

Large-Scale Simulation of Replica Placement Algorithms

for a Serverless Distributed File System

John R. Douceur and Roger P. Wattenhofer
Microsoft Research

 {johndo, rogerwa}@microsoft.com

Abstract
Farsite is a scalable, distributed file system that logically
functions as a centralized file server but that is physically
implemented on a set of client desktop computers. Farsite
provides high degrees of reliability and availability by
storing replicas of files on multiple machines. Replicas
are placed to maximize the effective system availability,
using a distributed, iterative, randomized placement
algorithm. We perform a large-scale simulation of three
candidate algorithms using machine availability data
collected from over 50,000 desktop computers. We find
that algorithmic efficiency and placement efficacy run
counter to each other. We fit analytic functions to the
improvement rates and provide explanations for the fitted
curves. We explore the algorithms’ properties through
study of their dynamic behavior. We visualize algorithmic
placements and compare them to theoretical worst cases.
We quantify the degree of machine failure correlation and
develop a formula to approximate its effect.

1. Introduction

This paper analyzes algorithms for automated
placement of file replicas in the Farsite [6] system, using
simulations based on large-scale measurement data. In the
Farsite distributed file system, multiple replicas of files are
stored on multiple machines, so that files can be accessed
even when some of the machines are unavailable (either
turned off or inaccessible). The purpose of the placement
algorithm is to determine an assignment of file replicas to
machines that maximally exploits the different levels of
availability provided by different machines.

The number of replicas of each file, R, is fixed by the
system. Given measurements of machine availabilities [6]
and the efficacy of our algorithms, we find that to attain
overall system availability in the desirable range of 4 to 5
nines requires 3 or 4 replicas of each file, so we study the
behavior of our algorithms given these two values for R.

We require algorithms that can improve an existing
placement, so we concentrate on hill-climbing algorithms
that successively exchange the machine locations of two
file replicas. We investigate the properties of distributed
versions of three such algorithms: (1) RAND-RAND, which
swaps replica locations between any pair of files, (2) MIN-

RAND, which swaps replica locations between a minimum-
availability file and any other file, and (3) MIN-MAX, which

swaps replica locations between a minimum-availability
file and a maximum availability file.

We find that in terms of algorithmic efficiency, the MIN-

MAX algorithm performs best, MIN-RAND second, and RAND-
RAND the worst. In terms of placement efficacy, RAND-RAND
is the best, MIN-RAND is again second, and MIN-MAX is the
worst. The algorithms thus present a trade-off between
these two desirable qualities.

Section 2 overviews the Farsite system. Sections 3 and
4 describe the algorithms and the environment of our
simulation. Sections 5 – 8 detail the algorithms’ transient
improvement, dynamic behavior, final placement patterns,
and influence by machine failure correlation. Sections 9
and 10 wrap up with related work and conclusions.

2. Background

Farsite [6] is a secure, highly scalable, serverless,
distributed file system that logically functions as a
centralized file server without requiring any physical
centralization whatsoever. The system’s computation,
communication, and storage are distributed among the
client computers participating in the system. Farsite runs
on a networked collection of desktop computers in a large
corporation or university without interfering with users’
local tasks and without requiring users to modify their
behavior. As such, it needs to provide a high degree of
security and fault tolerance without the physical protection
and continuous support enjoyed by centralized servers.

Since people turn off their desktop machines whenever
they wish, without regard for other users who may wish to
remotely access the machine’s resources, Farsite employs
a high degree of replication in its storage of file and
directory data. Since desktop machines are not physically
secured, Farsite must be resilient to arbitrary malicious
behavior on a subset of the machines that form the system
infrastructure. It resists such attacks using two techniques:
a Byzantine-fault-tolerant protocol and cryptographically
secure distributed random number generation.

Directories are implemented by groups of machines
that interact using a Byzantine-fault-tolerant protocol [9],
which guarantees correctness if fewer than one third of the
machines misbehave in any manner. A group of machines
collectively managing a directory is called a directory
host. Each directory host implements multiple directories,
since there are ~104 directories on a typical machine [11].

If any single member of a directory host can force the
selection of another host for an arbitrary operation, then a
single malicious machine can compromise system
security. Farsite resists such attacks via cryptographically
secure distributed random number generation [5] when
determining values for non-deterministic operations.

Files are stored on file hosts, which are undistinguished
machines in the system. Every machine functions as a file
host, as a component of one or more directory hosts, and
as a local client. Farsite provides four properties for the
files that it stores in file hosts: privacy, integrity,
reliability, and availability. Data privacy is afforded by
encryption, and data integrity by one-way hash functions
and digital signatures [30]. Reliability (data persistence)
is provided by making multiple replicas of each file and
storing the replicas on different machines. The topic of
the present paper is file availability, in the sense of a
user’s being able to access a file at the time it is requested.

