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Abstract 
Farsite is a scalable, distributed file system that logically 
functions as a centralized file server but that is physically 
implemented on a set of client desktop computers.  Farsite 
provides high degrees of reliability and availability by 
storing replicas of files on multiple machines.  Replicas 
are placed to maximize the effective system availability, 
using a distributed, iterative, randomized placement 
algorithm.  We perform a large-scale simulation of three 
candidate algorithms using machine availability data 
collected from over 50,000 desktop computers.  We find 
that algorithmic efficiency and placement efficacy run 
counter to each other.  We fit analytic functions to the 
improvement rates and provide explanations for the fitted 
curves.  We explore the algorithms’ properties through 
study of their dynamic behavior.  We visualize algorithmic 
placements and compare them to theoretical worst cases.  
We quantify the degree of machine failure correlation and 
develop a formula to approximate its effect. 

1. Introduction 

This paper analyzes algorithms for automated 
placement of file replicas in the Farsite [6] system, using 
simulations based on large-scale measurement data.  In the 
Farsite distributed file system, multiple replicas of files are 
stored on multiple machines, so that files can be accessed 
even when some of the machines are unavailable (either 
turned off or inaccessible).  The purpose of the placement 
algorithm is to determine an assignment of file replicas to 
machines that maximally exploits the different levels of 
availability provided by different machines. 

The number of replicas of each file, R, is fixed by the 
system.  Given measurements of machine availabilities [6] 
and the efficacy of our algorithms, we find that to attain 
overall system availability in the desirable range of 4 to 5 
nines requires 3 or 4 replicas of each file, so we study the 
behavior of our algorithms given these two values for R. 

We require algorithms that can improve an existing 
placement, so we concentrate on hill-climbing algorithms 
that successively exchange the machine locations of two 
file replicas.  We investigate the properties of distributed 
versions of three such algorithms: (1) RAND-RAND, which 
swaps replica locations between any pair of files, (2) MIN-

RAND, which swaps replica locations between a minimum-
availability file and any other file, and (3) MIN-MAX, which 

swaps replica locations between a minimum-availability 
file and a maximum availability file. 

We find that in terms of algorithmic efficiency, the MIN-

MAX algorithm performs best, MIN-RAND second, and RAND-
RAND the worst.  In terms of placement efficacy, RAND-RAND 
is the best, MIN-RAND is again second, and MIN-MAX is the 
worst.  The algorithms thus present a trade-off between 
these two desirable qualities. 

Section 2 overviews the Farsite system.  Sections 3 and 
4 describe the algorithms and the environment of our 
simulation.  Sections 5 – 8 detail the algorithms’ transient 
improvement, dynamic behavior, final placement patterns, 
and influence by machine failure correlation.  Sections 9 
and 10 wrap up with related work and conclusions. 

2. Background 

Farsite [6] is a secure, highly scalable, serverless, 
distributed file system that logically functions as a 
centralized file server without requiring any physical 
centralization whatsoever.  The system’s computation, 
communication, and storage are distributed among the 
client computers participating in the system.  Farsite runs 
on a networked collection of desktop computers in a large 
corporation or university without interfering with users’ 
local tasks and without requiring users to modify their 
behavior.  As such, it needs to provide a high degree of 
security and fault tolerance without the physical protection 
and continuous support enjoyed by centralized servers. 

Since people turn off their desktop machines whenever 
they wish, without regard for other users who may wish to 
remotely access the machine’s resources, Farsite employs 
a high degree of replication in its storage of file and 
directory data.  Since desktop machines are not physically 
secured, Farsite must be resilient to arbitrary malicious 
behavior on a subset of the machines that form the system 
infrastructure.  It resists such attacks using two techniques: 
a Byzantine-fault-tolerant protocol and cryptographically 
secure distributed random number generation. 

Directories are implemented by groups of machines 
that interact using a Byzantine-fault-tolerant protocol [9], 
which guarantees correctness if fewer than one third of the 
machines misbehave in any manner.  A group of machines 
collectively managing a directory is called a directory 
host.  Each directory host implements multiple directories, 
since there are ~104 directories on a typical machine [11]. 



 

If any single member of a directory host can force the 
selection of another host for an arbitrary operation, then a 
single malicious machine can compromise system 
security.  Farsite resists such attacks via cryptographically 
secure distributed random number generation [5] when 
determining values for non-deterministic operations. 

