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6 SUMMARY AND CONCLUSIONS

In this chapter we have reviewed a number of techniques that individually and
collectively provide substantial reduction of speech recognition error rates in
di�cult acoustical environments including unknown additive noise and/or un-
known linear �ltering. We compared empirically-derived and structurally-based
approaches to acoustical pre-processing. Empirical compensation approaches
are quite easy to implement, but they require prior access to examples of
simultaneously-recorded speech in the training and testing domains. Model-
based compensation procedures require a valid parametric characterization of
the testing environment, but they do not require access to \stereo" databases.
The performance of model-based compensation procedures also converges more
rapidly in new testing environments. Finally, cepstral high-pass �ltering proce-
dures provide substantial robustness at almost zero cost, and are recommended
universally. We also note that the use of microphone arrays can provide a fur-
ther improvement in recognition accuracy that is complementary to the bene�t
provided by acoustical pre-processing techniques. Finally, we also discuss sev-
eral issues concerning the use of signal processing algorithm based on models of
the human auditory periphery, which so far have not yet provided substantial
quantitative reductions in recognition error rate.
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ies. The results in the lower panel of Fig. 7 demonstrate that the mean rate and
GSD outputs of the Sene� model provide lower error rates than conventional
LPC cepstra when the system is trained using the CLSTLK microphone and
tested using the PZM6FS microphone. This indicates that the Sene� model
provides additional robustness in cases where clean speech is corrupted by lin-
ear �ltering as well as additive noise, as previously noted by Hunt and Lefebvre
[17] and Meng [26]. Nevertheless, use of conventional LPC-derived cepstral fea-
tures combined with the CDCN algorithm (indicated by the dashed curves with
the circular symbols) produced error rates that were equal to or better than
the results ahieved using either output of the Sene� model for these data. We
have also explored several ways of combining auditory models with compensa-
tion algorithms like CDCN, and we have failed to identify any combination of
processing schemes in which the use of auditory processing provides any addi-
tional improvement in recognition accuracy beyond the accuracy obtained using
conventional cepstral processing with appropriate environmental compensation
[29].

While these observations are disappointing, there are several possible reasons
why the bene�t obtained by auditory modelling to date has been limited. For
one thing, the Hidden Markov models used in SPHINX implicitly assume that
the incoming features can be characterized by multivariate Gaussian pdfs. This
is reasonably true for cepstral features, but far less so for the outputs of the
auditory models. Indeed, Leung et al. [20] showed that signi�cantly better
phoneme classi�cation accuracy can be obtained using a neural network-based
classi�er compared to the accuracy obtained using an HMM, presumably be-
cause the neural-net classi�er makes no assumptions concerning the form of the
pdfs of the features. In addition, most experiments that evaluate the recog-
nition accuracy obtained using physiologically-motivated front ends (including
the one summarized by the data in Fig. 7) simply convert the auditory model
outputs into a spectrum-like display, similar to the information provided by
cepstral coe�cients. In reality there is a great deal more information available
provided by the auditory models (especially when detailed timing information
is taken into account), and it is quite possible that better recognition accuracy
can be obtained using other aspects of the outputs of the auditory models.
Nevertheless, the comparisons of Fig. 7 do underscore the need to evaluate
auditory models in terms of the extent to which they provide improvement in
recognition accuracy beyond the accuracy that now can be obtained by the best
possible conventional environmental compensation procedures, rather than by
the improvement that auditory models provide relative to baseline processing.
The approach of auditory modeling continues to merit further attention, par-
ticularly with the goal of resolving these issues.
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Figure 7 Comparison of error rates obtained on the Census task
using conventional LPC-derived cepstral features, with and without
CDCN, with results obtained using the mean rate and synchrony
outputs of the Sene� auditory model. The SPHINX-I recognition
system was trained using the CLSTLK microphone, and testing
using either the CLSTLK microphone (upper panel) or the Crown
PZM6FS microphone (lower panel).

trained using the CLSTLK microphone in all cases, and tested using either the
CLSTLK microphone (upper panel) or the Crown PZM6FS microphone (lower
panel). White noise was arti�cially added to the speech signals, and data are
plotted as a function of global SNR [13].

When the SPHINX-I system is trained and tested using the CLSTLK micro-
phone, best performance is obtained using conventional LPC-based signal pro-
cessing for \clean" speech, as seen in the upper panel of Fig. 7. As the SNR
decreases, however, error rates obtained using either the mean rate or GSD
outputs of the Sene� model increase more gradually than error rates obtained
with baseline LPC processing, con�rming similar �ndings from previous stud-
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of data acquisition and the need to be able to process much greater amounts
of data. We expect that the use of microphone arrays will become much more
widespread as cheaper and faster signal processing platforms become available.
Nevertheless, the development of e�cient multiple-microphone algorithms that
are able to improve speech recognition accuracy in reverberant acoustical en-
vironments remains a signi�cant unsolved technical challenge.