Like reliability, file availability is provided by storing
multiple file replicas on different machines. However,
whereas the probability of permanent data-loss failure
(such as disk head crashes) is assumed to be identical for
all machines, the probability of transitory unavailability
(such as a machine’s being powered off temporarily) has
been shown to be heterogeneous by a five-week series of
hourly measurements of more than 50,000 desktop
machines at Microsoft [6]. This study also concluded that
the times at which different machines are unavailable
appear predominantly uncorrelated with each other.

We state availability as the negative decimal logarithm
of the fraction of time a machine or file is inaccessible,
yielding a unit of “nines.” For example, a machine with a
fractional uptime of 0.99 has –log10(1 – 0.99) = 2 nines of
availability. Given uncorrelated machine downtimes, the
fraction of time a file is unavailable equals the product of
the fractional downtimes of the machines that store the
file’s replicas. Therefore, expressed logarithmically, the
availability of a file equals the sum of the availabilities of
the machines that store the file’s replicas.

Farsite monitors machine availability and places file
replicas to maximize the availability of files to users.
Files that a client has recently accessed are stored in a
cache on the client machine; files not recently accessed
must be retrieved from a remote file host. Since we make
no assumptions about the likelihood of accesses to files
not recently accessed, we set the file-placement objective
to be maximizing the success probability of accessing a
random file at a random time. We express this objective
as the negative logarithm of the access failure probability,
which we call the effective system availability (ESA),
measured in units of nines. Given N files each with
availability ai, ESA can be calculated as:

 ∑
−

=

−

−=

1

0

10
10

1
logESA

N

i

a
i

N

 (1)

This value is dominated by low-availability files. For a
given value of mean file availability, ESA is maximized
by minimizing the file availability variance.

3. Algorithms

To be suitable for a secure, serverless, distributed file
system, a placement algorithm must have three properties:
• distributed – Decisions must be made by small machine

groups without central coordination. Communication
and storage must not grow with the system size.

• iterative – The algorithm must improve an existing
placement incrementally without requiring a complete
re-allocation of storage when conditions change.

• randomized – Security requires that randomness drive
the selection of machines that determine a placement.

We thus investigate a family of randomized, swap-based,
hill-climbing algorithms. At a high level, a directory host
selects a file, randomly selects another directory host
(possibly itself) which also selects a file, and determines
whether it can bring the availability values of the two files
closer together by swapping machine locations of one
replica from each file. If so, it performs the swap. Swaps
can only be made if there is sufficient free space on each
machine to accept the replicas that are being relocated.

We investigate three algorithms: (1) RAND-RAND, in
which each directory host randomly selects a file, (2) MIN-

RAND, in which one host selects its minimum-availability
file and the other selects a random file, and (3) MIN-MAX, in
which one host selects its minimum-availability file and
the other selects its maximum-availability file. RAND-RAND
is the most general strategy, so it represents a baseline for
comparison with the other algorithms. MIN-RAND focuses
on low-availability files, since they have the greatest
impact on ESA. MIN-MAX exploits the fact that high-
availability files afford the most opportunity for improving
low-availability files.

4. Simulated environment

Our simulated environment is an approximation of a
real environment measured for an initial study of Farsite
feasibility [6]. We simulate file placement on a set of
51,662 machines for which we have availability data given
by a 5-week set of hourly ping snapshots. The cumulative
distribution of machine availabilities, shown in Figure 1,
is approximately uniform in the range of 0 to 3.0 nines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

machine availability (nines)

c
u
m
u
la
ti
v
e
 f
re
q
u
e
n
c
y

measured uniform

Figure 1. Machine availability distribution

File sizes are governed by a binary lognormal
distribution with m(2) = 12.2 and s(2) = 3.43 [11]. We
simulate the placement of 2,583,100 files, averaging 50
files per machine. This value is far smaller than it would
be in a real system, but we cannot significantly increase it
without exceeding the memory limit of the 512-MB
computer we use for simulation. In simulations with
smaller counts of files per machine, the algorithms do not
appear to be sensitive to this value. We maintain excess
storage capacity in the system, without which it would not
be possible to swap file replicas of different sizes. The
mean value of this excess capacity is 10 % of each
machine's storage space, and we limit file sizes to less than
this mean value per machine.

At each step, a pair of files is selected randomly. To
account for the distributed nature of this selection in a real
system, we set a selection range for minimum- and
maximum-availability files to 2 %, to be consistent with a
mean value of 50 files per machine. In other words, the
"minimum-availability" file is drawn from the set of files
with the lowest 2 % of availabilities, and the "maximum-
availability" file is drawn from the set of files with the
highest 2 % of availabilities.