Files are stored on file hosts, which are undistinguished 
machines in the system.  Every machine functions as a file 
host, as a component of one or more directory hosts, and 
as a local client.  Farsite provides four properties for the 
files that it stores in file hosts: privacy, integrity, 
reliability, and availability.  Data privacy is afforded by 
encryption, and data integrity by one-way hash functions 
and digital signatures [30].  Reliability (data persistence) 
is provided by making multiple replicas of each file and 
storing the replicas on different machines.  The topic of 
the present paper is file availability, in the sense of a 
user’s being able to access a file at the time it is requested. 

Like reliability, file availability is provided by storing 
multiple file replicas on different machines.  However, 
whereas the probability of permanent data-loss failure 
(such as disk head crashes) is assumed to be identical for 
all machines, the probability of transitory unavailability 
(such as a machine’s being powered off temporarily) has 
been shown to be heterogeneous by a five-week series of 
hourly measurements of more than 50,000 desktop 
machines at Microsoft [6].  This study also concluded that 
the times at which different machines are unavailable 
appear predominantly uncorrelated with each other. 

We state availability as the negative decimal logarithm 
of the fraction of time a machine or file is inaccessible, 
yielding a unit of “nines.”  For example, a machine with a 
fractional uptime of 0.99 has –log10(1 – 0.99) = 2 nines of 
availability.  Given uncorrelated machine downtimes, the 
fraction of time a file is unavailable equals the product of 
the fractional downtimes of the machines that store the 
file’s replicas.  Therefore, expressed logarithmically, the 
availability of a file equals the sum of the availabilities of 
the machines that store the file’s replicas. 

Farsite monitors machine availability and places file 
replicas to maximize the availability of files to users.  
Files that a client has recently accessed are stored in a 
cache on the client machine; files not recently accessed 
must be retrieved from a remote file host.  Since we make 
no assumptions about the likelihood of accesses to files 
not recently accessed, we set the file-placement objective 
to be maximizing the success probability of accessing a 
random file at a random time.  We express this objective 
as the negative logarithm of the access failure probability, 
which we call the effective system availability (ESA), 
measured in units of nines.  Given N files each with 
availability ai, ESA can be calculated as: 
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This value is dominated by low-availability files.  For a 
given value of mean file availability, ESA is maximized 
by minimizing the file availability variance. 

3. Algorithms 

To be suitable for a secure, serverless, distributed file 
system, a placement algorithm must have three properties: 
• distributed – Decisions must be made by small machine 

groups without central coordination.  Communication 
and storage must not grow with the system size. 

• iterative – The algorithm must improve an existing 
placement incrementally without requiring a complete 
re-allocation of storage when conditions change. 

• randomized – Security requires that randomness drive 
the selection of machines that determine a placement. 

We thus investigate a family of randomized, swap-based, 
hill-climbing algorithms.  At a high level, a directory host 
selects a file, randomly selects another directory host 
(possibly itself) which also selects a file, and determines 
whether it can bring the availability values of the two files 
closer together by swapping machine locations of one 
replica from each file.  If so, it performs the swap.  Swaps 
can only be made if there is sufficient free space on each 
machine to accept the replicas that are being relocated. 

We investigate three algorithms: (1) RAND-RAND, in 
which each directory host randomly selects a file, (2) MIN-

RAND, in which one host selects its minimum-availability 
file and the other selects a random file, and (3) MIN-MAX, in 
which one host selects its minimum-availability file and 
the other selects its maximum-availability file.  RAND-RAND 
is the most general strategy, so it represents a baseline for 
comparison with the other algorithms.  MIN-RAND focuses 
on low-availability files, since they have the greatest 
impact on ESA.  MIN-MAX exploits the fact that high-
availability files afford the most opportunity for improving 
low-availability files. 

