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ABSTRACT 

Since January 1993, we have been working to refine and extend 
Sphinx-II technologies in order to develop practical speech 
recognition at Microsoft. The result of that work has been the 
Whisper (Windows Highly Intelligent Speech Recognizer). 
Whisper represents significantly improved recognition efficiency, 
usability, and accuracy, when compared with the Sphinx-II 
system. In addition Whisper offers speech input capabilities for 
Microsoft Windows and can be scaled to meet different PC 
platform configurations. It provides features such as continuous 
speech recognition, speaker-independence, on-line adaptation, 
noise robustness, dynamic vocabularies and grammars. For typical 
Windows Command-and-Control applications (less than 1,000 
words), Whisper provides a software only solution on PCs 
equipped with a 486DX, 4MB of memory, and a standard sound 
card and a desk-top microphone. 

1. INTRODUCTION 
To make Sphinx-II [[10],[6]] usable in a PC environment, we 
need to tackle issues of recognition accuracy, computational 
efficiency, and usability simultaneously. A large amount of RAM 
and high-end workstation are unrealistic for today’s popular PC 
environments where low-cost implementations are critical. The 
system must also be speaker adaptive, because there will always 
be some speakers for which the recognition error rate will be much 
higher than average due to variation in dialect, accent, cultural 
background, or simply vocal tract shape. The ability of the system 
to reject noise is also crucial to the success of commercial speech 
applications. Noises include not only environmental noises such 
as phone rings, key clicks, air conditioning noise, etc. but also 
vocal noises such as coughs; ungrammatical utterances, and Out 
Of Vocabulary (OOV) words. For a 20000-word dictation system, 
on average more than 3% of the words in an unconstrained test set 
are missing from the dictionary, and even when we increase the 
vocabulary size to 64,000 words, the OOV rate still remains 
higher than 1.5%. Lastly, recognition accuracy remains one of the 
most important challenges. Even if we exclude utterances 
containing OOV words, the word error rate of the best research 
systems remains to be higher than 9% for a 20,000-word 
continuous dictation task [[6]]. 

Whisper [[8]] not only inherited all the major features of state-of-
the-art research system Sphinx-II, but it also incorporates context-
free grammar decoding, noise rejection, improved channel 
normalization, and on-line speaker adaptation. Whisper supports 
Windows 95 and Windows NT, and offers speaker-

independent continuous speech recognition for typical Windows 
command and control applications. In this paper, we will 
selectively describe several strategies we used in Whisper to tackle 
efficiency and usability problems for command and control 
applications. 

2. EFFICIENCY ISSUES 
We have dramatically improved Whisper’s computational and 
memory requirements. In comparison with Sphinx-II (under the 
same accuracy constraints), the necessary RAM was reduced by a 
factor of 20, and the speed was improved by a factor of 5. 
Efficiency issues are largely related to the size of models  and 
search architecture [[3]], which is closely related to data structures 
and algorithm design as well as appropriate acoustic and language 
modeling technologies. In this section we discuss two most 
important improvements, namely acoustic model compression and 
context-free grammar search architecture. 

By using the techniques described in the following sections, 
Whisper can run real-time on a 486DX PC offering speaker-
independent continuous-speech recognition with a CFG required 
in a typical command-and-control application within 800KB of 
RAM, including code and all the data. In a command-and-control 
task with 260 words, Whisper offered a word error rate of 1.4%. 
For large-vocabulary continuous-speech dictation, more 
computational power (CPU and memory) is required in a trade-off 
with Whisper’s error rate. 

2.1 Acoustic model compression 
The acoustic model typically requires a large amount of memory. 
In addition, likelihood computations for the acoustic model is a 
major factor in determining the final speed of the system. In order 
to accommodate both command-and-control and more demanding 
dictation applications, Whisper is scaleable, allowing several 
configurations of number of codebooks and number of senones 
[[9]]. In addition, to reduce the memory required by the acoustic 
model, Whisper uses a compression scheme that provides a good 
compression ratio while avoiding significant computational 
overhead for model decompression. The compression also offers 
improved memory locality and cache performance which resulted 
in a small improvement in  speed. 

Like discrete HMMs, semi-continuous HMMs (SCHMM) use 
common codebooks for every output distribution. Since the 
common codebooks are used for every senone output distribution, 
the output probability value for the same codeword entry is often 



 

identical for similar senones. For example, the context-
independent phone AA uses about 260 senones for the top-of-the 
line 7000-senone configuration. These senones describe different 
context variations for the phone AA. We arranged the output 
probabilities according to the codeword index instead of according 
to senones, as is conventionally done. We observed a very strong 
output probability correlation within similar context-dependent 
senones. This suggested to us that compressing output 
probabilities across senones may lead to some savings. We comp-
ressed all the output probabilities with run-length encoding. The 
run-length encoding is lossless and extremely efficient for 
decoding. To illustrate the basic idea, we display in Table 1 the 
output probabilities of senones 1 through 260 for phone AA. 

