
A Decision Procedure for Well-Founded
Reachability

Shuvendu K. Lahiri Shaz Qadeer

April 20, 2007

Technical Report
MSR-TR-2007-43

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

This page intentionally left blank.

A Decision Procedure for Well-Founded
Reachability

Shuvendu K. Lahiri and Shaz Qadeer

Microsoft Research

Abstract. In earlier work, we introduced the logic of well-founded reach-
ability for reasoning about linked data structures. In this paper, we
present a rewriting-based decision procedure for the ground (quantifier-
free) logic. We also extend the logic with restricted set constraints to
allow specifications involving unbounded collections of objects. We have
implemented this decision procedure within a satisfiability modulo the-
ories (SMT) framework. Our implementation substantially improves the
automation and the time taken for verifying our benchmarks compared
to our earlier approach based on an incomplete axiomatization of well-
founded reachability.

1 Introduction

First-order theorem provers [7, 3] have been a fundamental component of many
scalable program verification tools [9, 2]. The theorem provers are primarily used
for checking the validity of verification conditions characterizing the correctness
of a program, or for computing abstractions during predicate abstraction [10].
The appeal of first-order reasoning comes from the ability to combine various
useful theories required for program analysis e.g., arithmetic, arrays, and un-
interpreted functions, in a systematic manner [17]. More recently, advances in
Satisfiability-Modulo-Theories (SMT) solvers [23]1 have created the opportunity
for scaling automated verification to deep properties of complex software.

Despite recent advances, automated verification of programs manipulating
linked lists has remained outside the scope of first-order reasoning. Analysis
of such programs typically requires a reachability predicate to capture the un-
bounded number of dynamically allocated cells present in a linked list. For a
given cell u, the reachability predicate characterizes the set of cells {u, u.f, u.f.f, . . .}
reachable from u using the transitive closure of f. There are several reasons for
the difficulty of reasoning about reachability using first-order logic. First, tran-
sitive closure cannot be expressed in first-order logic [5]; consequently, any first-
order axiomatization of this predicate will be imprecise. Second, it is difficult to
obtain a precise update to the reachability relation in response to an update to
f (for a statement x.f := y). Finally, the reachability predicate by itself is not

1 SMT solvers combine advances in Boolean satisfiability (SAT) solvers with powerful
first-order theory reasoning, most recently with quantifiers

expressive enough to capture interesting properties lists viewed as collections,
especially in the presence of cycles.

In earlier work, we proposed an alternate formulation of the reachability
predicate known as the well-founded reachability [12]. We generalized the special
cell null that terminates an acyclic list, to a set BS of blocking cells. The set
BS is an auxiliary variable used by the programmer to indicate the head cells of
cyclic lists. We enforce, by automatically instrumenting the program with simple
assertions, that the program heap is well-founded with respect to every linking
field f used to construct lists in the program, i.e., each cycle formed by f contains
at least one cell from BS . We define a reachability relation RBS

f , such that
RBS

f (u, v) holds if and only if v is reachable, in zero or more steps using f, from u

without visiting any cell in BS . We also define a function BBS
f , such that BBS

f (u)
is the first cell in BS encountered by following one or more steps using f from
u. The well-founded reachability relation enjoys several useful properties. First,
RBS

f and BBS
f allow us to express many interesting properties of both acyclic

and cyclic lists uniformly. Second, the update to RBS
f and BBS

f in response to an
update to f is a simple quantifier-free expression. This property guarantees that
the verification condition of a program with quantifier-free assertions remains
quantifier-free, thereby allowing efficient verification.

The RBS
f predicate, similar to its traditional counterpart, cannot be expressed

using first-order axioms. We showed that the satisfiability problem for the ground
fragment over RBS

f and BBS
f is NP-complete [12], and provided a small-model

theorem. However, using the small-model theorem to encode a ground formula
into a Boolean formula and using a SAT solver did not yield an efficient decision
procedure. Instead, we provided a small set of six quantified first-order axioms
that sufficed for most of the representative linked list examples in the literature.

In this work, we provide an efficient decision procedure for the ground logic
over the symbols RBS

f and BBS
f . The decision procedure is based on a set of

rewrite rules that are shown to be sound, complete, and terminating (Section 2).
Unlike previous ground decision procedures [20, 19], we show that the decision
procedure is complete with respect to updates to f (Section 3). We also extend
our logic to add constraints involving sets of cells, which allows us to specify rich
specification without sacrificing decidability (Section 4). The logic can be com-
bined with other first-order theories (such as arithmetic) using Nelson-Oppen
combination. We provide a prototype implementation of the decision procedure
within an SMT solver using first-order axioms that mimic the rewrite rules (Sec-
tion 5). Finally, we report our experience using the decision procedure on a set
of C verification benchmarks [6] that were earlier verified using the incomplete
axiomatization(Section 6). Our results are encouraging: the new technique sub-
stantially improves the automation and the time taken for verifying our bench-
marks compared to our earlier approach based on an incomplete axiomatization.
We conclude with a discussion of the related work in Section 7. The proofs of
the various theorems in the paper are given in the appendix.

2 Logic of well-founded reachability

In Figure 1, we present the syntax of the quantifier-free logic with signature
(BS , f,R,B ,null). Since BS and f are clear from the context, we use R and B
to represent RBS

f and BBS
f respectively.

x, y ∈ Variable ∪ {null}
l ∈ Literal ::= x = y | R(x, y) | BS(x) | f(x) = y | B(x) = y |

x 6= y | ¬R(x, y) | ¬BS(x)
ϕ ∈ Formula ::= l | ϕ ∨ ϕ | ϕ ∧ ϕ

Fig. 1. Quantifier-free logic with signature (BS , f,R,B ,null)

A model is a finite domain Cell together with interpretations Ix : Cell for
each variable in Variable, If : Cell → Cell for f , IBS : Cell → Boolean for BS ,
IR : Cell × Cell → Boolean for R, IB : Cell → Cell for B , and Inull : Cell for
null that satisfy the following properties:

1. If (null) = Inull .
2. If there exists n > 0 and elements u0, u1, . . . , un ∈ Cell such that If (ui) =
ui+1 for all 0 ≤ i < n and u0 = un, then there exists i such that 0 ≤ i < n
and IBS (ui).

3. IR is the least fixpoint of the equation

X ≡ λu, v ∈ Cell. u = v ∨ (¬IBS (If (u)) ∧X(If (u), v)).

