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Abstract

A datastructure instance, e.g. a set or file or record, may be modified independently
by different parts of a computer system. The modifications may be nested. Such
hierarchies of modifications need to be efficiently checked for consistency and in-
tegrated. This is the problem of partial updates in a nutshell. In our first paper
on the subject, we developed an algebraic framework which allowed us to solve the
partial update problem for some useful datastructures including counters, sets and
maps. These solutions are used for the efficient implementation of concurrent data
modifications in the specification language AsmL. The two main contributions of
this paper are (i) a more general algebraic framework for partial updates and (ii) a
solution of the partial update problem for sequences and labeled ordered trees.
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1 Introduction

In many modern computer systems, the same file, or file system, or database, etc.
can be concurrently modified by many parts of the system. Typically such modifications
update only a part of the data. These partial updates of the data need to be checked for
consistency and integrated. The phenomenon of partial updates is common. Examples
vary from huge airline booking systems to modest counters that record occurrences
of parallel events. We came across that phenomenon during the development of the
specification language AsmL by the group on Foundations of Software Engineering at
Microsoft Research [7]. AsmL is suitable for programming and executing abstract state
machines [2,5,9]. Typically, a single step of an abstract state machine involves many
child submachines executing in parallel and reporting computation results to their parent
machine. The machine and the child submachines modify data stored in various locations.
Often submachines are nested; children report to their parents. And each member of this
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hierarchy of machines can interact with outside computer systems within a single step
of its own. All this makes AsmL powerful but creates a nontrivial problem of integrating
partial updates (and checking them for consistency). We hasten to say that we do not
presume any knowledge of abstract state machines in this paper.

We addressed the partial update problem first in [10]. The basic framework there
was as follows. Fix a datatype T and consider a monoid of unary operations over T
with respect to functional composition; the operations are called particles. The parallel
composition of particles is the order-independent functional composition, so that parallel
composition is an abstraction of sequential composition when the order of execution
is immaterial. The approach was applied to solve the problems of partial updates of
counters, sets and maps. Our analysis allowed us to separate the concerns of reporting
within the submachine hierarchy from the concern of how to integrate partial updates.
Our analysis provided a part of the semantical foundation of AsmL, and our algorithms
simplified the implementation of AsmL and made it more efficient.

It turned out, however, that the approach of [10] is too limited. A case in point is that
of sequences (which may be called files as well). Consider, for example, two operations
inserting elements at different places of a given file. The two insertions are compatible
and could be executed simultaneously. However the sequential composition of insertions
depends on the order in which they are executed. If the right insertion is executed first
then the result coincides with that of the simultaneous execution. But if the left insertion
is executed first, it offsets the positions to the right of the inserted element, so that the
right insertion will put its element at a wrong place.

Here, in Section 2, we introduce a more general approach to the partial update prob-
lem. It is based on the notion of applicative algebra. This new notion was not used in [10]
explicitly but special applicative algebras, described in Subsection 2.6, were used there
implicitly. We believe that the notion of applicative algebras is of independent interest
all by itself.

In Section 3, the new approach is applied to sequences. The sequences could be se-
quences of characters but we take a more general point of view. We fix an arbitrary
applicative algebra A, and we work with sequences of elements of A. The particles of A
give rise to certain sequence particles.

The case of sequences is harder than those of counters, sets and maps. This is not
so surprising because the problem of partial updates of sequences is related to the dif-
ficult collaborative editing problem. Here are a few references on the latter problem.
The SCCS [1] and RCS [16] systems manage collections of files which are concurrently
edited by different users, but only one user is allowed to edit a file at a time, and thus
changes can always be applied sequentially. The CVS system [3] allows overlapping file
modifications by several users at a time. All modifications are merged eventually. CVS
limits merging to the case where an original file is merged with at most two modified
versions of the original file. More specifically, CVS uses the UNIX diff3 [8] command to
determine a minimal set of modifications that transform the original file into the modi-
fied versions. File modifications are expressed in terms of inserted, deleted, and altered
lines. If the modifications do not overlap, they are applied. Otherwise, the user has to
resolve the conflict. A different approach is taken by real-time editing systems. They
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do not determine file changes a posteriori; instead change requests are propagated as
soon as they are made by individual users. Such change requests (inserts and deletes)
are sent as messages over a reliable network to all other users. Since the communication
between the users is not instantaneous, the same messages may be received in different
orders by different users. In this connection, elaborate algorithms have been devised that
transform the change request messages received by a user in order to give the “intended
meanings” of the requests and to ensure that all users have eventually (after all messages
have been received) the same file content. dOPT [6] was the first such algorithm. It was
later corrected in adOPTed [12] and GOT/GOTO [15,14]. Another such system can be
found in [13]. (The partial update problem is also related to database transactions. We
looked into database transaction literature and spoke to some experts in the field but
we have not found articles addressing the partial update problem as we see it.)

Our study of partial updating of sequences here is by no means exhaustive but it
includes those operations that we find most natural. In particular, we study a three-
parameter substitution operation: given a file, replace the file segment of length ` that
starts at position p with sequence s. We don’t replace segments of the form “from a
position p to the end of the sequence” but it would be easy to do so. We study also
modifications where the segment to be replaced consists of just one position p and the
replacement sequence contains just one element but the new element may depend on
the old element at position p. We didn’t investigate the more general case when a multi-
element replacement sequence s depends on the content of a multi-element arena. This
could be a good topic for future work (by us or somebody else).

In Section 4, we address partial updates of labeled ordered trees. We use the direct
product of applicative algebras and the fixed-point operator to compose an applicative
algebra over labeled ordered trees from the applicative algebra of labels and the applica-
tive algebra of sequences. The applicative algebra over labeled ordered trees contains
the natural operations of insertion, deletion and label alteration.

This paper is self-contained. One exception is the proof of Proposition 25 that uses the
terminology of [10]. That proposition establishes that the applicative algebras over sets
and maps, defined in [10], are distributive. The reader not interested in these two par-
ticular applicative algebras can skip the proof; nothing in the rest of the paper depends
on it.
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2 A Framework for Partial Updates

2.1 Preliminaries

We recall some useful definitions and establish some terminology and notation. The
sign 
 will mean equal by definition.

Multisets We use double curly braces for multisets. For example, {{7, 7, 11}} is the
multiset that contains 7 with multiplicity 2 and 11 with multiplicity 1 (and 13 with mul-
tiplicity 0). The cardinality of a multiset is the sum of the multiplicities. The underlying
set of a multiset M is its domain. The domain of {{7, 7, 11}} is {7, 11}.

Then sum A+B of multisets A and B is the multiset C such that the domain dom (C) =
dom (A)∪dom (B) and multiplicityC(x) = multiplicityA(x)+multiplicityB(x) for
every x ∈ dom (C). If B is a submultiset of A (which means that every element of B
occurs in A with the same or larger multiplicity) then A−B is the multiset C such that
dom (C) ⊆ dom (A) and multiplicityC(x) = multiplicityA(x)− multiplicityB(x).

It is convenient to view sets as special multisets where every element occurs with
multiplicity 1. The symbol ∅ for the empty set will be used to denote the empty multiset
as well. But notice that the sum operation differs from the union operation over sets.
For example {1, 2}+ {2, 3} = {{1, 2, 2, 3}} while {1, 2} ∪ {2, 3} = {1, 2, 3}.

Functional Composition The functional composition g ◦ f of unary functions f, g
is defined as usual: (g ◦ f)(x) 
 g(f(x)). In general dom (g ◦ f) = {x ∈ dom (f) : f(x) ∈
dom (g)}.

2.2 Applicative Algebras

Definition 1 An applicative algebra A has three constituents satisfying certain condi-
tions.

Elements The first constituent is a datatype T with a distinguished element ⊥ and
at least one additional element. Elements of T are elements of A, and ⊥ is the trivial
element.
Particles The second constituent is a monoid of total unary operations over T with
functional composition and the identity operation id. These operations are particles
of A. And there is a trivial particle denoted ⊥ as well. The following conditions are
satisfied.

AA0 f(⊥) = ⊥ for every particle f , and ⊥(x) = ⊥ for every element x.
Parallel Composition The third constituent is an operation Ω that, given an arbi-
trary finite multiset of particles, produces a particle. ΩM is the parallel composition
of the multiset M of particles. The following conditions are satisfied.

AA1 Ω{{f}} = f , and Ω(M + {{id}}) = ΩM , and Ω(M + {{⊥}}) = ⊥. �
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Corollary 2
1. Ω ∅ = id.
2. f ◦ ⊥ = ⊥ ◦ f = ⊥.

PROOF.
1. Ω ∅ = Ω(∅+ {{id}}) = Ω{{id}} = id.
2. Check that the equalities hold at every point. �

Remark 3 (Algebra) In more algebraic terms, A is a multi-sorted algebra with at
least three sorts: elements, particles and multisets of particles. T is an algebra in its own
right, with nullary operation ⊥ and possibly some additional operations. The additional
operations may involve some auxiliary sorts. For example, an algebra of sequences may
have an additional operation length from sequences to integers. The particles operate
over the main sort elements only.

Remark 4 (Notation) The particles together with the functional composition form
a monoid. In some cases, it is convenient to think of the parallel composition as addition
and to use the additive notation

∑
M instead of ΩM . For example, when elements are

real numbers and particles have the form x 7→ x+r. In some other cases, it is convenient
to use the multiplicative notation

∏
M . Neither additive nor multiplicative notation is

always appropriate, and so we use a neutral notation.

Example 5 The particle type consists of the identity particle and the family of
overwrite[y] particles

overwrite[y] : x 7→

y if x 6= ⊥
⊥ otherwise

Note that overwrite[⊥] is the trivial particle. Define ΩM as follows.

• If M contains neither ⊥ nor overwrite particles then ΩM = id.
• If M contains ⊥ or distinct overwrite particles then ΩM = ⊥.
• If M contains an overwrite particle f and neither ⊥ nor other overwrite particles then

ΩM = f . �

It is typical that particles come in families. A particular particle f of a family F is
given by a tuple of parameters which will be called the control of f in F . The control of
f will be shown in brackets and the argument of f in parenthesis e.g. overwrite[y](x).

Definition 6 A multiset M of particles is consistent if ΩM 6= ⊥.

The trivial element ⊥ used above is just a convenient device to make partial operations
total. There is a natural version of the notion of applicative algebras without ⊥.

Definition 7 A punctured applicative algebra A has three constituents.