4. Simulated environment 

Our simulated environment is an approximation of a 
real environment measured for an initial study of Farsite 
feasibility [6].  We simulate file placement on a set of 
51,662 machines for which we have availability data given 
by a 5-week set of hourly ping snapshots.  The cumulative 
distribution of machine availabilities, shown in Figure 1, 
is approximately uniform in the range of 0 to 3.0 nines. 
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Figure 1. Machine availability distribution 



 

File sizes are governed by a binary lognormal 
distribution with m(2)  = 12.2 and s(2)  = 3.43 [11].  We 
simulate the placement of 2,583,100 files, averaging 50 
files per machine.  This value is far smaller than it would 
be in a real system, but we cannot significantly increase it 
without exceeding the memory limit of the 512-MB 
computer we use for simulation.  In simulations with 
smaller counts of files per machine, the algorithms do not 
appear to be sensitive to this value.  We maintain excess 
storage capacity in the system, without which it would not 
be possible to swap file replicas of different sizes.  The 
mean value of this excess capacity is 10 % of each 
machine's storage space, and we limit file sizes to less than 
this mean value per machine. 

At each step, a pair of files is selected randomly.  To 
account for the distributed nature of this selection in a real 
system, we set a selection range for minimum- and 
maximum-availability files to 2 %, to be consistent with a 
mean value of 50 files per machine.  In other words, the 
"minimum-availability" file is drawn from the set of files 
with the lowest 2 % of availabilities, and the "maximum-
availability" file is drawn from the set of files with the 
highest 2 % of availabilities. 

We begin each simulation run by placing the file 
replicas randomly on machines.  Figure 2 shows the 
distribution of file availability with random replica 
placement.  With 3 replicas, the mean file availability is 
4.4 nines; placing the replicas randomly yields an ESA of 
2.2 nines.  With 4 replicas, the mean file availability is 5.9 
nines; placing the replicas randomly yields an ESA of 2.9 
nines.  In both cases, the minimum file availability is near 
zero.  Random placement thus makes poor use of the 
availability of the machines in the system. 

5. Transient Analysis 

Figures 3 and 4 show the evolution of effective system 
availability for replication factors of 3 and 4, respectively, 
beginning with a random placement and progressively 
applying one of the algorithms.  For three replicas, MIN-

MAX achieves a slightly lower final ESA than the others:  
For R = 3, ESARR = ESAMR = 4.4 and ESAMM = 4.3.  For 
R = 4, ESA = 5.9 for all algorithms. 

In both cases, the RAND-RAND algorithm makes the 
slowest improvement to ESA, with a progress half-life of 
0.88 (R = 3) or 1.1 (R = 4) moves per replica.  MIN-RAND is 
considerably faster, with a progress half-life of 0.12.  MIN-

MAX is the fastest, with a progress half-life of 0.06. 
We have attempted to model the transient ESA curves 

in Figures 3 and 4 with exponential approximations.  The 
MIN-MAX curves are well approximated (RMS error < 2 %) 
by an exponential with a time constant of 0.093 moves per 
replica, as shown in Figure 5.  The MIN-RAND curves are 
well approximated by a 2-stage hyperexponential with a 
primary (a = 0.61) time constant of 0.093 and a secondary 
(1 – a = 0.39) time constant of 0.76, as shown in Figure 6. 
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Figure 2. File availability distribution with random placement
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Figure 3. ESA vs. replica relocations (R = 3) 
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Figure 4. ESA vs. replica relocations (R = 4) 
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Figure 5. ESA improvement vs. relocations (MIN-MAX) 



 

To explain the suitability of exponential fits to these 
algorithmic progressions, we offer the following 
conjectures:  Aggressive hill climbing algorithms, such as 
MIN-MAX, tend to follow decay curves because they make 
the best available improvement at each step, and over 
time, the quality of remaining available improvements 
decreases as the good ones are used up.  These decay 
curves tend to be exponential because each increment 
affects a fixed-size fraction of the system (i.e., one pair of 
files), so at each step, the realized improvement is 
proportional to the remaining potential improvement. 

The aggressiveness of iterative improvement is 
substantially reduced by swapping the minimum-
availability file with a random file (MIN-RAND) instead of 
with the maximum-availability file (MIN-MAX), thereby 
introducing wide variation into the quality of improvement 
steps.  Consequently, rather than increasing the time 
constant of the exponential progression, MIN-RAND retains 
the same exponential time constant as MIN-MAX (0.093) and 
adds a second exponential stage with an order-of-
magnitude greater time constant (0.76).  The mixing 
coefficient, a, describes the combination of time constants 
tk.  To express this instead as the mixing of improvement 
rates, we find a coefficient b by solving the following 
equation: 
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The result, b = 0.16, can be interpreted as a binary 
approximation of the continuum of step quality resulting 
from random selection of one of the files to swap:  Each 
step has a 0.16 probability of being good (improving with 
a time constant of 0.093) and a 0.84 probability of being 
mediocre (improving with a time constant of 0.76). 

