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Abstract. We give a simple characterization of all single-item truth-
revealing auctions under some mild (and natural) assumptions about the
auctions. Our work opens up the possibility of using variational calculus
to design auctions having desired properties.

1 Introduction

The classic work of Vickrey [9] characterizes truth-revealing auctions when the
allocation is required to be efficient, i.e., maximizes global welfare. The subse-
quent work of Clarke [3] and Groves [5] showed that a generalization of Vickrey’s
mechanism leads to truth-revealing mechanisms for a much wider class of appli-
cations. Although this so-called VCG mechanism stands as a pillar of auction
theory, it suffers from the drawback that it designed for the implementation of
efficient allocations. If the user utilities are unrestricted, then an efficient alloca-
tion (weighted VCG) is essentially the only possible implementable solution [8],
but in more specific environments the goals of the auctioneer may be very dif-
ferent from efficiency.

In this paper, we wish to characterize single-item auctions in which efficient
allocations are not necessarily required. Such situations are quite common in
emerging applications of auctions, for instance, budget constrained ad auctions,
as carried out by Internet search engine companies. These auctions consist of sev-
eral micro-auctions, one for each search. Search engine companies want to maxi-
mize efficiency/revenue over the entire sequence of auctions. Simply maximizing
efficiency/revenue for each micro-auction would entail awarding the ad to the
highest bidder, and in the presence of budget constraint of the advertisers, this
will not maximize efficiency/revenue for the entire sequence of auctions. On the
other hand, the search engine companies would like to make each micro-auction
truth-revealing [2, 1]. Such repeated auctions are called myopic truth-revealing.

In order to arrive at a simple characterization, we need to assume that the
auction satisfies some natural constraints. Once we make these very reasonable
assumptions, our characterization turns out to be simple enough to be practically
useful, for example, in repeated ad auctions [6].

Given bids for the single item, an auction determines the winner and the price
charged from her. Hence, we may assume that the auction is a function from
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bids to a profit vector whose components are zero for losers and zero/positive
for the winner. We assume the following conditions on the auction:

1. Truth-revealing: Truth-revealing should be a dominant strategy of bidders.
2. Continuity: The auction function, as defined above, should be continuous.
3. Autonomy: For any bidder i, if all other bidders bid zero and i bids high

enough, then i wins.
4. Independence: If bidder i is the winner and some other bidder j decreases

her bid, then i still wins.

We say that two auction mechanisms are equivalent if for identical bid vectors
their profit vectors are also identical. We show that any auction mechanism sat-
isfying the above-stated conditions is equivalent to the following simple mech-
anism: For each bidder i there is a strictly monotonically increasing function
fi : R+ → R which we call the rank function of bidder i. For a bid vector b,
compute the rank of each bid, i.e. fi(bi). The winner is a bidder with maximum
rank, and she pays the least amount p such that if she had bid p she would still
have maximum rank.

One may ask what is the use of assigning different rank functions to different
users. For instance, in the repeated ad auctions, different bidders have different
budgets and they may have different ad campaigns, i.e., they want to spend
their money on different sets of key words. Clearly, in this case, we need to
assign different rank functions to different bidders.

Truthful auctions of digital goods have a very simple characterization: for each
bidder there is a threshold function, which depends only on the remaining bids,
such that this bidder wins iff she bids at least the threshold function (see [4]).
Under this characterization it is essential to award multiple items, if several bid-
ders bid strictly more than their threshold amounts. Hence this characterization
does not apply to single item auctions. Our characterization leads to a set of
threshold functions, one for each bidder, such that the bid of at most one bidder
can be strictly bigger than her threshold. Furthermore, in the characterization
of digital good auctions, the threshold functions could be arbitrarily complex
functions of the bids. However, in our characterization, the threshold functions
are simply the maximum of single argument functions.

Characterizations such as ours usually lead to mathematical programs for
finding one particular mechanism satisfying desired properties. For instance,
Moulin and Shenker’s [7] characterization of group strategyproof cost sharing
methods, under natural assumptions, for submodular cost functions leads to
a linear program for finding one such method. Our characterization leads to a
variational calculus formulation of truth-revealing auction mechanisms satisfying
our natrual assumptions. This may be useful for finding rank functions that lead
to an auction mechanism with desired properties.

2 Model and Definitions

We are given a single item which we want to auction to a set of n bidders. Each
bidder has a private evaluation of her worth of this item. An auction takes the
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bids of these bidders and assign the item to one of them and decides how much
to charge her. The bidder who gets the item makes a profit of her evaluation
minus the price charged. All other bidders make zero profit. We will only work
with deterministic auctions.