5 PHYSIOLOGICALLY-MOTIVATED

SIGNAL PROCESSING

Another signi�cant trend in robust speech recognition has been an increased
interest in the use of peripheral signal processing schemes that are motivated
by human auditory physiology and perception (e.g. [7, 13, 14, 25, 30, 33]).
Recent evaluations indicate that with \clean" speech, such approaches tend to
provide recognition accuracy that is comparable to that obtained with conven-
tional LPC-based or DFT-based signal processing schemes. When the quality
of the incoming speech (or the extent to which it resembles the speech used
in training the system) decreases, these auditory models can provide greater
robustness with respect to environmental changes [17, 26]. Despite the appar-
ent utility of such processing schemes, no one has a deep-level understanding
of why they work as well as they do, and in fact di�erent researchers choose to
emphasize rather di�erent aspects of the peripheral auditory system's response
to sound in their work. Most auditory models include a set of linear band-
pass �lters with bandwidth that increases nonlinearly with center frequency,
a nonlinear recti�cation stage that frequently includes short-term adaptation
and lateral suppression, and, in some cases, a more central display based on
short-term temporal information. We have estimated that the number of arith-
metic operations of some of the currently-popular auditory models ranges from
35 to 600 times the number of operations required for conventional LPC-based
processing [29].

Figure 7 compares error rates for SPHINX-I on the Census task using both con-
ventional LPC-derived cepstra (without CMN), with and without CDCN, and
the mean rate and synchrony outputs of the Sene� auditory model [33]. The
LPC results were obtained using the standard 12 LPC-based cepstral coe�-
cients (and their derivatives) that are normally input to the SPHINX-I system,
and the auditory model results were obtained using an implementation of the
40-channel mean-rate output of the Sene� model, and with the 40-channel out-
puts of Sene�'s Generalized Synchrony Detectors (GSDs) [33]. The system was
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Figure 6 Comparison of recognition accuracy obtained on a por-
tion of the Census task using the omnidirectional Crown PZM6FS,
the 23-microphone array developed by Flanagan, and the CLSTLK
microphone, each with and without CDCN.

These results have been replicated by Lin and his colleagues [21], who demon-
strated good recognition accuracy using a combination of the Flanagan array
and a neural network postprocessing stage. The neural network in these experi-
ments performed the necessary function of compensation for spectral coloration
introduced by the microphone-array processing algorithms, as did the CDCN
algorithm in our experiments.

In summary, the use of arrays of microphones has considerable potential in pro-
viding an additional complementary degree of robustness to a systems that are
already using acoustical pre-processing. We speculate that the major impedi-
ments to the adoption of microphone arrays up to now has been the high cost
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of degradation. Consequently, these algorithms can provide good improvement
in SNR when signal degradations are caused by additive independent noise
sources, but they do not perform well in reverberant environments when the
distortion is at least in part a delayed version of the desired speech signal (e.g.
[31]). (This problem can be avoided by only adapting during non-speech seg-
ments [36]). A third type of approach to microphone array processing is the
use of cross-correlation-based algorithms (e.g. [5, 35]). These algorithms
are appealing because they are based on human binaural hearing, and because
cross-correlation is an e�cient way to identify and isolate the direction of a
strong signal source. We believe that signal processing techniques based on
human binaural perception are worth pursuing, but their e�ectiveness for au-
tomatic speech recognition remains to be conclusively demonstrated.

Figure 6 describes results obtained from a pilot evaluation of the microphone
array developed by Flanagan and his colleagues at AT&T Bell Laboratories.
The Flanagan array [10] is a one-dimensional delay-and-sum beamformer which
uses 23 unevenly-spaced microphones. We compared the recognition accuracy
for the alphanumeric Census task obtained using the Flanagan array to the
accuracy observed using the CLSTLK and PZM6FS microphones. The utter-
ances were recorded in a sparsely-furnished laboratory at the Rutgers CAIP
Center with an estimated reverberation time between 500 and 750 ms. Si-
multaneous recordings were made of each utterance using three microphones:
the CLSTLK microphone, the Crown PZM6FS, and the Flanagan array with
the input low-pass-�ltered at 8 kHz. Recordings were made with the speaker
seated at distances of 1, 2, and 3 meters from the PZM6FS and Flanagan array
microphones, while wearing the CLSTLK microphone in the usual fashion at
all times.

When the Flanagan array is used in conjunction with the CDCN algorithm,
the resulting error rates are very close to the error rates obtained with the
CLSTLK microphone without CDCN. In other words, the combination of mi-
crophone arrays and acoustical pre-processing can completely close the \gap"
in performance noted at the end of the �rst subsection of Sec. 3.4 between
results obtained testing using the desktop PZM6FS microphone and results
obtained using the CLSTLK microphone. It is also interesting to note that the
improvements provided by Flanagan array and the CDCN algorithm are com-
plementary: if one is already using the Flanagan array, the error rate can be
decreased by adding CDCN (upper panel of Fig. 6), and if one is already using
CDCN, the error rate can be reduced by replacing the PZM6FS microphone
by the Flanagan array (lower panel of Fig. 6).
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ing environment. Figure 5 compares recognition accuracy as a function of the
amount of environment-speci�c speech data available for adaptation using two
compensation algorithms. The �rst algorithm is an empirical compensation al-
gorithm known as BSDCN [22], which is closely related to the SDCN algorithm
described in Sec. 3.1. The second algorithm is the model-based CDCN proce-
dure described in Sec. 3.2. Recognition accuracy using the real-time CDCN
algorithm converges with only about 2 seconds of adapting speech, while the
BSDCN algorithm requires at least 60 seconds of adapting speech to reach
asymptotic levels of recognition accuracy. This is consistent with intuition, as
compensation procedures based on a structural model of degradation (such as
CDCN) are based on the estimation of only a small number of model param-
eters. Empirical compensation algorithms such as the BSDCN algorithm, on
the other hand, must learn all relevant aspects of the testing environment by
observation. We believe that convergence time (or conversely, the amount of
testing data needed for convergence) represents another facet of the tradeo�
between empirical and structural approaches to adaptation: the empirical ap-
proaches can be applied to a wider variety of environments, but they require
much more data to be e�ective.