We begin each simulation run by placing the file
replicas randomly on machines. Figure 2 shows the
distribution of file availability with random replica
placement. With 3 replicas, the mean file availability is
4.4 nines; placing the replicas randomly yields an ESA of
2.2 nines. With 4 replicas, the mean file availability is 5.9
nines; placing the replicas randomly yields an ESA of 2.9
nines. In both cases, the minimum file availability is near
zero. Random placement thus makes poor use of the
availability of the machines in the system.

5. Transient Analysis

Figures 3 and 4 show the evolution of effective system
availability for replication factors of 3 and 4, respectively,
beginning with a random placement and progressively
applying one of the algorithms. For three replicas, MIN-

MAX achieves a slightly lower final ESA than the others:
For R = 3, ESARR = ESAMR = 4.4 and ESAMM = 4.3. For
R = 4, ESA = 5.9 for all algorithms.

In both cases, the RAND-RAND algorithm makes the
slowest improvement to ESA, with a progress half-life of
0.88 (R = 3) or 1.1 (R = 4) moves per replica. MIN-RAND is
considerably faster, with a progress half-life of 0.12. MIN-

MAX is the fastest, with a progress half-life of 0.06.
We have attempted to model the transient ESA curves

in Figures 3 and 4 with exponential approximations. The
MIN-MAX curves are well approximated (RMS error < 2 %)
by an exponential with a time constant of 0.093 moves per
replica, as shown in Figure 5. The MIN-RAND curves are
well approximated by a 2-stage hyperexponential with a
primary (a = 0.61) time constant of 0.093 and a secondary
(1 – a = 0.39) time constant of 0.76, as shown in Figure 6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

file availability (nines)

c
u
m
u
la
ti
v
e
 f
re
q
u
e
n
c
y

R = 3 R = 4

Figure 2. File availability distribution with random placement

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

moves per replica

e
ff
e
c
ti
v
e
 s
y
s
te
m
 a
v
a
il
a
b
il
it
y

(n
in
e
s
)

MIN-MAX MIN-RAND RAND-RAND

Figure 3. ESA vs. replica relocations (R = 3)

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

moves per replica

e
ff
e
c
ti
v
e
 s
y
s
te
m
 a
v
a
il
a
b
il
it
y

(n
in
e
s
)

MIN-MAX MIN-RAND RAND-RAND

Figure 4. ESA vs. replica relocations (R = 4)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

moves per replica

im
p
ro
v
e
m
e
n
t
to
 E
S
A

(f
ra
c
ti
o
n
 o
f
to
ta
l)

R = 3 R = 4 exponential

Figure 5. ESA improvement vs. relocations (MIN-MAX)

To explain the suitability of exponential fits to these
algorithmic progressions, we offer the following
conjectures: Aggressive hill climbing algorithms, such as
MIN-MAX, tend to follow decay curves because they make
the best available improvement at each step, and over
time, the quality of remaining available improvements
decreases as the good ones are used up. These decay
curves tend to be exponential because each increment
affects a fixed-size fraction of the system (i.e., one pair of
files), so at each step, the realized improvement is
proportional to the remaining potential improvement.

The aggressiveness of iterative improvement is
substantially reduced by swapping the minimum-
availability file with a random file (MIN-RAND) instead of
with the maximum-availability file (MIN-MAX), thereby
introducing wide variation into the quality of improvement
steps. Consequently, rather than increasing the time
constant of the exponential progression, MIN-RAND retains
the same exponential time constant as MIN-MAX (0.093) and
adds a second exponential stage with an order-of-
magnitude greater time constant (0.76). The mixing
coefficient, a, describes the combination of time constants
tk. To express this instead as the mixing of improvement
rates, we find a coefficient b by solving the following
equation:

 ()
()

2121

1
1

1

1

1

τ
β

τ
β

τατα
−+=

−+

(2)

The result, b = 0.16, can be interpreted as a binary
approximation of the continuum of step quality resulting
from random selection of one of the files to swap: Each
step has a 0.16 probability of being good (improving with
a time constant of 0.093) and a 0.84 probability of being
mediocre (improving with a time constant of 0.76).

The RAND-RAND progression does not appear to follow a
hyperexponential at all. Instead, it appears nearly linear to
around 1.5 moves per replica before it starts tapering off.
Since the replica relocations that most affect the effective
system availability are those of low-availability files, it is
likely that many of the RAND-RAND swaps barely affect the
ESA. As a consequence, the improvement per step is not
heavily dependent upon the number of improvements
made up to that point.

6. Dynamic behavior

The results in Section 5 showed significant speed
differences among the algorithms. In the present section,
we seek to understand the cause of these differences by
examining the algorithms’ dynamic behavior. Each swap
changes the availabilities of the two files that exchange
replica locations. For every change to a file’s availability
in the placement progression, we record the availability of
the file before it is changed (the source availability AS)
and the availability of the file after it is changed (the
target availability AT). We then plot the target availability
versus the source availability of every change, as a density
plot on a two-dimensional grid (e.g., Figure 7).

