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Predicting Unseen Triphones with Senones 
Mei-Yuh Hwang, Member, IEEE, Xuedong Huang, Member, IEEE, and Fileno A. Alleva, Associate Member, IEEE 

Abstract- In large-vocabulary speech recognition, we often 
encounter triphones that are not covered in the training data. 
These unseen triphones are usually backed off to their corre- 
sponding diphones or context-independent phones, which contain 
less context yet have plenty of training examples. In this paper, 
we propose to use decision-tree-based senones to generate needed 
senonic baseforms for these unseen triphones. A decision tree is 
built for each Markov state of each base phone; the leaves of 
the trees constitute the senone pool. To find the senone associated 
with a Markov state of any triphone, the corresponding tree is 
traversed until a leaf node is reached. The effectiveness of the 
proposed approach was demonstrated in the ARPA 5000-word 
speaker-independent Wall Street Journal dictation task. The 
word error rate was reduced by 11% when unseen triphones were 
modeled by the decision-tree-based senones instead of context- 
independent phones. When there were more than five unseen 
triphones in each test utterance, the error rate reduction was 
more than 20%. 

triphone that has sufficient context similarity. To incorporate 
this prediction capability, we propose to use decision trees for 
Markov state modeling. The individual output distributions, 
not the entire phonetic HMM's, are classified by decision trees 
with linguistic binary questions on the tree nodes. 

We build one decision tree for each Markov state of each 
base phone. In other words, we impose two constraints, for 
the sake of simplicity, while constructing our decision trees: 
phone dependency, which prohibits HMM output distributions 
of different phones from being clustered, and state dependency, 
which allows HMM output distributions to be merged only if 
they are associated with the same kth Markov state in the 
model topology. However, to relate the trees for different 
Markov states of the same base phone, global information 
about the entire phonetic model is utilized, which will be 
elaborated in Section 11-B. To determine the associated senone 
for a given triphone state, the corresponding tree is traversed 
until a leaf is reached. The traversal is guided by answering 

HE shared-distribution model (SDM) [9] in the SPHINX- the linguistic question associated with each nonleaf node, T 11 system [8] is an effective method to make full use which has a yes-child and a no-child corresponding to the 
of limited amount of training data. It clusters Markov states question. The senonic decision tree inherits the merits of the 
instead of entire phonetic hidden Markov models (HMM's), agglomerative SDM. More importantly, it also provides the 
leading to a set of clustered output distributions called senones ability to model unseen triphones. 
[ 1 SI. Senones significantly improve recognition accuracy and In the ARPA 5000-word speaker-independent Wall Street 
provide a pronunciation-optimization capability. Journal (WSJ) dictation experiments, we found that if unseen 

The agglomerative SDM approach in [91 has complete free- triphones were always represented by context-independent 
dom to form a shared configuration across different Markov phone models, the decision-tree-based senone performed, as 
states based on the training data. Because it is purely data expected, slightly worse than the agglomerative SDM since 
driven, it is difficult to model a triphone that never occurs in the latter had much more freedom in optimizing the clustering 
the training data. These unseen triphones are usually backed of seen triphones. However, when the unseen triphones were 
off to the corresponding diphones or context-independent modeled by the senonic decision tree, the tree-based approach 
phones, which contain less context yet have plenty of training was able to outperform the agglomerative SDM, which had no 
examples. In dictating large vocabulary tasks or switching to elegant method of modeling unseen triphones. We observed 
new tasks, we often run into new triphones. If we simply back an 11% error rate reduction when the senonic decision tree 
off to context-independent phones or diphones, the quality of predicted unseen triphones, which underlines the importance 
these less detailed models is often not good enough, leading of accurately modeling unseen triphones. When there were at 
to increased search time and search errors. Decision trees have least five unseen triphones for each utterance in the test set, 
been used to model allophones as a top-down generalization the error rate was reduced by more than 20%. Even when 
approach [3], [21, [6] that can be used to model unseen the test set contained few or no unseen triphones, modeling 
triphones. It replaces an unseen triphone with an existing unseen triphones accurately could help the decoder prune 

those wrong paths containing unseen triphones. The proposed 

with Similar imprOV€"ntS [19], [4], [25]. 

an improved version Of the bottom-up 

senonic decision tree. ~ i ~ ~ l l ~ ,  in Section IV, we present 
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11. THE IMPROVED AGGLOMERATIVE 
SHARED-DISTRIBUTION MODEL 