4 MULTIPLE MICROPHONE ARRAYS

Further improvements in recognition accuracy can be obtained in di�cult envi-
ronments by combining acoustical pre-processing with arrays of multiple micro-
phones. The use of microphone arrays is motivated by a desire to improve the
e�ective SNR of speech as it is input to the recognition system. Close-talking
microphones, for example, produce higher SNRs than desktop microphones un-
der normal circumstances because they pick up a relatively small amount of
additive noise, and because the incoming signal is not degraded by reverberated
components of the original speech.

Several di�erent types of array-processing strategies have been applied to auto-
matic speech recognition. The simplest approach is that of the delay-and-sum
beamformer, in which delays are inserted in each channel to compensate for
di�erences in travel time between the desired sound source and the various
sensors (e.g. [10, 11]). A second option is to use an adaptation algorithm
based on minimizing mean square energy such as the Frost or Gri�ths-Jim al-
gorithm [38]. These algorithms provide the opportunity to develop nulls in the
direction of noise sources as well as more sharply focused beam patterns, but
they assume that the desired signal is statistically independent of all sources
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Use of Physical Parameters versus Presumed

Phonemic Identity for Empirical Compensation

We have also measured the recognition accuracy obtained by adding either
MPDCN or MFCDCN to a recognition system that already makes use of CMN
when secondary microphones are used for testing [24]. In our comparisons using
the 1993 WSJ1 database, a combination of MFCDCN and MPDCN with CMN
reduces error rates compared to the use of CMN alone 40.2 percent for all of
the 10 secondary microphones in the evaluation set. The e�ects of MPDCN
and MFCDCN were somewhat complementary in that the addition of MPDCN
to a recognition system that already includes CMN and MFCDCN provides a
further decrease of recognition error rate by 11.7 percent. We conjecture that
MPDCN complements the e�ects of MFCDCN because the MPDCN compen-
sation vectors are based on a partitioning of the incoming cepstral vectors that
is somewhat di�erent from the partition that is obtained using MFCDCN.

Convergence Times for Model-Based Compensation

versus Empirical Compensation
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Figure 5 Comparison of the recognition accuracy of the empirical
BSDCN algorithm and the model-based CDCN algorithm. Results
are shown as a function of the amount of speech in the testing
environment available for adaptation.

An important �gure of merit for environmental compensation algorithms is the
amount of data in the testing environment needed for the algorithm to con-
verge. For example, speech recognition over switched telephone networks must
be performed on the basis of only a very small amount of speech in the test-
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Figure 4 Comparison of the e�ects of MFCDCN, cepstral mean
normalization (CMN), and the RASTA algorithm on recognition
accuracy of the Sennheiser HMD-414 microphone (solid curve) and
the secondary microphones (dashed curve). Results were obtained
by training on the CLSTLK microphone and testing on the 1992
ARPA WSJ0 CSR evaluation data.

while the dashed curve describes results obtained training using the CLSTLK
microphone and testing using an ensemble of non-closetalking and telephone-
bandwidth \secondary" microphones. Results are obtained using two types
of cepstral high-pass �ltering algorithm described in Sec. 3.3 along with the
MFCDCN algorithm described in Sec. 3.1. Use of the RASTA and CMN algo-
rithms reduced the error rates observed while using the secondary microphones
by 27.2 percent and 44.4 percent, respectively, with respect to the baseline error
rates. Adding MFCDCN processing to CMN provided an additional decrease
of 24.3 percent in error rate. We believe that the MFCDCN algorithm provides
greater recognition accuracy than cepstral high-pass �ltering because it incor-
porates an ensemble of di�erent cepstral compensation vectors that depend on
the speci�c SNR and VQ codeword identity of each incoming cepstral vector.
This is equivalent to using all of the compensation vectors represented by the
curves of Fig. 3 rather than just a single time-averaged vector.
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compensation for the e�ects of noise and �ltering. We note that if the desktop
microphone is used for testing, the system performs equally well regardless of
which microphone had been used for training. Hence, the degradation in perfor-
mance due to mismatches between training and testing conditions is eliminated
by use of the CDCN algorithm (at least for this pair of environments and this
test set). The remaining di�erence between the compensated error rate with
the PZM6FS microphone (25.1 percent) and the error rate obtained training
and testing with the CLSTLK microphone (14.7 percent) arises because speech
recorded using the PZM6FS microphone has a lower SNR. We will revisit this
issue in our discussion of microphone arrays in Sec. 4 below.

Empirical versus Model-Based Compensation

Comparisons of recognition accuracy obtained using the empirical compensa-
tion procedure MFCDCN described in Sec. 3.1 with the model-based com-
pensation procedure CDCN described in Sec. 3.2 are included in [23]. These
comparisons were obtained using SPHINX-II and Version 0 of the 5000-word
1992 Wall Street Journal evaluation set (WSJ0). In this study the error rates
observed using the empirical MFCDCN algorithmwere approximately the same
as those obtained using the model-based CDCN algorithm. This is not true in
general: empirical compensation generally works well when the environments
used to \train" the compensation procedure are similar to those used in evalu-
ating the system, while model-based compensation procedures work well when
the structural model that is assumed is actually representative of the data in
the testing set. In the case of the WSJ0 task, the environments used in training
and testing are quite acoustically similar, and the structural model assumed
by CDCN (shown in Fig. 2) is indeed valid. CDCN would have outperformed
MFCDCN if there were greater di�erences between training and testing condi-
tions, while MFCDCN would have worked substantially better than CDCN for
testing conditions (such as nonlinear distortion) for which the simple model of
degradation shown in Fig. 2 is invalid.

