
Testing Concurrent Object-Oriented
Systems with Spec Explorer

Extended Abstract

Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson,
Wolfram Schulte, Nikolai Tillmann, and Margus Veanes

Microsoft Research, Redmond, WA, USA

Abstract. We describe a practical model-based testing tool developed at Mi-
crosoft Research called Spec Explorer. Spec Explorer enables modeling and au-
tomatic testing of concurrent object-oriented systems. These systems take inputs
as well as provide outputs in form of spontaneous reactions, where inputs and
outputs can be arbitrary data types, including objects. Spec Explorer is being
used daily by several Microsoft product groups. The here presented techniques
are used to test operating system components and Web service infrastructure.

Transition Systems Formalize Reactive and Distributed Systems. Reactive and dis-
tributed systems are inherently nondeterministic. No single agent (component, thread,
etc.) controls all state transitions, and even external entities like the operating systems
scheduler or the network may play a role.

A practical and theoretically sound way to test the evolution of semi-independent
state spaces is to use a kind of transition system known as an interface automaton [3].
Interface automata make a distinction between input transitions and output transitions.
In some states, input is enabled and we can drive the system forward by giving it new
things to do; at other times the system and its environment choose what happens next.
This is like a game where players take turns. Sometimes it is our turn to make a move;
sometimes it is the systems.

To illustrate how this works we will use a network-based chat system as an example.
In the chat system there are multiple clients that may post messages. The system deliv-
ers pending messages in FIFO order with local consistency. Figure 1 shows a typical
scenario of the chat systems’ behavior as an interface automaton. The nodes of the graph
represent distinct states of the system. The arcs represent actions that change the sys-
tems state. Each state in the graph is either input enabled or output enabled. The states
drawn with ovals represent active, input-enabled states where a client may give the sys-
tem new work to do. States drawn with diamonds are passive, output-enabled states
where the system reacts to input or spontaneously makes a move of its own choosing.
The Post action is said to be controllable because it can be invoked by a user to provide
system input. The Deliver action is only observable; that is, it is an output message.
The names of observable actions in the graph are prefixed by the ? symbol. Note that in
some passive states there is a race between what the user may do and what the system
may do. The Timeout transition, here represented by a transition that carries no label,
indicates that no output was seen in the time the user was willing to wait. This causes a
transition from an output-enabled state to an input-enabled state.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 542–547, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Testing Concurrent Object-Oriented Systems with Spec Explorer 543

[c1->[c0->[]], [c0->[c1->[]]

[c1->[c0->["hi"]], c0->[c1->[]]

[c1->[c0->"hi"]], [c0->[c1->[]]

?Deliver("hi", c0, c1)

[c1->[c0->"hi"]], [c0->[c1->"hi"]]

Post(c1, "hi")

Post(c0, "hi")

[c1->[c0->[]]}, [c0->[c1->"hi"]]

Post(c1, "hi") ?Deliver("hi", c1, c0)

[c1->[c0->[]], [c0->[c1->["hi"]

?Deliver("hi", c1, c0)

?Deliver("hi", c0, c1)

Post(c0, "hi")

Fig. 1. Exploration of the Chat model with two clients (c0 and c1), a fixed message (“hi”) under
the restriction that at most 1 message from each sender must still be delivered to a client

Model Programs Compactly Encode Large Transition Systems. Interface automata
describe fixed scenarios. But we are not only interested in modeling and testing a fixed
scenario; we want to have a general description for a protocol, like a chat server. This is
where model programs can help. Rather than coding our system description directly as
a transition system, we use a model program to express system behavior as an “abstract
state machine”. Tools like Spec Explorer that analyze the states of the machine can
produce the transition system needed for testing.

Here is a model program that describes the chat system shown above, written in
the Spec# language. The state of the system consists of instances of the class Client
that have been created so far, and a map Members that for each client specifies the
messages that have been sent but not yet delivered to that client as sender queues. Each
sender queue is identified by the client that sent the messages in the queue. In the initial
state of the system there are no clients and and Members is an empty map.

class Client
type Message = string;
type SendersQueue = Map<Client,Seq<Message>>;
type MemberState = Map<Client,SendersQueue>;

MemberState Members = new Map();

We give two actions of the system. Actions are methods with preconditions that
say in which state of the system they may occur and for which input parameters. A
member of the chat session may post a message for all members except himself to
receive. When a sender posts a message, the message is appended at the end of the
corresponding sender queue of each of the other members of the session.