A. Phone Dependency and State Dependency 

The distribution clustering procedure for the SDM in [9] 
disallowed clustering of HMM output distributions across dif- 
ferent phones. For example, the output distributions from any 
lael-triphone were never clustered with those from any Its/- 
triphone. We call this constraint phone dependency. Within the 
same phone, we virtually permitted all possible configurations 
by allowing elements to move from one cluster to another. 
Consequently, the computational complexity was an exponen- 
tial function of the number of objects being clustered, which 
was the number of triphones for a specific base phone times 
the number of output distributions per phonetic model. When 
applying this SDM to a large vocabulwy task like WSJ, the 
cost of the clustering procedure becomes intolerable. To reduce 
complexity and incorporate Markov state-location information, 
state dependency is enforced, where two output distributions 
are allowed to be merged only if they come from the same 
kth Markov state in the model topology. This decision was 
also announced by the SDM studies on the ARPA Resource 
Management task [9], where we found output distributions that 
were in the same cluster were mostly from the same Markov 
state. 

The agglomerative clustering for the SDM is summarized 
in Fig. 1.  It starts from single-element clusters with each 
HMM output distribution as the only element and merges 
consecutively the most similar pair of clusters. Each merge 
step deletes the two merged clusters and creates a new cluster 
that is represented by the average output distribution of the 
component elements. Moreover, to escape from the local 
optimal configuration, an element reshuffling step is performed 
after the merge step because otherwise, the algorithm would 
become a greedy algorithm, where an earlier decision could 
not be undone. 

The distance measure between two clusters at step 2 of 
Fig. 1 is explained in detail in the following section for 
discrete output probabilities. A slight modification to replace 
summation with integration has to be made when applying it 
to continuous densities [15], [18]. In fact, it is easy to prove 
that this distance function also achieves the goal of minimizing 
the decrease in the likelihood of generating the training data 
as the one used in [25] for HMM’s with continuous-density 
output functions. The convergence criterion at step 4 will be 
explained in Section 111-A together with Fig. 3. More details 
can be found in [9]. The difference between the improved 
SDM and the one in [9] is underlined in the figure. 

B. Use of Global Information 
In addition to state dependency, global information about 

the entire phonetic model is also incorporated to measure the 
distance of two output distributions so that there is still some 
relationship between the clusterings of different state locations 
of the same base phone. To elaborate, let’s start with the 
definition of entropy and cross entropy. 

For each base phone p (there a~ about 50 basic phones in American English), 

Estimate all ptriphone HMMs (typically using Baun-Welch algorithm), 

For each M d o v  state k in the model topology (such as the 5-state Bakis topology), 
cluster all the IC-th output distributions of all p-triphones: 

1. Create a singleton cluster for the k-th output distribution of each ptriphone. 

2. Merge the most similar pair of clusters. The dissimilarity measure will ix 
explained in Section 11-B and Formula (2). 

3. Re-shnffie: Move one element from one cluster to another if it results in ar 
improvement. Here. an improvement means a decrease in the total entmpy 01 
all clusters. 

4. Go to step 2 unless some convergence criterion is met (see more explanation in 
Section HI-A). 

Fig. 1 .  
with phone dependency and state dependency. 

Bottom-up agglomerative algorithm for output-distribution clustering 

Entropy and Cross Entropy: Given a discrete probability 
distribution (pd) P with L entries, the entropy is defined as [I] 

i=l 

where pi is an individual probability entry in pd P. Entropy 
measures the expected uncertainty of the source that generates 
the possible events i .  The more uncertain, the bigger the 
entropy. When P is uniform, H ( P )  reaches its maximum, 

Cross entropy is known as a good measure in determining 
the distance between two pd’s [13], [20], [17], [16]. The cross 
entropy (directed divergence) [20] between two pd‘s P and 
Q is defined as 

log, L. 

which is not symmetric (and thus directed). To understand 
the meaning of cross entropy, consider the probability of 
generating event i for p i  times independently, given pd Q 

Pr(data i p i  times I pd Q )  = 4:. 
In other words, 

Pr(data P I pd Q) = nq;‘ 
2 

log Pr( data P I pd Q )  = pi log qz 
i 

I Pi 1% Pi 
i 

with equality being true when pd Q mimics data P’s distribu- 
tion, i.e., when P = Q [l]. The cross entropy with respect to 
data P thus measures how well pd Q resembles pd P. 