Empirical Compensation versus Cepstral high-pass

Filtering

Figure 4 depicts results from the ARPA 1992 WSJ0 database that compare
recognition accuracy obtained using direct cepstral comparison with that ob-
tained using two types of cepstral high-pass �ltering [the RASTA algorithm and
cepstral mean normalization (CMN)] [23]. The solid curve describes recogni-
tion accuracy obtained by training and testing using the CLSTLK microphone,
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of speech in the training and testing environments. The high-pass nature of
both the RASTA and CMN �lters forces the average values of cepstral coe�-
cients to be zero in the training and testing environments individually, which,
of course, implies that the average cepstra in the two environments are equal
to each other.

Cepstral high-pass �ltering can also be thought of as a degenerate case of
compensation based on direct cepstral comparison. Consider, for example, the
compensation vectors with frequency response depicted in Fig. 3. Cepstral high
pass �ltering produces the same e�ect that would have been achieved if all of
the compensation vectors for a particular testing environment are combined
into a single compensation vector, weighted in proportion to the percentage of
frames having the set of physical parameters (or presumed phoneme identity)
corresponding to each of the original compensation vectors. As Fig. 3 indi-
cates, actual cepstral compensation vectors depend on the SNR, VQ codeword
location, and/or phonemic identity of the individual frames of the testing ut-
terances. Hence neither CMN nor RASTA can compensate directly for all of
the combined e�ects of additive noise and linear �ltering.

In general, cepstral high-pass �ltering is so cheap and e�ective that it is cur-
rently embedded in some form in virtually all systems that are required to
perform robust speech recognition.

3.4 Performance of Compensation Algorithms

We now compare and discuss the performance of some of the acoustical pre-
processing algorithms described in the previous sections. While the compar-
isons presented are (of necessity) far from comprehensive, they do serve to
illustrate the capabilities and limitations of various alternative approaches to
compensation via acoustical pre-processing.

Joint versus Independent Compensation for the

E�ects of Noise and Filtering

Figure 1 includes recognition error rates obtained using the model-based CDCN
algorithm that compensates jointly for the e�ects of additive noise and linear
�ltering. When the SPHINX-I system is trained using the CLSTLK micro-
phone and tested using the PZM6FS microphone, the use of joint compensa-
tion reduces the recognition error rate by 28.7 percent relative to independent
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x̂i =
K�1X

k=0

fi[k](z� q̂� r̂[k]); with i = 0; 1; � � � ; N � 1 (11)

We have found that these equations normally converge within a very small
number of iterations, although they are not guaranteed to do so.

Although model-based compensation is somewhat more computationally in-
tensive than compensation based on empirical comparisons, the bulk of the
computational cost is incurred in estimating the distortion parameters q and
r(x;n;q). Since distortion due to noise and �ltering changes relatively slowly,
it is generally not necessary to compute new values for these parameters for ev-
ery incoming speech frame. The compensation itself (Eq. 11) must be applied
to each incoming frame, but this does not entail great computational cost.

Model-based compensation can provide fast and e�cient compensation if the
assumptions built into the structural model are valid. We compare represen-
tative results using model-based compensation with empirical compensation in
Section 3.4 below.

3.3 Cepstral high-pass Filtering

The third major adaptation technique is cepstral high-pass �ltering, which
provides a remarkable amount of robustness at almost zero computational cost.
The development of these algorithms was originally motivated by a desire to
emphasize the transient aspects of speech representations, as discussed in the
chapter in this volume by Hanson et al. [16].

In the well-known Relative Spectral Processing or RASTA processing [15], a
high-pass (or band-pass) �lter is applied to a log-spectral representation of
speech such as the cepstral coe�cients. Cepstral mean normalization (CMN) is
an alternate way to high-pass �lter cepstral coe�cients. high-pass �ltering in
CMN is accomplished by subtracting the short-term average of cepstral vectors
from the incoming cepstral coe�cients.

Algorithms like RASTA and CMN are e�ective in compensating for the ef-
fects of unknown linear �ltering in the absence of additive noise because under
these circumstances the ideal cepstral compensation vector v[SNR; k; �; e] is
a constant that is independent of SNR and VQ cluster. Such a compensation
vector is, in fact, equal to the long-term average di�erence between all cepstra
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By making several simplifying assumptions concerning the form of the covari-
ance matrices �k, the correction vectors can be iteratively estimated by �rst
assuming initial values of n̂(0) and q̂(0) for j = 0. Updated values for n̂ and q̂

are obtained by iterating

r(j)[k] = IDFT (ln(1 + exp(DFT [n̂(j) � q̂(j) � c[k]]))) (7)

fi[k] =
exp(�

d2
i
[k]

2�2
s

)

K�1X

k=0

exp(�
d2i [k]

2�2s
)

(8)

where fi[k] is the weighting constant for Gaussian mixture k in frame i, and
the distances di[k] are given by di[k] = jjzi � q̂(j) � c[k] � r̂(j)[k]jj. The new
estimates for n̂(j+1) and q̂(j+1) are

n̂(j+1) =

N�1X

i=0

fi[0]zi

N�1X

i=0

fi[0]