We divide the density plot into quadrants in a non-
standard way: The axes are rotated by 45∞ from the
Cartesian axes, and they intersect at a point whose
abscissa and ordinate both equal the mean file availability
Am. We refer to the axis for which the source and target
availabilities are identical as the identity axis; points along
this axis indicate zero change to a file’s availability. We
refer to the other axis as the complementary axis; points
along this axis indicate a change that maintains the
magnitude but reverses the sign of the difference between
a file’s availability and the mean file availability.

The utility of a change can be evaluated by comparing
the absolute difference between the mean file availability
and the file’s availability before the change to the absolute
difference between the mean file availability and the file’s
availability after the change:

 µµ
AAAAU

TS
−−−=

 (3)

The utility of a change is high if it succeeds in bringing
the availability of the file significantly closer to the mean
file availability. The utility is negative if it takes the
availability of the file away from the mean file
availability. A file can undergo a negative utility change
when one of its replicas is swapped with a replica of
another file that incurs a positive utility change of greater
magnitude. Availability changes in the left and right
quadrants have positive utility, and those in the upper and
lower quadrants have negative utility.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

moves per replica

im
p
ro
v
e
m
e
n
t
to
 E
S
A

(f
ra
c
ti
o
n
 o
f
to
ta
l)

R = 3 R = 4 2-stage hyperexponential

Figure 6. ESA improvement vs. relocations (MIN-RAND)

0 1 2 3 4 5 6 7 8 9

source availability H ninesL

0

1

2

3

4

5

6

7

8

9

t
e

gr
at

ytili
b

ali
a
v

a
H

s
e

ni
n

L

Figure 7. File availability change density (RAND-RAND, R = 3)

Figure 7 is a density plot of file availability changes
during the execution of the RAND-RAND algorithm for R = 3.
The plot for R = 4 (not shown) is substantially similar.
The vast majority of points are confined within the dashed
parallelogram. Exceeding the horizontal bounds AT = 2.8
or AT = 6.0 requires an extremely low or high target
availability, which requires an even more extreme source
availability, either of the file itself (in the left and right
quadrants) or of the file with which it is swapped (in the
upper and lower quadrants). Such extreme files are rare.

No points lie outside the diagonal bounds AT = AS + 3.0
and AT = AS – 3.0. It is not possible to change a file’s
availability by more than 3 nines in a single swap, because
the replica availability range is only 3 nines. Since files
are selected at random, few swaps are between extreme
files, so most availability changes are within two nines.

Figure 8 is a density plot of file availability changes
during the execution of the MIN-RAND algorithm for R = 3.
The plot for R = 4 (not shown) is substantially similar.
The dashed parallelogram is the same as that in Figure 7,
but the dark region is nearer to the diagonal bounds,
indicating a wider range of availability changes, since the
mean availability distance between a replica of the
minimum file and a replica of a random file is greater than
that between replicas of two random files.

Figure 8 differs from Figure 7 in several ways. The
right half of the upper quadrant contains no points; these
would indicate improvements to files with above-mean
availabilities, but MIN-RAND only improves the minimum-
availability file. Few points in the right quadrant lie near
the identity axis beyond 6 nines; these would indicate
small decreases to files with above-mean availability, but
this requires swapping replicas with similar availability
values, which are unlikely in a minimum-availability file.
There are more points below AT = 2.8 near the identity
axis, indicating swaps between two low-availability files,
which are more likely with MIN-RAND than RAND-RAND, since
one of the swapped files always has minimum availability.

Figure 9 is a density plot of file availability changes
during the execution of the MIN-MAX algorithm for R = 3.
The dashed parallelogram is the same as that in Figure 7.
The dark region meets the diagonal bounds, indicating the

full range of possible availability changes, because the
minimum- and maximum-availability files are likely to
have replicas with extremal availability values.

There are few points in the upper and lower quadrants,
and all such points lie near the complementary axis. A
replica swap between the minimum- and maximum-
availability files can only increase the former and decrease
the latter, and it is rare that this increase or decrease is
sufficient to widen the absolute difference between either
file’s availability and the mean file availability

There are no points between source availabilities of 3.9
and 4.9 nines, since for R = 3, MIN-MAX freezes at a local
minimum, where all files in the 2 % selection range have
availabilities beyond these values.

Figure 10 is a density plot of file availability changes
during the execution of the MIN-MAX algorithm for R = 4.
Aside from several differences in scale, this plot is similar
to that for R = 3, with the exception of points near the
origin (5.9, 5.9) of the plot, since MIN-MAX does not freeze
at a noticeably sub-optimal local minimum when R = 4.