Distortion Measure at a Fixed Markov State: When two 
HMM output distributions P and Q are merged, the 
corresponding count entries are summed to get the occurrence 
counts for the resulting pd. We define the distortion incurred 
from merging two pd’s (or the dissimilarity between two pd’s) 
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as the difference in entropy, weighted by the occurrence counts 

where P is the summation of the count entries in P; similarly, 
Q is the summation of the occurrence counts in Q. Thus, 
the distortion is derived to be the cross entropies between the 
original pds and the resulting one, weighted by the original 
occurrence counts. The smaller the distortion is, the more 
similar the two pds are. The notation H is used to remind us 
that the distortion measure is entropy related. The tilde sign 
above it means it is modified entropy (modified by counts). 

Weighting cross entropy by the occurrence count takes 
into account how well each pd is trained. Pd's that appear 
infrequently (small counts) in the training data result in 
small distortion and thus will be merged first in comparison 
with those pd's that occur frequently in the training corpus. 
This makes the infrequent pd's become more trainable after 
clustering. Another advantage of weighting cross entropy by 
the occurrence count is its ability to prevent a big cluster 
getting blindly bigger. To see this, suppose P is a very big 
cluster, compared with Q. Because of the significant gap 
between the occurrence counts of P and e, the count entries 
in P + Q are almost the same as those in P, resulting in 
x ( P ,  P + Q) M 0. Had the cross entropy not been weighted 
by the occurrence count, P and Q could have been merged 
before anther small cluster R got a chance to be collapsed with 
Q since x(R, R + Q) + x( Q, R + Q )  might be greater than 
x(  Q, P + Q). Formula (1) has been used by earlier systems 
such as [21]. 

Global Information Across Different Markov States: 
Formula (1) defines the distance between two pd's that are 
associated with a particular Markov state 5 of two triphones 
that represent the same base phone. To incorporate more 
information for estimating the distance between two Markov 
states and to ensure some relationship among the clusterings of 
different states of the same base phone, we propose to attach 
to each cluster not only the kth pd but also the pd's associated 
with the remaining Markov states. When two clusters are 
merged, all pairwise pd's are added to compute the resulting 
cluster. The net distortion, which arises from merging the 
kth pd's of two clusters, is then defined to be a weighted 
summation of the pairwise distortions 

2 

where A&(i) is defined in (1) with the ith pair of pd's 
considered, and E, wk(i) = 1.0 in order to normalize the net 
distortions across different Markov states. W k ( 2 )  is inversely 
proportional to the topological distance between state k, which 
is the state in question, and state i ,  which is one of the 
remaining states. This emphasizes the information close to the 
interesting spot k .  In other words, the form of the clustering 

welrome 

............. .......................... 
j left phone = S, Z, SH, ZH7 
I_._ ................... ~ ................... ! 

,' *.. .*+ '. 
I... ...... z ............. ......., 
j Iaftphone=nasal~ [ s e6 
.............I................ . 

.e *. 

senone3 senone4 

senonel senone2 

Fig. 2. Decision tree for the first Markov state of / I C /  triphones. 

for each Markov state of the same base phone is exactly the 
same in the sense that all the pds for the entire phonetic HMM 
have to be computed. The difference is the combining weights 
in (2). When state 1 is considered, AH(1) gets the highest 
weight; when state 2 is considered, &(a) has the maximal 
weight. When uniform weights are adopted, the clustering 
becomes exactly the same for different state locations of the 
same phone. That is, when the first states of two triphone 
models are in the same cluster, so will the other pairwise states. 
In other words, it degenerates to the generalized triphone. 
When wk( i )  = SIC%, where Skz = 1 if IC = i ,  otherwise 0, 
information from neighboring states is not used. In [9], it was 
shown that the SDM with W k ( i )  = Skz  was superior than the 
generalized triphone model due to its ability to allow partial 
triphone parameter sharing. 

Formula (2) was the distortion measure for all the exper- 
iments conducted in this paper. We sometimes refer it as 
entropy increase after merging P and &, entropy decrease 
after splitting P -I- &, or simply delta entropy. 