The RAND-RAND progression does not appear to follow a 
hyperexponential at all.  Instead, it appears nearly linear to 
around 1.5 moves per replica before it starts tapering off.  
Since the replica relocations that most affect the effective 
system availability are those of low-availability files, it is 
likely that many of the RAND-RAND swaps barely affect the 
ESA.  As a consequence, the improvement per step is not 
heavily dependent upon the number of improvements 
made up to that point. 

6. Dynamic behavior 

The results in Section 5 showed significant speed 
differences among the algorithms.  In the present section, 
we seek to understand the cause of these differences by 
examining the algorithms’ dynamic behavior.  Each swap 
changes the availabilities of the two files that exchange 
replica locations.  For every change to a file’s availability 
in the placement progression, we record the availability of 
the file before it is changed (the source availability AS) 
and the availability of the file after it is changed (the 
target availability AT).  We then plot the target availability 
versus the source availability of every change, as a density 
plot on a two-dimensional grid (e.g., Figure 7). 

We divide the density plot into quadrants in a non-
standard way:  The axes are rotated by 45∞ from the 
Cartesian axes, and they intersect at a point whose 
abscissa and ordinate both equal the mean file availability 
Am.  We refer to the axis for which the source and target 
availabilities are identical as the identity axis; points along 
this axis indicate zero change to a file’s availability.  We 
refer to the other axis as the complementary axis; points 
along this axis indicate a change that maintains the 
magnitude but reverses the sign of the difference between 
a file’s availability and the mean file availability. 

The utility of a change can be evaluated by comparing 
the absolute difference between the mean file availability 
and the file’s availability before the change to the absolute 
difference between the mean file availability and the file’s 
availability after the change: 

 µµ
AAAAU
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The utility of a change is high if it succeeds in bringing 
the availability of the file significantly closer to the mean 
file availability.  The utility is negative if it takes the 
availability of the file away from the mean file 
availability.  A file can undergo a negative utility change 
when one of its replicas is swapped with a replica of 
another file that incurs a positive utility change of greater 
magnitude.  Availability changes in the left and right 
quadrants have positive utility, and those in the upper and 
lower quadrants have negative utility. 
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Figure 6. ESA improvement vs. relocations (MIN-RAND) 
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Figure 7. File availability change density (RAND-RAND, R = 3) 



 

Figure 7 is a density plot of file availability changes 
during the execution of the RAND-RAND algorithm for R = 3.  
The plot for R = 4 (not shown) is substantially similar.  
The vast majority of points are confined within the dashed 
parallelogram.  Exceeding the horizontal bounds AT = 2.8 
or AT = 6.0 requires an extremely low or high target 
availability, which requires an even more extreme source 
availability, either of the file itself (in the left and right 
quadrants) or of the file with which it is swapped (in the 
upper and lower quadrants).  Such extreme files are rare. 

No points lie outside the diagonal bounds AT  = AS + 3.0 
and AT  = AS – 3.0.  It is not possible to change a file’s 
availability by more than 3 nines in a single swap, because 
the replica availability range is only 3 nines.  Since files 
are selected at random, few swaps are between extreme 
files, so most availability changes are within two nines. 

Figure 8 is a density plot of file availability changes 
during the execution of the MIN-RAND algorithm for R = 3.  
The plot for R = 4 (not shown) is substantially similar.  
The dashed parallelogram is the same as that in Figure 7, 
but the dark region is nearer to the diagonal bounds, 
indicating a wider range of availability changes, since the 
mean availability distance between a replica of the 
minimum file and a replica of a random file is greater than 
that between replicas of two random files. 

Figure 8 differs from Figure 7 in several ways.  The 
right half of the upper quadrant contains no points; these 
would indicate improvements to files with above-mean 
availabilities, but MIN-RAND only improves the minimum-
availability file.  Few points in the right quadrant lie near 
the identity axis beyond 6 nines; these would indicate 
small decreases to files with above-mean availability, but 
this requires swapping replicas with similar availability 
values, which are unlikely in a minimum-availability file.  
There are more points below AT = 2.8 near the identity 
axis, indicating swaps between two low-availability files, 
which are more likely with MIN-RAND than RAND-RAND, since 
one of the swapped files always has minimum availability. 