(9)

and

q̂(j+1) =

N�1X

i=0

K�1X

k=0

fi[k](zi � c[k]� r(j)[k])

N�1X

i=0

K�1X

k=0

fi[k]

(10)

Equations (7) through (10) are iterated until n and q converge. Once conver-
gent estimates for n and q have been obtained, the clean speech vectors are
estimated using
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and testing domains. An alternate approach to compensation is the use of a
parametric model of degradation, combined with optimal estimation of the pa-
rameters of the model. For example, Ephraim [9] has presented a uni�ed view
of statistical model-based speech enhancement that can be applied to speech
enhancement (for human listeners), speech coding, and enhanced robustness
for automatic speech recognition systems. Varga and Moore [37] and Gales
and Young [12] have also developed algorithms that modify the parameters of
HMMs to characterize the e�ects of noise on speech. Sankar and Lee [32] have
used an arbitrary parametric functions to reduce distortions between training
and testing environments of the incoming features or model parameters of the
HMM. Most of the above approaches have been developed primarily to amelio-
rate the e�ects of pure additive noise on speech. Acero's Codeword-Dependent
Cepstral Normalization (CDCN) algorithm [1, 2] is similar in principle, except
that it was developed explicitly to provide for joint compensation for the e�ects
of additive noise combined with linear �ltering.

The CDCN algorithm assumes the model of environmental degradation shown
in Fig. 2. The algorithm attempts to reverse the e�ects of the linear �lter with
transfer function H(f) and the additive noise with power spectrum Pn(f) by
solving two independent problems. The �rst problem is that of estimating the
parameters q and r(x;n;q), the cepstral vectors describing the e�ects of the
noise and �ltering in Eq. (2). This is accomplished using ML parameter esti-
mation. The second problem is estimation of the uncorrupted cepstral vector x
for a particular input frame, given the corrupted observation vector z and the
distortion parameters q and r(x;n;q). MMSE parameter estimation is used
for this task. In e�ect, these two operations determine the values of q and
r(x;n;q) that when applied in inverse fashion map the set of input cepstra z

into a set of compensated cepstral coe�cients x that are as \close" as possi-
ble to the VQ codeword locations encountered in the training data. CDCN is
typically implemented on a sentence-by-sentence basis.

We typically use the common representation of Gaussian mixtures for the prob-
ability density function (pdf) of the speech signal

p(x) =
K�1X

k=0

P [k]p(xjk) =
K�1X

k=0

P [k]Nx(c[k];�k) (6)

where the mixture component locations c[k] are obtained by vector quantizing
the cepstral coe�cients of speech in the training domain.
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Figure 3 Power spectra of compensation vectors used by the
FCDCN algorithm (left panels) and by the PDCN algorithm (right
panels). The FCDCN compensation vectors are based on three dif-
ferent SNRs and eight VQ codeword locations at each SNR. The
PDCN compensation vectors are based on three di�erent sets of
phonemes. The training environment is the standard CLSTLK mi-
crophone, while the testing environment is the unidirectional desk-
top PCC-160 microphone.

3.2 Model-Based Compensation

The compensation algorithms described in the previous section depend on
frame-by-frame empirical comparisons of cepstral coe�cients in the training
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vironments used to develop compensation vectors most closely resembles the
actual testing environment. The ensemble of compensation vectors that is ap-
propriate for that most likely environment is then applied to the incoming
data. If the incoming speech is not from one of the environments used to de-
velop compensation vectors, recognition accuracy can be further improved by
interpolating among the several \closest" environments. Environmental classi-
�cation need not be perfect for these algorithms to be e�ective. The \multiple-
environment" versions of FCDCN and PDCN are referred to as MFCDCN and
MPDCN.

Figure 3 illustrates some typical compensation vectors produced by the MFCDCN
and MPDCN algorithms. The standard CLSTLK microphone was used for the
training data, and the unidirectional desktop PCC-160 desktop microphone was
used in the testing environments. The left column of Fig. 3 depicts MFCDCN
compensation vectors, plotted at the extreme SNRs of 0 and 29 dB, as well
as at 5 dB. Compensation vectors are plotted for 8 VQ cluster locations at
each value of SNR. The curves are obtained by calculating the cosine trans-
forms of the cepstral compensation vectors, v[SNR; k; �; e], and they provide
an estimate of the e�ective spectral pro�le of the compensation vectors. The
horizontal frequency axis is warped nonlinearly according to the mel scale [8].
The maximum frequency corresponds to the Nyquist frequency, 8,000 Hz. We
note that the spectral pro�les of the compensation vectors vary with SNR. This
con�rms our assertion that the vectors needed to compensate for the e�ects of
linear �ltering (which are dominant at high SNRs) are di�erent from the vec-
tors needed to compensate for the e�ects of additive noise (which dominate
at low SNRs). Furthermore, at intermediate SNRs (such as 5 dB), additional
improvement in recognition accuracy can be obtained by developing separate
compensation vectors for the di�erent VQ clusters within a given SNR. Com-
pensation vectors for speech frames with SNRs that are greater than 10 dB are
very similar in appearance to the compensation vectors shown for 29 dB.

