

MICROSOFT WINDOWS HIGHLY INTELLIGENT
SPEECH RECOGNIZER: WHISPER

Xuedong Huang, Alex Acero, Fil Alleva, Mei-Yuh Hwang, Li Jiang and Milind Mahajan

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052, USA

ABSTRACT

Since January 1993, we have been working to refine and extend
Sphinx-II technologies in order to develop practical speech
recognition at Microsoft. The result of that work has been the
Whisper (Windows Highly Intelligent Speech Recognizer).
Whisper represents significantly improved recognition efficiency,
usability, and accuracy, when compared with the Sphinx-II
system. In addition Whisper offers speech input capabilities for
Microsoft Windows and can be scaled to meet different PC
platform configurations. It provides features such as continuous
speech recognition, speaker-independence, on-line adaptation,
noise robustness, dynamic vocabularies and grammars. For typical
Windows Command-and-Control applications (less than 1,000
words), Whisper provides a software only solution on PCs
equipped with a 486DX, 4MB of memory, and a standard sound
card and a desk-top microphone.

1. INTRODUCTION
To make Sphinx-II [[10],[6]] usable in a PC environment, we
need to tackle issues of recognition accuracy, computational
efficiency, and usability simultaneously. A large amount of RAM
and high-end workstation are unrealistic for today’s popular PC
environments where low-cost implementations are critical. The
system must also be speaker adaptive, because there will always
be some speakers for which the recognition error rate will be much
higher than average due to variation in dialect, accent, cultural
background, or simply vocal tract shape. The ability of the system
to reject noise is also crucial to the success of commercial speech
applications. Noises include not only environmental noises such
as phone rings, key clicks, air conditioning noise, etc. but also
vocal noises such as coughs; ungrammatical utterances, and Out
Of Vocabulary (OOV) words. For a 20000-word dictation system,
on average more than 3% of the words in an unconstrained test set
are missing from the dictionary, and even when we increase the
vocabulary size to 64,000 words, the OOV rate still remains
higher than 1.5%. Lastly, recognition accuracy remains one of the
most important challenges. Even if we exclude utterances
containing OOV words, the word error rate of the best research
systems remains to be higher than 9% for a 20,000-word
continuous dictation task [[6]].

Whisper [[8]] not only inherited all the major features of state-of-
the-art research system Sphinx-II, but it also incorporates context-
free grammar decoding, noise rejection, improved channel
normalization, and on-line speaker adaptation. Whisper supports
Windows 95 and Windows NT, and offers speaker-

independent continuous speech recognition for typical Windows
command and control applications. In this paper, we will
selectively describe several strategies we used in Whisper to tackle
efficiency and usability problems for command and control
applications.

2. EFFICIENCY ISSUES
We have dramatically improved Whisper’s computational and
memory requirements. In comparison with Sphinx-II (under the
same accuracy constraints), the necessary RAM was reduced by a
factor of 20, and the speed was improved by a factor of 5.
Efficiency issues are largely related to the size of models and
search architecture [[3]], which is closely related to data structures
and algorithm design as well as appropriate acoustic and language
modeling technologies. In this section we discuss two most
important improvements, namely acoustic model compression and
context-free grammar search architecture.

By using the techniques described in the following sections,
Whisper can run real-time on a 486DX PC offering speaker-
independent continuous-speech recognition with a CFG required
in a typical command-and-control application within 800KB of
RAM, including code and all the data. In a command-and-control
task with 260 words, Whisper offered a word error rate of 1.4%.
For large-vocabulary continuous-speech dictation, more
computational power (CPU and memory) is required in a trade-off
with Whisper’s error rate.

2.1 Acoustic model compression
The acoustic model typically requires a large amount of memory.
In addition, likelihood computations for the acoustic model is a
major factor in determining the final speed of the system. In order
to accommodate both command-and-control and more demanding
dictation applications, Whisper is scaleable, allowing several
configurations of number of codebooks and number of senones
[[9]]. In addition, to reduce the memory required by the acoustic
model, Whisper uses a compression scheme that provides a good
compression ratio while avoiding significant computational
overhead for model decompression. The compression also offers
improved memory locality and cache performance which resulted
in a small improvement in speed.