• A nonempty datatype T of elements.
• A set of partial unary operations (particles) over T together with functional composi-

tion and the identity operation id.
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• A partial operation (parallel composition) Ω that, given a finite multiset of particles
in its domain, produces a particle. The following conditions are satisfied.
PAA1 Ω{{f}} = f , and Ω(M + {{id}}) = ΩM . �

It is easy to see that removing the trivial element from an applicative algebra A turns
it into a punctured applicative algebra A0, a punctured version of A. The converse is
also true. Extending a punctured applicative algebra A0 with a fresh element, intended
to play the role of the trivial element ⊥, turns A0 into an applicative algebra A, the
filled version of A0. If A0 has the nowhere defined particle, it will play the role of the
trivial particle; otherwise the trivial particle should be added. The new, total parallel
composition operation Ω extends the old, partial parallel composition operation Ω0 by
producing the trivial particle if the given multiset M contains the trivial particle or if
M does not contain the trivial particle but Ω0M is undefined. Since A0 and A are so
closely related, we will ignore the difference between them.

2.3 A Context for Partial Updates

Partial updates are used extensively in AsmL. We describe that context, abstracting
of AsmL-specific details in line with our intention to make this paper self-contained.

Transactions The given computer system S evolves by means of transactions. A trans-
action may involve interaction with the outside world. A run of the system can be defined
as a sequence of transactions. A transaction may fail. If it succeeds, it takes system S
from the current state to the next state. In the case of AsmL, if a transaction fails, an
exception is thrown which may or may not be caught. Here we do not address exception
handling.

Locations We assume that the given state consists of disjoint locations with values
stored in them. Each location ` has a particular type T . Only values of type T or its
subtypes can be stored at `. (We will not be dealing with subtyping in the sequel.) It
is technically convenient to assume that transactions do not create new locations. The
assumption may seem restrictive but it isn’t: just pretend that the locations created by
a transaction had existed but were inactive.

Partial Updates A partial update PU(`, f) is given by a location ` of some type T
and a particle f over T . We say that PU(`, f) is a partial update of ` and that it modifies
`. If U is a multiset of partial updates then Loc(U) is the set of locations modified by
partial updates in U .

Integration of Partial Updates Let U be a multiset of partial updates. For each
` ∈ Loc(U), let M`(U) be the multiset {{f : PU(`, f) ∈ U}} of particles in U modifying
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`. If any ΩM`(U) = ⊥ then the integration of U fails. Otherwise the integration of U
results in the assignment ΩU of particles to locations:

(ΩU)(`) 
 ΩM`(U) where ` ∈ Loc(U)

The New State As a given transaction executes, it generates partial updates. The
execution may fail. Suppose that the execution succeeds. Let U be the multiset of all
partial updates generated by the transaction, let ` range over Loc(U), and let x` be the
content of ` at the current state. If U doesn’t integrate, the transaction fails. Suppose that
U is integrable. Let f` be the particle (ΩU)(`), and let y` = f`(x`). If any y` = ⊥ then
the transaction fails. Otherwise the transaction succeeds and a new state is constructed
by replacing x` with y` for all ` ∈ Loc(U). The content of any location outside Loc(U)
does not change.

According to the definition of applicative algebras, if a transaction fails then all parent
transactions fail as well. (More sophisticated failure treatments can be conceived. As
we mentioned above, AsmL incorporates exception handling. But failure treatment is
beyond the scope of this paper.)

Nested Transactions A global transaction may include auxiliary transactions. Each
of them may be again a composition of transactions, and so on. Let us call the top trans-
action of that hierarchy global; all other transactions in the hierarchy are constituents of
the global transaction.

Each successful transaction in the hierarchy computes a multiset of partial updates
and then integrates them into an assignment. There is, however, an important distinction
between the global transaction and its constituents. The global transaction executes its
assignment producing a new state of the computer system S. A constituent transaction
reports its assignment to the parent transaction. If any constituent transaction fails then
the parent transaction fails as well. It follows that the global transaction fails if any of
the constituent transactions does.

A constituent transaction does not necessarily operate over the current state of the
system S. It may operate over a virtual state of S. What these virtual states are will be
clarified immediately.

Composing Transactions We restrict attention to the following two ways to com-
bine transactions: parallel composition and sequential composition. (In AsmL there are
numerous ways to program either composition.)

First we consider the case when the given transaction τ (not necessarily a global
transaction) is the parallel composition of transactions τ1, . . . , τk where k ≥ 2. If τ
operates over a (possibly virtual) state X then τi operates over some extension Xi of
X. Think about the recently activated locations of Xi as the scratch paper of τi. If the
scratch paper is not empty then Xi is a virtual state even if X was the actual state, that
is the current state of S.
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If τi succeeds, it computes a multiset Ui of partial updates that modify X (rather
than its own scratch paper), then it integrates Ui into the assignment ΩUi, and then
it reports ΩUi to τ . If all transactions τ1, . . . , τk succeed then the transaction τ forms
the multiset U of all partial updates (`, f) such that f = (ΩUi)(`) for some i. Then it
integrates U and then either reports or executes the assignment ΩU .

Second we consider the case when the given transaction τ is the sequential composition
of transactions τ1 and τ2. It suffices to consider the composition of two constituent
transactions even though the language for programming transactions may use e.g. the
while command to produce sequences of constituent transactions. The reason is that
every successful global transaction contains only finitely many constituent transactions;
there is no need for any limit operation.

Let X be a (possibly virtual) state over which τ computes. Transaction τ1 computes
over an extension of X. If it is successful then it produces a set U1 of partial updates that
modify X. τ1 turns X into an intermediate virtual state X ′ with the same locations as
X. Transaction τ2 computes over the virtual state X ′. If it is successful then it produces
a set U2 of partial updates of locations in X ′. Then τ computes the multiset (in fact the
set) U of partial updates (`, f) such that one of the following conditions holds.

• ` ∈ Loc(U1)− Loc(U2) and f = (ΩU1)(`).
• ` ∈ Loc(U2)− Loc(U1) and f = (ΩU2)(`).
• ` ∈ Loc(U1) ∩ Loc(U2) and f = (ΩU2)(`) ◦ (ΩU1)(`).

Then it integrates U and then either reports or executes the assignment ΩU .

Finally, any transaction in the transaction hierarchy can interact with the outside
world (which opens an additional venue for inter-transaction exchange of information).
For example, it can send and receive messages or print a file on paper.

2.4 Properties of Applicative Algebras

Let A be an applicative algebra. Define f × g = Ω{{f, g}}. The choice of multiplicative
notation is arbitrary but convenient for exposition.

Definition 8 A is associative if the multiplication operation f × g is associative.

Definition 9 A is distributive if Ω distributes over the multiset sum operation:

Ω(M1 + · · · + Mn) = Ω{{ΩM1, . . . ,ΩMn}}

for all multisets M1, . . . ,Mn of particles. A is conditionally distributive if Ω(M1 + · · · +
Mn) = Ω{{ΩM1, . . . ,ΩMn}} provided that Ω(M1 + · · · + Mn) 6= ⊥.

A referee noted that this distributivity notion is referred to as generalized associativity
e.g. in [4, Section V.5].

If A is associative then the binary operation f × g gives rise to the multiset operation∏{{f1, . . . , fn}} = f1 × · · · × fn on particles where
∏{{f}} = f and

∏ ∅ = id. However,
this product

∏
does not necessarily coincide with the original multiset operation Ω.
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Lemma 10 A is distributive if and only if it is associative and
∏

coincides with Ω.

PROOF. The if direction holds because, in any commutative monoid, the product
operation distributes over the multiset sum operation. For example,∏

(
∏
{{f1, f2}},

∏
{{f3, f4}}) = (f1 × f2)× (f3 × f4)

= f1 × f2 × f3 × f4 =
∏

({{f1, f2}}+ {{f3, f4}})

Suppose that A is distributive. Then

(f × g)× h = Ω{{Ω(f, g),Ω{{h}}}} = Ω({{f, g}}+ {{h}})
= Ω({{f}}+ {{g, h}}) = Ω(Ω{{f}},Ω{{g, h}}) = f × (g × h)

Now check the equality Ωf1, . . . , fn =
∏

f1, . . . , fn by induction on n. �

Example 11 Distributivity does not follow from associativity alone. Indeed, consider
Example 5 and modify the third clause in the definition of Ω as follows:

• If M contains one or two copies of an overwrite particle f and neither ⊥ nor other
overwrite particles then ΩM = f , but if M contains at least three copies of an
overwrite particle then ΩM = ⊥.

It is easy to check that the resulting applicative algebra is associative but not distributive.
If f is any overwrite particle, we have

Ω({{f, f}}+ {{f}}) = Ω{{f, f, f}} = ⊥ 6= f = Ω(Ω{{f, f}},Ω{{f}}). �

Moreover, an applicative algebra can be conditionally distributive but not associative.
See Propositions 48 and 49 in this connection.

Definition 12 An applicative algebra A is pervasive up if the following condition holds
for all nontrivial particles f1, . . . , fn :

if fi × fj 6= ⊥ for all i < j then Ω{{f1, . . . , fn}} 6= ⊥.

A is pervasive down if the following condition holds for any multisets M1, M2 of particles:

if M1 is a submultiset of M2 and ΩM2 6= ⊥ then ΩM1 6= ⊥. �

Corollary 13 Suppose that A is pervasive up and down. Then, for every multiset M of
nontrivial particles, the following are equivalent:

(1) M is consistent.
(2) M is pairwise consistent.

Lemma 14 Suppose that A is conditionally distributive. Then it is pervasive down. And
if a multiset {{f, g, h}} is consistent then (f × g)× h = f × (g × h).
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PROOF. Let M2 be a consistent multiset of particles, and let M1 be a submultiset of
M2. Then ΩM2 = (ΩM1)× (Ω(M2 −M1)) 6= ⊥. It follows that ΩM1 6= ⊥.

Further, (f × g)× h = Ω{{Ω{{f, g}},Ω{{h}}}} = Ω{{f, g, h}} = Ω{{Ω{{f}},Ω{{g, h}}}} =
f × (g × h). �

Example 15 We construct a distributive applicative algebra that is not pervasive up.
Elements are {a, b, c,⊥}. Particles are operations fS where S is any subset of nontrivial
elements; fS(x) = x if x in S and fS(x) = ⊥ otherwise. The trivial particle ⊥ = f∅ and
id = fS where S = {a, b, c}. For every multiset M = {{fS1 , . . . , fSn}} of particles, define
ΩM = fU where U = S1 ∩ · · · ∩ Sn. It is easy to see that this applicative algebra
is distributive. Let U = {a, b}, V = {b, c}, W = {c, a}, then fU , fV , fW are pairwise
consistent but Ω{{fU , fV , fW}} = ⊥. �

It follows that if M = {{f1, . . . , fn}} is a consistent multiset of particles of a condi-
tionally distributive applicative algebra then the product

∏
M = f1 × · · · × fn is well

defined.