Figure 9 is a density plot of file availability changes 
during the execution of the MIN-MAX algorithm for R = 3.  
The dashed parallelogram is the same as that in Figure 7.  
The dark region meets the diagonal bounds, indicating the 

full range of possible availability changes, because the 
minimum- and maximum-availability files are likely to 
have replicas with extremal availability values. 

There are few points in the upper and lower quadrants, 
and all such points lie near the complementary axis.  A 
replica swap between the minimum- and maximum-
availability files can only increase the former and decrease 
the latter, and it is rare that this increase or decrease is 
sufficient to widen the absolute difference between either 
file’s availability and the mean file availability 

There are no points between source availabilities of 3.9 
and 4.9 nines, since for R = 3, MIN-MAX freezes at a local 
minimum, where all files in the 2 % selection range have 
availabilities beyond these values. 

Figure 10 is a density plot of file availability changes 
during the execution of the MIN-MAX algorithm for R = 4.  
Aside from several differences in scale, this plot is similar 
to that for R = 3, with the exception of points near the 
origin (5.9, 5.9) of the plot, since MIN-MAX does not freeze 
at a noticeably sub-optimal local minimum when R = 4. 

In summary, MIN-MAX achieves its high rate of 
availability improvement by avoiding relocations that 
have negative utility.  For the other two algorithms, one 
quarter of all relocations have negative utility, which 
retards the algorithms’ improvements to effective system 
availability. 
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Figure 8. File availability change density (MIN-RAND, R = 3) 
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Figure 9. File availability change density (MIN-MAX, R = 3) 
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Figure 10. File availability change density (MIN-MAX, R = 4) 



 

7. Placement details 

The results in Section 5 showed minor differences 
among the algorithms with regard to the final ESA each 
could achieve.  In the present section, we probe further by 
examining the distribution of file availabilities and of the 
replicas that compose each file.  We also compare the 
placements achieved by each algorithm to worst-case 
placements found through theoretic analysis [13].  The 
metric used for determining the theoretic worst case is the 
availability of the minimum file, rather than the effective 
system availability.  Our definition of the latter (Equation 
1) assumes that file accesses are not correlated to file 
availability, but if low-availability files happen to be very 
popular, then the minimum file availability at least places 
a hard lower bound on the true system availability. 

Theoretic placements use the uniform approximation of 
machine availability illustrated in Figure 1.  We illustrate 
worst-case placements of 50 files, since this is the count of 
files per machine in our simulation. 

For the replicas, the vertical axis is quantized in steps 
of size 0.1 nines to aggregate files with similar replica 
breakdowns.  Files are sorted horizontally in increasing 
order of replica availability, from the most available 
replica (0) to the least available replica (R – 1).  Densities 
are shown cumulatively, so the frequency of a particular 
configuration can be found by drawing vertical lines at 
each end of a region and taking the difference between the 

cumulative density values of the two points.  For example, 
in Figure 11, there is a region (about 3 millimeters wide) 
between cumulative densities 0.45 and 0.50, which shows 
file availability of 4.4 and replica availabilities of 2.6, 1.6, 
and 0.1 (an inexact sum since the vertical axis is quantized 
for replicas but not for files), meaning 5 % (= 0.50 – 0.45) 
of all files have this particular replica availability makeup. 

Figure 11 illustrates the placement achieved by RAND-
RAND when R = 3.  The placement for R = 4 (not shown) is 
substantially similar.  When the algorithm freezes, all file 
availabilities are tightly distributed in the range 4.4 to 4.5 
nines.  Figure 12 shows a theoretic worst-case placement 
for RAND-RAND, in which the minimum file availability (at 
the left edge of the graph) is 4.0 nines.  At this point, no 
replica exchange between any pair of files reduces the 
absolute availability difference between the files. 