void Post(Client sndr, Message msg)
requires sndr in Members && Members.Size > 1;

{ foreach(rcvr in Members)
if (rcvr != sndr) Members[rcvr][sndr].Add(msg); }



544 C. Campbell et al.

A message being delivered from a sender to a receiver is an observable action or a
notification callback that occurs whenever the chat system forwards a particular mes-
sage to a particular client. When a delivery is observed, the corresponding sender queue
of the receiver has to be nonempty, and the message must match the first message in
that queue or else local consistency is violated. If the preconditions of the delivery are
satisfied then the delivered message is simply removed from the corresponding sender
queue of the recipient.

void Deliver(Message msg, Client sndr, Client rcvr)
requires rcvr in Members && sndr in Members[rcvr];
requires Members[rcvr][sndr].Length > 0 &&

Members[rcvr][sndr].Head == msg;
{ Members[rcvr][sndr] = Members[rcvr][sndr].Tail; }

When a client joins the session, the related message queues are initialized appropriately.
To encode a specification of the system’s intended behavior in machine-executable

form is not the same as writing a second implementation. The model program does less
than the implementation. Its purpose is to capture the states of the system that affect the
observable behavior of interest.

Exploration can Reveal the Interface Automaton of a Model Program. The inter-
face automaton defined by a model program is a complete unwinding or expansion of
the program. An explicit state model checking algorithm is used to compute the (possi-
bly infinite) space of all possible sequences of method invocations that 1) do not violate
the pre- and postconditions and invariant of the system’s contracts and 2) are relevant
to a user-specified set of test properties [4].

If the model is infinite state, unwinding doesn’t terminate. Spec Explorer thus in-
cludes practical features that control how the state space is explored. We mention two
of these: State groupings allow the exploration to prune away states that are distinct but
indistinguishable under a user-provided equivalence relation [1]. Avoiding isomorphic
cases that differ in the choice of input but have identical runs results in a body of tests
with a better chance of detecting a conformance discrepancy. State-dependent parame-
ter generation allows to compute the parameter domains of each action with respect to
the current state. This can make exploration more efficient by reducing the search for
input parameters to feasible cases.

Interface Automaton Provides the Basis for Model-Based Test Case Generation.
Test cases can be automatically generated by traversing the graph of the interface au-
tomaton. The graph also serves as a test oracle: a test fails if observed transitions of the
implementation under test do not match transitions in the graph. Additionally, success-
ful test runs must begin in the initial state and terminate in an accepting state. Accepting
states are states that satisfy a user-specified logical condition that says whether the sys-
tem is in a final, deinitialized state. In this example, the accepting state occurs whenever
the message queues are empty.

Differences between the predicted and actual system behavior are called confor-
mance failures. What constitutes a difference is mathematically defined in terms of
alternating refinement of interface automata. Alternating refinement means that the sys-
tem under test must accept at least as many inputs as the interface automaton defines



Testing Concurrent Object-Oriented Systems with Spec Explorer 545

(it may accept more inputs) and that, conversely, the test harness must accept at least as
many outputs as the system may produce (it may accept more outputs than the system
is capable of producing) [2].

Our test graphs are also used to automatically harness the implementation for con-
formance testing. Spec Explorer can instrument a .NET assembly and cause implemen-
tation methods corresponding to model actions to be invoked as needed.

Running a test results in a trace log that shows a comparison of expected versus
actual behavior. Here is an example:

Step Invocation From State To State Status
1 Post(c0, ”Hi”) S0 S1 Succeeded
2 ?Timeout S1 S1’ Succeeded
3 Post(c0, ”Bye”) S1’ S7 Succeeded
4 ?Deliver(”Bye”, c0, c1) S7 S2 FAILED: observed Deliver(”Bye”, c0, c1),

expected Deliver(”Hi”, c0, c1)

This test run observed that the particular chat system implementation being tested did
not deliver messages in the order posted, as required by the specification. The server
delivered in LIFO order instead of FIFO.