 Sen 1 Sen 2 Sen 3 Sen 4 ... 
Codeword 1 0.020 0.020 0.020 0.0 ... 
Codeword 2 0.28 0.30 0.020 0.0 ... 
Codeword 3 0.035 0.035 0.035 0.035 ... 
Codeword 4 0.0 0.0 0.0 0.0 ... 
Codeword 5 0.0 0.0 0.0 0.0 ... 
Codeword 6 0.0 0.0 0.0 0.076 ... 
Codeword 7 0.0 0.0 0.0 0.070 ... 
Codeword 8 0.057 0.051 0.055 0.054 ... 
Codeword 9 0.057 0.051 0.054 0.051 ... 
... ... ... ... ... ... 
Codeword 256 0.0 0.0 0.0 0.080 ... 

Table 1. Uncompressed acoustic output probabilities for a 
7000-senone Whisper configuration with 4 codebooks. 
We show the probabilities for one of the codebooks. 

In Table 1, the sum of each column equals 1.0, which corresponds 
to the senone-dependent output probability distribution. For the 
run-length encoding, we choose to compress each row instead of 
each column. This allows us to make full use of correlation among 
different senones. The compressed form is illustrated in Table 2, 
where multiple identical probabilities are encoded with only one 
value and repeat count. For example, in codeword 1, probability 
0.020 appears successively in senones 1, 2, and 3 so, we encoded 
them with (0.020, 3) as illustrated in Table 2. 

Codeword 1 (0.020,3), 0.0, ... 
Codeword 2 0.28,0.30, 0.020, 0.0,... 
Codeword 3 (0.035, 4), ... 
Codeword 4 (0.0,4), ...
.... ..... 
Codeword 256 (0.0,3), 0.08,... 

Table 2. Run-length compressed acoustic output 
probabilities for a 7000-senone Whisper configuration 
with 4 codebooks. We show the probabilities for one of 
the codebooks after run-length encoding of the values in 
Table 1. 

The proposed compression scheme reduced the acoustic model 
size by more than 35% in comparison with the baseline [[7]]. It is 
not only a loss-less compression but also enables us to measurably 
speed up acoustic model evaluation in the decoder. This is 
because identical output probabilities no longer need to be 
evaluated in computing semi-continuous output probabilities. As 
such they can be precomputed before evaluating Viterbi paths. 

2.2 Search architecture 
Statistical language models based on bigrams and trigrams [[12]] 
have long been used for large-vocabulary speech recognition 
because they provide the best accuracy, and Whisper uses them for 
large-vocabulary recognition. However, when designing a 
command-and-control version of Whisper, we decided to use 
context-free grammars (CFG). Although they have the 
disadvantage of being restrictive and unforgiving, particularly 
with novice users, we use it as our preferred language model 
because it has advantages like (1) compact representation; (2) 
efficient operation; and (3) ease of grammar creation and 
modification for new tasks. Users can easily modify the CFG and 
add new words to the system. Whenever a new word is added for a 
non-terminal node in the CFG, a spelling-to-pronunciation 
component is activated to augment the lexicon. 

The CFG grammar consists of a set of productions or rules that 
expand non-terminals into a sequence of terminals and non-
terminals.  Non-terminals in the grammar would tend to refer to 
high-level task specific concepts such as dates, font-names, etc.  
Terminals are words in the vocabulary. We allow some regular 
expression operators on the right hand side of the production as a 
notational convenience. We disallow left recursion for ease of 
implementation. The grammar format achieves sharing of sub-
grammars through the use of shared non-terminal definition rules. 

During decoding, the search engine pursues several paths through 
the CFG at the same time. Associated with each of the paths is a 
grammar state that describes completely how the path can be 
extended further. When the decoder hypothesizes the end of a 
word, it asks the grammar module for all possible one word 
extensions of the grammar state associated with the word just 
completed. A grammar state consists of a stack of production 
rules. Each element of the stack also contains the position within 
the production rule of the symbol that is currently being explored. 
The grammar state stack starts with the production rule for the 
grammar start non-terminal at its first symbol. When the path 
needs to be extended, we look at the next symbol in the 
production. If it is a terminal, the path is extended with the 
terminal and the search engine tries to match it against the 
acoustic data. If it is a non-terminal, the production rule that 
defines it, is pushed on the stack and we start scanning the new 
rule from its first symbol instead.  When we reach the end of the 
production rule, we pop the ending rule off the stack and advance 
the rule below it by one position, over the non-terminal symbol, 
which we have just completed exploring.  When we reach the end 
of the production rule at the very bottom of the stack, we have 
reached an accepting state in which we have seen a complete 
grammatical sentence. 

