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ABSTRACT

In traditional classification problems, the reference needed for train-
ing a classifier is given and considered to be absolutely correct.
However, this does not apply to all tasks. In emotion recognition
in non-acted speech, for instance, one often does not know which
emotion was really intended by the speaker. Hence, the data is
annotated by a group of human labelers who do not agree on one
common class in most cases. Often, similar classes are confused
systematically. We propose a new entropy-based method to evalu-
ate classification results taking into account these systematic con-
fusions. We can show that a classifier which achieves a recognition
rate of “only” about 60 % on a four-class-problem performs as well
as our five human labelers on average.

1. INTRODUCTION

An essential aspect of pattern recognition is the classification of
patterns. Besides the search for applicable features, a lot of work
has also been done to develop new and to improve existing au-
tomatic classification techniques. Well known are, for instance,
artificial neural networks, or support vector machines which be-
came very popular in the last few years. In the case of supervised
learning, the classifiers are trained to map a set of features into
a given reference class. The standard method to evaluate an au-
tomatic classifier is to calculate the recognition rate which is the
percentage of correctly recognized samples. The basic assumption
is that this reference class is given and that it is non-ambiguous.

In our work on the recognition of emotions on the basis of
emotional speech, we face the problem that it is not clear at all
which emotions the people expressed when they were recorded.
The corpus on which the experiments were done in this paper con-
sists of children playing with the Sony robot Aibo. The kids were
asked to direct the Aibo along a given route; they were not asked
to express any emotions. Nevertheless emotional behavior can be
observed in these recordings. As these emotions are not acted by
professional actors, but are emotions as they appear in daily life,
they are called “realistic”. From the application developers’ point
of view, it is very important to deal with such realistic behavior.
However, one side effect is that one has to cope with relatively
weak emotions in contrast to full-blown emotions of acted speech.
As the recorded persons do not have to play a given emotion and
due to the fact that it is often not feasible to ask them afterwards
what kind of emotions they felt during the recordings, one employs
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human labelers to label the data set. Normally, only in a few cases,
all available labelers agree on one common label. In our corpus,
in most cases, only three out of five labelers agreed. Yet this is not
a problem of bad labeling but rather a consequence of the fact that
we are dealing with a realistic classification problem which also
raises real difficulties for humans. Accordingly, the expectations
of the automatic classifier measured in recognition rates must be
lowered.

In order to be able to calculate recognition rates at all, hard
decisions are needed for the reference as well as for the classi-
fier’s output. If a metric can be imposed on the label space, the
labels of all labelers can be averaged. This is well possible, for
example, if the tiredness of persons is labeled on a scale from 1 to
10. If two labelers judge someone with ’8’ as very tired and one
labeler says only ’5’, the reference would be ’7’. But this does
not work for categorical emotion labels likeanger, bored, etc. as
the mean ofanger andbored is not defined. In those cases, the
state-of-the-art is to use a majority voting to create the reference.
Proceeding this way, we achieve recognition rates of about 60 %
on our corpus with four emotion classes which is a state-of-the-art
result for a task set-up like that. Nonetheless, the assessment of
the emotion classification success should not be done without con-
sidering how well humans would perform in this task. Depending
on the number and type of classes, human labelers confuse certain
classes with each other more than other classes. In general, the
more similar classes are, the more they are confused. This confu-
sion should be considered in the evaluation of a classifier. If the
automatic classifier makes the same “mistakes” as many humans
do, then this fault cannot be as severe as if the classifier mixes up
two classes that are never confused by humans. Instead, the ques-
tion is if such systematic confusions are faults at all since “of all
things the measure is man” as already Protagoras said more than
2400 years ago.

In this paper, we would like to propose a new entropy-based
measure to judge a classifier’s output taking systematic confusions
made by humans into account.

2. ENTROPY-BASED MEASURE

According to Shannon’s information theory [1], the entropy is a
measure for the information content. We propose to use the en-
tropy to measure the unanimity of the labelers. If all reference
labelers agree on one class, the entropy will be zero. Otherwise,
the more the labelers disagree, the higher the entropy will be. In
the following, we assume to haveN labelersLn who have labeled
a data set ofS samplesXs. For each sample, each of our label-



ers has to decide in favor of one ofK classesCk. However, the
approach is also easily portable to soft labels where all classes get
scores from a continuous range of values and all scores for a sam-
ple sum up to one. The hard decisions of any number of labelers
can be converted into one soft reference label as it is depicted in
Fig. 1 for a four-class-problem (K = 4) with ten labelers. The
more the labelers disagree the flatter is the distribution of the soft
label.
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Fig. 1. Conversion of the hard decisions of ten labelers into a soft
reference labell ref . The four classes are ’Anger’, ’Motherese’,
’Emphatic’, and ’Neutral’

Our suggestion is to leave out each labeler (we can also use
a more general term “decoder”) in succession. If labelern is left
out, then the resulting soft reference label for sampleXs is denoted
l ref(n̄, s), with n̄ indicating the omitted labeler.