Like discrete HMMs, semi-continuous HMMs (SCHMM) use
common codebooks for every output distribution. Since the
common codebooks are used for every senone output distribution,
the output probability value for the same codeword entry is often

identical for similar senones. For example, the context-
independent phone AA uses about 260 senones for the top-of-the
line 7000-senone configuration. These senones describe different
context variations for the phone AA. We arranged the output
probabilities according to the codeword index instead of according
to senones, as is conventionally done. We observed a very strong
output probability correlation within similar context-dependent
senones. This suggested to us that compressing output
probabilities across senones may lead to some savings. We comp-
ressed all the output probabilities with run-length encoding. The
run-length encoding is lossless and extremely efficient for
decoding. To illustrate the basic idea, we display in Table 1 the
output probabilities of senones 1 through 260 for phone AA.

 Sen 1 Sen 2 Sen 3 Sen 4 ...
Codeword 1 0.020 0.020 0.020 0.0 ...
Codeword 2 0.28 0.30 0.020 0.0 ...
Codeword 3 0.035 0.035 0.035 0.035 ...
Codeword 4 0.0 0.0 0.0 0.0 ...
Codeword 5 0.0 0.0 0.0 0.0 ...
Codeword 6 0.0 0.0 0.0 0.076 ...
Codeword 7 0.0 0.0 0.0 0.070 ...
Codeword 8 0.057 0.051 0.055 0.054 ...
Codeword 9 0.057 0.051 0.054 0.051 ...
...
Codeword 256 0.0 0.0 0.0 0.080 ...

Table 1. Uncompressed acoustic output probabilities for a
7000-senone Whisper configuration with 4 codebooks.
We show the probabilities for one of the codebooks.

In Table 1, the sum of each column equals 1.0, which corresponds
to the senone-dependent output probability distribution. For the
run-length encoding, we choose to compress each row instead of
each column. This allows us to make full use of correlation among
different senones. The compressed form is illustrated in Table 2,
where multiple identical probabilities are encoded with only one
value and repeat count. For example, in codeword 1, probability
0.020 appears successively in senones 1, 2, and 3 so, we encoded
them with (0.020, 3) as illustrated in Table 2.

Codeword 1 (0.020,3), 0.0, ...
Codeword 2 0.28,0.30, 0.020, 0.0,...
Codeword 3 (0.035, 4), ...
Codeword 4 (0.0,4), ...
....
Codeword 256 (0.0,3), 0.08,...

Table 2. Run-length compressed acoustic output
probabilities for a 7000-senone Whisper configuration
with 4 codebooks. We show the probabilities for one of
the codebooks after run-length encoding of the values in
Table 1.

The proposed compression scheme reduced the acoustic model
size by more than 35% in comparison with the baseline [[7]]. It is
not only a loss-less compression but also enables us to measurably
speed up acoustic model evaluation in the decoder. This is
because identical output probabilities no longer need to be
evaluated in computing semi-continuous output probabilities. As
such they can be precomputed before evaluating Viterbi paths.

2.2 Search architecture
Statistical language models based on bigrams and trigrams [[12]]
have long been used for large-vocabulary speech recognition
because they provide the best accuracy, and Whisper uses them for
large-vocabulary recognition. However, when designing a
command-and-control version of Whisper, we decided to use
context-free grammars (CFG). Although they have the
disadvantage of being restrictive and unforgiving, particularly
with novice users, we use it as our preferred language model
because it has advantages like (1) compact representation; (2)
efficient operation; and (3) ease of grammar creation and
modification for new tasks. Users can easily modify the CFG and
add new words to the system. Whenever a new word is added for a
non-terminal node in the CFG, a spelling-to-pronunciation
component is activated to augment the lexicon.