Lemma 16 Suppose that A is conditionally distributive. And let M = {{f1, . . . , fn}} be
any consistent multiset of particles. Then ΩM =

∏
M .

PROOF. Induction on n. �

Definition 17 A consistent multiset M of particles is (pointwise) coherent if
(ΩM)(x) 6= ⊥ for every x such that f(x) 6= ⊥ for all f ∈ M .

Proposition 18 Suppose that A is conditionally distributive. If every consistent two-
particle multiset is coherent then every consistent multiset M = {{f1, . . . , fn}} is coherent.

PROOF. Induction on n. The case n ≤ 1 is trivial. Suppose that n > 1 and the
proposition has been proved for m = n−1. Suppose that f1(x), . . . , fn(x) are nontrivial.
Let M1 = {{f1, . . . , fm}}, M2 = {{fn}}, f = ΩM1, g = ΩM2 and h = ΩM . We need to
prove that h(x) 6= ⊥.

By Lemma 14, M1 is consistent. By the induction hypothesis, f(x) 6= ⊥. By the
conditional distributivity, h = Ω(M1 + M2) = Ω(Ω(M1),Ω(M2)) = Ω(f, g) = f × g.
Now use the pairwise coherence. �

2.5 Functional Applicative Algebras

Sometimes the parallel composition Ω is defined in terms of functional composition.

Definition 19 A functional applicative algebra is an applicative algebra where

Ω{{f1, . . . , fn}} = f1 ◦ f2 ◦ · · · ◦ fn

if all fi, fj commute, and Ω{{f1, . . . , fn}} = ⊥ otherwise.
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Note that

f × g =

g ◦ f if g ◦ f = f ◦ g,

⊥ if g ◦ f 6= f ◦ g.

Proposition 20 Every functional applicative algebra is conditionally distributive.

PROOF. Suppose that ΩM 6= ⊥ and let M = M1 + · · · + Mn. We need to prove
that Ω{{ΩM1, . . . ,ΩMn}} = ΩM . We illustrate the proof on the case n = 2. Let M1 =
{{f1, . . . , fj}} and M2 = {{g1, . . . , gk}}. Since ΩM is consistent, the functional composition
of the members of M in any order produces ΩM . Therefore ΩM1◦ΩM2 = ΩM2◦ΩM1 =
ΩM , so that ΩM1 ×ΩM2 = ΩM and Ω{{ΩM1,ΩM2}} = ΩM . �

However, a functional applicative algebra is not necessarily distributive. Furthermore,
it is not necessarily associative, even though functional composition is associative. In
fact, the functional applicative algebra over counters from [10] is not associative. A self-
explanatory counterexample is given by the following three particles: f is an overwrite,
g is an increment by one and h is a decrement by one. We have f ◦ g = f 6= g ◦ f
and so ⊥ = f × g = (f × g) × h. On the other hand, g ◦ h = h ◦ g = id and so
f × (g × h) = f × id = f 6= ⊥.

2.6 Apt Functional Applicative Algebras

A priori, functional consistency is hard to verify, but there is an important class of
functional applicative algebras where the verification is easy. The following definition
is borrowed from [10] except that we didn’t use the term “applicative algebra” there.
Recall that particles f, g commute if g ◦ f = f ◦ g. Say that particles f, g malcommute
if (g ◦ f)(x) 6= (f ◦ g)(x) for all nontrivial elements x.

Definition 21 A functional applicative algebra A is apt if

• every nontrivial particle maps nontrivial elements to nontrivial elements, and
• every nontrivial particles f, g either commute or malcommute. �

In order to find out whether nontrivial particles f, g of an apt functional applicative
algebra commute or malcommute, it suffices to check the equality (g ◦ f)(x) = (f ◦ g)(x)
for any nontrivial element x.

Lemma 22 ([10, Lemma 7.3]) Let A be an apt functional applicative algebra and let
M be a multiset of particles of A. Then M is functionally consistent if and only if every
two members of M commute.

Proposition 23 Every apt functional applicative algebra A has the following properties.

(1) Every consistent multiset is coherent.
(2) A is pervasive up and down.

PROOF. Part 1 is straightforward. To prove part 2, use Lemma 22. �
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Lemma 24 For every apt functional applicative algebra A, the following properties are
equivalent:

(1) A is distributive.
(2) For every nontrivial particles f, g, h, if f, g malcommute and g, h commute, then f

and (g ◦ h) malcommute.

PROOF.
1 ⇒ 2. Assume 1. Then A is associative. Suppose that f, g malcommute and g, h com-
mute. Then

f × (g ◦ h) = f × (g × h) = (f × g)× h = ⊥× h = ⊥
It follows that f and g ◦ h malcommute.

2 ⇒ 1. Assume 2. First we prove that A is associative. Given T particles f, g, h, we
check that (f × g) × h = f × (g × h). This is obvious if one of the particles is ⊥. So
suppose that all the particles f, g, h are nontrivial particles. Several cases arise.

• f, g commute and g, h commute and f, h commute. So every two members of M 

{{f, g, h}} commute. Then we know by Lemma 22 that M is functionally consistent
and thus (f ◦ g) ◦ h = h ◦ (f ◦ g) 6= ⊥ and (g ◦ h) ◦ f = f ◦ (g ◦ h) 6= ⊥. This means
that f ◦ g = f × g commutes with h and g ◦ h = g × h commutes with f . Thus
(f × g)× h = (f ◦ g) ◦ h = f ◦ (g ◦ h) = f × (g × h).

• f, g commute and g, h commute and f, h malcommute. For every nontrivial element y
of type T , (f ◦h)(y) 6= (h◦f)(y). In particular, for every nontrivial x, (f ◦h)(gx) 6= (h◦
f)(gx). Hence (f◦(h◦g))(x) = (f◦h)(gx) 6= (h◦f)(gx) = (h◦f◦g)(x) = (h◦g◦f)(x) =
((h ◦ g) ◦ f)(x) for all nontrivial x of type T , so that f and g ◦ h = h ◦ g malcommute.
By symmetry, f ◦ g and h malcommute. Thus f × (g × h) = ⊥ = (f × g)× h.

• f, g commute and g, h malcommute. Then f×(g×h) = f×⊥ = ⊥. By 2, (f×g)×h =
⊥.

• f, g malcommute and g, h commute. Then (f×g)×h = ⊥×h = ⊥. By 2, f×(g×h) =
⊥.

• f, g malcommute and g, h malcommute. Then (f×g)×h = ⊥×h = ⊥ and f×(g×h) =
f ×⊥ = ⊥.

Thus the parallel composition is associative. By Lemma 10, it suffices to prove that
Ω{{f1, . . . , fn}} = f1× · · · ×fn for any particles f1, . . . , fn. Without loss of generality, all
n particles are nontrivial. If the n particles pairwise commute then the equality follows
from the definition of parallel composition. So assume that not all n particles pairwise
commute.

It suffices to prove the following: g1 × · · · × gm = ⊥ if g1 and gm malcommute. We
prove this by induction on m. The case m ≤ 2 is obvious; use the definition of parallel
composition. So assume that m > 2. If gm−1 malcommutes with gm then gm−1× gm = ⊥
and therefore g1 × · · · × gm = ⊥. So assume that gm−1 commutes with gm. Then swap
gm−1 and gm and use the induction hypothesis. �
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Proposition 25
1. The applicative algebra over maps, defined in [10], is distributive.
2. The applicative algebra over sets, defined in [10], is distributive.

The proposition is of independent interest: the two algebras are most natural and are
used in the implementation of AsmL. But it will not be used in rest of the paper. To
save space, the proof uses the terminology of [10], though the proof of the second part
of the proposition can be understood without consulting [10].

PROOF.

1. It suffices to check the condition 2 of Lemma 24. Let f, g, h be ranked transformers
such that f, g malcommute and g, h commute. We prove that f and g ◦ h malcommute.

We say that a transformer f is map-valued, if f(m) is a map for every point m. Note
that if f is not map-valued then it is of rank 0 and so f(x) = a for all points x and
for some non-map point a. Recall that a map-valued transformer f has a controller c
with associated transformers cx such that cx(mx) = (fm)(x) for all points m and x.
Theorem 11.12 in [10] implies that two map-valued transformers f, g with controllers
c, d respectively commute if and only if cx and dx commute for every point x.

The proof goes by induction on rank(g). Suppose g has rank zero. Recall that a
zero-ranked transformer is a constant function, so g ◦ h = g as g, h commute. As f, g
malcommute, so do f and g = g ◦ h. So let g be of rank > 0. Then g is map-valued. As
g ◦ h = h ◦ g, h returns a map at least at some points. It follows that h is map-valued.
Indeed, if h(x) = a and a is not a map for some x, then rank(h) = 0 and so h(x) = a
for all points x which is impossible.

If f is not map-valued, then f and g ◦ h malcommute because f ◦ (g ◦ h) is not a map
while (g◦h)◦f is a map. So assume f is map-valued. Let c, d, e be the controllers of f, g, h
respectively. As f, g malcommute, there is a particular x such that cx, dx malcommute.
Similarly, all dy, ey commute because g, h commute; in particular dx and ex commute.
We know that rank(dx) < rank(g). By induction hypothesis, cx and dx ◦ex malcommute.
Hence f and g ◦ h malcommute.

2. It suffices to check the condition 2 of Lemma 24. Let f, g, h be set particles. Suppose
g is an overwrite particle. Then g ◦h = g. As f, g malcommute, so do f and g = g ◦h. So
let g be an insert-and-remove operation, and so every ((g ◦h) ◦ f)(x) is a set. So assume
every (f ◦ (g ◦ h))(x) is a set. f could be an insert-and-remove particle or an overwrite
particle that produces some set a; in the second case, we can see f as a generalized
insert-and-remove particle: given a set s, it removes all elements in s that do not belong
to a and then inserts all elements of a. As f, g malcommute, there are two cases:

Case 1: There is an element x that f inserts and g removes. Since g, h commute, h
cannot insert that x. Hence x ∈ (f ◦ (g ◦h))(x) and x /∈ ((g ◦h) ◦ f)(x). Therefore f and
g ◦ h malcommute.

