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ABSTRACT

In this paper we describe a speaker-cluster
normalization algorithm that we applied to both gender-
normalization and speaker-normalization. To achieve
parameter sharing the acoustic space is partitioned into
classes. A maximum likelihood approach has been
proposed under which the delta between the
distribution mean and its corresponding acoustic class
is mostly speaker-independent, whereas the means of
the acoustic classes are mostly speaker-dependent.
When applied to gender-normalization, the error rate
reduction approaches that of a gender-dependent
system but with half the number of parameters. For a
speaker-normalized system, a 30% decrease in error
rate was obtained in a batch recognition experiment in
a context-dependent continuous-density HMM system.

1. INTRODUCTION

The error rate of state-of-the-art large-vocabulary
speaker-independent continuous-speech recognition
systems is still too high to be used in practical systems.
Speaker-dependent systems have error rates that are
typically 3 times lower than those of speaker-
independent systems, but they require large amounts of
speaker-dependent training data, which may not be
available. Speaker adaptation techniques offer the
benefit of speaker-independent accuracy and gradual
convergence to speaker dependent accuracy. Many of
the techniques used for speaker adaptation are based on
Maximum a Posteriori (MAP) estimation [2]. While they
offer excellent convergence properties, they cannot
adapt parameters of the models which are not observed
in the adaptation data, thus fairly large amounts of
data are generally required.

Different modeling techniques have been proposed to
deal with the general tradeoff between trainability and
specificity. Parameter sharing has been proposed at the
kernel level (Gaussian sharing/tying mostly) and the
state level as an effective method for decreasing the
total number of parameters, and therefore increase the
reliability of their estimates for a fixed amount of
training data. In this paper we will describe a modeling
technique that achieves parameter sharing by

combining and extending recent work done in speaker
adaptation and cepstral normalization.

The use of correlation among parameters [1][6][9] has
been an effective parameter tying approach for speaker
adaptation. These model adaptation methods generally
apply a transformation only to the speakers in the
testing phase. In this paper, we propose to apply the
transformation to the speakers in the training data as
well, thereby accomplishing speaker normalization. The
transformation could be applied to a single speaker or to
clusters of speakers, for example grouped by gender.

Cepstral Mean Normalization (CMN) [7][8] has been
proposed to normalize differences in acoustical
environments. In order to eliminate the dependency of
the cepstral mean on the amount of noise included in
the calculation, researchers have extended CMN to the
computation of two means: one for noise and one for
speech [4][8]. In this paper we will extend this method
to a larger number of acoustic classes.

The proper combination of context-dependent and
context-independent information [5] on one hand, and
speaker-dependent and speaker-independent on the
other is an important area of research.

2. ALGORITHM DESCRIPTION

For this study we assume Continuous-Density sub-word
Hidden Markov Models (CD-HMM). We will focus on
adapting the probability density functions (pdf), though
transition probabilities could also be updated by other
techniques such as MAP estimation.

Let’s define two partitions of the acoustic space:

1. Acoustic Classes. We partition the acoustic space
into R classes, where each class r contains a set of
HMM states Ω r that either represents a phonetic

entity such as a context-independent phone, or a
data-driven cluster of output probabilities.

2. Speaker Clusters. We partition the universe of
speakers into L speaker clusters. For gender-
normalization we use one cluster for male speakers
and another for female speakers. For speaker
normalization we use one speaker per speaker
cluster.



Under these assumptions, we model the pdf of a p-
dimensional input feature vector x for speaker cluster l
in a state n belonging to class r, as a mixture of M
Gaussian random vectors:
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Figure 1. Hierarchical parameter tying of
speaker-dependent and speaker-independent
means.

The use of µr
l  introduces an extra degree of freedom, so

in order to obtain these estimates we need to force some
other constraint, namely that the δn m,  parameters

average to 0.

2.1 Initial Estimates of Mean Parameters

For this study, we will assume that the covariance
matrices Cn m,  are diagonal. Similar expressions can

also be obtained for the general full covariance case.

Given a set of speaker-independent estimates for µn m, ,

ωn m,  and σ n m,
2 , and a set of observations

X l
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T
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= { , ... , }1  from speaker cluster l, we can obtain

initial values for µr
l  and δn m, , by computing µr  for

each class r as
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where µ µr
l

r=  for l L= 1, ,�  and γ t
l n m( , ) is the a

posteriori probability of state n and Gaussian m for
frame t of speaker cluster l, that can be computed
through the forward-backward algorithm or through the
Viterbi approximation.

The corresponding initial δn m,  are then simply

      δ µ µn m n m r, ,= −    (4)

2.2 Iterative Estimation of Mean Parameters

Once we have some initial estimates, we can compute
the maximum likelihood estimates through the EM
algorithm:

1. Estimate the a posteriori probabilities γ t
l n m( , )

given µr
l , δn m,  and σ n m,

2  and the training data.

2. Maximize the log-likelihood, by finding updated

estimates ~µr
l , 

~
,δn m  and ~

,σ n m
2  given by:
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3. Prepare for next iteration:
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4. Stop if reached convergence, otherwise go to step 1.

We have to note that the refined estimates in step 2 are
the solution to a two-step maximization process: first

compute ~µr
l  that maximizes the log-likelihood and with

these values compute 
~

,δn m  and ~
,σ n m

2 .

2.3 Relationships with other methods

If the number of classes R equals 1 and each utterance
is considered to come from a different speaker cluster,
the proposed method is equivalent to CMN but with a
ML estimation approach, as proposed in [8] by Sankar



and Lee. In fact, these authors also applied to the case
of two classes: one for noise and one for speech,
similarly to [4].