Formally, we define an auction as a function α : Rn
+ → Rn

+ which maps a
bid-vector to a profit-vector. The profit vector can have at most one non-zero
entry. The assumptions in the Introduction lead to the following restrictions on
α: α is continuous, whenever α outputs the all-zero vector then there are at
least two bidders who can increase their bids to make their own profit positive,
and if the input to α has only one positive bid, then the profit vector is the same
as the bid vector.

We will characterize this mechanism α by another mechanism β. In β, each
bidder has a strictly monotonically increasing function fi : R+ → R which we
call the rank function of bidder i. For a bid vector b, β computes the rank of
each bid, i.e. fi(bi). The winner is a bidder with maximum rank, and she pays
the least amount p such that if she had bid p she would still have maximum
rank. Using assumptions on α we show the existence of the rank functions.

3 Useful Properties

We first modify α to massage it to a more useful form and show that it satisfies
some useful properties.

Fix a bidder i. When all other bidders bid zero, there is a threshold ti such
that i wins if she bids higher than ti (by autonomy and truthfulness). From the
independence property, it follows that i cannot ever win if she bids lower than
ti. Thus we normalize her bid so that a bid of ti corresponds to a bid of zero in
a new mechanism α′. Formally, the mechanism α′ adds ti to bidder i’s bid and
runs α on the resulting bid vector. Clearly α(b) is equivalent to α′(b − t) and
α′ inherits truthfulness, continuity and independence. Further we argue that, α′

satisfies what we call non-favoritism:

Non-favoritism: The winner cannot have a zero bid unless all bidders have bid
zero.

Indeed, suppose that bidder 1 wins with bid zero, when bidder 2 has a non
zero bid in α′. Thus in α, 1 wins with bid t1 when 2 has bid strictly more that
t2. By independence, we can assume that bidders 3, . . . , n bid zero (in α).

First assume that t1 = 0. Then bidder one wins when the bid vector is
(0, b2, 0, . . . , 0). But this contradicts the definition of t2 (since b2 > t2). Thus
t1 must be strictly positive.

Consider the bid vector (t1 − ε, t′2 + ε, 0, . . . , 0), for ε > 0 being arbitrarily
small. We first argue that bidder one cannot be the winner for this bid vector.
Indeed, if bidder one was the winner, then by independence, she would be the
winner for the bid vector (t1 − ε, 0, . . . , 0) as well contradicting the definition of
t1. Thus some other player i is the winner. By independence, i is the winner
under the bid vector (0, t2 + ε, 0, . . . , 0) as well. But by definition of t2 and
truthfulness, i must be two and thus the threshold for player two, under the bid
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vector (t1 − ε, ·, 0, . . . , 0) is no larger than t2 + ε. Clearly bidder two still wins
at bid vector (t1 − ε, b2, 0, . . . , 0) and her profit must be at least (b2 − (t2 + ε))
which is bounded away from zero when ε approaches zero. Hence by continuity,
bidder two’s profit under the bid vector (t1, b2, 0, . . . , 0) cannot be zero. This
however contradicts that assumption that bidder one was the winner. Hence we
have shown that

Lemma 1. The auction α′ defined above satisfies non-favoritism.

We also note that one of the ti’s must be zero. Indeed, consider the bidder that
wins α when all bids are zero. Clearly, this bidder has ti equal to zero.

We are now ready to define β. We shall define β so as to be equivalent to
α′, clearly it can be easily massaged so as to be equivalent to α. To define β,
we need to specify functions fi(bi) for each i. We define f1(·) as the identity
function. For any i > 1, we define fi(x) to be the infimum of all y such that
bidder one wins when the bid vector is given by b1 = y, bi = x and bj = 0 for
j �= 1, i. It is easy to verify that the profit vector for bids b1 = fi(x), bi = x and
bj = 0 for j �= 1, i is the zero vector. In the next section, we show that β and α′

are indeed equivalent mechanisms.

4 Proof of Equivalence

In this section we provide the details of the proof of the main result that β as
defined above is equivalent to the given auction α’.

Lemma 2. For all i = 1, .., n, fi(0) = 0.

Proof. f1(0) is clearly 0. We also have α′(δ, 0, 0, . . . , 0) = (+, 0, . . . , 0), ∀ δ > 0.
By definition of fi, we get fi(0) = 0.

Lemma 3. For all i = 1, .., n, fi is strict monotonically increasing.

Proof. f1 is the identity function, so it is strictly increasing. We prove that f2 is
strictly increasing, the proof is the same for fi, i > 2.

Suppose that there are two bid values for bidder 2, b2 and b′2, b2 < b′2, such
that f2(b2) = q2, f2(b′2) = q′2, and q2 > q′2.