Game Strategies Help Achieve Test Goals. Although any traversal of the graph is a
possible trace of the system, we can only choose moves in the active states (i.e., those
drawn as ovals in the graph). A state where the system can choose from among more
than one move represents nondeterminism from the observers point of view. This means
a test case is not a just sequence of actions but a tree of actions and possible system
responses. Executing a test is like a so-called game against nature where a players
opponent chooses moves randomly. Spec Explorer implements game strategies using
Markov decision processes as a technique for intelligently choosing input actions that
broaden the coverage of nondeterministic tests [5].

On-the-Fly Conformance Checking Scales to Very Large State Spaces. When deal-
ing with model programs that have very large state spaces, we can combine the state
exploration and test case generation into an online algorithm called on-the-fly testing
[6].

When testing in its on-the-fly mode, Spec Explorer’s exploration makes moves
based on the observed history of the test run. This allows it to omit exploration of non-
deterministic branches that were not taken by the implementation during the test run.
It can also be run in a way that attempts to match the distribution of actions exercised
during testing to an application profile given as input.

Spec Explorer users rely on both pre-generated, offline tests with complete behav-
ioral coverage over a restricted domain of system inputs and online tests generated on
the fly which randomly sample a larger number of system inputs.

Empirical Evidence Shows that Spec Explorer is Effective. Spec Explorer was in-
ternally released in summer 2004. Since then approx. 100 testers use it on a daily basis.
In fact, most of Microsoft’s forthcoming Web service infrastructure was tested with
Spec Explorer and so are components of the Windows operating system.



546 C. Campbell et al.

For instance, recently the Windows test team split a feature set into 4 components
and decided to test 2 of them traditionally and 2 with Spec Explorer. The modeling
team build (1) a system-level object-model consisting of approx. 200 and another one
(2) of approx. 3500 lines of non-blank Spec# code. The multi-threaded implementations
under test have 2000 and 20000 lines of non-blank C++ code respectively.

In this particular setting, the model-based approach helped to discover 10 times
more errors than traditional test automation. Also the kind of bugs discovered were
deep system-level bugs (i.e. bugs that were only found after the system performed many
steps), for which manual test cases would have been hard to construct.

The effort in developing the models took roughly the same amount of time as devel-
oping the traditional test automation. The biggest impact that the modeling effort had
was during the design phase, the process helped to discover and resolve 2 times more
design issues than bugs that were found afterwards.

Microsoft developers typically can only check in code, which unit tests achieved
already more than 60% feasible branch coverage. It is the testers task to improve this
coverage. For (1) and (2) the testers refined the models so that they achieved 100% and
70% feasible branch coverage, respectively. While this improved the statistics, it does
not reflect on how well a concurrent implementation is tested. In most cases when bugs
were found, at least two or more threads and a shared resource were involved, although
the same code coverage could often be achieved with a single thread.

When developing new versions of the code, models need to be adjusted, but such
changes are typically local, whereas manual test cases have to be redesigned and some-
times completely rewritten. We have repeatedly observed that this is where model-based
testing substantially reduces test case development time.

But caution: When customers discover discrepancies between model and implemen-
tation using our tool, typically about half of them originate from the informal require-
ments specification, the model, or bugs in the test harness, and half are due to coding
errors in the implementation under test. But so far every team agreed that the modeling
effort was helpful – not only for test, but also, and in particular for design.

References

1. C. Campbell and M. Veanes. State exploration with multiple state groupings. In D. Beauquier,
E. Börger, and A. Slissenko, editors, 12th International Workshop on Abstract State Machines,
ASM’05, March 8–11, 2005, Laboratory of Algorithms, Complexity and Logic, University
Paris 12 – Val de Marne, Créteil, France, pages 119–130, 2005.

2. L. de Alfaro. Game models for open systems. In N. Dershowitz, editor, Verification: The-
ory and Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,
volume 2772 of LNCS, pages 269 – 289. Springer, 2004.

3. L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the 8th European
Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 109–120. ACM, 2001.

4. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state machines
from abstract state machines. In ISSTA’02, volume 27 of Software Engineering Notes, pages
112–122. ACM, 2002.



Testing Concurrent Object-Oriented Systems with Spec Explorer 547

5. L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. Optimal strategies
for testing nondeterministic systems. In ISSTA’04, volume 29 of Software Engineering Notes,
pages 55–64. ACM, July 2004.

6. M. Veanes, C. Campbell, W. Schulte, and P. Kohli. On-the-fly testing of reactive systems.
Technical Report MSR-TR-2005-03, Microsoft Research, January 2005.