In summary, MIN-MAX achieves its high rate of
availability improvement by avoiding relocations that
have negative utility. For the other two algorithms, one
quarter of all relocations have negative utility, which
retards the algorithms’ improvements to effective system
availability.

0 1 2 3 4 5 6 7 8 9

source availability H ninesL

0

1

2

3

4

5

6

7

8

9

t
e

gr
at

ytili
b

ali
a
v

a
H

s
e

ni
n

L

Figure 8. File availability change density (MIN-RAND, R = 3)

0 1 2 3 4 5 6 7 8 9

source availability H ninesL

0

1

2

3

4

5

6

7

8

9

t
e

gr
at

ytili
b

ali
a
v

a
H

s
e

ni
n

L

Figure 9. File availability change density (MIN-MAX, R = 3)

0 1 2 3 4 5 6 7 8 9 10 11 12

source availability H ninesL

0

1

2

3

4

5

6

7

8

9

10

11

12

t
e

gr
at

ytili
b

ali
a
v

a
H

s
e

ni
n

L

Figure 10. File availability change density (MIN-MAX, R = 4)

7. Placement details

The results in Section 5 showed minor differences
among the algorithms with regard to the final ESA each
could achieve. In the present section, we probe further by
examining the distribution of file availabilities and of the
replicas that compose each file. We also compare the
placements achieved by each algorithm to worst-case
placements found through theoretic analysis [13]. The
metric used for determining the theoretic worst case is the
availability of the minimum file, rather than the effective
system availability. Our definition of the latter (Equation
1) assumes that file accesses are not correlated to file
availability, but if low-availability files happen to be very
popular, then the minimum file availability at least places
a hard lower bound on the true system availability.

Theoretic placements use the uniform approximation of
machine availability illustrated in Figure 1. We illustrate
worst-case placements of 50 files, since this is the count of
files per machine in our simulation.

For the replicas, the vertical axis is quantized in steps
of size 0.1 nines to aggregate files with similar replica
breakdowns. Files are sorted horizontally in increasing
order of replica availability, from the most available
replica (0) to the least available replica (R – 1). Densities
are shown cumulatively, so the frequency of a particular
configuration can be found by drawing vertical lines at
each end of a region and taking the difference between the

cumulative density values of the two points. For example,
in Figure 11, there is a region (about 3 millimeters wide)
between cumulative densities 0.45 and 0.50, which shows
file availability of 4.4 and replica availabilities of 2.6, 1.6,
and 0.1 (an inexact sum since the vertical axis is quantized
for replicas but not for files), meaning 5 % (= 0.50 – 0.45)
of all files have this particular replica availability makeup.

Figure 11 illustrates the placement achieved by RAND-
RAND when R = 3. The placement for R = 4 (not shown) is
substantially similar. When the algorithm freezes, all file
availabilities are tightly distributed in the range 4.4 to 4.5
nines. Figure 12 shows a theoretic worst-case placement
for RAND-RAND, in which the minimum file availability (at
the left edge of the graph) is 4.0 nines. At this point, no
replica exchange between any pair of files reduces the
absolute availability difference between the files.

Figure 13 illustrates the placement achieved by MIN-

RAND when R = 3. The placement for R = 4 (not shown) is
substantially similar. When the algorithm freezes, the
minimum file availability is 4.4 nines, and 98 % of files
have availabilities no greater than 4.5 nines. The tails
protruding upward from the main mass of file
availabilities are a consequence of MIN-RAND’s attention to
low-availability files over high-availability files. Figure
14 shows a theoretic worst-case placement for MIN-RAND,
in which the minimum file availability (at the right edge of
the graph) is 3.7 nines. This is a far more complex
placement than the worst-case placement for RAND-RAND.

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

cumulative density

a
v
a
il
a
b
il
it
y
 (
n
in
e
s
)

replica 0 replica 1 replica 2 file

Figure 11. Simulated replica placement (RAND-RAND, R = 3)

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

cumulative density

a
v
a
il
a
b
il
it
y
 (
n
in
e
s
)

replica 0 replica 1 replica 2 file

Figure 12. Worst-case replica placement (RAND-RAND, R = 3)

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

cumulative density

a
v
a
il
a
b
il
it
y
 (
n
in
e
s
)

replica 0 replica 1 replica 2 file

Figure 13. Simulated replica placement (MIN-RAND, R = 3)

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

cumulative density

a
v
a
il
a
b
il
it
y
 (
n
in
e
s
)

replica 0 replica 1 replica 2 file

Figure 14. Worst-case replica placement (MIN-RAND, R = 3)

Figure 15 illustrates the file placement achieved by MIN-

MAX when R = 3, which is dramatically different than the
placements for the other algorithms. When the algorithm
freezes, file availabilities are distributed throughout the
wide range from 3.9 to 4.9 nines, but 2 % of files have
availabilities above this range, and another 2 % are below.
None of the files within the 2 % upper selection range can
be swapped with any of the files in the 2 % lower
selection range to decrease their absolute availability
difference. The minimum file availability is 3.4 (and the
maximum is 5.9). Figure 16 shows a theoretic worst-case
placement for MIN-MAX when R = 3, in which the minimum
file availability (at the left edge of the graph) is 2.7 nines.