The right column of Fig. 3 depicts similar compensation vectors for the phoneme-
based MPDCN algorithm. The right panel depicts MPDCN compensation vec-
tors that are appropriate for three vowels (AE, EH, and IH), three fricatives
(F, S, and Z), and three nasals (M, N, and NG). While the overall shape of the
MPDCN compensation vectors may primarily re
ect di�erences in the average
power, the details of the spectral shapes di�er, and the use of phoneme-based
compensation in addition to SNR-based compensation can indeed provide fur-
ther reduction in recognition error rate.
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Dependent Cepstral Normalization (SDCN) [2]. Compensation vectors for the
SDCN algorithm are developed using a stereo database with simultaneously-
recorded speech in the training and testing environments. Individual frames
are partitioned into subsets according to the SNR in each frame in the testing
environment. (SNR is normally estimated from the total signal power for a
given frame). Compensation vectors corresponding to a given range of SNRs
are estimated by calculating the average di�erence between cepstral vectors in
the training and testing environments for all frames with that particular range
of SNRs. The ensemble of compensation vectors constitutes an empirical char-
acterization of the di�erences between the training and testing environments.
When a new test utterance is presented to the classi�er, the SNR is estimated
for each frame of the input speech, and the appropriate compensation vector is
added to the cepstral coe�cients derived from the input speech for that frame.

The Fixed Codeword-Dependent Cepstral Normalization (FCDCN) algorithm
[2] produces greater recognition accuracy by developing a more �ne-grained set
of compensation vectors for a particular testing environment. Compensation
vectors for FCDCN are obtained by �rst partitioning the frames of speech from
a stereo development corpus according to SNR, as with SDCN. A second parti-
tioning of the development corpus is then obtained by vector quantizing (VQ)
the cepstral coe�cients at each SNR in the testing environment. Individual
compensation vectors are developed for each VQ cluster location at each SNR.

The Phone-Dependent Cepstral Normalization (PDCN) algorithm [24] is sim-
ilar in philosophy, but it makes use of a di�erent type of partitioning of the
input frames. Compensation vectors are obtained that depend on the presumed
phoneme to which a given frame belongs. Phoneme hypotheses are obtained by
running an initial pass of the HMM decoder without compensation. The PDCN
algorithm is similar in concept to the method proposed by Beattie and Young
[3], except that the latter authors base compensation directly on decoder state
and they use a general approach that is more mathematical and less empirical.

Environment-Independent Algorithms

The compensation algorithms described above all are designed to work in the
particular testing environment from the stereo database that was used to de-
velop the compensation vectors. A degree of environmental independence can
be obtained if several stereo training databases are available using di�erent test-
ing environments. Separate ensembles of compensation vectors can then be de-
veloped for each environment for which stereo data are available. Environment-
independent compensation is performed by �rst determining which of the en-
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where v[SNR; k; �; e] refers to the additive cepstral compensation vectors. In
general, these vectors can depend on instantaneous SNR, the speci�c vector-
quantized (VQ) cluster location k that is nearest to the incoming feature vector
(as discussed below), the presumed phonemic identity �, and the speci�c testing
environment e.

Applying the compensation is equally simple, as the compensation vector is
just added to the incoming cepstral vector to produce x̂, an estimate of the
original cepstral vector, x:

x̂ = z+ v[SNR; k; �; e] (5)

The goal of compensation is normally to provide relief from the e�ects of both
additive noise and linear �ltering, which a�ect di�erent speech frames di�er-
ently. Because of this, we have found it advantageous to separate the incom-
ing speech on a frame-by-frame basis into di�erent classes according either to
physical parameters such as SNR (as estimated in the testing environment) or
according to presumed phonemic identity. Individual compensation vectors are
calculated for each of the various classes, and as each incoming speech frame is
processed, the additive compensation vector is applied that is appropriate for
that particular class.

At high SNRs, the compensation vectors v[SNR; k; �; e] primarily compen-
sate for the e�ects of linear �ltering, because under these circumstances the
vector r(x;n;q) in Eq. (2) is approximately zero. At the lowest SNRs, the
vectors primarily compensate for the e�ects of additive noise, because under
these circumstances Eq. (2) is dominated by the e�ects of the additive noise
. At intermediate SNRs, the compensation vectors perform a combination of
compensation for the e�ects of noise and �ltering. Compensation using direct
cepstral comparison is generally rather simple to apply, although its utility is
limited by the coverage of the stereo training data.

We discuss some aspects of implementations of this approach performed at
CMU in the sections below. Similar and complementary work performed at
other sites include [27, 28].

Environment-Dependent Compensation Algorithms

Processing by direct cepstral comparison can be best illustrated by �rst con-
sidering the simplest cepstral comparison algorithm developed at CMU, SNR-
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empirical compensation by direct cepstral comparison, (2) model-based com-
pensation by cepstral remapping, and (3) compensation via cepstral high-pass
�ltering.

Compensation by direct cepstral comparison is totally data driven, and re-
quires a \stereo" database that contains time-aligned samples of speech that
had been simultaneously recorded in the training environment and in represen-
tative testing environments. The success of data-driven approaches depends on
the extent to which the putative testing environments used to develop the pa-
rameters of the compensation algorithm are in fact representative of the actual
testing environment.

Compensation by cepstral remapping is a model-based approach. Statistical
estimation theory is applied to estimate the parameters representing the e�ects
of noise and �ltering in the model for acoustical degradation depicted in Fig. 2.
Compensation is then provided by applying the appropriate inverse operations.
The success of model-based approaches depends on the extent to which the
model of degradation used in the compensation process accurately describes
the true nature of the degradation to which the speech had been subjected.