4. IB satisfies the equation

IB ≡ λu ∈ Cell . let v = If (u) in ite(IBS (v), v, IB (v)).

Here the construct ite(a, b, c) evaluates to b if a is true and evaluates to c
otherwise.

In the rest of the paper, we assume (without any loss of generality) that
any formula ϕ contains the literal f(null) = null needed to model the first
requirement on a model. For any such formula ϕ, we write M |= ϕ to denote
that the model M satisfies ϕ.

2.1 Decision procedure

We now present an algorithm that decides for any conjunction of literals ϕ,
whether there exists a model M such that M |= ϕ. The algorithm maintains
a context , which is a conjunction of literals currently asserted to be true. Our
decision procedure is given as a collection of rewrite rules (Figure 2) that operate
over the context. In each step of the algorithm, an applicable rewrite rule is
applied which may cause a case-split together with the addition to the context

[reflexivity]

R(x, x)

[antisymmetry]
R(x, y) R(y, x)

x = y

[transitivity]
R(x, y) R(y, z)

R(x, z)

[ordering]
R(x, y) R(x, z)

R(y, z) R(z, y)

[reach1]
f(x) = y

BS(y) R(x, y)

[reach2]
f(x) = y R(x, z)

x = z {¬BS(y),R(y, z)}

[well-founded1]
f(x) = y R(y, x)

BS(y)

[well-founded2]
R(x, y) BS(y)

x = y

[block1]
f(x) = y BS(y)

B(x) = y

[block2]
B(x) = y

BS(y)

[block3]
R(x, y) B(x) = z

B(y) = z

[block4]
R(x, y) B(y) = z

B(x) = z

Fig. 2. Rewrite rules

of one or more literals. Figure 2 does not include the standard rules for equality
propagation and congruence closure which are also needed by our algorithm.

Each rule in Figure 2 is written as a conjunction of antecedents above the
line and a disjunction of consequents below the line. For the case of the rule
[reach2], the literals inside the {} are interpreted as conjoined. If there is a
rule such that the current context contains all the literals above the line, then
the properties of (BS , f,R,B ,null) guarantee that the disjunction of the literals
below the line is entailed by the context. In this case, we say that the rule
matches the context. For example, the rule [transitivity] matches if both the
literals R(x, y) and R(y, z) are present in the context and the literal R(x, z) is
added to the context when this rule is applied. A context is called convex if for
every matching rule, the context contains all the literals in one of the disjuncts
below the line. A context ϕ is consistent if it is not the case that l ∈ ϕ and
¬l ∈ ϕ for some literal l. A context is inconsistent if it is not consistent.

Our algorithm essentially explores a decision tree while maintaining a con-
text. It initializes the context to the input formula ϕ. At each step, if the current
context is inconsistent, the algorithm backtracks to the last untried decision if
there remains one and otherwise returns unsatisfiable. Otherwise, if the current
context is convex, the algorithm reports that ϕ is satisfiable. Otherwise, there
is a matching rule such that none of the literals below the line are present in
the context. If there is only one literal below the line, it is added to the context.
Otherwise, a case split is performed with one literal added to the context for
each case.

The rules [reflexivity], [antisymmetry], [transitivity], and [ordering]
capture basic properties of the reachability relation, independent of its connec-
tion with f and B . While the standard notion of reachability has the reflexivity,

transitivity and ordering properties, only well-founded reachability has the an-
tisymmetry property. The rules [reach1] and [reach2] capture the connection
between BS , f , and R. The rule [well-founded1] ensures that every cycle
contains an element in BS . The rule [well-founded2] ensures that a blocking
cell is reachable only from itself. The rules [block1] and [block2] establish the
connection between BS , f , and B . The rules [block3] and [block4] state that
the function B is congruent with respect to the R relation.

2.2 Termination

We argue that the size of the context remains bounded during the execution of
the algorithm. The context consists of a collection of literals, each of which is a
relation over terms. The only rules that may require creation of new terms are
[block1], [block3], and [block4] and they only create new terms of the form
B(x) for some variable x.2 Thus, the number of terms can at most double during
the execution of the algorithm. Therefore, the number of possible distinct literals
remains bounded as well. Bounded number of literals implies that the number
of case splits performed by the algorithm is bounded. Hence, the algorithm
terminates.

Due to the case-splitting, the complexity of our algorithm is clearly expo-
nential in the size of the input formula. In earlier work [12], we showed that the
problem of checking the satisfiability of a conjunction of literals in the logic in
Figure 1 is NP-complete. Therefore, an algorithm with better than exponential-
time complexity in the worst case is unlikely. As we show in Section 6, we have
found that our algorithm performs well on our benchmarks.

2.3 Correctness

It is straightforward to argue that our algorithm is sound. We need to reason
locally and prove that each deduction rule in Figure 2 is sound. To prove com-
pleteness, we must show that if a conjunction of literals ϕ is consistent, closed
under congruence and convex under the rewrite rules in Figure 2, then there is
a model M such that M |= ϕ. We now show how to construct such a model M
from ϕ.

We create a partition A = {α1, . . . , αn} of the set of variables occurring in
ϕ satisfying the following condition: for all i ∈ [1, . . . , n] and for all variables x
and y, x ∈ αi and y ∈ αi iff x = y ∈ ϕ. For each α ∈ A, let [|α|] denote a fixed
representative member of α. For each class α ∈ A such that (B([|α|]) = x) 6∈ ϕ
for all x, we add the literal B([|α|]) = null to ϕ. Let the resulting conjunction
of literals be called ϕ′. It is simple to argue that ϕ′ is consistent, closed under
congruence, and convex under the rewrite rules in Figure 2.

We now define a model M for ϕ′ which will be a model for ϕ as well. Since
the extra literals in ϕ′ over ϕ do not include any equalities between variables,
2 Also note, that the set of literals in the context is always in purified form [18], where

each term is equated with some variable.

the partition A over the variables remains unchanged. Moreover, the set ϕ′ has
the property that for each equivalence class α ∈ A, there is a unique equivalence
class β such that (B([|α|]) = [|β|]) ∈ ϕ′.