Figure 13 illustrates the placement achieved by MIN-

RAND when R = 3.  The placement for R = 4 (not shown) is 
substantially similar.  When the algorithm freezes, the 
minimum file availability is 4.4 nines, and 98 % of files 
have availabilities no greater than 4.5 nines.  The tails 
protruding upward from the main mass of file 
availabilities are a consequence of MIN-RAND’s attention to 
low-availability files over high-availability files.  Figure 
14 shows a theoretic worst-case placement for MIN-RAND, 
in which the minimum file availability (at the right edge of 
the graph) is 3.7 nines.  This is a far more complex 
placement than the worst-case placement for RAND-RAND. 
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Figure 11. Simulated replica placement (RAND-RAND, R = 3) 
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Figure 12. Worst-case replica placement (RAND-RAND, R = 3) 
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Figure 13. Simulated replica placement (MIN-RAND, R = 3) 
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Figure 14. Worst-case replica placement (MIN-RAND, R = 3) 



 

Figure 15 illustrates the file placement achieved by MIN-

MAX when R = 3, which is dramatically different than the 
placements for the other algorithms.  When the algorithm 
freezes, file availabilities are distributed throughout the 
wide range from 3.9 to 4.9 nines, but 2 % of files have 
availabilities above this range, and another 2 % are below.  
None of the files within the 2 % upper selection range can 
be swapped with any of the files in the 2 % lower 
selection range to decrease their absolute availability 
difference.  The minimum file availability is 3.4 (and the 
maximum is 5.9).  Figure 16 shows a theoretic worst-case 
placement for MIN-MAX when R = 3, in which the minimum 
file availability (at the left edge of the graph) is 2.7 nines. 

Figure 17 illustrates the file placement achieved by MIN-

MAX when R = 4, which appears more similar to the other 
algorithms than it does to MIN-MAX when R = 3.  When the 
algorithm freezes, all file availabilities equal 5.9, which is 
extremely tight.  Figure 18 shows a theoretic worst-case 
placement for MIN-MAX when R = 4, in which the minimum 
file availability (at the right edge of the graph) is 3.3. 

In summary, MIN-MAX has a bad worst-case placement, 
and for R = 3, simulation yields a weak placement when 
judged by the metric of minimum file availability, which 
is important if the assumption of uniform access patterns 
turns out to be significantly incorrect.  The worst case for 
MIN-RAND is significantly better, and that for RAND-RAND is 
better still.  Both of these algorithms achieve good 
availability distributions under simulation. 

8. Machine failure correlation 

To assess our assumption that machine downtimes are 
sufficiently uncorrelated to calculate file availability as the 
sum of replica availabilities, we periodically interrupt the 
transient progressions of Figures 3 and 4 to calculate the 
actual downtime of each file, based on the vectors of ping 
responses of the machines holding replicas of the file.  The 
negative decimal logarithm of the mean file downtime is 
the actual ESA of the placement.  Figure 19 plots this 
actual ESA versus the ESA as estimated from summing 
replica availabilities.  The values match within 3 % up to 5 
nines but diverge by nearly 10 % for larger values. 
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Figure 15. Simulated replica placement (MIN-MAX, R = 3) 
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Figure 16. Worst-case replica placement (MIN-MAX, R = 3) 
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Figure 17. Simulated replica placement (MIN-MAX, R = 4) 
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Figure 18. Worst-case replica placement (MIN-MAX, R = 4) 
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Figure 19. Actual calculated ESA vs. linearly estimated ESA 



 

Figure 19 also shows a second-order polynomial model 
of the relationship between actual and estimated ESA, as 
determined by a least-squares fit.  The fitted equation is: 

 84.0ESA5.1ESA078.0AES
2

−+−=′  (4)

These results suggest that R = 4 begins to exceed the 
limit of machine failure independence. 

9. Related work 

In the Farsite environment, the main cause of machine 
unavailability is users’ turning off their machines [6], 
rather than machine failures or network partitions.  In 
systems built of dedicated components, understanding the 
causes of machine failure [22] can be used in component-
based reliability analysis [34] to evaluate a distributed 
system’s availability.  Different analysis strategies [4, 28] 
are appropriate for systems prone to network partitions, 
where results [29] indicate that replication cannot improve 
file availability by more than log10(1/2) ª 0.3 nines.  
System availability is limited by highly correlated failures 
such as site-wide power outages, but techniques for 
dealing with such issues [19] are orthogonal to our work. 

In Farsite, consistency is maintained by a distributed 
directory service using a Byzantine fault-tolerant protocol 
[9].  Updates to files are propagated lazily from the client 
machine that performs the modification to the machines 
that store replicas.  Thus, we do not employ consistency 
protocols [1, 16, 20, 21] among machines storing replicas. 