Figure 17 illustrates the file placement achieved by MIN-

MAX when R = 4, which appears more similar to the other
algorithms than it does to MIN-MAX when R = 3. When the
algorithm freezes, all file availabilities equal 5.9, which is
extremely tight. Figure 18 shows a theoretic worst-case
placement for MIN-MAX when R = 4, in which the minimum
file availability (at the right edge of the graph) is 3.3.

In summary, MIN-MAX has a bad worst-case placement,
and for R = 3, simulation yields a weak placement when
judged by the metric of minimum file availability, which
is important if the assumption of uniform access patterns
turns out to be significantly incorrect. The worst case for
MIN-RAND is significantly better, and that for RAND-RAND is
better still. Both of these algorithms achieve good
availability distributions under simulation.

8. Machine failure correlation

To assess our assumption that machine downtimes are
sufficiently uncorrelated to calculate file availability as the
sum of replica availabilities, we periodically interrupt the
transient progressions of Figures 3 and 4 to calculate the
actual downtime of each file, based on the vectors of ping
responses of the machines holding replicas of the file. The
negative decimal logarithm of the mean file downtime is
the actual ESA of the placement. Figure 19 plots this
actual ESA versus the ESA as estimated from summing
replica availabilities. The values match within 3 % up to 5
nines but diverge by nearly 10 % for larger values.

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

cumulative density

a
v
a
il
a
b
il
it
y
 (
n
in
e
s
)

replica 0 replica 1 replica 2 file

Figure 15. Simulated replica placement (MIN-MAX, R = 3)

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

cumulative density

a
v
a
il
a
b
il
it
y
 (
n
in
e
s
)

replica 0 replica 1 replica 2 file

Figure 16. Worst-case replica placement (MIN-MAX, R = 3)

0

1.5

3

4.5

6

7.5

0 0.2 0.4 0.6 0.8 1

cumulative density

a
v
a
il
a
b
il
it
y
 (
n
in
e
s
)

replica 0 replica 1 replica 2 replica 3 file

Figure 17. Simulated replica placement (MIN-MAX, R = 4)

0

1.5

3

4.5

6

7.5

0 0.2 0.4 0.6 0.8 1

cumulative density

a
v
a
il
a
b
il
it
y
 (
n
in
e
s
)

replica 0 replica 1 replica 2 replica 3 file

Figure 18. Worst-case replica placement (MIN-MAX, R = 4)

2

3

4

5

6

2 3 4 5 6

estim ated ESA (nines)

a
c
tu
a
l
E
S
A
 (
n
in
e
s
)

MIN-MAX MIN-RAND RAND-RAND model

Figure 19. Actual calculated ESA vs. linearly estimated ESA

Figure 19 also shows a second-order polynomial model
of the relationship between actual and estimated ESA, as
determined by a least-squares fit. The fitted equation is:

 84.0ESA5.1ESA078.0AES
2

−+−=′ (4)

These results suggest that R = 4 begins to exceed the
limit of machine failure independence.

9. Related work

In the Farsite environment, the main cause of machine
unavailability is users’ turning off their machines [6],
rather than machine failures or network partitions. In
systems built of dedicated components, understanding the
causes of machine failure [22] can be used in component-
based reliability analysis [34] to evaluate a distributed
system’s availability. Different analysis strategies [4, 28]
are appropriate for systems prone to network partitions,
where results [29] indicate that replication cannot improve
file availability by more than log10(1/2) ª 0.3 nines.
System availability is limited by highly correlated failures
such as site-wide power outages, but techniques for
dealing with such issues [19] are orthogonal to our work.

In Farsite, consistency is maintained by a distributed
directory service using a Byzantine fault-tolerant protocol
[9]. Updates to files are propagated lazily from the client
machine that performs the modification to the machines
that store replicas. Thus, we do not employ consistency
protocols [1, 16, 20, 21] among machines storing replicas.

Some earlier work on file placement focused on access
load balancing [7, 33] rather than availability. Others
addressed availability [25] but not automated replica
placement. A significant body of work concerns file
migration [8, 15, 24, 31], relocating replicas to machines
near points of high usage, whereas we explicitly ignore
geographic issues because in Farsite’s target environment,
all machines are interconnected by a low-latency network.
McCue and Little [26] simulated a replica placement
algorithm that yields significantly greater availability than
random placement but which requires global coordination.