To define M , we first need to define relations R and F as follows. Let R =
{(α, β) ∈ A × A | R([|α|], [|β|]) ∈ ϕ}. Since ϕ is convex with respect to the
rules [reflexivity], [antisymmetry], and [transitivity], we get that R is a
partial order. Let F ⊆ R be a minimal relation over A whose reflexive-transitive
closure is equal to R. We prove by contradiction that F is functional, that is,
for all α, β, and β′, if F(α, β) and F(α, β′), then β = β′. Suppose F(α, β),
F(α, β′), and β 6= β′. If either α = β or α = β′, then the minimality of F
is violated. Therefore, we have α 6= β and α 6= β′. Then R([|α|], [|β|]) ∈ ϕ and
R([|α|], [|β′|]) ∈ ϕ. Since ϕ is convex, we get from rule [ordering] that either
R([|β|], [|β′|]) ∈ ϕ or R([|β′|], [|β|]) ∈ ϕ. We get R(β, β′) in the first case, and
R(β′, β) in the second case. Both cases contradict the minimality of F .
Defining Ix: For any variable x, let Ix be the equivalence class containing x.
Defining IBS : For each equivalence class α, let IBS (α) = true if BS ([|α|]) ∈ ϕ′,
and IBS (α) = false otherwise.
Defining If : For each equivalence class α, we define If (α) as follows. If f([|α|]) =
[|β|] ∈ ϕ′, then If (α) = β. Otherwise, if F(α, β) holds, then If (α) = β. Other-
wise, If (α) = β for the unique equivalence class β such that B([|α|]) = [|β|] ∈ ϕ′.
Defining IR: Define IR = R.
Defining IB : For each equivalence class α, we define IB (α) = β for the unique
class β such that B([|α|]) = [|β|] ∈ ϕ′.
Defining Inull : We define Inull to be the equivalence class containing null .

Theorem 1. Let ϕ be a conjunction of literals that is consistent, closed under
congruence, and convex under the rewrite rules in Figure 2. Let M be the tuple
(IBS , If , IR, IB , Inull) defined above. Then M |= ϕ.

It also follows easily from the model constructed above that the logic is stably
infinite, i.e., any quantifier-free satisfiable formula in this logic also has an infinite
model. The stably infinite property allows us to combine this theory with other
theories in the Nelson-Oppen cooperating theory framework.

Theorem 2. The logic presented in Figure 1 is stably infinite.

3 From programs to formulas

In Section 2, we described a logic with the signature (BS , f,R,B ,null) and a
procedure for deciding the satisfiability of formulas in that logic. We are in-
terested in using this logic for verification of heap-manipulating programs. In
such programs, the heap consists of objects, each of which might contain several
fields. The fields of interest for this paper are those that are used to link together
members of a list. Such a field (called a linking field) can be modeled using the
symbol f .

When the field f of an object is updated by the program, we must update
the reachability relation R accordingly. If all linked lists in the program are

terminated by null , then the new value of R can be defined precisely in first-
order logic in terms of the old value of R. However, in the presence of cyclic linked
lists, providing such a simple update to R is not possible. Thus, programs (e.g.,
operating systems) that use circular linked lists are difficult to analyze precisely
and efficiently. We solve this problem by introducing the methodology of well-
founded reachability. In this methodology, the programmer uses a reachability
relation that is parameterized not only by the linking field f but also by a
set of blocking cells BS . The symbol BS models an auxiliary variable in the
program, updates to which must be explicitly provided by the programmer. The
methodology ensures that the program invariant every cell in the heap reaches
an element in the blocking set by following a finite number of applications of f .
This variable is initialized to the singleton null . The program is required to add
the the head cell of a cyclic linked list to this variable just before the cycle is
created and remove an appropriate cell from the variable when two linked lists
are spliced together. The main advantage of this approach is that we regain the
ability to provide a simple first-order update to R when f is updated at some
heap cell.

Since programs might use several linking fields to build lists, we augment
the logic from the previous section to allow multiple linking fields from the set
LinkField and multiple blocking sets from the set BlockSet . Instead of a single
theory with the signature (BS , f,R,B ,null), we have a collection of theories
(BS , f, RBS

f , BBS
f ,null). Note that these theories share only variables and the

equality symbol since each linking field f is associated with its own blocking set
BS . We also know that each of these theories is stably infinite (Theorem 2). Since
they only share equality and variables, they can be combined in the framework
of cooperating decision procedures [18].

3.1 Verification condition generation

S ∈ Stmt ::= Assert(e) | Assume(e) | x := f(y) | S1;S2 | S12S2 |
f(x) := y | AddBlock(BS , x) | RemoveBlock(BS , x) |
{I} While e S

Fig. 3. Program

We now describe how a program S is translated into a verification condition
ϕ such that if ϕ is unsatisfiable then S is correct. We explain the procedure of
verification condition generation on programs constructed according to Figure 3.
We now define wp(S, ϕ), the weakest precondition of a formula ϕ with respect
to a program S.

While the statement Assert(e) is used to model intermediate assertions and
postconditions, the statement Assume(e) is used to model preconditions and con-
ditional statements. We have wp(Assert(e), ϕ) = e∧ϕ and wp(Assume(e), ϕ) =

e ⇒ ϕ. The statement x := f(y) reads the value of field f at cell y into a vari-
able x. We have wp(x := f(y), ϕ) = ϕ[f(y)/x], where ϕ[f(y)/x] is the formula
in which x is syntactically replaced everywhere with f(y). The statement S1;S2

evaluates S1 followed by S2 and we have wp(S1;S2, ϕ) = wp(S1,wp(S2, ϕ)). The
statement S12S2 executes either S1 or S2 nondeterministically. This statement,
together with the assume statement, is used to model conditional execution. We
have wp(S12S2, ϕ) = wp(S1, ϕ) ∧ wp(S2, ϕ).

The statements f(x) := y, AddBlock(BS , x), and RemoveBlock(BS , x) are
the most interesting because they affect the values of RBS

f and BBS
f . The state-

ment f(x) := y updates the value of field f at cell x to y. To incorporate its
effect on the RBS

f and BBS
f , it is desugared into the following statement sequence,

denoted by S1, and we get wp(f(x) := y, ϕ) = wp(S1, ϕ).

