P1: OJL
ACMBO080A-01 ACM-TRANSACTION November 7, 2008 21:4

1:48 o B. Jacobs et al.

programs. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP),
A. P. Black, Ed. Lecture Notes in Computer Science, vol. 3586. Springer, 551-576.
SavaGg, S., Burrows, M., NELSON, G., SOBAIVARRO, P., AND ANDERsON, T. E. 1997. Eraser: A dynamic
data race detector for multi-threaded programs. ACM Trans. Comput. Syst. 15, 4, 391-411.
WELC, A., JAGANNATHAN, S., AND HoskiNG, A. L. 2004. Transactional monitors for concurrent ob-
jects. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP),
M. Odersky, Ed. Lecture Notes in Computer Science, vol. 3086. Springer, 519-542.

Received May 2007; revised November 2007; accepted February 2008

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 1, Pub. date: November 2008.