111. THE SENONIC DECISION TREE 

To predict unseen triphones with senones, we extend the 
principle of distribution sharing to decision trees [6] .  In 
particular, we build a decision tree for each Markov state of 
each base phone, as constrained by both phone dependency 
and state dependency. Our system has 50 phones for English. 
When there are five states for each phonetic HMM, that makes 
250 trees in total. A decision tree is a binary tree, with a 
linguistic question associated with each nonleaf node. Fig. 2 
shows an example tree for the first state of / k /  triphones. 

To find the senone associated with any Markov state of any 
triphone, we traverse from the root of the corresponding tree by 
answering the questions until a leaf is reached, where a senone 
is represented. Unseen triphones, which are triphones needed 
in the decoder but never occur in the training data, traverse 
the tree exactly the same way as seen triphones. Thus, we are 
able to elegantly model unseen triphones by senones instead 
of always using either diphones or monophones. 
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1.  Lome a (small) set of appropriate linguistic questions manually. 

2. For each base phone p, 

Estimate all ptriphone HMMs (typically using Bawn-Welch algorithm). 
For each Markov state IC in the model topology, classify all the k-th output 
distributions in all ptriphones, using a hinary tree: 
(a) Put all the IC-th output distributions of all ptriphones into the root node. 
@) Find the best composite question (see explanation in Section 111-A) for 

the mot and compute the delta entropy the question renders according to 
Formula (2). Insea the mot inta a heap of non-expanded nodes. 

(c) Remove fmm the heap the node with maximal delta entmpy and split the 
node. By splitting, all the pds that come from the triphones which answer 
yes to the composite question go to the yes-child node; those which answer 
no to the no-child. 

(d) Find the best composite question and compute the delta entmpy for each of 
the newly created children. Insert the children to the heap of non-expanded 
nodes. 

(e) Go to step (c) unless some stop-growing criterion is met. 
I 

Fig. 3. 
nary trees. 

Algorithm for output-distribution top-down classification using bi- 

A. Construction of the Decision Tree 
Fig. 3 summarizes the construction of the decision tree. The 

linguistic questions selected at step 1 are simple categorical 
questions, querying about the left or right context of a triphone, 
such as “is the lefdright context of the triphone a nasal?’ 
or “is the triphone the first phone of a word?’ Some of the 
useful categories that most English linguists agree are fricative, 
liquid, glides, round-vocalic, labial, alveolar, stops, high and 
low vowels, tense and lax vowels, and so on. Interested readers 
can find more details in [5] .  

Like the agglomerative SDM, each tree node is represented 
by a pd whose count entries are the summations of the count 
entries of all the component pd’s. In addition, to bear the 
global information, pd’s for the remaining states other than 
the one being classified are also computed for evaluating the 
net distortion in (2). The leaves of these decision trees are the 
senones. 

Two fundamental differences between the work here and the 
work in [5] should be noted. First of all, the classification is 
on subphonetic units (i.e., the output distributions) rather than 
on entire phonetic HMM’s. Second, the entropy reduction is 
now defined as (2) shows, with P + Q representing the parent 
node and P and Q representing the children. 

The stop criterion of Fig. 3 step 2(e) and that of Fig. 1 
step 4 are similar. Useful criteria are such as minimal delta 
entropy and minimal occurrence counts of each node (cluster). 
Particularly, in our experiments, we solved the problem in 
two phases. In the first phase of the bottom-up agglomerative 
clustering, we did not stop merging until there was only 
one cluster left for each Markov state of each base phone. 
Similarly, for the top-down classification tree, we grew each 
tree to the fullest until a minimal entropy reduction failed. 

In the second phase, we pruned the merges that had the 
most delta entropy or pruned the tree splits that had the 
least delta entropy until we expected the number of clusters 
(or leaves) left could be well trained by the given training 
corpus. This optimal number of parameters for a given training 
corpus often needs to be tuned by running recognition on some 
independent development data. This is true for almost all the 

k h 
h 

Fig. 4. Composite question 91 @ g4 + 01 ij3 for the root. 9% is the best simple 
question at each node. Black leaves satisfy the composite question. Grey 
leaves do not. 

speech recognition systems. Based on our experiences on the 
Resource Management task [22] ,  we quickly tuned the number 
of senones to be around 7000 for the WSJ phase 0 training 
corpus, which will be elaborated in Section IV. 

Dividing the clustering task into the above two phases 
makes it unnecessary to do the pd merging or tree expanding 
over and over again for tuning the parameter size. The pruning 
phase takes little effort once the pd merging or tree growing 
is finished. 