Case 2: There is an element x that f removes and g inserts. Because g, h commute, h
cannot remove that x. Hence x /∈ (f ◦ (g ◦ h))(x) and x ∈ ((g ◦ h) ◦ f)(x). Therefore f
and g ◦ h malcommute. �
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2.7 The Product of Applicative Algebras

Definition 26 (Product) We define the product A×B of applicative algebras A and
B. Elements of A× B are pairs (x, y) where x, y are elements of A, B respectively. If x
or y is trivial then (x, y) is identified with the trivial element in A×B.

The particles of A×B are alter particles working componentwise.

alter[f, g ] : (x, y) 7→ (f(x), g(y))

where f, g are particles of A, B respectively. If f or g is trivial then alter[f, g] is identified
with the trivial particle in A×B. The parallel composition is defined componentwise as
well:

Ω{{alter[f1, g1], . . . , alter[fn, gn]}} 
 alter[Ω{{f1, . . . , fn}}, Ω{{g1, . . . , gn}}] �

A referee noted that the construction of taking a product and then identifying all
pairs that have either component equal to a certain specified element is a common one
in topology and is called there the smash product.

Lemma 27

• A particle alter[f, g] is the identity particle if and only if both f and g are identity
particles.

• The requirements AA0 and AA1 of the definition of applicative algebras are satisfied.

PROOF. Straightforward. �

Remark 28 One can define the sum (or disjoint union) A+B of applicative algebras A
and B that have only the trivial element in common. Elements of A+B are elements of
A or B. The new particles are A particles extended to produce ⊥ at any element of B,
and B particles extended to produce ⊥ at any element of A, and the identity particle.
We leave the details as an exercise. The sum operation will not be used in the sequel.

2.8 The Complexity of Parallel Composition

Suppose that M = {{f1, . . . , fn}} is a multiset of particles of an applicative algebra A.
How hard is it to compute ΩM? Note that computing ΩM allows us to decide whether
M is consistent; just check whether ΩM = ⊥. If M contains ⊥ then ΩM = ⊥. So let
us assume that M does not contain ⊥. Since the definition of applicative algebras is
so general, there isn’t much to say about the problem in full generality. But there are
important special cases where the problem of computing arbitrary ΩM reduces to the
binary fragment, that is to the problem of computing ΩM for multiset a M of cardinality
two. In all particular cases that we studied, there are efficient algorithms for computing
ΩM .
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Functional Applicative Algebras Suppose that A is a functional applicative al-
gebra, and let M = {{f1, . . . , fn}}. Then ΩM 6= ⊥ if and only if the compositions of
f1, . . . , fn in all n! possible orderings give the same nontrivial result.

Suppose, however, that A is apt. By Lemma 22, ΩM 6= ⊥ if and only if M does not
contain ⊥ and every two members of M commute. This requires n(n − 1)/2 commute
checks. And if ΩM 6= ⊥ then ΩM = f1 ◦ · · · ◦ fn which requires n − 1 functional
compositions.

Pervasive Applicative Algebras Suppose that A is an applicative algebra that is
pervasive up and down. Assume that we know how to check whether ΩM = ⊥ for every
M of cardinality two. This does not allow us to compute an arbitrary ΩM but it is
enough to check the consistency of an arbitrary M . Namely, M is consistent if and only
if it does not contain ⊥ and ΩM ′ 6= ⊥ for all submultisets M ′ of cardinality two. This
requires n(n− 1)/2 binary consistency checks where n is the cardinality of M .

(Conditionally) Distributive Applicative Algebras First suppose that A is dis-
tributive, and let M = {{f1, . . . , fn}}. By Lemma 10, A is associative and ΩM =
f1 × · · · × fn. In this case, only n− 1 binary parallel compositions suffice to compute
ΩM . By Proposition 25, the applicative algebras over sets and maps are distributive.

Second suppose that A is conditionally distributive and pervasive up. By Lemma 14, A
is pervasive down as well and therefore, as above, we have an algorithm for checking the
consistency of a particle multiset. But Lemma 16 gives us an algorithm for computing
parallel composition.

The Applicative Algebra over Counters The applicative algebra over counters,
constructed in [10], is not distributive or even associative, but there is an efficient algo-
rithm for checking consistency. The algorithm can be understood without reading [10].
Let M = {{f1, . . . , fn}} be a multiset of particles. The only particles are increment and
overwrite particles. An increment particle has an integer parameter (the control) p that
is added to the counter. Overwrite particles were described in Example 5. If M has at
least one non-zero increment and an overwrite particle then ΩM = ⊥. If M has two
distinct overwrites, then ΩM = ⊥. Otherwise ΩM = f1 ◦ · · · ◦ fn.

The Applicative Algebra over Sequences The applicative algebra over sequences,
introduced in the next section, is not associative either, but again there is an efficient
algorithm for parallel composition; see Subsection 3.4.

3 Case Study: Sequences

Sequences play a most important role in computing. Text processors work with se-
quences of characters (files). A database table is a sequence of records. The reader will
easily come up with additional examples.
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The problem of merging various modifications of the same sequence is important as
well. Here is one example. Text processors perform basic operations on the given file, like
inserting a string, deleting a part of the file, altering a part of a file. Two or more people
may independently change copies of the same file. Their changes may involve numerous
basic operations. And the changes need to be integrated. In this connection we looked
at

• The UNIX diff and patch commands documented in UNIX manuals. See [8] for exam-
ple.

• The merge-and-compare feature of Microsoft Word [11].

The diff command takes two files as its input: an original file and a derived file. Here a
file is a sequence of lines. The command computes the difference of the derived document
from the original one in terms of inserted, deleted and altered segments of the file, each
segment consisting of some lines. The result is stored as a so-called patchfile. The patch
command takes such a patchfile and another file as its input. It is expected that the
other file is similar to the original file, so that there is a so-called horizon of at least
two unmodified lines around every insertion, deletion and alteration described in the
patchfile. Because of this tolerance, one can try to apply several patchfiles, one after
another, to a file. If the two-line horizon rule is violated, then patches may be rejected.
A rejection may occur even if the modifications are consistent but too close to each
other.

The “Merge and Compare” feature of Microsoft Word is more sophisticated and com-
plicated. The precise algorithms are not publicly available, but our experiments suggest
the following. When a document is modified, not only the final result is saved but also
the relative changes are saved. Relative changes can be insertions and deletions as well
as alterations of the styles (font styles, paragraph styles, etc.) of file segments. Starting
from the original document, one can merge several sets of relative changes. Deletions
and insertions are highlighted. Microsoft Word relies on the detailed description of the
relative changes and does not require horizons. Even contradicting modifications are
merged; the modifications are applied sequentially.

In this section, we propose a new framework for partial updates of sequences. It is
clean and precise. Consistent partial updates are always integrated, and inconsistent
partial updates are always detected. We provide efficient algorithms that handle parallel
and sequential compositions of partial updates and detect contradictions. Admittedly,
our sequence-modification operations can be made richer; this is a topic for future work.

We study partial updates of sequences, that is finite sequences. It could be sequences of
characters but we take a more general point of view. Fix an arbitrary applicative algebra
A that contains at least two nontrivial elements. We will construct an applicative algebra
SEQ(A). The elements of SEQ(A) are finite sequences of nontrivial elements of A as well
as the trivial sequence ⊥. Note that the empty sequence differs from ⊥ and thus is a
nontrivial sequence. The particles and the parallel composition of particles are defined
below.

16



Notation If s is a sequence (any sequence, not necessarily an element of SEQ(A))
then #s is the length of s and si denotes the ith element of s where i ∈ {0, . . . , #s− 1}.
If s is a sequence of elements of some datatype D and p is a natural number such that
#s > p and a is an element of datatype D, then s(p/a) is the sequence obtained from s
by setting the element in position p to a. We denote the concatenation of two sequences
x and y as x · y or simply xy. We write ε for the empty sequence.

3.1 Natural Operations on Sequences

In our opinion, the most natural operations on sequences are insertion, deletion and
alteration. The sequence being modified will be often called a file.

Positions A file of length n has n distinct positions. We count positions from left to
right starting from number 0. For example, the file abb has three positions. It has a in
position 0 and b in positions 1 and 2.

Places The concept of place arises because of insertions. A sequence can be inserted
into a file x of length n in the following places. If n = 0, then there is only one place.
If n > 0, then it can be inserted at the beginning of x (before position 0), between any
two adjacent positions of x, and at the end of x (after position n − 1). In any case, a
file x of length n has n + 1 distinct places. We count places from left to right starting
from number 0. For example, the file abb has four places. Place 0 is before a, that is
before position 0. Place 1 is between a and the first b, that is between positions 0 and
1. Place 2 is between the two b’s, that is between positions 1 and 2. And place 3 is after
the second b, that is after position 2.

Using the notions of position and place, we can describe the three natural modifications
of a given file.

• Insert a given sequence s into a given place of the file.
• Delete the part of the file that is given by a segment of positions.
• Alter the element of applicative algebra A at a given position by a given A particle.

It is convenient to view the operations of insertion and deletion as special cases of
a more general operation of substitution. Then there are only two basic families of file
modifications: substitutions and alterations.

3.2 Prime Particles

We define sequence particles in two steps. In this subsection, we define three families
of prime particles: substitutions, alterations, and position particles. (A position particle
checks that a certain position is present in a file. It may result from the sequential
composition of an insertion and a deletion, or from the composition of several alter
particles, as we will see later.) In the next subsection, we construct composite sequence
particles from the prime particles.

17



Guards One complication arises from the fact that particles of the given applicative
algebra A may produce ⊥. For example, consider the functional composition g ◦ f of a
substitution g and an alteration f given by an A particle α operating on a position i that
g replaces. Obviously the substitution absorbs the alteration, so that g ◦ f = g, unless
α(xi) = ⊥ in which case f(x) = ⊥ and therefore g ◦ f = ⊥ 6= g. In this connection, we
introduce guards: A guard is a unary predicate over A. We write true for the guard that
always holds and false for the unsatisfiable guard.

A. Prime substitution particles

A prime substitution particle f = sub[p, σ, s] is given by a natural number p (the
anchor of f), a sequence σ of guards and a nontrivial replacement sequence s. It is
required that

(1) every guard σi be satisfiable,
(2) either σ or s be nonempty.

The triple [p, σ, s] is the control of f .

Given a sufficiently long file x, f replaces the segment [p, . . . , p + #σ − 1] of x with
s provided that xp+i satisfies σi for every i ∈ {0, . . . , #σ − 1}. If at least one of these
#σ conditions fails, then f(x) = ⊥. A more detailed description of how f works is given
below. The following lemma explains the first of the two requirements.

Lemma 29 Every prime substitution particle f = sub[p, σ, s] is nontrivial.