Then for the bid vector (q2 − ε, b′2, 0, . . . , 0) when ε is small enough so that
q2 − ε > q′2, the definition of f2(b′2) implies that bidder one must win. By in-
dependence then, bidder one wins for the bid vector (q2 − ε, b2, 0, . . . , 0). This
however contradicts the definition of f2(b2).

This shows that f2 is non-decreasing. To prove that it is strictly increasing,
we use the other axioms. Assume that there are two bid values for bidder 2,
b2 < b′2, such that f2(b2) = f2(b′2) = q2. We have:

α′(q2, b2, 0, . . . , 0) = (0, 0, . . . , 0)

and
α′(q2, b

′
2, 0, . . . , 0) = (0, 0, . . . , 0)
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Pick an arbitrarily small ε > 0 and consider the bid vector (q2 − ε, b2, 0 . . . , 0).
By definition of f2, bidder one loses and hence some bidder i must be the win-
ner. By independence, i wins for the bid vector (0, b2, 0, . . . , 0) as well, and by
non-favoritism, i must be bidder two. Thus the threshold for bidder two, given
the bids (q2 − ε, −, 0, . . . , 0) must be no larger than b2. As a result, α′(q2 −
ε, b′2, 0, . . . , 0) = (0, δ, 0, . . . , 0) for some δ ≥ b′2 − b2 bounded away from zero. By
continuity then, it follows that α′(q2, b

′
2, 0, . . . , 0) must be at least δ > 0. This

however contradicts the definition of f2(b′2).

Theorem 1. α′ and β are equivalent auctions.

Proof. It is easy to check that β as defined above satisfies all the axioms. We
now argue that in fact α′ and β are equivalent.

Suppose α’ is not equivalent to β. Then there are four different ways in which
they could differ. We consider each of these four cases, and obtain a contradiction.
The only direct contradiction is obtained in Case 1, while in the rest of the cases
we reduce to other cases, and eventually to case 1, taking care of avoiding logical
cycles.

1. Case 1: There is a bid vector (b1, b2, . . . , bn) s.t. two different bidders make
positive profit in α’ and β. Assume first that

α′(b1, b2, . . . , bn) = (+, 0, . . . , 0) and β(b1, b2, . . . , bn) = (0, +, 0, . . . , 0)

Since β(b1, b2, . . . , bn) = (0, +, 0, . . . , 0), we have by definition of β that
β(b1, b2, 0, . . . , 0) = (0, +, 0, . . . , 0). By definition of f2(b2), it must be the
case that α′(b1, b2, 0, . . . , 0) = (0, +, 0, . . . , 0). On the other hand, by inde-
pendence and the assumption that α′(b1, b2, b3, . . . , bn) = (+, 0, . . . , 0), it
follows that α′(b1, b2, 0, . . . , 0) = (+, 0, . . . , 0). This however is a contradic-
tion.

Now assume w.l.o.g that

α′(b1, b2, . . . , bn) = (0, +, 0, 0 . . . , 0)

β(b1, b2, . . . , bn) = (0, 0, +, 0, . . . , 0)

From the definition of β, it follows that f3(b3) > f2(b2). Also, by inde-
pendence, there is no loss of generality in assuming that b4, . . . , bn are all
zero. Let b′1 be such that f2(b2) < b′1 < f3(b3). Consider the behaviour of α′

under the bid vector (b′1, b2, b3, 0, . . . , 0). Let j be the winner. We split cases:
(a) j ≥ 4: This contradicts non-favoritism
(b) j = 1: By independence, bidder one still wins α′ when the bid vector is

(b′1, 0, b3, 0, . . . , 0). This however contradicts the definition of f3(b3).
(c) j = 2: By independence, bidder two still wins α′ when the bid vector is

(b′1, b2, 0, 0, . . . , 0). This contradicts the definition of f2(b2).
(d) j = 3: Using independence, bidder three must win α′ for bid vector

(0, b2, b3, 0, . . . , 0). On the other hand,
α′(b1, b2, b3, 0, . . . , 0) = (0, +, 0, . . . , 0) along with independence implies
that bidder two wins when the bid vector is (0, b2, b3, 0, . . . , 0). Hence we
get a contradiction
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Thus we have shown that when both α′ and β have a winner with positive
profit, they must agree.