Assert(RBS
f (y, x) ⇒ BS (y)) ;

BBS
f := λ u. ite(RBS

f (u, x), ite(BS (y), y, BBS
f (y)), BBS

f (u)) ;
RBS

f := λ u, v.

ite(RBS
f (u, x),

(RBS
f (u, v) ∧ ¬RBS

f (x, v)) ∨ v = x ∨ (¬BS (y) ∧RBS
f (y, v)),

RBS
f (u, v)) ;

f := λ u. ite(u = x, y, f(u))

The first statement is an assertion ensuring that the heap remains well-founded.
The next three statements capture the update to BBS

f , RBS
f , and f as lambda

expressions. These expressions use the ite(a, b, c) term, which can be easily
eliminated in a post-processing step by introducing boolean connectives. The
weakest precondition wp(f := λ u. ite(u = x, y, f(u)), ϕ) is obtained by replac-
ing every occurrence of a term f(t) in ϕ by the term ite(t = x, y, f(t)). The
weakest precondition of the other lambda expressions is calculated similarly. The
desugaring for AddBlock(BS , x) and RemoveBlock(BS , x) is similar and given in
Appendix B.

A loop {I} While e S is first desugared into the following code:

Havoc;Assume(I); (Assume(e);S;Assert(I);Assume(false))2Assume(¬e)

The Havoc statement is a special statement whose effect is to update every pro-
gram variable, including all the fields and the blocking sets, to nondeterministic
values. The weakest precondition wp(Havoc, ϕ) is obtained by replacing every
occurrence of a variable x by a fresh variable x′, every occurrence of f with a
fresh f ′, every occurrence of BS with a fresh BS ′, every occurrence of RBS

f with
RBS ′

f ′ , and every occurrence of BBS
f with BBS ′

f ′ .

Remark 1. The ability to provide quantifier-free updates to RBS
f , BS and BBS

f

for the different statements in a program ensures that the formula generated by
performing the wp(S, ϕ), for a formula ϕ over a program S remains simple. In
particular, if ϕ is a formula in the extended logic, then the resultant formula
wp(S, ϕ) also falls into the logic, and thereby can be decided efficiently.

4 Set constraints

For many programs, the reachability predicate by itself is insufficient for express-
ing the appropriate specification. For example, consider the following program.

class ListCell { int data; ListCell next; }
ListCell head;

iter = head;
while (iter != null) {

iter.data = 42;
iter = iter.next;

}

In this program, the variable head points to the beginning of a null-terminated
list. We would like that when the loop terminates, the data field of every ele-
ment in the list is 42. Proving such a postcondition also requires proving a loop
invariant stating that every element reachable from head is either reachable from
iter or its data field equals 42. Both of these assertions state a fact about an
entire collection of heap cells; consequently, there is a universal quantifier hid-
den in them. While general universal quantification in first-order logic makes the
satisfiability problem undecidable, we have observed that the most common and
useful data structure specifications use a restricted form of quantification which
can be viewed as expressing set constraints. Therefore, we extend the logic from
last section in Figure 4 to allow such set constraints to be expressed.

i ∈ Integer
d ∈ DataField
c ∈ DataVariable

BS ∈ BlockSet
f ∈ LinkField
v ∈ Variable

x, y ∈ Variable ∪ {null}
X,Y, Z ∈ SetVariable

t, u ∈ DataTerm ::= i | c | d(x) | t+ t | t− t
ψ ∈ SetFormula ::= x = y | RBS

f (x, y) | BS(x) | t ≤ u |
x 6= y | ¬RBS

f (x, y) | ¬BS(x) | t < u
m ∈ SetLiteral ::= X(x) | ¬X(x) | X = λv.ψ | X ⊆ Y ∪ Z
l ∈ Literal ::= x = y | RBS

f (x, y) | BS(x) | f(x) = y | BBS
f (x) = y |

x 6= y | ¬RBS
f (x, y) | ¬BS(x)

ϕ ∈ Formula ::= l | m | ϕ ∨ ϕ | ϕ ∧ ϕ

Fig. 4. Set logic

The logic in Figure 4 makes two significant extensions to the logic from Fig-
ure 1. First, we also allow formulas to refer to data fields from the set DataField .

The interpretation of each function d ∈ DataField is a function from Cell to
Integer . Second, we allow formulas to refer to variables whose interpretation is
a subset of Cell . These set variables appear in subset and equality constraints.
This logic provides the set constructor λv.ψ, where ψ ∈ SetFormula, to represent
the set {v ∈ Cell | ψ(v)}. The bound variable v is a member of Variable and can
never be equal to null . Therefore, null is a free variable in any formula. Note that
the empty set, the universal set and other set constraints such as X = Y ∪ Z,
X ∩ Y = Z, and X = Y \ Z can all be expressed using the above syntax.

Using this logic, we write the precondition of the program above asBBS
next(head) =

null , the loop invariant as

λx.(RBS
next(head , x) ∧ head 6= null) ⊆

(
λx.(RBS

next(iter , x) ∧ iter 6= null)
∪ λx.data(x) = 42

)
and the postcondition as

λx.(RBS
next(head , x) ∧ head 6= null) ⊆ λx.data(x) = 42.

Let FV (ϕ) ⊆ Variable ∪ {null} be the set of variables occurring in ϕ that
are not bound by a lambda term. To check whether a formula ϕ is satisfiable,
we obtain a formula ϕ′ by performing the following operations on ϕ.

1. Replace each occurrence of a set literal X = λv.ψ with the conjunction∧
x∈FV (ϕ)

X(x) ⇔ ψ[x/v].

2. Replace each occurrence of a set literal X ⊆ Y ∪ Z with the conjunction∧
x∈FV (ϕ)

X(x) ⇒ Y (x) ∨ Z(x).

Since the formula ψ used in the set constructor λx.ψ does not refer to any linking
fields, instantiating it on a variable does not result in any new terms of type Cell .
As a result, the formulas ϕ and ϕ′ are equisatisfiable. Furthermore, the formula
ϕ′ is in the combined logic of (i) the logic in Figure 1 for which we already have
a decision procedure, and (ii) the decidable logic with signature (d, +, −, ≤,
<) over the DataField . Since these logics have disjoint signatures, are stably
infinite, we obtain a decision procedure for the combined logic.

Theorem 3. The satisfiability problem for a conjunction of literals in the set
logic of Figure 4 is NP-complete.

It is easy to generalize our logic to support n-ary relations with subset con-
straints among them; a set is just the special case of a unary relation. The logic
remains decidable since we can eliminate constraint relating n-ary relations by
instantiating that constraint with all possible n-tuples of free variables.