The assumptions in Eq. (1) and (2) implicitly imposes a
correlation among the means of all pdfs within a class r,
but it is not a full correlation matrix. In [6], the authors
mention that if enough adaptation data is available, a
full correlation matrix provides some improvement over
a diagonal correlation matrix. In our approach, we
intend to use this technique with small amounts of
speaker-dependent data, so the smaller the number of
adaptation parameters the better.

3. ML GENDER NORMALIZATION

Given the differences existing between male and female
voices, many systems currently estimate two sets of
models, one for male speakers and another for female
speakers. Gender selection is done at run-time by
selecting the model with highest probability. This
approach [3], results in a modest error rate at the
expense of doubling the size of the acoustic models and
fragmenting the training data.

Given a set of gender-independent HMM models and
given a partition with R classes, the iterative maximum
likelihood procedure described in Sec. 2.2 is applied for

L = 2  to estimate the R gender-dependent means µr
l

for both male and female clusters, as well the gender-

independent parameters δn m, , ωn m,  and σ n m,
2 .

Since generally R << N, (i.e. the number of acoustic
classes is much smaller than the total number of
clustered states), this ML Gender Normalization
algorithm increases only slightly the total number of
parameters in the system over the case of gender-
independent model. As a comparison, for gender-
dependent models the number of parameters is doubled.
Therefore, this method has the potential to offer a lower
error rate, either with a better trained set of models for
a given number of senones, or with a more detailed
acoustic model (i.e. larger number of senones) since the
training data is not fragmented.

In recognition, we have to do gender selection for each
utterance. This could be achieved by running both male
and female models in parallel and selecting the one
with highest likelihood. In practice other less expensive
methods based on VQ [3] can be used to select the
male/female cluster.

4. ML SPEAKER NORMALIZATION

A similar approach can be followed to normalize
speaker differences. In this case each speaker has its
own cluster. Since the amount of data available from
each speaker will be smaller than in the gender
normalization case, the number of classes R has to be
chosen to assure trainability. The training phase is the

same as described in Sec. 2.2, where L equals the total
number of speakers in the training database.

In recognition, we can follow two different approaches:

1. Speaker selection. Similarly to the approach taken
in gender normalization, we can select one of the
speakers in the training phase as the speaker that
best matches the incoming speech. This has the
advantage that it could require very little speech,
but it could computationally expensive if the
number of speakers R is large.

2. Speaker means training. The speaker-dependent
means are trained from speech from the target
speaker.

In the latter case, the speaker means could be obtained
in two different ways:

1. Adaptation mode. In this case, the speaker provides
some adaptation data used to train the speaker
means, which are then used on new test data.

2. Batch recognition mode. In many typical dictation
applications, the user does not need to see the
results of the recognition after speaking each
sentence, and can wait until he or she has finished
speaking to see all the sentence transcriptions. In
this case, unsupervised training of the speaker
means can be performed on this data to refine the
recognition results. One iteration on the data is
generally sufficient.

5. EXPERIMENTAL RESULTS

For the experimental evaluation we used a context-
dependent continuous-density HMM [5] with 54
phonemes and 3 states per phoneme. The system was
trained using the Wall Street Journal corpus, and
evaluated on the 5000-word closed-vocabulary task with
a bigram language model. We evaluated the algorithm
on the si_dev5 data set, the November 1992
development set used in ARPA evaluations, which
contains 410 utterances from 4 female and 6 male
speakers. We used R=162 classes, i.e. one class per
context-independent state.

5.1 Gender Normalization Experiments

For the sake of faster turnaround, we used only 1000
senones, or clustered states, with 2 Gaussians per state.
Training was done using only 2000 utterances of the
Wall Street Journal corpus. The results can be seen in
Table 1. The error rate of this baseline system was
14.9% on half of the si_dev5 data set. The use of gender-
dependent models decreased the error rate to 13.6%.
Finally, using the method of gender normalization
described in Section 3, the error rate was 13.8%.

With the proposed gender-normalization algorithm, we
attain most of the error rate decrease of the gender-



dependent system but without doubling the number of
parameters.

Method BASE
GENDER

DEP.
GENDER
NORM.

SPKR.
NORM

ERROR
RATE 14.9% 13.6% 13.8% 10.6%

Table 1. Error rates of a baseline CD-HMM
system with gender-independent model, gender-
dependent models, gender-normalized models
and speaker-normalized models.

5.2 Speaker Normalization Experiments

For this experiment we used the same reduced
configuration described in Sec. 5.1. The speaker
selection procedure described in Section 4 was not used,
because it would be computationally expensive unless a
small set of speaker clusters is chosen. Instead, we
trained the speaker means.

To evaluate the batch mode described in Section 4, we
ran the si_dev5 data set through the speaker-
independent system. With the transcriptions generated

by this recognizer, we trained the speaker means µr
l  for

the R=162 classes. Finally we re-ran the recognizer with
the speaker-normalized models. The resulting error
rate, showed in Table 1, dropped to 10.6%, which is an
error rate reduction of 30% with respect to the baseline.

In the adaptation mode described in Section 4, the
speaker means were trained from the other half of
si_dev5 not used in testing. The error rate did not
improve significantly, perhaps because the trained
speaker means were over-fitted to the data. To avoid
that a smoother speaker means could be obtained with
MAP techniques, and will be explored in future work.

6. CONCLUSION

We presented a speaker-cluster normalization
algorithm that we applied to both gender-normalization
and speaker-normalization. The rational for speaker-
cluster normalization is to be able to model basic
speaker differences, and yet to make use of all the
available training data. The acoustic space is
partitioned into several classes, where we assume that
the class means are mostly speaker dependent and the
difference between the state means and the class means
are mostly speaker-dependent. Using a Maximum
Likelihood estimation technique has shown a decrease
in error rate for both gender and speaker normalization.
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