Now, we add another decoder. This can be an automatic clas-
sifier, but also the remaining human labeler who was omitted in
the reference, so that direct comparisons between a classifier and
a human labeler are possible. In order to avoid dependency on the
number of labelers, the new decoder is not considered in the same
manner as other reference labelers. Instead, the hard decision of
the new decoder for sampleXs (also converted into a soft label
ldec(s)) is weighted1 : 1 with the reference labell ref(n̄, s):

l(n̄, s) = 0.5 · l ref(n̄, s) + 0.5 · ldec(s) (1)

Then, the entropy can be calculated for the given sampleXs:

H(n̄, s) = −
K∑
k=1

lk(n̄, s) · log2(lk(n̄, s)) (2)

Taking the example of Fig. 1, the entropy will decrease com-
pared to the reference labels if the decoder decides in favor of
’Anger’ as ’Anger’ is what the majority of labelers said. Other-
wise, if the decoder chooses ’Emphatic’, the entropy will increase
but not as much as if the decoder decides in favor of ’Neutral’ since
30 % of the labelers agree that this sample is ’Emphatic’ and only
20 % said the sample is ’Neutral’. As none of the labelers decided
for ’Motherese’, choosing this class yields the highest entropy.
This makes sense since ’Motherese’ seems to be definitely wrong
in this case. Note that if using hard decisions, ’Anger’ would be
the only correct class although 50 % of the labelers disagree.

Next step is to average each of the two computed entropy val-
ues forXs over the left-out labelers:

H(s) =
1

N

N∑
n=1

H(n̄, s) (3)

We say that our classifier performs not worse than an average
human labeler on sampleXs, if the entropy from Eq. 3 with this
classifier as the new decoder does not exceed the entropy where
the additional decoders were always humans. By plotting two cor-
responding histograms ofH(s) for the entire corpus, we obtain a
visual means for the assessment of performance of the classifier
on this corpus: the closer the histogram for the classifier to the his-
togram for the human labelers, the better the classifier. In general,
nothing is known about the distributions approximated by these
histograms. However, if instead of plotting entropy values of in-
dividual samples we average them over series of several samples,
then, according to the central limit theorem, the resulting distribu-
tions will be approximately normal, and thus, describable in terms
of its means and variances. In our experiments we used series of
20 samples.

The overall entropy mean itself can be used for comparison
and is computed by averagingH(s) over all samples of the data
set:

H =
1

S

S∑
s=1

H(s) (4)

3. THE AIBO-EMOTION-CORPUS

This entropy-based measure is useful in all those cases where a
large discrepancy between the human reference labelers exists. In
this paper, we demonstrate the evaluation of different decoders
considering the example of emotion recognition in speech of chil-
dren. All experiments are done on a subset of our Aibo-Emotion-
Corpus which consists of 51 children at the age of 10 to 13 years.
The children were asked to direct the Aibo robot along a given
route and to certain objects. To evoke emotions, the Aibo was op-
erated by remote control and misbehaved at predefined positions.
In addition, the children were told to address Aibo like a normal
dog, especially to reprimand or to laud it. Besides that, we pressed
the children slightly for time and put up some danger spots where
Aibo was not allowed to go under any circumstances. Neverthe-
less, the recorded emotions are relatively weak, especially in con-
trast to full-blown emotions of acted speech. The corpus consists
mainly of the four emotions ’Anger’, ’Motherese’, ’Emphatic’,
and ’Neutral’ which were annotated at word level by five experi-
enced graduate labelers. Before labeling, the labelers agreed on a
common set of discrete emotions. For a more detailed description
of the corpus, please refer to [2]. As ’Neutral’ is the most frequent
“emotion” by far, we downsampled the data until all four classes
were equally present according to the majority voting of our five
labelers. At least three labelers had to agree. Cases were less than
three labelers agreed were omitted as well as those cases where
other than the four basic classes were labeled. In the final data set,
1557 words for ’Anger’, 1224 words for ’Motherese’, and 1645
words each for ’Emphatic’ and for ’Neutral’ are used. The inter-
labeler consistency can be measured using the kappa statistic. The
formula is given e. g. in [3]. For our subset, the kappa value is only
0.36 which expresses the large disagreement of our five labelers.
It is generally agreed that kappa scores greater than 0.7 indicate
good agreement. As mentioned above, our low kappa value is not
due to bad labeling. Rather, we are dealing with a difficult classifi-
cation problem where even human labelers disagree about certain
classes.



4. MACHINE CLASSIFICATION OF EMOTIONS

The experiments described in the following are all conducted with
artificial neural networks. Because of the small data set, we do
“Leave-One-Speaker-Out” experiments: 1 speaker for testing, 40
speakers for training, and 10 speakers for validation of the neural
networks. As features we use our set of 95 prosodic features and 30
part-of-speech features. Details to these features can be found in
[4, 5]. The total number of features is reduced to 95 using principal
component analysis (PCA). Two machine classifiers are trained:
machine 1is trained with soft labels,machine 2with hard labels.
The results in terms of traditional recognition rates are given Tab. 1
and Tab. 2 together with a confusion matrix of the classes. The
average recognition rate per class is with 59.7 % slightly higher
for machine 2which is trained with hard labels than formachine
1 which achieves 58.1 %. The majority voting of all five labelers
serves as hard reference.