PROOF. Since every σi is satisfiable, there is a sequence y = y0, . . . , y#σ−1 such that
every σi(yi) is true. Let a be any nontrivial element of A and let x be the sequence of p
occurrences of a. Then f(xy) = xs 6= ⊥. �

The second requirement ensures that no prime substitution particle belongs to the
category of position particles defined below.

Arena Define an arena to be either a singleton set {p} or a nonempty sequence [p, p+
1, . . . , p + k] where p, k are natural numbers. If I and J are arenas, we say that I is to
the left of J , symbolically I < J , if

• either i < j for every i ∈ I and every j ∈ J ,
• or else I is a set {i} and J is a sequence and i ≤ j for all j ∈ J .

Lemma 30 The relation I ≤ J 
 I < J ∨ I = J is a reflexive partial order on the
set of arenas. In other words, the relation is reflexive, transitive and antisymmetric.

The proof is straightforward.

We define three notions related to a prime substitution f = sub[p, σ, s]: the (abstract)
arena of f , what does it mean that a file x is long enough for f , and the arena of f in
file x that is long enough for f .

Case 1: σ is empty, so that f is an insertion. The (abstract) arena(f) is the singleton
set {p}. A file x is long enough for f if x is nontrivial and #x ≥ p. If x is long enough
for f then the arena of f in x is the place number p of file x.
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Case 2: σ is nonempty, so that f not an insertion. The (abstract) arena(f) is the
sequence [p, . . . , p + #σ − 1]. A file x is long enough for f if x is nontrivial and #x ≥
p + #σ. If x is long enough for f then the arena of f in x is the segment of x containing
the positions p, . . . , p + #σ − 1 of x.

How a Prime Substitution Works Now we explain in details how a prime substi-
tution f = sub[p, σ, s] modifies a file x. If x is not long enough for f or one of the guards
in σ fails at x then f(x) = ⊥. Assume that x is long enough for f and all guards in σ
hold.

Case 1: #σ = 0. Then f is an insertion. It inserts s at the place p.

Case 2: #σ > 0 and s is empty. Then f is a deletion. It removes the arena of f in x.
If x = uvw where u is the segment preceding the arena and v is the arena and w is the
segment following the arena, then f(x) = uw.

Case 3: #σ > 0 and s is nonempty. Then f is a proper substitution. It replaces the
arena of f in x with s. If x = uvw as above, then f(x) = usw.

Adjacency Two prime substitution particles f = sub[p, σ, s] and g = sub[q, τ, t] are
adjacent if p + #σ = q or q + #τ = p. In particular, two insertions are adjacent if their
arenas coincide.

Lemma 31 Suppose that prime substitution particles f = sub[p, σ, s] and g =
sub[q, τ, t] are adjacent and q ≤ p. Then g ◦ f = sub[q, τ · σ, t · s].

The proof is obvious.

B. Prime alter particles

We call a nontrivial A particle α quasi constant if there is an element b 6= ⊥ of
applicative algebra A such that every α(a) ∈ {b,⊥}.

A prime alter particle g = alter[p, α] is given by a natural number p, the anchor
position of g, and by an A particle α, called the internal particle of g. It is required that

• α 6= ⊥ (so that g 6= ⊥),
• α is not the identity particle (so that no prime alter particle is a prime position particle

introduced below),
• α is not quasi constant (so that no prime alter particle belongs to the category of

prime substitution particles introduced above).

The pair [p, α] is the control of g.

The arena of g = alter[p, α] is the singleton sequence [p]. A file x is long enough for
g if #x > p, so that position p exists in x.

Let x be a file. If x = ⊥ then g(x) = ⊥. So assume that x is nontrivial. If x is not
long enough for g or it is long enough for g but α(xp) = ⊥ then g(x) = ⊥. Otherwise
g(x) = x(p/α(xp)), that is g(x) is obtained from x by replacing the element at position
p with α(xp).
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C. Prime position particles

A prime position particle h = pos[p] is given by a natural number p, the anchor
position of h. The singleton sequence [p] is the control of h.

The arena of h is the singleton sequence [p]. A file x is long enough for h if #x > p,
so that position p exists in x.

Let x be a file. If x = ⊥ or x is not long enough for h, then h(x) = ⊥. Otherwise
h(x) = x. Intuitively h requires that the given file is long enough for h.

The definition of prime sequence particles is complete. We took pain to distinguish
position particles from substitution particles (be requiring that #σ + #s > 0 for every
sub[p, σ, s]) and from alter particles (by requiring that α is not the identity particle
for every alter[p, α]). We find it convenient to have position particles as a separate
category.

D. Properties of Prime Particles

Let f and g be two prime particles. Define f is to the left of g, symbolically f < g, if
arena(f) < arena(g). To understand the relation better, let us consider three particular
cases.

Case 1: f is an insertion particle sub[p, ε, s] and g is a non-insertion prime particle
with anchor position q. Then f < g if and only if p ≤ q.

Case 2: f is a non-insertion prime particle and g is an insertion sub[q, ε, t]. Then f < g
if and only if i < q for every i ∈ arena(f).

Case 3: f, g are insertion particles sub[p, ε, s] and sub[q, ε, t] respectively. Then f < g
if and only if p < q.

Corollary 32 The relation f ≤ g 
 arena(f) ≤ arena(g) is a reflexive quasi order on
prime particles. In other words, the relation is reflexive and transitive.

The relation f ≤ g is not antisymmetric. Consider two sequence particles f and g
with the same arena but with different replacement sequences. Then f ≤ g and g ≤ f
but f 6= g.

A sequence f1, . . . , fn of prime particles is a chain if fi < fi+1 for every i ∈ {1, . . . , n−
1}. By the corollary, every collection of prime particles in which every two particles are
ordered forms a chain.

Given a collection C of prime particles that contains a position particle g = pos[q],
we say that g is essential for C if g is the greatest member of C so that f < g for every
f ∈ C − {g}.

A chain f1, . . . , fn of prime particles is normal if

• for no i, the prime particles fi and fi+1 are adjacent substitution particles, and
• if any fi is a position particle then i = n (in other words, there are no inessential

position particles in the chain).

Lemma 33 Every chain f1, . . . , fm of prime particles can be transformed into a normal
chain g1, . . . , gn such that f1 ◦ · · · ◦ fm = g1 ◦ · · · ◦ gn.
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PROOF. Repeatedly use Lemma 31 and remove inessential prime position particles.
�

We will say that the chain f1, . . . , fm is normalized to the chain g1, . . . , gn.

Lemma 34 For every prime particle f , there exists a number δ(f) such that #(fx) −
#x = δ(f) for every file x such that f(x) 6= ⊥.

PROOF. If f = sub[p, σ, s] then δ(f) = #s − #σ. And if f is an alter or position
particle then δ(f) = 0. �

The notation δ(f) in the sense of Lemma 34 will be used in the sequel.

Definition 35 Let f be a prime particle with anchor p and let i be an integer. If
i ≤ p then shift(f, i) is the prime particle g that is like f except that the anchor of
g is p − i. The particle shift(f, p) will be called the canonic shift of f . If i > p then
shift(f, i) = ⊥.

For example, if f = alter[10, α] then shift(f, 6) = alter[4, α].

Call a file x appropriate for a sequence particle f if f(x) 6= ⊥. Every nontrivial
sequence particle has appropriate files.

Corollary 36 Let f be a prime particle with anchor p and g be the canonic shift of
f . Further, let x = u · v · w where #u = p, and #v = 0 if f is an insertion and
#v = #(arena(f)) otherwise. Then x is appropriate for f if and only if v is appropriate
for g. And if x is appropriate for f then f(x) = u · (gv) · w.

3.3 Sequence Particles and their Prime Factors

A nontrivial sequence particle f is given by a normal chain of prime particles called
the prime factors of f . The normal chain of prime factors can be empty in which case
f is the identity particle. In addition, the trivial particle ⊥ is also a sequence particle.

Let f be a nontrivial sequence particle with prime decomposition [f1, . . . , fn]. To
apply f to a file x, apply all the prime factors of f to x simultaneously. Since the
arenas of the prime factors do not overlap, this definition is sound. We explain this in
detail. Let p1, . . . , pn be the anchors of f1, . . . , fn respectively and let p0 = 0. Clearly,
p0 ≤ p1 ≤ · · · ≤ pn. If #x < pn then fx = ⊥. Assume that #x ≥ pn. The file x divides
up into y0 · y1 · · · yn such that #yi = pi+1 − pi for i < n. Let g1, . . . , gn be the canonic
shifts of f1, . . . , fn respectively. If any giyi = ⊥ then fx = ⊥. Otherwise

f(x) 
 y0 · g1y1 · · · · · gnyn

We will say that that the prime decomposition [f1, . . . , fn] induces the partition x =
y0y1 . . . yn.

Can this simultaneous application of prime factors be reduced to the usual functional
composition? Yes, but only if we apply the prime factors in the right-to-left order.
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Corollary 37 f(xy) = (fx) · y if x is appropriate for f and if y 6= ⊥.

PROOF. This is trivial if f = id. Otherwise consider a prime decomposition as above
and apply Corollary 36 to gn. �

Corollary 38 Let f1, . . . , fn be the chain of prime factors of a sequence particle f . Then

f = f1 ◦ f2 ◦ · · · ◦ fn−1 ◦ fn

PROOF. Let x be a file appropriate for f and let x = y0y1 . . . yn be the partition
induced by [f1, . . . , fn]. Let gi be the canonic shift of fi. By Corollary 36,

(f1 ◦ · · · ◦ fn)(x) = (f1 ◦ · · · ◦ fn−1)(y0 . . . yn−1 · gnyn)

= (f1 ◦ · · · ◦ fn−2)(y0 . . . yn−2 · gn−1yn−1 · gnyn)

= . . . = f(x) �

Remark 39 We do not define a distinct family of overwrite sequence particles. The
effect of overwriting a particular file x by a sequence s can be achieved by using f =
sub[0, σ, s] where σ is the sequence true · · · true of length #x. Note that f is consistent
with insertions at the beginning or the end of x.

Lemma 40 Let f be a nontrivial sequence particle different from id, and let F =
[f1, . . . , fm] and G = [g1, . . . , gn] be prime decompositions of f . Then f1 = g1.

PROOF. We omit the simple case when f1 or g1 is a position particle and assume than
neither one is a position particle. Let p, p′ be the anchors of f1, g1 respectively. Let x
range over strings appropriate for f that are long enough so that neither f1 nor g1 inserts
at the end of x or deletes a suffix of x.