2. Case 2: There is a bid vector (b1, b2, . . . , bn) s.t. there is a bidder who makes
positive profit in β, but no bidder makes positive profit in α’, i.e.,

α′(b1, b2, . . . , bn) = (0, 0, 0, . . . , 0) and β(b1, b2, . . . , bn) = (0, +, 0, . . . , 0)

where we have taken the winner in β to be bidder 2 w.l.o.g.
For an arbitrarily small ε > 0, consider the mechanism α′ when given the

bid vector (b1, b2 − ε, b3, . . . , bn). Let bidder i be the winner in this case; by
truthfulness, i is different from two. Since ε can be made arbitrarily small,
for any δ > 0, bidder i is the winner in α′ when the bid vector is given by
b′i = bi + δ, b′j = bi for j �= i. Since δ can be made smaller, α′(b′) has a
positive ith component. Moreover, for small enough δ, β(b′) has a positive
second component. Thus we have reduced this to the first case.

3. Case 3: There is a bid vector (b1, b2, . . . , bn) s.t. there is a bidder who makes
positive profit in α’, but no bidder makes positive profit in β, i.e.,

α′(b1, b2, . . . , bn) = (0, +, 0, . . . , 0) and β(b1, b2, . . . , bn) = (0, 0, 0, . . . , 0)

where we have taken the winner in α’ to be bidder 2 w.l.o.g.
Since β(b1, b2, . . . , bn) = (0, 0, 0, . . . , 0), we know that there are at least

two bidders with the maximum value of their rank function. If there are
exactly two such bidders, then consider two subcases: bidder 2 is one of the
two, or bidder 2 is not one of the two.

In the first subcase, consider the bid vector obtained by reducing the
bid of bidder 2 infinitesimally to b2 − δ, for some small δ > 0. By axiom 3
(Continuity), we get that α′(b1, b2−δ, b3, . . . , bn) remains (0, +, 0, . . . , 0), but
by definition of β (and Lemma 3) we see thatα′(b1, b2 − δ, b3, . . . , bn) gives
a positive profit to the other bidder who had highest rank. This reduces to
Case 1.

In the second subcase, when bidder 2 is not one of the two highest ranked
bidders in β, consider the bid vector obtained by reducing the bid of any one
of the two bidders. β gives a positive profit to the other of the two bidders.
But by independence, we see that α’ still gives positive profit to bidder 2.
This again reduces to Case 1.

In the case that there are more than two bidders with the highest value
of rank function, we can choose a bidder who is not bidder 2, and reduce his
bid to 0. By independence, we see that α’ still gives positive profit to bidder
2. Since there were at least 3 bidders with highest rank in β before reducing
the bid, there are now at least 2 bidders with highest rank. Hence the output
of β remains (0, 0, . . . , 0). Thus we reduce to the same case again, but this
time with a smaller number of positive bids, and we can use induction on the
number of positive bids. The base case is that of two highest ranked bidders,
which is taken care of above.

4. Case 4: There is a bid vector (b1, b2, . . . , bn) s.t. the same bidder makes a
positive profit in both α’ and β, but makes different amounts of profit.
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We assume w.l.o.g. that the winning bidder is bidder 1. In the first sub-
case, we have α′(b1, b2, . . . , bn) = (p + ∆, 0, . . . , 0) and β(b1, b2, . . . , bn) =
(p, 0, . . . , 0), for some p, ∆ > 0. Suppose we reduce the bid of bidder 1 from
b1 to b1 − p. We get α′(b1 − p, b2, . . . , bn) = (∆, 0, . . . , 0) by Axiom 1 (Truth-
fulness), and we get β(b1 − p, b2, . . . , bn) = (0, 0, . . . , 0) by the definition of
β. Thus we have reduced to Case 3.

In the second subcase, we have α′(b1, b2, . . . , bn) = (p, 0, . . . , 0) and
β(b1, b2, . . . , bn) = (p + ∆, 0, . . . , 0), for some p, ∆ > 0. Again, we reduce
bidder 1’s bid to b1 − p. By Axiom 1, we get that α′(b1 − p, b2, . . . , bn) is
either (0, 0, . . . , 0) or (0, . . . 0, +, 0, . . .0), where the positive entry is in some
index other than 1. By the definition of β we get that β(b1 −p, b2, . . . , bn) =
(∆, 0, . . . , 0). Thus we have reduced to either Case 2 or to Case 1.

Finally, note that this mechanism β, defined by the functions fi : R+ → R+ is
equivalent to the mechanism α′. To get a similar mechanism equivalent to α,
we define gi : R+ → R so that gi(x) = fi(x − ti) for x ≥ ti. When i bids less
than ti, she can never win irrespective of the other bids; we can thus define gi(x)
arbitrarily in this range, e.g. gi(x) = (x− ti) for x ≤ ti works and makes gi both
continuous and strictly increasing. Also note that since for a bidder i such that
ti = 0 (such a bidder exists, as we argued earlier), gi(0) = 0. Thus the winning
bidder under gi’s always has a positive value of gi(bi) and the negative values of
gi indeed are irrelevant.
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