Although our logic is expressive enough for most specifications, there are
some specifications which cannot be expressed such as the following invariant

[reflexivity] ∀x : {Element(x)} R(x, x)
[antisymmetry] ∀x, y : {R(x, y),R(y, x)} R(x, y) ∧ R(y, x) ⇒ x = y
[transitivity] ∀x, y, z : {R(x, y),R(y, z)} R(x, y) ∧ R(y, z) ⇒ R(x, z)
[ordering] ∀x, y, z : {R(x, y),R(x, z)} R(x, y) ∧ R(x, z) ⇒ R(y, z) ∨ R(z, y)
[reach1] ∀x : {f(x)} BS(f(x)) ∨ R(x, f(x))
[reach2] ∀x, z : {f(x),R(x, z)} R(x, z) ⇒ x = z ∨ (¬BS(f(x)) ∧ R(f(x), z))
[well-founded1] ∀x : {R(f(x), x)} R(f(x), x) ⇒ BS(f(x))
[well-founded2] ∀x, y : {R(x, y),BS(y)} R(x, y) ∧ BS(y) ⇒ x = y
[block1] ∀x : {BS(f(x))} BS(f(x)) ⇒ B(x) = f(x)
[block2] ∀x : {B(x)} BS(B(x))
[block3] ∀x, y : {R(x, y),B(x)} R(x, y) ⇒ B(x) = B(y)
[block4] ∀x, y : {R(x, y),B(y)} R(x, y) ⇒ B(x) = B(y)

Fig. 5. Reachability axioms

of a doubly-linked list whose forward and backward linking fields are next and
prev respectively.

λx.RBS
next(head , x) ⊆ λx.(x = next(prev(x)) ∧ x = prev(next(x)))

Of course, our verification system described in Section 5, accepts such specifi-
cations as well. In practice, we have observed that the theorem provers used by
our verifier is able to prove many such specifications; however termination is not
guaranteed in general.

5 Implementation

The goal of our work is to enable the verification of program specifications that
use the reachability predicate. To perform such a verification task for realistic
programs, a decision procedure must be able to reason about not only the reach-
ability predicate but also other theories such as arithmetic and propositional
logic. Hence, to be useful for program verification, our decision procedure must
be implemented in cooperation with decision procedures for other theories. Im-
plementing a theory inside a satisfiability modulo-theory (SMT) framework is
a considerable implementation which must ultimately be undertaken for good
performance. To create an initial prototype, we instead chose to implement our
decision procedure by encoding our rewrite rules using universally-quantified
first-order axioms with appropriate matching triggers. Most SMT solvers sup-
port such axioms; our implementation is based on Simplify [7] and Z3.

The axioms encoding the rewrite rules in Figure 2 are given in Figure 5.
To avoid the use of excessive parentheses, we use the convention that ⇒ and ⇔
have lower precedence than ∧ and ∨. For each axiom, a set of triggers is specified
using curly braces. Each trigger is a collection of terms enclosed within {·}, which
together must refer to all of the universally-quantified variables. The axiom is
instantiated for those terms which if substituted for the quantified variables

∀x, S, T : {In(x,Union(S, T))}{Union(S, T), In(x, S)}{Union(S, T), In(x, T)}
In(x,Union(S, T)) ⇔ In(x, S) ∨ In(x, T)

∀x, S, T : {In(x, Intersection(S, T))}{Intersection(S, T), In(x, S), In(x, T)}
In(x, Intersection(S, T)) ⇔ In(x, S) ∧ In(x, T)

∀x, S, T : {In(x,Difference(S, T))}{Difference(S, T), In(x, S)}
In(x,Difference(S, T)) ⇔ In(x, S) ∧ ¬In(x, T)
∀S, T : {Disjoint(S, T)} Disjoint(S, T) ⇔ (∀x : {Element(x)} ¬(In(x, S) ∧ In(x, T)))
∀S, T : {Subset(S, T)} Subset(S, T) ⇔ (∀x : {Element(x)} In(x, S) ⇒ In(x, T))

Fig. 6. Set axioms

in the trigger terms result in terms that are all present in ground formulas.
Typically, each rewrite rule results in an axiom in which the conjunction of the
literals above the line implies the disjunction of the literals below the line and
the terms in the literals above the line appear in the trigger. However, literals
such as f(x) = y above the line are eliminated by adding a term f(x) to the
trigger and substituting f(x) for y below the line. The trigger for the axiom
[relexivity] is explained below.

In addition to axioms for reachability, we also need axioms for set constraints.
To write these axioms, we introduce two uninterpreted types Cell and Set and
the following uninterpreted functions, essentially acting as set constructors.

Union : Set × Set → Set
Intersection : Set × Set → Set
Difference : Set × Set → Set

In addition, we introduce the following uninterpreted predicates that express
relationships among sets and set elements.

In : Cell × Set → Boolean
Disjoint : Set × Set → Boolean
Subset : Set × Set → Boolean

The axioms constraining these functions and predicates are given in Figure 6.
We also allow sets to be defined using the lambda notation X = λx.ψ. These

set variables can then be used in the specification. The set and the definition are
related by adding constraints ∀x : {Element(x)} In(x,X) ⇔ ψ to the resulting
formula.

Finally, we also introduce a predicate Element : Cell → Boolean, which
provides a mechanism for informing the theorem prover of terms that are po-
tentially set elements. A few of the axioms constraining Element that we have
found sufficient for our examples are:

∀x : {Reach(x)} Element(x)
∀x : {BS (x)} Element(x)
∀x : {B(x)} Element(x) ∧ Element(B(x))
∀x, S : {In(x, S)} Element(x)

Example Old Time (s) New Time (s)

iterate 1.7 1.4
iterate acyclic 1.7 1.5
array iterate 1.3 1.3

slist add 1.4 1.3
reverse acyclic 1.7 1.4

slist sorted insert 14.2 3.1
dlist add 32.6 7.1

dlist remove 37.9 2.4
allocator(1) 901.8 563.2
allocator(2) * 2421

init * 15.86
removeList * 110.95

Fig. 7. Results of assertion checking. Simplify was used as the theorem prover. The
experiments were conducted on a 3.6GHz, 2GB machine running Windows XP. A
timeout (indicated by *) of 5000 seconds was set for each experiment.