Let j be the maximal number satisfying the following condition C(j): For all x, all
i < j and all nontrivial elements a of A, we have that #x ≥ j, #(fx) ≥ j, xi = (fx)i,
and x(i/a) is appropriate for f . Then j = p. Indeed, C(p) holds. It suffices to show that
there is an x such that C(p + 1) fails. If f1 is an alter particle then (fx)p 6= xp for some
x. Otherwise f1 is some substitution sub[p, σ, s]. If σ = ε then s 6= ε and (fx)p = s0

independently of x. In this case, there is a nontrivial a 6= s0 such that the sequence
y = x(p/a) is inappropriate for f or else yp = a 6= s0 = (fy)p. So let #σ > 0. If σ0(a)
fails for some a, then x(p/a) is not appropriate for f . If σ0(a) holds for all a then (fx)p

does not depend on xp and therefore x can be chosen so that xp 6= (fx)p. Similarly j = p′

and so p = p′.

If f1 is an alter particle then both xp and (fx)p exist but (fx)p is not constant when
xp varies. Such behavior cannot be achieved by a substitution with anchor p. Therefore
g1 is an alter particle. Furthermore, the dependence of (fx)p on xp uniquely determines
the inner particle. Similarly, if g1 is an alter particle then f1 is the same alter particle.
It follows that if one of f1, g1 is a substitution then the other is a substitution as well.
So assume that f1, g1 are substitutions sub[p, σ, s] and sub[p, τ, t] respectively.
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Find the greatest k such that if y is obtained from x by changing elements in positions
p, . . . , p + k − 1 then fy ∈ {fx,⊥}. This k = #σ = #τ . To determine any σi(a) in case
k > 0, construct a file y = x(p + i/a) and check whether y is appropriate for f . The
same test determines τi(a), and so σ = τ . Find the greatest l such that, for every
i ∈ {0, . . . , l − 1}, the value (fx)p+i does not depend on x. This l = #s = #t. Further,
s and t coincide with the segment [p, . . . , p + l − 1] of fx. �

Lemma 41 Let f be a nontrivial sequence particle, and let F = [f1, . . . , fm] and G =
[g1, . . . , gn] be prime decompositions of f such that m > 0 and n > 0 and f1 = g1. Then
f2 ◦ · · · ◦ fm = g2 ◦ · · · ◦ gn.

PROOF. Let h = f1 = g1, and f ′ = f2 ◦ · · · ◦ fm, and g′ = g2 ◦ · · · ◦ gn. If an x is
appropriate for one of the two particles f ′, g′ then it is appropriate for the other. Indeed
suppose that x is appropriate for f ′. Recall that different factors of decomposition F
operate on disjoint parts of x. Tweak the part of x where h operates so that the resulting
y is appropriate for f and therefore for g′. But the different factors of G don’t intervene
either. x and y look the same to g2, . . . , gn. Hence x is appropriate for g′.

If one of the numbers m, n equals 1 then the other equals 1 as well. Indeed suppose
that m = 1 so that f ′ = id but n ≥ 2. Let y be a minimal (by length) string appropriate
for h and therefore for f . If there is an i, 1 < i ≤ n, such that the anchor gi exceeds #y
or the anchor of gi equals #y but gi is not an insertion then y is inappropriate for gi

and therefore inappropriate for f which is impossible. The only possibility remains that
n = 2, anchor(g2) = #y and g2 is an insertion. In this case, #(fx) = #(h(g2(y))) >
#(hy) = #(fx) which is impossible.

So we may assume that m > 1 and n > 1. By contradiction assume that f ′ 6= g′. Then
there exists an x appropriate for both particles such that f ′(x) 6= g′(x). Split this x into
u · v · w where v is the part where f1 operates. Let f ′′ = shift(f2, #u + #v) ◦ · · · ◦
shift(fm, #u + #v). Construct g′′ in the similar way. Clearly f ′′(w) 6= g′′(w). Without
loss of generality hx 6= ⊥; otherwise just replace v with another string appropriate for
the canonic shift h′ of h. We have fx = u · (h′v) · (f ′′w) 6= u · (h′v) · (g′′w) = fx which
is impossible. �

Theorem 42 (Prime Decomposition) Every nontrivial sequence particle has a
unique prime decomposition.

PROOF. It is easy to see that id cannot have a nonempty prime decomposition. So we
may restrict attention to nontrivial particles x different from id. Given two decomposi-
tions of x, apply Lemma 40 to show that the leftmost factors are the same. Then use
Lemma 41 to remove the leftmost factors. Repeat this procedure if necessary. �

3.4 Parallel Composition

We define the parallel composition ΩM of a multiset M of sequence particles and give
an efficient algorithm for computing ΩM .
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A. Parallel Composition of Prime Particles: Definition

Let M be a multiset of prime particles. Recall that prime particles are quasi ordered;
see Corollary 32. ΩM = ⊥ if either of the following conditions holds.

C1 M contains particles f, g such that neither f < g nor g < f , and f is a substitution,
and g either a substitution or an alter particle.

C2 M contains particles alter[p, α1], . . . , alter[p, αn] with the same anchor such that
Ω{{α1, . . . , αn}} = ⊥ in A.

Remark 43 Consider a special case when M consists of two substitutions f and g
with overlapping arenas. In particular, f and g may be identical. According to C1,
M is inconsistent. This reflects the point of view that overlapping substitutions are
inconsistent. One may argue for more liberal conflict resolution and, in particular, that,
{{f, f}} should be consistent with ΩM = f . This is a legitimate point of view but it
needs elaboration. For example, distinct insertions sub(p, ε, aa) and sub(p, ε, aaa) may
be declared consistent as well.

Suppose that neither C1 nor C2 holds. Then the prime factors of ΩM are obtained
by modifying M as follows.

First, fuse together alter particles with the same anchor. This is done separately
for each p such that M has an alter particle with anchor p. Form the submultiset
Mp = {{alter[p, α1], . . . , alter[p, αn]}} of the alter particles with anchor p. Compute
the parallel composition βp = Ω{{α1, . . . , αn}} in A.

• If βp = id in A then replace Mp with {{pos[p]}}.
• If βp is quasi constant and b is the nontrivial value of βp, replace Mp with {{sub[p, σ0, b]}}

where σ0(a) is the predicate βp(a) 6= ⊥.
• Otherwise replace Mp with {{alter[p, βp]}}.

Second, remove the superfluous position particles. Keep a position particle only if
it is the greatest particle in M ; furthermore, keep only one copy of it. Obviously, the
remaining particles form a chain.

Third, normalize the chain of remaining particles; see Lemma 33 in this connection.
The resulting normal chain is the prime decomposition of ΩM .

B. Parallel Composition of Prime Particles: Efficient Computation

We present an algorithm that requires n · log(n) primitive operations. We presume
that A comes with algorithms for:

• computing the parallel composition,
• determining whether a given particle is trivial,
• determining whether a given particle is the identity,
• determining whether a given particle is quasi constant, and
• determining the unique nontrivial value of the given quasi constant particle.

We consider every application of these algorithms as a single primitive operation. To
simplify the exposition, we do not strive to make our algorithm optimal.

Sort the particles in M by the anchors; let Mp be the submultiset of particles with
anchor p. In the rest of the algorithm we will be modifying Mp.
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Walk through the anchors p and put each particle into one of the following three
clusters:

• the cluster Ap of insertions,
• the cluster Bp of alterations and substitutions that are not insertions,
• the cluster Cp of position particles.

If the cardinality of Ap is ≥ 2 then C1 holds; halt and output ⊥. If the cardinality of Bp

is ≥ 2 and Bp contains at least one substitution particle, then C1 holds; halt and output
⊥. If Cp is nonempty and either p is not the maximal anchor or Bp 6= ∅, then empty Cp;
as a result Mp may become empty in which case discard the anchor p. If the cardinality
of Cp is ≥ 2 and p is maximal and Bp = ∅, then remove all but one member of Cp.

Walk through the anchors p again and, if p is not maximal, compare Mp with Mq

where q is the next anchor. If Mp contains a substitution whose arena contains q and
Mq contains a non-position particle then C1 holds; halt and output ⊥.

Walk through the anchors p again. If Bp consists of alterations
alter[p, α1], . . . , alter[p, αn], compute βp as above. It βp = ⊥ then C2 holds;
halt and output ⊥. If βp is the identity and p is non-maximal then empty Bp; as a
result Mp may become empty in which case discard the anchor p. If βp is the identity
and p is the maximal anchor then empty Bp and put pos[p] into Cp. If βp is quasi
constant with nontrivial value b, replace Bp with {{sub[p, σ0, b]}} where σ0(a) is the
predicate βp(a) 6= ⊥. Otherwise replace Bp with {{alter[p, βp]}}. As a result, every Bp

is of cardinality ≤ 1.

Walk through the anchors p again. If Ap 6= ∅ and Bp consists of a substitution g, then
fuse the two substitutions together as in Lemma 31 and put the resulting substitution
into Bp instead of g. Also empty Ap.

Walk through the anchors p for the last time. Look for a maximal contiguous segment
p1, . . . , pk of anchors satisfying the following conditions: each Mpi

contains a substitution
and all these k substitutions are adjacent. When you discover such a segment p1, . . . , pk,
fuse the k substitutions as in Lemma 31.

That completes the description of the algorithm. The correctness of the algorithm is
straightforward.

C. Parallel Composition of Arbitrary Sequence Particles: Definition and Efficient Com-
putation

Let M be a multiset of sequence particles. We presume that every nontrivial particle f
of M is given by the prime decomposition Mf . If M contains⊥ then ΩM = ⊥. Otherwise,
ΩM is the parallel composition of the multiset sum

∑
f∈M Mf of prime particles.

It follows that if f1, . . . , fn are the prime factors of a sequence particle f then f =
Ω{{f1, . . . , fn}}.
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3.5 Sequential Composition

The sequential composition of particles f, g is the usual functional composition g ◦ f .
We show that the collection of sequential particles is closed under sequential composition.
In the process we give an algorithm that decides whether g ◦ f = ⊥ and finds a prime
decomposition of g ◦ f if g ◦ f 6= ⊥.

A. Sequential Composition of Prime Particles

We define the sequential composition g◦f of prime particles f, g. Its prime decomposi-
tion contains at most two factors. Recall the notation shift(f, i) (see Definition 35) and
recall that with every prime particle f we associate a displacement δ(f) (see Lemma 34).
Let g′ = shift(g, δ(f)). We start with two cases where f and g give rise to two distinct
factors. In all other cases there will be at most one factor.