As the name implies, compensation by high-pass �ltering implies removal of the
steady-state components of the cepstral vector, as is discussed in the chapter
by Hanson et al. [16] in this volume. The amount of compensation provided
by high-pass �ltering is more limited than the compensation provided by the
two other types of approaches, but the procedures employed are so simple that
they should be included in virtually every current speech recognition system.

We now discuss each of these approaches in greater detail.

3.1 Empirical Cepstral Compensation

Empirical cepstral comparison procedures assume the existence of \stereo"
databases containing speech that had been simultaneously recorded in the train-
ing environment and one or more prototype testing environments. In general,
cepstral vectors are calculated on a frame-by-frame basis from the speech in
the training and testing environments, and compensation vectors are obtained
by computing the di�erences between average cepstra in the two environments:

v[SNR; k; �; e] = x � z (4)
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sume that the speech signal x[m] is �rst passed through a linear �lter h[m]
whose output is then corrupted by uncorrelated additive noise n[m]. We char-
acterize the power spectral density (PSD) of the processes involved as

Pz(f) = Px(f)jH(f)j2 + Pn(f) (1)

If we let the cepstral vectors x, n, z, and q represent the Fourier series expan-
sions of lnPx(f), lnPn(f), lnPz(f), and ln jH(f)j2, respectively, Eq. (1) can
be rewritten with some algebraic manipulation as

z = x + q + r(x;n;q) (2)

In this representation the cepstral vectors z (representing the observed speech)
are considered to have been obtained by additive perturbations of the original
speech cepstra x. The additive perturbation q represents the e�ects of linear
�ltering while the other additive vector

r(x;n;q) = IDFT (ln(1 + eDFT [n�q�x])) (3)

represents the e�ects of additive noise. In other words, the e�ect of both ad-
ditive noise and linear �ltering can be represented by additive perturbations
to the cepstral representation, although the characterization of the e�ects of
noise as an additive perturbation in the cepstral domain is not a very natural
one. In general, our goal is to estimate x, the cepstral representation of x[m]
from z, the cepstral representation of z[m]. Among other methods, this can
be accomplished by estimating r(x;n;q) and q, the cepstral parameters char-
acterizing the e�ects of unknown additive noise and unknown linear �ltering,
and performing the appropriate inverse operations. Performing compensation
in the cepstral domain (as opposed to the spectral domain) has the advan-
tage that a smaller number of parameters needs to be estimated. In addition,
cepstral-based features are widely used by current speech recognition systems.

3 ACOUSTICAL PRE-PROCESSING

In this section we examine several types of cepstral compensation algorithms.
We have found it convenient to group these algorithms into three classes: (1)
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It can be seen from Figure 1 that the use of spectral normalization and spectral
subtraction provides increasing degrees of improvement to the recognition accu-
racy obtained in the \cross" conditions when training and testing environments
di�er. From these results we can identify two distinct goals of environmental
compensation: (1) to eliminate the degradation experienced in the \cross" con-
ditions, and (2) to eliminate the degradation in accuracy experienced when
training and testing using the PZM6FS microphone, compared to the error
rate obtained when training and testing using the CLSTLK microphone.

We performed additional experiments that evaluated recognition accuracy on
this task while applying both spectral subtraction and spectral normalization in
sequence. We found that a simple cascade of these two procedures provided no
further improvement in error rate beyond that obtained with spectral subtrac-
tion alone. We believe the failure to obtain further improvement in recognition
accuracy arises from at least two reasons. First, both subtraction and normal-
ization process di�erent frequency components independently, and there is no
constraint that ensures that the across-frequency nature of the compensated
features is speech-like. In addition, the e�ects of additive noise and linear �l-
tering combine nonlinearly in the cepstral domain used to derive the features
used in classi�cation. Because of this nonlinear interaction, we argue that it
is necessary to compensate jointly (rather than independently) for the e�ects
of noise and �ltering. Such joint compensation is facilitated by the use of the
analytical model of degradation described in the next section.

2.3 A Model of Environmental Degradation

n[m]

z[m]h[m]x[m]

 "Clean"
speech

Degraded
speech Linear

Distortion

Additive
Noise

Figure 2 A model of environmental distortion including the e�ects
of additive noise and linear �ltering.

Figure 2 describes the implicit model for environmental degradation used in
many signal processing algorithms developed at CMU and elsewhere. We as-
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2.2 Independent Compensation for Additive

Noise and Linear Filtering
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Figure 1 Comparison of error rates obtained by training and test-
ing the SPHINX-I system on the close-talking Sennheiser HMD224
microphone (CLSTLK) and the omnidirectional desktop Crown
PZM6FS. Error rates are compared using no environmental com-
pensation, spectral normalization, spectral subtraction, and the
CDCN compensation algorithm, for each of the two microphones,
on the CMU Census task.