Other serverless distributed file systems include xFS
[2] and Frangipani [32], which provide high availability
and reliability through distributed RAID rather than full
replication. Archival Intermemory [18] and OceanStore
[23] use erasure codes and widespread distribution to
avoid data loss. The Eternity Service [3] uses replication
in a very wide scale to prevent loss even under organized
attack, but does not address automated placement of data

replicas. Napster [27] and Gnutella [17] provide services
for finding files but do not explicitly replicate files nor
determine storage locations. Freenet [10] generates and
relocates replicas near points of usage.

In addition to the current paper, our work on file replica
placement includes competitive analysis [12], theoretic
analysis using an analytic model of machine availability
[13], and an exploration of systems issues [14].

10. Summary and conclusions

Farsite is a secure, serverless, highly scalable, fully
distributed file system that provides high degrees of file
reliability and availability by replicating files and storing
the replicas on multiple desktop machines. The system
monitors machine availability and places file replicas to
maximize effective system availability, using a distributed
hill-climbing algorithm that successively exchanges the
machine locations of two file replicas. Large-scale
simulation of three candidate placement algorithms using
machine availability data from over 50,000 desktop
computers yields the results summarized in Table 1. The
theoretic results are for three file replicas, and simulation
results are for the worse of three or four replicas.

When viewed from the perspective of algorithmic
efficiency, MIN-MAX is the best of these algorithms: It
improves the effective system availability with a progress
half-life of 0.06 moves per replica, in contrast to the 0.12
of MIN-RAND or the 1.1 of RAND-RAND. MIN-MAX achieves
this high rate of progress through efficient replica
relocation: 99 % of all relocations have positive utility,
and the mean relocation utility (Eq. 3) is 0.37. By
contrast, only 77 % of MIN-RAND relocations and 72 % of
RAND-RAND relocations have positive utility, and their mean
relocation utility values are 0.16 and 0.13, respectively.

However, if judged by placement efficacy, RAND-RAND
wins, and MIN-RAND is a close second. Simulations show
that all three algorithms achieve good values of effective
system availability, but when R = 3, MIN-MAX results in a
minimum file availability that is only 3/4 of the mean,
whereas RAND-RAND and MIN-RAND have minimum file
availabilities very close to the mean. Competitive analysis
(for R = 3) [12] shows that RAND-RAND and MIN-RAND are
equivalently competitive in the general case, whereas MIN-

MAX is not competitive. Theory also shows [13] that with
a model of actual machine availability (Figure 1), RAND-
RAND finds slightly better worst-case placements than MIN-

RAND, which is significantly better than MIN-MAX.

Table 1. Summary of results

Metric RAND-RAND MIN-RAND MIN-MAX Reference

ESA progress half-life (moves per replica) t ª 1.1 t ª 0.12 t ª 0.06 § 5

Mean utility of replica relocation Um ª 0.13 Um ª 0.16 Um ª 0.37 § 6

Percentage of relocations with positive utility 72 % 77 % 99 % § 6

Minimum file availability competitive ratio r ª 0.99 r ª 0.99 r ª 0.77 § 7

 theoretic (uniform machine availability) r = 8/9 r = 22/27 r = 1/2 [13]

 theoretic (general machine availability) r = 2/3 r = 2/3 r = 0 [12]

The results of the studies presented in this paper show
that MIN-RAND provides a reasonable trade-off between
efficiency and efficacy, and if our system were
constrained to use a single algorithm, this one appears to
be the best choice. A perhaps better alternative is to use a
combination of algorithms: using MIN-MAX unless and until
it freezes at a noticeably sub-optimal local minimum and
then using MIN-RAND for further refinement if necessary.

References

[1] P. A. Alsberg and J. D. Day, “A Principle for Resilient
Sharing of Distributed Resources”, 2nd International
Conference on Software Engineering, IEEE, Oct 1976, pp.
562-570.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang, “Serverless Network File Systems”, 15th
SOSP, ACM, Dec 1995, pp. 109-126.

[3] R. J. Anderson, “The Eternity Service”, PRAGO-CRYPT
’96, CTU Publishing, Sep/Oct 1996, pp. 242-252.

[4] B. S. Bacarisse and S. Bek Baydere, “Reliability of
Replicated Files in Partitioned Networks”, 1st Workshop on
Management of Replicated Data, IEEE, 1990, pp. 98-101.

[5] J. Benaloh, “Dense Probabilistic Encryption”, Selected
Areas in Cryptography ’94, May 1994, pp. 120-128.

[6] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer,
“Feasibility of a Serverless Distributed File System
Deployed on an Existing Set of Desktop PCs”,
SIGMETRICS 2000, ACM, Jun 2000, pp. 34-43.