Note that the term Element(x) is part of the trigger for the axioms for
[reflexivity] in Figure 5, defining sets using lambda expressions, and the dis-
jointness and subset axioms in Figure 6.

As mentioned earlier, there are many advantages to implementing a rewriting-
based decision procedure using first-order axioms. However, we would like to note
that such an approach does have some drawbacks which must be addressed even-
tually. First, matching in typical SMT solvers is expensive. Second, matching is
performed purely on the basis of certain terms being present in the ground formu-
las, which is not the desired behavior for many axioms in Figure 5. For example,
we want the [transitivity] axiom to be instantiated only if both R(x, y) and
R(y, z) are asserted to be true in the current context. However, the matcher will
instantiate these axioms even otherwise and introduce an unnecessary case-split.

6 Evaluation

We have implemented the decision procedure described in this paper in the tool
Havoc [6]. Havoc is a tool for checking properties of heap-manipulating C
programs. The tool generates a formula representing the verification condition
that is checked for validity using a first-order theorem prover. The logic and the
decision procedure presented in this paper had to be suitably extended to account
for low-level C operations such as pointer arithmetic and internal pointers. The
set of rewrite rules for the decision procedure are very similar to the rules in
Figure 2; the main differences being that fields are modeled as offsets within an
object and the reachability relation is defined with respect to these offsets [6].

Figure 7 presents a set of C benchmarks that manipulate singly and doubly
linked lists. These benchmarks use pointer arithmetic, internal pointers into
objects and cast operations in addition to linked data structures. The examples
iterate and iterate acyclic respectively initialize the data elements of a

cyclic and acyclic lists respectively; slist add adds a node to a singly linked
list; reverse acyclic is a routine for in-place reversal of an acyclic list. The
example slist sorted insert inserts a node into a sorted (by the data field)
linked list. Similarly, dlist add and dlist remove are the insertion and deletion
routines for cyclic doubly-linked lists. Finally, allocator is a low-level custom
storage allocator. The version allocator(1) refers to the case where triggers
were specified manually for a few invariants and the verification condition was
split into two parts; these changes were required to prove the example using our
previous method. The version allocator(2) corresponds to the case without
these changes. Details of these examples and properties checked are described
in earlier work [6]. The examples init and removeList are routines from an
example with multiple doubly linked lists and complex data structure invariants.

The second column in Figure 7 gives the verification time for our earlier
approach based on an incomplete axiomatization [6]. The third column gives the
verification time with the approach presented in this paper. The results indicate
that approach presented in this paper is consistently more robust and scalable
compared to the earlier approach based on the incomplete axiomatization. 3

On more complex problems, we obtain significant improvement in the run-
time. We also obtain more automation in allocator(2) as the user does not
have to manually provide triggers and decompose the proof. The new approach
has also enabled us to verify new examples (init and removeList) that were
beyond the capability of the old axiomatization. We believe that the main rea-
son for the limited scalability of our old approach on complex problems is the
large number of instantiations generated in the theorem prover. The significant
runtime to prove the allocator example can be attributed to the interaction of
arithmetic and quantifier instantiation inside the theorem prover. Nevertheless,
the results are encouraging and we believe a customized implementation of the
decision procedure inside the theorem prover will provide additional efficiency.
We have also verified some of these examples with Z3, a new SMT solver being
developed at Microsoft Research, with substantially better runtimes compared
to Simplify.

7 Related work

Balaban et al. [1] present a logic that allows reachability over singly-linked lists to
be expressed. Their decision procedure is based on a small-model property of the
logic. The logic is restricted to quantifier-free facts about lists, e.g., disjointness
of two lists cannot be expressed. Moreover, our experience has shown that a
decision procedure based on small-model encoding is inefficient compared to one
based on rewriting and inference [12].

Nelson [19] presents an logic with a ternary reachability predicate Rf (x, y, z),
which informally means that “x reaches y without visiting z”. This predicate
3 It was not possible to evaluate other decision procedures (e.g. [20]) because of (a) our

use of well-founded reachability in the annotations, and (b) the presence of pointer
arithmetic etc. requires a more general version of the reachability predicate [6].

allows properties of cyclic linked lists to be expressed. However, disjointness
properties cannot be expressed without the use of explicit quantifiers. The paper
presented a set of first-order axioms or rewrite rules to reason about this logic,
but lacked a proof of completeness. There were several subsequent attempts, all
of them incomplete, to provide first-order axiomatization of reachability [13, 15,
12]. Rakamarić et al. [20] provide a rewriting-based decision procedure for a logic
similar to Nelson’s. Their decision procedure is incomplete in relating Rf and
Rf ′ , where f ′ is the result of updating f at some location. Our work improves
upon this earlier work both by being precise with respect to heap updates over
well-founded heaps and expressive with respect to properties over collections of
objects. In addition, the rewrite rules in our decision procedure are fewer and
simpler resulting in a simpler proof of completeness.

Ranise and Zarba [21] present a logic that is more expressive than our logic;
their reachability relation contains a witness path for the reachability of one
cell from another. They provide a decision procedure for the logic based on
translation to a set of simpler logics without reachability. But they provide no
implementation to evaluate the feasibility of their approach. Kuncak and Ri-
nard [11] provide a logic with sets for reasoning about data structures. Unlike
our logic, their logic does not allow sets to be constructed from the reachability
predicate.

Unlike the papers discussed so far which have essentially used first-order logic
for reasoning about linked data structures, other approaches have used higher-
order logic for the same purpose. The pointer assertion logic engine (PALE) [16]
uses monadic second-order logic to express properties involving reachability. Al-
though the logic can express more complex shape properties than that allowed
by our logic, the decision procedure for it has high complexity. Further, it is
unclear how to combine it in a program verification framework with reasoning
about other theories such as arithmetic. The work of Yorsh et al. [24] on the
logic of reachable patterns is in a similar direction. They also provide a logic
for expressing complex shape properties and provide a decision procedure by
translation to monadic second-order logic.

Separation logic [22] has been proposed to reason about heap-manipulating
programs. Berdine et al. [4] describe a rewrite-based decision procedure for a
fragment of separation logic with linked lists. Similar to the work on monadic
second-order logic, it is not clear how to combine this decision procedure with
theory reasoning.