A M E N Σ RR
A 791 47 261 458 1557 50.8 %
M 56 559 27 582 1224 45.7 %
E 214 23 947 461 1645 57.6 %
N 100 94 161 1290 1645 78.4 %
∅ 58.1 %

Table 1. Machine decoder 1: confusion matrix and recognition
rates (RR) evaluated using hard decisions for the classes ’Anger’,
’Motherese’, ’Emphatic’, and ’Neutral’

A M E N Σ RR
A 899 90 303 265 1557 57.7 %
M 110 697 68 349 1224 56.9 %
E 273 43 1076 253 1645 65.4 %
N 215 201 266 963 1645 58.5 %
∅ 59.7 %

Table 2. Machine decoder 2: confusion matrix and recognition
rates (RR) evaluated using hard decisions for the classes ’Anger’,
’Motherese’, ’Emphatic’, and ’Neutral’

The intention of this paper is to compare those two machine
classifiers with an average human labeler as described in Sec. 2.
But prior to this, we present results for different naive classifiers.
In Fig. 2 (left), entropy histograms for an average human labeler
and a random choice classifier, which randomly chooses one of
four classes, are shown. As expected, the mean entropy for the
simple classifier (1.050, Tab. 3) is much higher than for the hu-
man labeler (0.722). Accordingly, the histogram of the random
choice classifier is shifted to the right. On the right side of Fig. 2,
the histograms of two other naive decoders are shown. One clas-
sifier decides always in favor of ’Neutral’, the other one always
for ’Motherese’. Analyzing the data set, it is obvious that human
labelers are often not sure whether they should label a word as
emotional or as neutral due to the weak emotions we are dealing
with. Consequently, deciding for ’Neutral’ conforms more to the
human labeling behavior than deciding for a certain emotion class.
This fact is reflected in our entropy values as well. The mean
entropy for the classifier that always chooses ’Neutral’ is 0.843
which is better than random choice. In contrast, always deciding
for ’Motherese’ is quite worse (1.196).

decoder entropy measure

human majority voting 0.542
human labeler 0.721
machine 1 0.722
machine 2 0.758
choose always ’N’ 0.843
choose always ’E’ 1.049
random choice 1.050
choose always ’A’ 1.127
choose always ’M’ 1.196

Table 3. Different decoders and their classification results w. r. t.
our entropy measure

As for the comparison between the two machine classifiers,
the entropy measureH from Eq. 4 shows that the decodermachine
1 performs as well as an average human labeler, albeit it yields an
average recognition rate per class of “only” 58.1 %. The mean en-
tropy is with 0.722 almost identical with the value attained by the
human labelers (0.721). Our second machine decodermachine 2,
even though it is slightly superior tomachine 1in terms of recog-
nition rates, performs a little worse than it in terms of the mean
entropy (0.758). The reason becomes obvious if one looks at the
confusion matrices in Tab. 1 and Tab. 2. Both neural networks are
trained in such a way that all four classes should be recognized
equally well. This works better if hard labels are used for training
as in the case ofmachine 2. In contrast,machine 1tends to favor
’Neutral’, and this is exactly what humans do in our data set. This
is why the entropy measure, being a rather intuitive one, prefers
machine 1over machine 2, even though its recognition rates are
lower.

The reference for calculating recognition rates is the majority
voting of all five labelers. This majority voting can also be in-
terpreted as decoder. In Fig. 3 (right), this decoder is plotted in
comparison with an average human labeler. The mean entropy of
0.542 specifies the minimum entropy which can be achieved by a
machine decoder. Thus, a machine classifier can very well be bet-
ter than a single human on average. The results show that we are
as good as one of our human labelers on average, but that there is
also enough room for further improvements.

5. CONCLUSION

We proposed a new entropy-based measure which makes possi-
ble a comparison between human labelers and machine classi-
fiers. Even more important for the evaluation is the fact that sys-
tematic confusions of human reference labelers are taken into ac-
count as in most of our cases the reference is far from being non-
ambiguous. For instance, slight forms of ’Anger’ are often con-
fused with ’Emphatic’ or with ’Neutral’ since it is very hard to
distinguish among these emotions – even for humans. From the
application’s point of view, deciding for a similar class cannot be
that wrong in those cases. Our measure punishes classification
faults that also occur in human classification less than those faults
that are never done by humans. Traditional recognition rates are
not capable of this distinction.
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Fig. 2. Comparison between an average human labeler and three naive classifiers: a decoder which selects randomly one of the four classes
(left) and two decoders which always choose ’Neutral’ and ’Motherese’ respectively (right)
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Fig. 3. Comparison between an average human labeler and our machine decoder 1 (left) and the majority voting of our five human labelers
respectively (right)
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