Composite Questions: At steps 2@) and 2(d) of Fig. 3, 
composite questions, which are formed by conjunctions, dis- 
junctions, andor negations of the simple linguistic questions, 
are built to alleviate the data fragmentation problem, which 
results from the fact that once a split is made, members of a 
node are unable to move around between siblings, resulting in 
similar elements falling into different leaves. 

To form a composite question for a node 5,  we first grow a 
tree of exclusively simple questions under z, using a similar 
algorithm with z as the root. We usually grow the simple 
tree by splitting only four to eight nodes in order to limit the 
number of leaves (note n splits result in n + 1 leaves). Next, 
we try all combinations of distributing the leaves into two 
groups and select the one that has the minimal total entropy. 
Randomly mark one of the groups the black group, and mark 
the other one grey. The composite question is then formed by 
disjoining all the paths to the black group. Each path is formed 
by conjoining all the questions along the path. For example, 
in Fig. 4, the composite question for the root is 

where the plus sign stands for disjunction, concatenation for 
conjunction, and the bar sign for negation. 

Thus, with disjunction operations, we can pull similar leaves 
together to alleviate the data fragmentation problem. However, 
keep in mind that even with composite questions, the decision 
tree usually still suffers less freedom in reconfiguration com- 
pared with the reshuffling step of the bottom-up clustering in 
Fig. 1. This will be evidenced in the experiments in Section 
IV. 

The computation for distributing the leaves of the simple 
tree rooted at node x into two groups is an exponential function 
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right phone = vowel or liquid? J 
yes/ ‘==..* 

senone3 senone4 senonel senone2 

Fig. 5. Decision tree for the last Markov state of / I C /  triphones 

of the number of leaves of the simple tree, which is, at most, 
the total number of elements in x, when each of the leaves 
contains exactly one element. This number is a factor less 
than the entire number of elements in the composite root, 
which the bottom-up distribution clustering always considers 
at the reshuffling of Fig. 1. Our empirical results reflected this 
predicted cost savings, as the decision-tree classification ran 
much faster than the bottom-up agglomerative clustering. 

Given a configuration created by the bottom-up agglomera- 
tive clustering, it is, in theory, possible to form an equivalent 
tree with each leaf corresponding to exactly one of the 
final clusters if we allow the complexity of the composite 
question to be unlimited, and there are a sufficient number 
of detailed simple questions. At that extreme, the decision- 
tree classification converges to the bottom-up agglomerative 
clustering in tenns of the reshuffling capability. 

Cross Validation: Cross validation, like deleted interpola- 
tion [14], is a technique to make the established system (e.g., 
the decision trees) more robust against new testing conditions 
(e.g., a new task). The basic idea is to divide the entire 
available data into two sets. For each data set, we train a set 
of triphone HMM’s represented in the data. We then use one 
set of trained HMM’s to build the decision trees (phase one 
described in Section 111-A), and the other to validate the trees 
(phase two). This validation is a process that prunes, from the 
tree built by the first set of triphone HMM’s, those nodes 
with small entropy reduction calculated by the second set 
of triphofie HMM’s. When a vocabulary-independent system 
[5] is not pursued, cross validation becomes less important, 
especially when there is not much pruning. Particularly, in 
our experiments on the WSJ task, cross validation offered 
little advantage. 

B. Tree Examples 

Figs. 2 and 5 show our experimental partial trees for Markov 
state 1 and 5 of /k/ triphones when the five-state Bakis 

topology is used’ [9]. It is clear that although the same 
form of global information is used for both trees, the entropy 
combining weights are able to select appropriate questions for 
different state locations. 

w. PERFORMANCE AND DISCUSSION 

A. Speech Corpus and SPHINX-II 
To evaluate the senonic decision tree, the SPHINX-I1 system 

for the AFS’A 5000-word WSJ speaker-independent continu- 
ous speech recognition task (nonverbalized punctuation) was 
chosen as our experimental testbed. The standard bigram 
language model, which has a test-set perplexity of 118, was 
used in all the experiments conducted here. There are 7200 
utterances from 84 speakers in the official training corpus, 
resulting in approximately 23 000 triphones when position- 
dependent between-word and within-word triphones are con- 
sidered. Triphones that occur only once or twice (about 6000 in 
total) were discarded to avoid noisy decision during clustering. 