The CFG grammar consists of a set of productions or rules that
expand non-terminals into a sequence of terminals and non-
terminals. Non-terminals in the grammar would tend to refer to
high-level task specific concepts such as dates, font-names, etc.
Terminals are words in the vocabulary. We allow some regular
expression operators on the right hand side of the production as a
notational convenience. We disallow left recursion for ease of
implementation. The grammar format achieves sharing of sub-
grammars through the use of shared non-terminal definition rules.

During decoding, the search engine pursues several paths through
the CFG at the same time. Associated with each of the paths is a
grammar state that describes completely how the path can be
extended further. When the decoder hypothesizes the end of a
word, it asks the grammar module for all possible one word
extensions of the grammar state associated with the word just
completed. A grammar state consists of a stack of production
rules. Each element of the stack also contains the position within
the production rule of the symbol that is currently being explored.
The grammar state stack starts with the production rule for the
grammar start non-terminal at its first symbol. When the path
needs to be extended, we look at the next symbol in the
production. If it is a terminal, the path is extended with the
terminal and the search engine tries to match it against the
acoustic data. If it is a non-terminal, the production rule that
defines it, is pushed on the stack and we start scanning the new
rule from its first symbol instead. When we reach the end of the
production rule, we pop the ending rule off the stack and advance
the rule below it by one position, over the non-terminal symbol,
which we have just completed exploring. When we reach the end
of the production rule at the very bottom of the stack, we have
reached an accepting state in which we have seen a complete
grammatical sentence.

In the sake of efficiency, the decoder does not actually pursue all
possible paths. When a particular path is no longer promising, it is
pruned. Pruning is a source of additional errors since the correct
path, which looks unpromising now, may prove to be the best
when all the data is considered. To relax our pruning heuristic we
use a strategy that we have dubbed the “Rich Get Richer” (RGR).
RGR enables us to focus on the most promising paths and treat
them with detailed acoustic evaluations and relaxed path pruning
thresholds. On the other hand, poor (less promising paths) will be
extended but probably with less expensive acoustic evaluations
and less forgiving path pruning thresholds. In this way locally

optimal candidates continue to receive the maximum attention
while less optimal candidates are retained but evaluated using less
precise (computationally expensive) acoustic and/or linguistic
models. The RGR strategy gives us finer control over the creation
of new paths. This is particularly important for CFG based
grammars since the number of potential paths is exponential.
Furthermore, RGR gives us control over the working memory size
which is important for relatively small PC platforms.

One instance of RGR used in Whisper is the control over the level
of acoustic detail used in the search. Our goal is to reduce the
number of context dependent senone probability computations
required. Let’s define α (,)p t as the best accumulated score at
frame t for all instances of phone p in the beam, and b p t(,)+1 as
the output probability of the context-independent model for phone
p at frame t +1 . Then, the context-dependent senones associated
with a phone p are evaluated for frame t +1 if

 a p t b p t t K⋅ + + > −α λ(,) (,) ()1

where λ(t) is the accumulated score for the best hypothesis at
frame t, and a and K are constants.

 In the event that p does not fall with in the threshold, the senone
probabilities corresponding to p are estimated using the context
independent senones corresponding to p. In Table 3 we show the
improvements of this technique for Whisper 20,000 word
dictation applications.

Reduction in senone computation 80% 95%
Error Rate Increase 1% 15%

Table 3. Reduction in senone computation vs. error rate
increase by using RGR strategy in a 7000-senone 20000-
word configuration for Whisper.

3. USABILITY ISSUES
To make Whisper more usable, we to tackle problems such as
environmental and speaker variations, ill-formed grammatical
speech input, and sounds not intended for the system, and speaker
adaptation.