Automatic computation of intermediate invariants for programs with linked
data structures (shape analysis) has also received considerable attention in recent
years. This work is orthogonal and complementary to our work and we only
discuss it briefly. Most of this work is based on specialized abstract domains for
the heap [14, 8] or use predicate abstraction [10] with decision procedures for
logics with reachability [1, 20, 12]. Better decision procedures are crucial for the
latter approaches, but they can also be used to improve the imprecision of the
underlying abstract domain in the former approaches [13].

References

1. I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction.
In Verification, Model checking, and Abstract Interpretation (VMCAI ’05), LNCS
3385, pages 164–180, 2005.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Programming Language Design and Implementation
(PLDI ’01), pages 203–213, 2001.

3. C. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooperat-
ing Validity Checker. In Computer Aided Verification (CAV ’04), LNCS 3114.
Springer-Verlag, 2004.

4. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment of
separation logic. In FSTTCS 04: Foundations of Software Technology and Theoret-
ical Computer Science, volume 3328 of Lecture Notes in Computer Science, pages
97–109. Springer-Verlag, 2004.

5. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer-
Verlag, 1997.

6. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A reachability predicate
for analyzing low-level software. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’07), LNCS 4424, pages 19–33, 2007.

7. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

8. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’06), LNCS 3920, pages 287–302, 2006.

9. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Programming Language Design and Imple-
mentation (PLDI’02), pages 234–245, 2002.

10. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Computer-
Aided Verification (CAV ’97), LNCS 1254. Springer-Verlag, June 1997.

11. V. Kuncak and M. C. Rinard. Decision procedures for set-valued fields. Electr.
Notes Theor. Comput. Sci., 131:51–62, 2005.

12. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In
Principles of Programming Languages (POPL ’06), pages 115–126, 2006.

13. T. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srivastava, and G. Yorsh.
Simulating reachability using first-order logic with applications to verification of
linked data structures. In Conference on Automated Deduction (CADE ’05), LNCS
3632, pages 99–115, 2005.

14. T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analyses. In
Static Analysis Symposium (SAS ’00), LNCS 1824, pages 280–301, 2000.

15. S. McPeak and G. C. Necula. Data structure specifications via local equality
axioms. In Computer-Aided Verification (CAV ’05), LNCS 3576, pages 476–490,
2005.

16. Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine.
In PLDI 01: Programming Language Design and Implementation, pages 221–231,
2001.

17. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):245–
257, 1979.

18. G. Nelson and D. C. Oppen. Fast decision procedures based on the congruence
closure. Journal of the ACM, 27(2):356–364, 1980.

19. Greg Nelson. Verifying reachability invariants of linked structures. In POPL ’83:
Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 38–47. ACM Press, 1983.

20. Z. Rakamarić, J. Bingham, and A. J. Hu. An inference-rule-based decision proce-
dure for verification of heap-manipulating programs with mutable data and cyclic
data structures. In Verification, Model Checking, and Abstract Interpretation (VM-
CAI ’06), LNCS 4349, pages 106–121, 2007.

21. S. Ranise and C. G. Zarba. A theory of singly-linked lists and its extensible decision
procedure. In Fourth IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2006), pages 206–215. IEEE Computer Society, 2006.

22. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS 02: Logic in Computer Science, pages 55–74, 2002.

23. Satisfiability Modulo Theories Library (SMT-LIB). Available at
http://goedel.cs.uiowa.edu/smtlib/.

24. Greta Yorsh, Alexander Moshe Rabinovich, Mooly Sagiv, Antoine Meyer, and
Ahmed Bouajjani. A logic of reachable patterns in linked data-structures. In
FoSSaCS ’06: Foundations of Software Science and Computation Structures, vol-
ume 3921 of Lecture Notes in Computer Science, pages 94–110. Springer-Verlag,
2006.

A Proofs

Theorem 1. Let ϕ be a conjunction of literals that is consistent, closed under
congruence, and convex under the rewrite rules in Figure 2. Let M be the tuple
(IBS , If , IR, IB , Inull) defined in Section 2.3. Then M |= ϕ.

Proof. We now argue that this model satisfies the four properties required of
any model of the logic in Figure 1.

1. Since the constraint on Inull is explicitly present in ϕ, the model satisfies the
constraint for null trivially.

2. We show that if there exists n > 0 and equivalence classes α0, α1, . . . , αn ∈ A
such that If (αi) = αi+1 for all 0 ≤ i < n and α0 = αn, then there exists
i such that 0 ≤ i < n and IBS (αi) = true. If this statement is false then
BS ([|αi|]) 6∈ ϕ′ for all 0 ≤ i < n. The convexity of ϕ′ w.r.t. [reach1] gives us
that R(αi, αi+1) ∈ ϕ′ for all 0 ≤ i < n. If n = 1, the convexity of ϕ′ w.r.t.
[reflexivity] and [well-founded1] gives a contradiction. Otherwise, the
convexity of ϕ′ w.r.t. [transitivity] gives us R(α1, αn) and then convexity
w.r.t. [well-founded1] gives a contradiction.

3. We show that IR is a fixpoint of the equation

X ≡ λu, v ∈ A. u = v ∨ (¬IBS (If (u)) ∧X(If (u), v)).

(⇒) Suppose IR(α, β) for equivalence classes α, β ∈ A. Then R([|α|], [|β|]) ∈ ϕ′

and f([|α|]) = [|γ|] ∈ ϕ′ for some equivalence class γ. Since ϕ′ is convex
w.r.t. rule [reach2], we have either [|α|] = [|β|] ∈ ϕ′ or ¬BS ([|γ|]) ∈ ϕ′ and

R([|γ|], [|β|]) ∈ ϕ′. In the first case, we get α = β. In the second case, we get
IBS (γ) = false and IR(γ, β) = true.
(⇐) Suppose α = β. Since ϕ′ is convex w.r.t. rule [reflexivity], we have
R([|α|], [|β|]) ∈ ϕ′ and therefore IR([|α|], [|β|]) = true. Suppose ¬IBS (If (α))
and IR(If (α), β)). Suppose If (α) = γ. Then R([|γ|], β) ∈ ϕ′. Since ϕ′ is
convex w.r.t. rule [reach1], either BS ([|γ|]) ∈ ϕ′ or R([|α|], [|γ|]) ∈ ϕ′. The
first case is not possible because then IBS (γ) = true which is a contradiction.
Therefore R([|α|], [|γ|]) ∈ ϕ′ and since ϕ′ is closed w.r.t. rule [transitivity]
we get R([|α|], [|β|]) ∈ ϕ′ and therefore IR(α, β) = true.
(Least fixpoint) We show that IR is the least fixpoint of the equation above
by well-founded induction on IR. For any relation X that is a fixpoint of the
above equation, we show that R ⊆ X.
– For the base case, we consider an α such that R(α, α) and for all α′, if
R(α, α′) then α = α′. Clearly (α, α) ∈ X.