Case A: g < f , and g, f are not adjacent substitutions, and g is not a position
particle. Then [g, f ] is the desired prime decomposition of g ◦ f .

Case B: g′ 6= ⊥ and f < g′, and f, g′ are not adjacent substitutions, and f is not a
position particle. Then [f, g′] is the desired decomposition.

The shift is necessary. Consider for example the case when f = sub[0, ε, a] and g =
sub[3, ε, b] so that δ(f) = 1 and g′ = shift(g, 1) = sub[2, ε, b]. If x = ccc then fx = accc
and g(f(x)) = accbc. The simultaneous application of f and g′ to x achieves the same
effect.

Assume that neither Case A nor Case B holds.

Case C: f = sub[p, σ, s] and g = sub[q, τ, t]. First we consider four simple subcases.

C1: If g < f , and g, f are adjacent, then g ◦ f = sub[q, τ · σ, t · s].
C2: If g′ 6= ⊥ and f < g′, and f, g′ are adjacent, then g ◦ f = sub[p, σ · τ, s · t].
C3: f and g are pure insertions with the same anchor, that is p = q and σ = τ = ε.

Then g ◦ f = sub[p, ε, t · s].
C4: f is an insertion and g the deletion of the string inserted by f , that is p = q and

σ = t = ε and #s = #τ > 0. If any τi(si) = false then g ◦ f = ⊥. Otherwise the result
depends on p. If p = 0, then g ◦ f = id, and if p > 0 then g ◦ f = pos[p− 1].

Assume that none of C1–C4 holds. Let x range over files appropriate for f and such
that fx is long enough for g. x splits into u · v ·w where v is the arena of f in x so that
fx = u · s ·w. Consider a guard τi of g (if τ 6= ε). It applies to the element (fx)q+i. If the
position q + i of fx = usw is located in the u or w part, then τi((fx)q+i) is satisfied for
some x. But if this position is in the s section then the truth value τi((fx)q+i) does not
depend on x, only on f and g. If this truth value is false then g ◦ f = ⊥. So assume
that τi((fx)q+i) = true for all i such that q + i is in the s section of usw. Then we can
fuse f and g into a single substitution particle h; the two pictures illustrate the fusion.

Figure 1
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Obviously, the anchor position of the fused substitution h is min{p, q}. The guard se-
quence of h is τ l · σ · τ r where τ l and τ r are as follows. τ l = τ0 · · · · · τp−q−1 which is
empty if q ≥ p. τ r = τp+#s−q · · · · · τ#τ−1 which is empty if q + #τ ≤ p + #s. The
replacement sequence of h is sl · t · sr where sl and sr are as follows. sl = s0 · · · · · sq−p−1

which is empty if p ≥ q. sr = sq+#τ−p · · · · · s#s−1 is empty if p + #s ≤ q + #τ .

Case D: f = alter[p, α] and g = alter[q, β]. As f, g are unordered (neither f < g
nor g < f), we have p = q. Let γ = β ◦ α. If γ = ⊥ then g ◦ f = ⊥. If γ is the identity
then g◦f = pos[p]. If γ is quasi constant with nontrivial value b then g◦f = sub[p, σ0, b]
where σ0(a) is the predicate γ(a) 6= ⊥. Otherwise g ◦ f = alter[p, γ].

Case E: f = sub[p, σ, s] and g = alter[q, β]. As f, g are unordered, g transforms an
element sq−p of the replacement sequence s into c 
 β(sq−p). If c = ⊥, then g ◦ f = ⊥.
Otherwise g ◦ f = sub[p, σ, s(q − p/c)].

Case F: f = alter[p, α] and g = sub[q, τ, t]. As f, g are unordered, p ∈ arena(g). If
τp−q ◦ α = false then g ◦ f = ⊥. Otherwise g ◦ f = sub[p, τ(p− q/τp−q ◦ α), t].

Case G: f or g is a position particle.

If f and g are position particles with anchors p and q respectively then g ◦ f =
pos[max{p, q}].

Suppose that f is a position particle but g is not. As Case A does not apply, g is not
to the left of f . Therefore f is inessential and g ◦ f = g.

Suppose that g is a position particle but f is not. Let x range over files appropriate
for f . x splits into u ·v ·w where s = arena(f) so that fx = u ·v′ ·w for some v′. Let q be
the anchor of g. If q is in the u or v sections of x then g is inessential and so g ◦ f = f .
And if q is in the w section then we are in Case B considered above (g is essential and
[f, g′] form the decomposition).

That completes the analysis of the sequential composition of two prime particles. For
future reference we formulate a corollary.

Corollary 44 Let f, g be two prime particles such that g ◦ f is neither trivial nor the
identity. Let h` be the leftmost factor of g ◦ f . For any prime particle h, if h < f and
h < g then h < h`.

This is obvious in every one of the cases above.

B. Sequential Composition in General

Lemma 45 Consider a list f`, . . . , f1 of prime particles. If f` ◦ · · · ◦ f1 6= ⊥ then there
is a chain C = [gm, . . . , g1] of prime particles with m ≤ ` such that f` ◦ · · · ◦ f1 =
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gm ◦ · · · ◦ g1. Furthermore, if m ≥ 1 then, for any prime particle h, if h is to the left
of every fi then it is to the left of gm.

PROOF. We prove the lemma by induction on the length of the list. If the list contains
at most one particle then the lemma is obvious. Assume that the lemma holds whenever
the list contains at most ` ≥ 1 particles. We consider a list f`+1, . . . , f1 and construct
the desired chain C.

If f` ◦ · · · ◦ f1 = ⊥, then f`+1 ◦ f` ◦ · · · ◦ f` = ⊥. So assume f` ◦ · · · ◦ f1 6= ⊥.
By the induction hypothesis, there is a chain gm, . . . , g1 of prime particles such that
f` ◦ · · · ◦ f1 = gm ◦ · · · ◦ g1. If m = 0, then C = [f`+1] and we are done. Otherwise
consider f`+1 ◦ gm. By the above analysis, this composition, if not trivial, equals the
composition of a chain of at most two prime particles.

• f`+1 ◦ gm = ⊥. In this case, f`+1 ◦ f` ◦ · · · ◦ f1 = (f`+1 ◦ gm) ◦ gm−1 ◦ · · · ◦ g1 = ⊥,
and we are done.

• f`+1 ◦ gm is the identity. In this case, f`+1 ◦ · · · ◦ f1 = gm−1 ◦ · · · ◦ g1 and thus
[gm−1, . . . , g1] is the desired chain C.

If m ≥ 2 and a prime particle h is to the left of every fi, then, by the induction
hypothesis, it is to the left of gm and therefore to the left of gm−1.

• f`+1 ◦gm = ḡm for some prime particle ḡm. In this case, f`+1 ◦f` ◦ · · · ◦f1 = f`+1 ◦gm ◦
· · · ◦ g1 = ḡm ◦ gm−1 ◦ · · · ◦ g1. As m ≤ `, the induction hypothesis implies that there
exists a chain hn, . . . , h1 of prime particles such that ḡm◦gm−1◦ · · · ◦g1 = hn◦ · · · ◦h1

and n ≤ m < ` + 1.
If n ≥ 1 and h is to the left of all fi then, by the induction hypothesis, h is to the

left of gm. By the Corollary above, h is to the left of ḡm, so that h is to the left of
ḡm, gm−1, . . . , g1. Applying the induction hypothesis again, we have that h is to the
left of hn.

• f`+1 ◦ gm = ḡm+1 ◦ ḡm where ḡm+1 < ḡm are prime particles. According to the previous
analysis, this may may happen only in Cases A and B.

If ḡm+1, ḡm arise from Case A, then f`+1 = ḡm+1 < ḡm = gm. Thus [ḡm+1, gm, . . . , g1]
is the desired chain C. For any prime particle h that is to the left of all fi, we have
h < f`+1 = ḡm+1.

Otherwise ḡm+1, ḡm arise from Case B. Here, ḡm+1 = gm < ḡm. By induction hy-
pothesis, there is a chain hn, . . . , h1 such that ḡm ◦ gm−1 ◦ · · · ◦ g1 = hn ◦ · · · ◦h1 and
n ≤ m. If n = 0, the desired C = [ḡm+1]. Suppose that n ≥ 1. Since ḡm+1 (that is gm)
is to the left of ḡm and of all gi with i < m, the induction hypothesis gives us that
ḡm+1 < hn. The desired chain C = [ḡm+1, hn, . . . , h1]. Indeed, n + 1 ≤ m + 1 ≤ ` + 1
and

ḡm+1 ◦ hn ◦ hn−1 ◦ · · · ◦ h1 =

ḡm+1 ◦ ḡm ◦ gm−1 ◦ · · · ◦ g1 =

f`+1 ◦ gm ◦ gm−1 ◦ · · · ◦ g1 =

f`+1 ◦ f` ◦ f`−1 ◦ · · · ◦ f1

For any prime particle h to the left of all fi, the induction hypothesis gives h < gm =
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ḡm+1. �

Theorem 46 The set of sequence particles is closed under sequential composition.

PROOF. Let f, g be sequence particles. We show that the operation g ◦f is a sequence
particle. If g◦f = ⊥ we are done. So assume that g◦f 6= ⊥ and so f, g are nontrivial. Let
[f`, . . . , f1] be the chain of prime factors of f and let [gm, . . . , g1] be the chain of prime
factors of g. By Corollary 38, g ◦f = (Ω{{g1, . . . , gm}})◦ (Ω{{f`, . . . , fl}}) = gm ◦ · · · ◦g1 ◦
f` ◦ · · · ◦ f1. By Lemma 45 there is a chain [hn, . . . , h1] such that g ◦ f = hn ◦ · · · ◦ h1.
Using Lemma 33, this chain is equivalent to a normal chain which is the desired prime
decomposition of g ◦ f . �

3.6 Properties of the Applicative Algebra over Sequences

The applicative algebra SEQ(A) has been defined. Let us recapitulate this definition.
Recall that A is an arbitrary applicative algebra with element type T that contains at
least two nontrivial elements.

(1) The elements of SEQ(A) are sequences over T together with the trivial sequence
⊥. SEQ(A) has infinitely many nontrivial elements.

(2) The particles of SEQ(A) were introduced in Subsection 3.3. It is easy to see that
the requirement AA1 is satisfied. Due to Theorem 46 and the presence of the id
particle, we have the desired monoid. And we have the trivial particle as well.

(3) The parallel composition was defined in Subsection 3.4. It is easy to see that the
requirement AA2 is satisfied.

We establish some properties of SEQ(A). Recall the coherence property introduced in
Subsection 2.4.