3.1 Improved channel normalization
Cepstral mean normalization [[11]] plays an important role in
robust speech recognition due to variations of channel,
microphone, and speaker. However, mean normalization does not
discriminate between silence and voice when computing the
utterance mean, and therefore the mean is affected by the amount
of noise included in the calculation. For improved speech
recognition accuracy, we propose a new efficient normalization
procedure that differentiates noise and speech during
normalization, and computes a different mean for each one. The
new normalization procedure reduced the error rate slightly for the
case of same-environment testing, and significantly reduced the
error rate by 25% when an environmental mismatch exists [[2]]
over the case of standard mean normalization.

The proposed technique consists of subtracting a correction vector
ri to each incoming cepstrum vector xi :

 z x ri i i= −

where the correction vector ri is given by

 r n n s si i avg i avgp p= − + − −() ()()1

with pi being the a posteriori probability of frame i being noise,
n and s being the average noise and average speech cepstral
vectors for the current utterance, and navg and savg the average
noise and speech cepstral vectors for the database used to train the
system. Since this normalization will be applied to then training
utterances as well, we see that after compensation, the average
noise cepstral vector for all utterances will be navg , and the

average speech vector for all utterances will be savg . The use of
the a posteriori probability allows a smooth interpolation between
noise and speech, much like the SDCN and ISDCN algorithms
[[1]].

Although a more sophisticated modeling could be used to estimate
pi , we made the approximation that it can be obtained exclusively

from the energy of the current frame. A threshold separating
speech from noise is constantly updated based on a histogram of
log-energies. This results in a very simple implementation that is
also very effective [[2]].

3.2 Noise rejection
The ability to detect and notify the user of utterances containing
out-of-vocabulary words; ungrammatical utterances; and non-
utterances such as phone rings, is essential to the usability of a
recognizer. This is particularly true when the language model is a
tight context free grammar, as users may initially have difficulty
confining their speech to such a model. We have added rejection
functionality to Whisper that assigns a confidence level to each
segment in a recognition result, as well as to the whole utterance,
which can be used for an improved user interface.

Previous work on detecting noise words includes an all-phone
representation of the input [[4]], and use of noise-specific models
[[13],[14]]. We have observed for continuous small-vocabulary
tasks that the path determined by the best context-independent
senone score per frame is a relatively reliable rejection path. We
use the output of a fully connected network of context-
independent phones, evaluated by using a Viterbi beam search
with a separate beam width that may be adjusted to trade off speed
for rejection accuracy. Transitions between phones are weighted
by phonetic bigram probabilities that are trained using a 60,000
word dictionary and language model.

We used one noise model and one garbage model in the system.
The noise model is like a phonetic HMM; its parameters are
estimated using noise-specific data such as phone rings and
coughs. The garbage model is a one-state Markov model whose
output probability is guided by the rejection path. A garbage word
based on this model may be placed anywhere in the grammar as a
kind of phonetic wildcard, absorbing or alerting to the user
ungrammatical phonetic segments after recognition. The noise
model, in turn, absorbs non-speech noise data.

We measure the rejection accuracy using a multi-speaker data set
with a mixture of grammatical and ungrammatical utterances as
well as noise. With our rejection models, Whisper rejects 76% of
utterances that are ungrammatical or noise and 20% of
misrecognized grammatical utterances, while falsely rejecting
fewer than 3% of correctly recognized grammatical utterances.
Feedback supplied by the user is used to train the confidence
threshold; this increases per-speaker rejection accuracy,
especially for non-native speakers.

One interesting result is that our confidence measures used for
noise rejection can be used to improve recognition accuracy.
Here, word transitions are penalized by a function of the
confidence measure. So the less confident theories in the search
beam are penalized more than theories that have higher
confidence intervals, which provides us with different information
than the accumulated probability for each path in the beam. This is
in the same spirit of our general RGR strategy used throughout the
system. We found that the error rate for our command and control
task was reduced by more than 20% by incorporating this penalty
[[5]].