We �rst consider the ability of spectral subtraction and spectral normalization
algorithms applied in isolation to ameliorate the e�ects of additive noise and
linear �ltering. Figure 1 summarizes experimental results obtained from a
series of initial experiments using a small alphanumeric database called the
Census database [2]. This database consists of 1018 training utterances and 140
testing utterances, all recorded simultaneously (i.e. in \stereo") using a close-
talking Sennheiser HMD224 microphone (CLSTLK), and an omnidirectional
desk-top microphone, the Crown PZM6Fs (PZM6FS). The recognition system
used was an implementation of the original discrete-HMM system SPHINX-
I [19], with between-word statistics eliminated to provide more rapid training
and testing. The system was trained using the CLSTLK microphone and tested
using the two microphones, in either the baseline condition, or with the use of
spectral normalization and spectral subtraction. The upper dotted horizontal
line indicates the baseline word error rate obtained when the system was trained
and tested using the PZM6FS; the lower horizontal indicates the baseline error
rate obtained by training and testing using the CLSTLK microphone. Results
are also included for the CDCN algorithm, which is discussed in Sec. 3.2 below.
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2 SOURCES OF ENVIRONMENTAL

DEGRADATION

2.1 Additive Noise and Linear Filtering

There are many sources of acoustical distortion that can degrade the accuracy
of speech recognition systems. For many speech recognition applications the
two most important sources of acoustical degradation are unknown additive

noise (from sources such as machinery, ambient air 
ow, and speech babble
from background talkers) and unknown linear �ltering (from sources such as
reverberation from surface re
ections in a room, and spectral shaping by micro-
phones or by the vocal tracts of individual speakers). Other sources of degrada-
tion of recognition accuracy include transient interference to the speech signal
(such as the noises produced by doors slamming or telephones ringing), nonlin-
ear distortion (arising from sources such as carbon-button microphones or the
random phase jitter in telephone systems), and \co-channel" interference by
individual competing talkers. Until now, most research in robust recognition
has been directed toward compensation for the e�ects of additive noise and
linear �ltering.

Research in robust speech recognition has been strongly in
uenced by earlier
work in speech enhancement. Two seminal speech enhancement algorithms
have proved to be especially important in the development of strategies to cope
with unknown noise and �ltering. The �rst technique, spectral subtraction, was
introduced by Boll [6] to compensate for additive noise. In general, spectral
subtraction algorithms attempt to estimate the power spectrum of additive
noise in the absence of speech, and then subtract that spectral estimate from
the power spectrum of the overall input (which normally includes the sum of
speech plus noise). The algorithm was later extended by Berouti et al. [4]
and many others, primarily with the goal of avoiding \musical noise" by \over-
subtraction" of the the noise spectrum. The second major technique is spectral
normalization, introduced by Stockham et al. [34] to compensate for the e�ects
of unknown linear �ltering. In general, spectral normalization algorithms �rst
attempt to estimate the average power spectra of speech in the training and
testing domains, and then apply the linear �lter to the testing speech to \best"
converts its spectrum to that of the training speech. Improvements and exten-
sions of spectral subtraction and spectral normalization algorithms continue to
be introduced to this date.
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automobiles, on a factory 
oor, or outdoors demand an even greater degree of
environmental robustness.

The goal of this chapter is to provide a comprehensive review of research at
Carnegie Mellon University (CMU) and elsewhere that is directed toward ren-
dering speech recognition systems more robust with respect to environmental
variation. Historically, the greatest amount of e�ort in robust recognition has
been devoted to acoustical pre-processing algorithms, which typically modify
either the features extracted from incoming speech or the representation of
these features by the recognition system in order to reduce mismatches be-
tween training and testing conditions. In recent years, however, other comple-
mentary approaches to robust recognition are becoming increasingly popular.
For example, arrays of multiple microphones have the ability to improve speech
recognition accuracy by improving the signal-to-noise ratio (SNR) when signal
and noise sources arrive from spatially-distinct sources. Other research groups
have focussed on the use of signal processing algorithms based on human audi-

tion, motivated by the observation that the feature set developed by the human
auditory system is remarkably robust.

We begin this chapter with a description of some of the sources of degradation
that reduce the accuracy of speech recognition systems in Sec. 2, and we brie
y
review some of the classical approaches to environmental robustness in that sec-
tion. In Sec. 3 we describe three approaches to acoustical pre-processing for
environmental robustness: (1) empirical approaches in which compensation pa-
rameters are estimated by direct comparison of speech features in the training
and testing environments, (2) model-based approaches in which parameters of
a structural model of acoustical degradation are obtained by optimal estima-
tion, and (3) cepstral high-pass �ltering, which enables the system to obtain a
more limited amount of compensation in a very computationally-e�cient fash-
ion. In Secs. 4 and 5, respectively, we compare recognition results obtained
using acoustical pre-processing to results obtained using microphone arrays and
physiologically-motivated signal processing strategies. Finally, we summarize
our �ndings in Sec. 6.
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ABSTRACT

This chapter compares several di�erent approaches to robust automatic speech recog-

nition. We review ongoing research in the use of acoustical pre-processing to achieve

robust speech recognition, discussing and comparing approaches based on direct cep-

stral comparisons, on parametric models of environmental degradation, and on cep-

stral high-pass �ltering. We also describe and compare the e�ectiveness of two com-

plementary methods of signal processing for robust speech recognition: microphone

array processing and the use of physiologically-motivated models of peripheral audi-

tory processing. This chapter includes comparisons of recognition error rates obtained

when the various signal processing algorithms considered are used to process inputs

to CMU's SPHINX speech recognition system.

1 INTRODUCTION

The development of robust speech recognition systems that maintain a high
level of recognition accuracy in di�cult and dynamically-varying acoustical en-
vironments is becoming increasingly important as speech technology is becom-
ing a more integral part of practical applications. Results of numerous studies
have demonstrated that even automatic speech recognition systems that are
designed to be speaker independent can perform very poorly when they are
tested using a di�erent type of microphone or acoustical environment from the
one with which they were trained (e.g. [1, 2, 18]), even in a relatively quiet
o�ce environment. Applications such as speech recognition over telephones, in
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