Proposition 47 Assume that, in A, every consistent multiset is coherent. Then, in
SEQ(A), every consistent multiset is coherent.

PROOF. Let M be a consistent multiset of sequence particles and let x be any sequence
such that fx 6= ⊥ for all f ∈ M . We need to prove that (ΩM)(x) 6= ⊥.

Without loss of generality, M consists of prime particles. If not, let M ′ be the multiset
of all prime factors of all members of M . (Since M is consistent, it does not contain ⊥,
and so each particle in M has a prime decomposition.) Clearly f(x) 6= ⊥ for all f in
M ′. By the definition of parallel composition, ΩM = ΩM ′. So it suffices to prove that
(ΩM ′)(x) 6= ⊥.

By the definition of composite particles, (ΩM)(x) is the result of simultaneous appli-
cation of the factors of the prime factors of ΩM to x. These factors operate on disjoint
parts of x. It suffices to prove that fx 6= ⊥ for every factor f of ΩM . The factor
construction process is described in Subsection 3.4.

For each p such that M has alter particles with anchor p, you fuse all alter particles
alter[p, β1], . . . , alter[p, βn] of M with the same anchor p. Clearly each β(xp) 6= ⊥. Let
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α be the parallel composition of particles βi in A, and let f be the result of the fusion. By
the hypothesis of the proposition, α(x0) 6= ⊥. If α = id then f is a position particle and
so fx 6= ⊥. If α is quasi constant with a nontrivial value b, then f = sub[p, σ0, b] where
σ0(xp) is the truth value of α(xp) 6= ⊥. Again, fx 6= ⊥. Otherwise, f = alter[p, α] and
again fx 6= ⊥.

Then you remove superfluous position particles. Of course we have fx 6= ⊥ for all
the remaining particles. These remaining particles form a chain. It remains to normalize
the chain. This involves fusing together adjacent substitution particles. But adjacent
substitution particles operate on disjoint parts of x. And so we have fx 6= ⊥ for the
result of each instance of fusion. �

Proposition 48 SEQ(A) is not associative even if A is associative.

PROOF. Let f×g 
 Ω{{f, g}} and consider the following example: h = sub[0, true, c],
g = sub[0, ε, b], f = sub[0, ε, a]. We have (h × g) × f = sub[0, true, bc] × f =
sub[0, true, abc], but h× (g × f) = h×⊥ = ⊥. �

If A is associative then the only reason that SEQ(A) is not associative is that insertions
can be adjacent to proper substitutions or alterations. If we forbid such constellations
then SEQ(A) becomes associative.

Proposition 49 Assume that A is conditionally distributive. Then SEQ(A) is condi-
tionally distributive.

PROOF. Let M be a consistent multiset of sequence particles, and let M = M1 +
· · · + Mn. We have to prove that ΩM = Ω{{ΩM1, . . . ,ΩMn}}.

Without loss of generality M consists of prime particles. Indeed, assume that we
have proved that if M ′ is any consistent multiset of prime sequence particles and if
M ′ = M ′

1 + · · · + M ′
n then ΩM ′ = Ω{{ΩM ′

1, . . . ,ΩM ′
n}}. For every f ∈ M , let Mf

be the prime decomposition of f , and let M ′ =
∑

f∈M Mf . For every i = 1, . . . , n, let
M ′

i =
∑

f∈Mi
Mf . By the assumption, ΩM ′ = Ω{{ΩM ′

1, . . . ,ΩM ′
n}}. By the definition of

the parallel composition of sequence particles, ΩM = Ω{{ΩM1, . . . ,ΩMn}}.
The intuitive idea for the rest of the proof is this. Since M is consistent, its particles can

be applied simultaneously. Hence the particles of any Mi can be applied simultaneously,
and the n groups can be applied simultaneously. The implementation of this idea is
straightforward. When you deal with alterations with the same anchor, you have to use
the conditional distributivity of A.

Proposition 50 SEQ(A) is pervasive up (resp. down) if and only if A is so.

PROOF. A straightforward derivation from the definition of parallel composition. �
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4 Application: Labeled Ordered Trees

By ordered tree we mean a tree where the children of each node are linearly ordered,
and thus form a sequence. (This “horizontal” order on children should be clearly dis-
tinguished from the “vertical” partial order of the tree itself.) A labeled ordered tree is
an ordered tree where each node has a label. What are natural operations on labeled
ordered trees? We can think of

• insertion of a labeled ordered subtree,
• deletion of a subtree,
• alteration of a label.

But instead of introducing these and other particle families directly, we use algebra
and get a relatively rich world of particles automatically.

For brevity, labeled ordered trees are called trees in the rest of this section; no other
trees will be considered.

4.1 Construction

Fix an apt applicative algebra L with at least two nontrivial elements. Elements of L
will be called labels. Recall the product operation over applicative algebras defined in
Subsection 2.7 and consider an operator

ΓX 
 L× SEQ(X)

where X ranges over applicative algebras. Fixed points of Γ are solutions of the equation
X = ΓX.

We assume that Γ has a fixed point X and analyse X. By the definition of the product
of applicative algebras, an arbitrary nontrivial element x of type X has the form (`, s)
where ` is a label and s is a sequence of elements X. If s is empty, assign rank 0 to x.
If #s > 0 and every element si of s has been assigned a rank ri, assign rank 1 + maxi ri

to x. Assign rank 0 to ⊥. Call an element x ranked if it has been assigned a rank.

By the definition of the product of applicative algebras, an arbitrary nontrivial particle
f of X has the form alter[α, g] where α is a nontrivial L particle and g is a nontrivial
sequence particle. If g does not have any prime alter factors, assign rank 0 to f . In
particular the identity particle gets rank 0. If g does have prime alter particles and every
prime alter particle h has been assigned a rank rh, assign rank 1 + maxh rh to f . Assign
rank 0 to ⊥. Call a particle ranked if it has been assigned a rank.

Now consider only ranked elements of X and only ranked particles of X. Furthermore,
restrict ranked particles to ranked elements. In the obvious way, every nontrivial element
(`, s) of rank r can be viewed as a labeled ordered tree of depth r. In particular (`, ε)
is a tree with an `-labeled root and no children. A particle f = alter[α, g] operates
on a labeled ordered tree x = (`, s) in the obvious way: fx = (α(`), gs). The parallel
composition of particles alter[β1, g1], . . . , alter[βn, gn] is the particle alter[α, f ] where
α = Ω{{β1, . . . , βn}} and f = Ω{{g1, . . . , gn}}. It is easy to see that labeled ordered trees
with these particles and this parallel composition of particles form an applicative algebra.
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We call this applicative algebra LOT(L), an allusion to Labeled Ordered T rees over L.

Clearly, LOT(L) is a fixed point of Γ and in fact the least fixed point of Γ (with respect
to the obvious order).

4.2 Insertions, Deletions, Alterations

We show that the operations of insertion, deletion and label alteration informally
introduced in the preamble of this section give rise to legitimate tree particles. We do
not claim that every tree particle is an insertion, deletion or alteration; it will be easy
to see that there are more tree particles.

We start by defining an auxiliary function node(x, s) that, given a tree x and a se-
quence s of natural numbers produces the subtree of x at position s. If s is empty,
then node(x, s) is x. If s = [i] then node(x, s) is the child number i of x (where the
leftmost child is child number 0) provided that x has at least i + 1 children; otherwise
node(x, s) = ⊥. If s = [i, j] and node(x, [i]) 6= ⊥ and node(x, [i]) has a child y of number
j then node(x, s) = y; otherwise node(x, s) = ⊥. And so on.

In the rest of this subsection, we describe the three natural operations over trees
mentioned above – insertion, deletion and label alteration – more precisely and check
that they are legitimate particles of LOT(L).

A. Insertion

The insertion operation f = insert[s, y] takes two parameters: a nonempty sequence
s of natural numbers and a tree y. Since s is nonempty it has the form t · [p]. Let x be
a nontrivial tree. If node(x, t) = ⊥ or else node(x, t) 6= ⊥ and p > 0 and node(x, t) has
less than p children then f(x) = ⊥. So assume that node(x, t) is a nontrivial tree with
at least p children. If node(x, t) has exactly p children so that the last child is number
p− 1, then attach y as the pth child of node(x, t). If node(x, t) has more than p children,
then insert y between the child number p − 1 and the child number p of node(x, t) so
that y becomes the child number p of node(t, x).

By the definition of LOT(L), the only particles of LOT(L) are alter particles. We
illustrate that operations insert[s, y] are legitimate particles. Clearly

insert[[q], y] = alter[id, sub[q, ε, y]].

Let g be a sequence particle alter[p, insert[[q], y]]. Given a sequence of at least p + 1
trees, g applies the tree particle insert[[q], y] to the pth tree (and produces ⊥ if the
sequence is too short). Then

insert[[p, q], y] = alter[id, g].

B. Deletion

The deletion operation f = delete[s] takes one parameter: a nonempty sequence s of
natural numbers. Since s is nonempty it has the form t · [p]. Let x be a nontrivial tree. If
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node(x, t) = ⊥ or else node(x, t) is nontrivial but does not have the child number p then
f(x) = ⊥. Otherwise f(x) is obtained from x by deleting the pth child of node(x, t).

We illustrate that the delete operations are legitimate particles. Clearly

delete[[q]] = alter[id, sub[q, true, ε]].

Let g be a sequence particle alter[p, delete[[q]]]. Given a sequence of at least p+1 trees,
g applies the tree particle delete[[q]] to the pth tree (and produces ⊥ if the sequence is
too short). Then

delete[[p, q]] = alter[id, g].

C. Label Alteration

The label operation f = la[s, α] takes two parameters: a possibly empty sequence s
of natural numbers and a nontrivial label particle α 6= id. Let x be a nontrivial tree.
If node(x, s) = ⊥ or if node(x, s) is nontrivial with some label ` but α(`) = ⊥ then
f(x) = ⊥. Otherwise f(x) is obtained from x by replacing the label ` of node(x, s) with
α(`).

We illustrate that label operations are legitimate particles. Clearly

la[ε, α] = alter[α, id].

Let f be a sequence particle alter[q, alter[α, id]]. Given a sequence of at least q + 1
trees, f applies the tree particle la[ε, α] to the qth tree (and produces ⊥ if the sequence
is too short). Then

la[[q], α] = alter[id, f ].

Let g be a sequence particle alter[p, la[[q], α]]. Given a sequence of at least p+1 trees,
g applies the tree particle la[[q], α] to the pth tree (and produces ⊥ if the sequence is
too short). Then

la[[p, q], α] = alter[id, g].
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