The development set (which is denoted as si-dev5b) consists 
of 367 utterances from nine new speakers and has 2.2 unseen 
triphones per utterance on average.2 The test set, which 
was evaluated in November 1992, consists of 330 utterances 
from eight new speakers and has 2.6 unseen trtphones per 
utterance. During recognition, about 48 000 triphones were 
preconstructed, including those crossing all possible word- 
pairs due to the backoff language model. This number showed 
that a large portion of the triphones needed for ,decoding did 
not occur in the training data. 

The five-state Bakis topology with skipping arcs was em- 
ployed. For simplicity, one-codebook discrete HMM’s were 
used for the agglomerative clustering and tree construction. For 

‘For simplicity, the graph does not show the arcs that skip states 
21t originally consists of 410 utterances from 10 speakers. The utterances 

of the outlier speaker 422, who has a fast spedang rate and a high-pitched 
voice, and the mistranscribed utterance 053c100n are discarded. 
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system 

agglomerative SDM 

(unseen = ci) 

417 

sidev5b nov92 overall # unique senone seq. 

7.5% 8.2% 7.8% 14872 

building the decision trees, we defined 43 linguistic questions 
manually plus three questions about the word position of a 
triphone, for the first step of Fig. 3. 

To decide the weights in (2), we put more weights on 
closer states since neighboring speech has more influence than 
far-away speech. According to our laboratory experiments, 
putting small weights on immediate neighboring states gave 
slightly better accuracy than no weights at all for neighbors. 
Therefore, we empirically decided the following weights for 
the experiments reported in this paper: 

tree senones 

(unseen = ci) 

tree senones 

(unseen = senones) 

Ik - 11 0 1 2 3 4 
q ( i )  ratio 1.00 0.30 0.15 0.10 0.01 

~~ 

8.0% 8.4% 8.2% 8921 

7.5% 7.1% 7.3% 13270 

For instance, for the second Markov state, the net distortion 
measure was 

0.3 1.0 0.3 
1.85 1.85 1.85 
--AI?(l) + -Al?(2) + -Al?(3) 

0.15 0 10 
1.85 1.85 

+ -A&(4) + L A g ( 5 )  

where1.85=0.3+1.0+0.3+0.15+0.1 a s C w k ( i ) = 1 .  
At the end of the agglomerative clustering or the decision- 

tree classification, we obtain a senone mapping table that maps 
each state of each triphone to a senone label. After the senone 
mapping table was generated, 4-codebook sex-dependent semi- 
continuous HMM’s (SCHMM’s) [7] were trained by the 
forward-backward algorithm, during which the triphone output 
distributions were tied according to the senone mapping ta- 
ble. The 4-codebook features included mel-frequency cepstral 
coefficients, first- and second-order differences, and power 
and its differences [8]. Cepstral vectors were normalized 
with the utterance-based cepstral mean. Both the discrete and 
semicontinuous HMM’s had a VQ size of 256. Seven thousand 
senones were determined after tuning on the development set. 
Transition probabilities were context independent. The Viterbi 
beam search [24], [23] was run on male and female models 
separately for each testing utterance; the word sequence with 
the higher score was output as the recognized sentence. 

B. Pe$ormunce and Discussion 

Agglomerative SDM’s versus Decision Tree-Bused Senones: 
Table I shows the word error rates, including insertions, 
deletions, and substitutions, of several systems we constructed. 
The first two rows used context-independent phones to repre- 
sent unseen triphones. The decision-tree-based senonic system 
performed slightly worse than the agglomerative SDM (8.2% 
versus 7.8% word error rate), as expected, since the agglom- 
erative approach was more flexible in considering all possible 
configurations for seen triphones. 

The last column of Table I lists the number of unique senone 
sequences for all the triphones used. This is essentially the 
true number of unique triphone models. For seen triphones, 
the number of unique senone sequences in the agglomerative 
SDM system was more than 1.5 times that of the decision- 
tree-based senones. This demonstrated the agglomerative ap- 
proach’s freedom to reconfigure clusters versus the senonic 

I I I I 

decision tree’s limited grouping under subtrees. Despite the 
limited reconfiguration, the senonic decision tree was able to 
achieve a minimal performance degradation through the help 
of linguistic information. 