3.3 Speaker Adaptation
To bridge the gap between speaker-dependent and speaker-
independent speech recognition, we incorporated speaker
adaptation as part of the Whisper system. We modify the two most
important parameter sets for each speaker, i.e. the vector
quantization codebooks (or the SCHMM mixture components)
and the output distributions (or the SCHMM mixing coefficients)
in the framework of semi-continuous models. We are interested in
developing adaptation algorithms that are consistent with the
estimation criterion used in either speaker-independent or speaker-
dependent systems. We observed in general a 50% error reduction
when a small amount of enrollment data is used. The adaptation is
particularly important for non-native English speakers

4. SUMMARY
We have significantly improved Whisper’s accuracy, efficiency
and usability over the past two years. On a 260-word Windows
continuous command-and-control task and with 800KB working
memory configuration (all the RAM required, including code and
data), the average speaker-independent word recognition error rate
was 1.4% on a 1160 utterance testing set. The system runs real-
time on a PC equipped with a 486DX and 4MB of memory.

The emergence of an advanced speech interface is a significant
event that will change today’s dominant GUI-based computing
paradigm. It is obvious that the paradigm shift will require not
only accurate speech recognition, but also integrated natural
language understanding as well as a new model for building
application user interfaces. The speech interface cannot be
considered highly intelligent until we make it transparent, natural,
and easy to use. Through our ongoing research efforts, we believe
that we can continue to push the quality of our system above and
beyond what is implied by its acronym.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to Douglas
Beeferman, Jack McLaughlin, Rick Rashid, and Shenzhi Zhang
for their help in Whisper development.

REFERENCES

[1] Acero, A. “Acoustical and Environmental Robustness in
Automatic Speech Recognition”. Kluwer Publishers. 1993.

[2] Acero, A. and Huang, X. “Robust Mean Normalization for
Speech Recognition”. US Patent pending, 1994.

[3] Alleva F., Huang X., and Hwang M. “An Improved Search
Algorithm for Continuous Speech Recognition”. IEEE
International Conference on Acoustics, Speech, and Signal
Processing, 1993.

[4] Asadi O., Schwartz R., and Makhoul, J. “Automatic
Modeling of Adding New Words to a Large-Vocabulary
Continuous Speech Recognition System”. IEEE
International Conference on Acoustics, Speech, and Signal
Processing, 1991.

[5] Beeferman, D. and Huang, X. “Confidence Measure and Its
Applications to Speech Recognition”. US Patent pending.
1994.

[6] Huang X., Alleva F., Hwang M., and Rosenfeld R. “An
Overview of Sphinx-II Speech Recognition System”.
Proceedings of ARPA Human Language Technology
Workshop, March 1993.

[7] Huang, X and Zhang, S. “Data Compression for Speech
Recognition”. US Patent pending, 1993.

[8] Huang X., Acero A., Alleva F., Beeferman D., Hwang M.,
and Mahajan M. “From CMU Sphinx-II to Microsoft
Whisper - Making Speech Recognition Usable”, in Automatic
Speech and Speaker Recognition - Advanced Topics. Lee,
Paliwal, and Soong editors, Kluwer Publishers, 1994.

[9] Hwang M. and Huang X. “Subphonetic Modeling with
Markov States -- Senone”. IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1992.

[10] Lee, K.F.,”Automatic Speech Recognition: The Development
of the SPHINX System”. Kluwer Publishers, Boston 1989.

[11] Liu F., Stern R., Huang X. and Acero A. “Efficient Cepstral
Normalization for Robust Speech Recognition”. Proceedings
of ARPA Human Language Technology Workshop, March
1993.

[12] Jelinek, F. “Up From Trigrams”. Proceedings of the
EuroSpeech Conf., Geneva, Italy 1991.

[13] Ward W. “Modeling Non-Verbal Sounds for Speech
Recognition”. Proceedings of DARPA Speech and Language
Workshop, October 1989.

[14] Wilpon J., Rabiner L., Lee C., and Goldman. “Automatic
Recognition of Keywords in Unconstrained Speech using
Hidden Markov Models”. IEEE Trans. on Acoustics, Speech,
and Signal Processing, Vol.- ASSP-38, pp. 1870-1878,
1990.