– For the inductive case, we consider an α such that R(α, α′) for some α′

such that α 6= α′. Consider a β ∈ A, such that R(α, β). Since R is a
fixpoint of the above equation, we know that either (i) α = β, or (ii)
¬IBS (If (α)) and R(If (α), β). In the first case X(α, β) holds and hence
we get the desired result. In the second case, let α′ = If (α). Since ϕ′ is
convex w.r.t. [reach1], and IBS (α′) = false, we have R([|α|], [|α′|]) ∈ ϕ′,
which in turn implies R(α, α′). By the inductive hypothesis, for any γ ∈
A, if R(α′, γ) then X(α′, γ), and therefore X(α′, β). From the fixpoint
equation, this implies X(α, β).

4. We show that IB satisfies the equation

IB ≡ λu ∈ A′. let v = If (u) in ite(IBS (v), v, IB (v)).

Let α ∈ A′ be an equivalence class and let β = If (α).
(IBS (β) = true) In this case, we have BS ([|β|]) ∈ ϕ′. Since ϕ′ is convex w.r.t.
[block1], we get B([|α|]) = [|β|] ∈ ϕ′ and therefore IB ([|α|]) = [|β|].
(IBS (β) = false) Since ϕ′ is convex w.r.t. [reach1], either BS ([|β|]) ∈ ϕ′ or
R([|α|], [|β|]) ∈ ϕ′. The first case is not possible because then IBS (β) = true
which is a contradiction. Therefore R([|α|], [|β|]) ∈ ϕ′. Since ϕ′ is convex w.r.t.
[block3], we have B([|β|]) = B([|α|]).

ut

Theorem 2. The logic presented in Figure 1 is stably infinite.

Proof. The proof follows from the proof of Theorem 1. Consider a satisfiable
formula ϕ in this logic. By theorem 1, there is a model M whose domain A is a
partitioning of the variables in ϕ, and interpretation I to the various symbols as
described above. We define another model M ′ with an infinite domain A′ (such
that A ⊂ A′) with the following interpretation J:

– Jnull = Inull.
– For any variable x ∈ ϕ, Jx = Inull.
– For any α ∈ A′, JBS (α) = IBS (α) if α ∈ A, and JBS (α) = true otherwise.

– For any α ∈ A′, Jf (α) = If (α) if α ∈ A, and Jf (α) = α otherwise.
– For any α ∈ A′, JB (α) = IB (α) if α ∈ A, and JB (α) = α otherwise.
– For any α, β ∈ A′, JR(α, α) = true for all α ∈ A′, JR(α, β) = IR(α, β) if

both α, β ∈ A, and JR(α, β) = false otherwise.
ut

Lemma 1. Instantiating the set constraints in ϕ on all possible free variables
of ϕ results in a formula ϕ′ that is equisatisfiable with ϕ.

Proof. Recall from the proof of Theorem 1, that the domain of the model of ϕ′ is
the partition of the set of variables in ϕ′ induced by the set of variables equalities
in ϕ′. In other words, each element of the domain of the model is mapped to
at least one variable from ϕ′. By instantiating the set constraints on all the free
variables in ϕ (or the variables in ϕ′), we ensure that the set constraints are
instantiated on every element of the domain. Hence every model of ϕ′ can be
extended to a model for ϕ. Hence, ϕ and ϕ′ are equisatisfiable. ut

Theorem 3. The satisfiability problem for a conjunction of literals in the set
logic of Figure 4 is NP-complete.

Proof. The logic is clearly NP-hard because it is a superset of well-founded
reachability. Lemma 1 shows that a formula ϕ in this logic is equisatisfiable to
a formula ϕ′ without any set constraints. The formula ϕ′ can subsequently be
translated into an equisatisfiable formula ψ in purified form. Clearly, the size of
ψ is polynomial in the size of ϕ.

From Theorem 2, we get that the theory of well-founded reachability is stably
infinite. Therefore the formula ψ can be decided by combining the theory of well-
founded reachability, the theory of arithmetic, and the theory of uninterpreted
functions in the Nelson-Oppen framework. Let ψ be the disjoint union of ψ1, a
formula in the logic of well-founded reachability and ψ2, a formula in the theory
of arithmetic, and ψ3 a formula in the theory of uninterpreted functions. The
completeness of the the Nelson-Oppen framework guarantees that to provide a
model for ψ, it is enough to provide a model for ψ1, ψ2, and ψ3 together with
an a truth assignment to every possible equality between variables. Clearly, the
size of such a witness is polynomial in the size of ψ. ut

B Weakest preconditions

The statement AddBlock(BS , x) adds the cell x to the blocking set BS . To incor-
porate its effect on the RBS

f and BBS
f , it is desugared into the following statement

sequence, denoted by S2, and we get wp(AddBlock(BS , x), ϕ) = wp(S2, ϕ).

Assert(¬BS (x)) ;
BBS

f := λ u. ite(RBS
f (u, x) ∧ u 6= x, x, BBS

f (u)) ;
RBS

f := λ u, v. RBS
f (u, v) ∧ (¬RBS

f (u, x) ∨ u = x ∨ ¬RBS
f (x, v)) ;

BS := λ u. ite(u = x, true, BS (u))

The statement RemoveBlock(BS , x) removes the cell x from the blocking set
BS . To incorporate its effect on the RBS

f and BBS
f , it is desugared into the follow-

ing statement sequence, denoted by S3, and we get wp(RemoveBlock(BS , x), ϕ) =
wp(S3, ϕ).

Assert(BS (x)) ;
Assert(BBS

f (x) 6= x) ;
RBS

f := λ u, v. RBS
f (u, v) ∨ (BBS

f (u) = x ∧RBS
f (x, v)) ;

BBS
f := λ u. ite(BBS

f (u) = x, BBS
f (x), BBS

f (u)) ;
BS := λ u. ite(u = x, false, BS (u))