Some earlier work on file placement focused on access 
load balancing [7, 33] rather than availability.  Others 
addressed availability [25] but not automated replica 
placement.  A significant body of work concerns file 
migration [8, 15, 24, 31], relocating replicas to machines 
near points of high usage, whereas we explicitly ignore 
geographic issues because in Farsite’s target environment, 
all machines are interconnected by a low-latency network.  
McCue and Little [26] simulated a replica placement 
algorithm that yields significantly greater availability than 
random placement but which requires global coordination. 

Other serverless distributed file systems include xFS 
[2] and Frangipani [32], which provide high availability 
and reliability through distributed RAID rather than full 
replication.  Archival Intermemory [18] and OceanStore 
[23] use erasure codes and widespread distribution to 
avoid data loss.  The Eternity Service [3] uses replication 
in a very wide scale to prevent loss even under organized 
attack, but does not address automated placement of data 

replicas.  Napster [27] and Gnutella [17] provide services 
for finding files but do not explicitly replicate files nor 
determine storage locations.  Freenet [10] generates and 
relocates replicas near points of usage. 

In addition to the current paper, our work on file replica 
placement includes competitive analysis [12], theoretic 
analysis using an analytic model of machine availability 
[13], and an exploration of systems issues [14]. 

10. Summary and conclusions 

Farsite is a secure, serverless, highly scalable, fully 
distributed file system that provides high degrees of file 
reliability and availability by replicating files and storing 
the replicas on multiple desktop machines.  The system 
monitors machine availability and places file replicas to 
maximize effective system availability, using a distributed 
hill-climbing algorithm that successively exchanges the 
machine locations of two file replicas.  Large-scale 
simulation of three candidate placement algorithms using 
machine availability data from over 50,000 desktop 
computers yields the results summarized in Table 1.  The 
theoretic results are for three file replicas, and simulation 
results are for the worse of three or four replicas. 

When viewed from the perspective of algorithmic 
efficiency, MIN-MAX is the best of these algorithms:  It 
improves the effective system availability with a progress 
half-life of 0.06 moves per replica, in contrast to the 0.12 
of MIN-RAND or the 1.1 of RAND-RAND.  MIN-MAX achieves 
this high rate of progress through efficient replica 
relocation:  99 % of all relocations have positive utility, 
and the mean relocation utility (Eq. 3) is 0.37.  By 
contrast, only 77 % of MIN-RAND relocations and 72 % of 
RAND-RAND relocations have positive utility, and their mean 
relocation utility values are 0.16 and 0.13, respectively. 

However, if judged by placement efficacy, RAND-RAND 
wins, and MIN-RAND is a close second.  Simulations show 
that all three algorithms achieve good values of effective 
system availability, but when R = 3, MIN-MAX results in a 
minimum file availability that is only 3/4 of the mean, 
whereas RAND-RAND and MIN-RAND have minimum file 
availabilities very close to the mean.  Competitive analysis 
(for R = 3) [12] shows that RAND-RAND and MIN-RAND are 
equivalently competitive in the general case, whereas MIN-

MAX is not competitive.  Theory also shows [13] that with 
a model of actual machine availability (Figure 1), RAND-
RAND finds slightly better worst-case placements than MIN-

RAND, which is significantly better than MIN-MAX. 

Table 1. Summary of results 

Metric RAND-RAND MIN-RAND MIN-MAX Reference 

ESA progress half-life (moves per replica) t ª 1.1 t ª 0.12 t ª 0.06 § 5 

Mean utility of replica relocation Um ª 0.13 Um ª 0.16 Um ª 0.37 § 6 

Percentage of relocations with positive utility 72 % 77 % 99 % § 6 

Minimum file availability competitive ratio r ª 0.99 r ª 0.99 r ª 0.77 § 7 

 theoretic (uniform machine availability) r = 8/9 r = 22/27 r = 1/2 [13] 

 theoretic (general machine availability) r = 2/3 r = 2/3 r = 0 [12] 



 

The results of the studies presented in this paper show 
that MIN-RAND provides a reasonable trade-off between 
efficiency and efficacy, and if our system were 
constrained to use a single algorithm, this one appears to 
be the best choice.  A perhaps better alternative is to use a 
combination of algorithms: using MIN-MAX unless and until 
it freezes at a noticeably sub-optimal local minimum and 
then using MIN-RAND for further refinement if necessary. 
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