Effects of Modeling Unseen Triphones: The strength of de- 
cision trees resides in its ability to model unseen triphones 
using detailed parameters. When unseen triphones were rep- 
resented by the decision tree-based senones instead of by 
context-independent phones, the error rate was reduced to 
7.3%, as the last row of Table I shows.3 As indicated in the 
table, the number of unique senone sequences climbed to a 
comparable level as that of the agglomerative system. It is 
obvious that with the same number of parameters, senonic 
systems (both the agglomerative and the tree systems) were 
able to form many more triphone models (and thus more 
detailed models) than the generalized allophones. For example, 
had 700015 decision-tree-based allophones been used, the 
system would always have had 700015 allophonic models, even 
when unseen triphones were added. 

To further understand the contribution of unseen triphone 
modeling, we analyzed the results from the senonic decision 
tree with and without senonic unseen triphones. Table I1 
illustrates the word error rates in terms of the number of 
unseen triphones contained in each utterance. It also lists the 
number of qualified utterances among these 697 utterances. For 
the overall set, the error rate reduction by modeling unseen 
triphones was 11%. When the number of unseen triphones 
was at least 5 in each utterance, we were able to reduce the 
error by more than 20%.4 Even for utterances that contained 
no unseen triphones, we believe the improved modeling for 
unseen triphones helped the decoder prune those wrong paths 
in which unseen triphones were needed. 

Four-Codebook SCHMM’s for  Clustering: As described in 
Section IV-A, one-codebook discrete HMM’s were used for 
clustering in the experiments conducted above To get the best 
performance, we also trained a set of 4-codebook SCHMM’s 

3 0 ~ r  official result on the November 1992 set was 6 9%, which used a close 
variant of this system and scored the best in the November 1992 evaluahon 

4Actually, the Viterbi decoder we implemented here pruned at the beginning 
(rather than at the end) of the first phone of a word. Since most unseen 
triphones were between-word tnphones, some addltlonal error reductlon made 
by modeling unseen tnphones might have been blocked 
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# unseen triphones 

2 0  

TABLE I1 
WORD ERROR RATES OF THE DECISION-TREE-BASED SENONES ON SILDEV5B + 

NOV~Z, WITH AND WITHOUT MODELING UNSEEN TRIPHONES BY SENONES 

# utterances unseen=ci unseen=senones improvement 

697 8.2% 7.3% 11% 

system si dev5 b 

8.5% 7.5% 

9.9% 8.5% 

2 5  9.7% 1.6% 22% 

nov92 

agglomerative SDM 

(unseen = ci) 

7.5% 

tree senones 

(unseen = senones) 

for the purpose of generating 1 

7.5% 7.1% 7.1% 1 
tcdbk 

8.0% I 7.0% 

senone mapping tz le. To 
make feasible the training of 17 000 4-COdebOOk triphone 
SCHMM’s, we segmented the training data into phones by an 
existing set of HMM’ s, using the Viterbi alignment algorithm. 
Then, phone-based training was run instead of sentence-based 
training. 

Unfortunately, this 4-codebook mapping table did not yield 
a satisfactory improvement as shown in Table 111. The results 
of using 1-codebook mapping table were copied from Table 
I. This could be explained by the fact that the 1-codebook 
feature actually included cepstrum, power, and their first- 
order differences in one big vector. What the 4-codebook 
features offered additionally was only the second-order differ- 
ences and the assumption of four independent feature streams. 
While SCHMM’ s offer better smoothing through multiple VQ 
codewords for every frame of speech, smoothing is not as 
important in measuring the similarity between Markov states 
as it is in recognizing new data. Therefore, as far as the 
distortion measure for constructing the senone mapping table 
was concerned, the 4-codebook SCHMM was only marginally 
better than the 1-codebook DHMM. 

Interestingly, we found from Tables I and I11 that the 
November evaluation set favored the unseen-triphone model- 
ing. We believe it was mainly because there were more unseen 
triphones in certain utterances in the November set. 

V. CONCLUSION 

Accurate modeling of unseen triphones is important for 
large-vocabulary speech recognition with a limited amount of 
training data. This paper presents the senonic decision tree 

that not only inherits the merits of distribution sharing but 
also offers unseen triphone handling. A senonic decision tree 
is constructed for each Markov state of each base phone, 
with the assistance of a global information about the entire 
phonetic HMM. The strength of the senonic decision tree lies 
in its detailed unseen triphone modeling, as evidenced by the 
substantial error rate reduction (1 1-22%). 
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