[7] A. Brinkmann, K. Salzwedel, and C. Scheideler, “Efficient,
Distributed Data Placement Strategies for Storage Area
Networks”, 12th SPAA, ACM, Jun 2000.

[8] G. Cabri, A. Corradi, and F. Zambonelli, “Experience of
Adaptive Replication in Distributed File Systems”, 22nd
EUROMICRO, IEEE, Sep 1996, pp. 459-466.

[9] M. Castro and B. Liskov, “Practical Byzantine Fault
Tolerance”, 3rd OSDI, USENIX, Feb 1999, pp. 173-186.

[10] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System”, ICSI Workshop on Design Issues in Anonymity
and Unobervability, Jul 2000.

[11] J. R. Douceur and W. J. Bolosky, “A Large-Scale Study of
File-System Contents”, SIGMETRICS ’99, ACM, May
1999, pp. 59-70.

[12] J. R. Douceur and R. P. Wattenhofer, “Competitive Hill-
Climbing Strategies for Replica Placement in a Distributed
File System”, Microsoft Research Technical Report MSR-
TR-2001-60, Jun 2001.

[13] J. R. Douceur and R. P. Wattenhofer, “Modeling Replica
Placement in a Distributed File System: Narrowing the Gap
between Competitive Analysis and Simulation”, (to appear)
ESA 2001, Aug 2001.

[14] J. R. Douceur and R. P. Wattenhofer, “Optimizing File
Availability in a Secure Serverless Distributed File
System”, (to appear) 20th SRDS, IEEE, Oct 2001.

[15] B. Gavish and O. R. Liu Sheng, “Dynamic File Migration in
Distributed Computer Systems”, CACM 33 (2), ACM, Feb
1990, pp. 177-189.

[16] D. K. Gifford, “Weighted Voting for Replicated Data”, 7th
SOSP, ACM, Dec 1979.

[17] Gnutella. http://gnutelladev.wego.com

[18] A. Goldberg and P. Yianilos, “Towards an Archival
Intermemory”, International Forum on Research and
Technology Advances in Digital Libraries, IEEE, Apr 1998,
pp. 147-156.

[19] R. Golding and E. Borowsky, “Fault-Tolerant Replication
Management in Large-Scale Distributed Storage Systems”,
18th SRDS, IEEE, Oct 1999.

[20] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page Jr., G. J.
Popek, and D. Rothmeier, “Implementation of the Ficus
Replicated File System”, 1990 USENIX Conference,
Usenxi, Jun 1990, pp. 63-71.

[21] M. Herlihy, “A Quorum-Consensus Replication Method for
Abstract Data Types”, TOCS 4 (1), ACM, Feb 1986, pp. 32-
53.

[22] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer “Failure
Data Analysis of a LAN of Windows NT Based
Computers”, 18th SRDS, IEEE, Oct 1999.

[23] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao, “OceanStore: An
Architecture for Global-Scale Persistent Storage”, 9th
ASPLOS, ACM, Nov 2000.

[24] Ø. Kure, “Optimization of File Migration in Distributed
Systems”, Technical Report UCB/CSD 88/413, University
of California at Berkeley, Apr 1988.

[25] K. Marzullo and F. Schmuck, “Supplying High Availability
with a Standard Network File System”, 8th ICDCS, IEEE,
Jun 1988, pp. 13-17.

[26] D. L. McCue and M. C. Little, “Computing Replica
Placement in Distributed Systems”, 2nd Workshop on
Management of Replicated Data, IEEE, Nov 1992, pp. 58-
61.

[27] Napster. http://www.napster.com

[28] N. Natarajan and K. Kant, “Maintaining Availability of
Replicated Data in Partition-Prone Networks”, 1st
Workshop on Management of Replicated Data, IEEE, 1990,
pp. 108-112.

[29] L. Raab, “Bounds on the Effects of Replication on
Availabilty”, 2nd Workshop on Management of Replicated
Data, IEEE, 1992, pp. 44-46.

[30] B. Schneier. Applied Cryptography, 2nd Edition. John
Wiley & Sons, 1996.

[31] A. Siegel, K. Birman, and K. Marzullo, “Deceit: A Flexible
Distributed File System”, Summer 1990 USENIX
Conference, USENIX, Jun 1990.

[32] C. Thekkath, T. Mann, and E. Lee, “Frangipani: A Scalable
Distributed File System”, 16th SOSP, ACM, Dec 1997, pp.
224-237.

[33] J. Wolf, “The Placement Optimization Program: A Practical
Solution to the Disk File Assignment Problem”,
SIGMETRICS ’89, ACM, May 1989.

[34] S. M. Yacoub, B. Cukic, and H. H. Ammar, “A
Component-Based Approach to Reliability Analysis of
Distributed Systems”, 18th SRDS, IEEE, Oct 1999.