In the sake of efficiency, the decoder does not actually pursue all 
possible paths. When a particular path is no longer promising, it is 
pruned. Pruning is a source of additional errors since the correct 
path, which looks unpromising now, may prove to be the best 
when all the data is considered. To relax our pruning heuristic we 
use a strategy that we have dubbed the “Rich Get Richer” (RGR).  
RGR enables us to focus on the most promising paths and treat 
them with detailed acoustic evaluations and relaxed path pruning 
thresholds. On the other hand, poor (less promising paths) will be 
extended but probably with less expensive acoustic evaluations 
and less forgiving path pruning thresholds. In this way locally 



 

optimal candidates continue to receive the maximum attention 
while less optimal candidates are retained but evaluated using less 
precise (computationally expensive) acoustic and/or linguistic 
models. The RGR strategy gives us finer control over the creation 
of new paths. This is particularly important for CFG based 
grammars since the number of potential paths is exponential. 
Furthermore, RGR gives us control over the working memory size 
which is important for relatively small PC platforms. 

One instance of RGR used in Whisper is the control over the level 
of acoustic detail used in the search. Our goal is to reduce the 
number of context dependent senone probability computations 
required. Let’s define α ( , )p t  as the best accumulated score at 
frame t for all instances of phone p in the beam, and b p t( , )+1  as 
the output probability of the context-independent model for phone 
p at frame t +1 . Then, the context-dependent senones associated 
with a phone p are evaluated for frame t +1  if 

 a p t b p t t K⋅ + + > −α λ( , ) ( , ) ( )1  

where λ(t) is the accumulated score for the best hypothesis at 
frame t, and a and K are constants. 

 In the event that p does not fall with in the threshold, the senone 
probabilities corresponding to p are estimated using the context 
independent senones corresponding to p. In Table 3 we show the 
improvements of this technique for Whisper 20,000 word 
dictation applications. 

Reduction in senone computation  80% 95% 
Error Rate Increase   1%  15% 

Table 3. Reduction in senone computation vs. error rate 
increase by using RGR strategy in a 7000-senone 20000-
word configuration for Whisper. 

3. USABILITY ISSUES 
To make Whisper more usable, we to tackle problems such as 
environmental and speaker variations, ill-formed grammatical 
speech input, and sounds not intended for the system, and speaker 
adaptation. 

3.1 Improved channel normalization 
Cepstral mean normalization [[11]] plays an important role in 
robust speech recognition due to variations of channel, 
microphone, and speaker. However, mean normalization does not 
discriminate between silence and voice when computing the 
utterance mean, and therefore the mean is affected by the amount 
of noise included in the calculation. For improved speech 
recognition accuracy, we propose a new efficient normalization 
procedure that differentiates noise and speech during 
normalization, and computes a different mean for each one. The 
new normalization procedure reduced the error rate slightly for the 
case of same-environment testing, and significantly reduced the 
error rate by 25% when an environmental mismatch exists [[2]] 
over the case of standard mean normalization. 

The proposed technique consists of subtracting a correction vector 
ri  to each incoming cepstrum vector xi : 

 z x ri i i= −  

where the correction vector ri  is given by 

 r n n s si i avg i avgp p= − + − −( ) ( )( )1  

with pi  being the a posteriori probability of frame i being noise, 
n and s being the average noise and average speech cepstral 
vectors for the current utterance, and navg  and savg  the average 
noise and speech cepstral vectors for the database used to train the 
system. Since this normalization will be applied to then training 
utterances as well, we see that after compensation, the average 
noise cepstral vector for all utterances will be navg , and the 

average speech vector for all utterances will be savg . The use of 
the a posteriori probability allows a smooth interpolation between 
noise and speech, much like the SDCN and ISDCN algorithms 
[[1]]. 

Although a more sophisticated modeling could be used to estimate 
pi , we made the approximation that it can be obtained exclusively 

from the energy of the current frame. A threshold separating 
speech from noise is constantly updated based on a histogram of 
log-energies. This results in a very simple implementation that is 
also very effective [[2]]. 

3.2 Noise rejection 
The ability to detect and notify the user of utterances containing 
out-of-vocabulary words; ungrammatical utterances; and non-
utterances such as phone rings, is essential to the usability of a  
recognizer.  This is particularly true when the language model is a 
tight context free grammar, as users may initially have difficulty 
confining their speech to such a model.  We have added rejection 
functionality to Whisper that assigns a confidence level to each 
segment in a recognition result, as well as to the whole utterance, 
which can be used for an improved user interface. 

Previous work on detecting noise words includes an all-phone 
representation of the input [[4]], and use of noise-specific models 
[[13],[14]]. We have observed for continuous small-vocabulary 
tasks that the path determined by the best context-independent 
senone score per frame is a relatively reliable rejection path. We 
use the output of a fully connected network of  context-
independent phones, evaluated by using a Viterbi beam search 
with a separate beam width that may be adjusted to trade off speed 
for rejection accuracy.   Transitions between phones are weighted 
by phonetic bigram probabilities that are trained using a 60,000 
word dictionary and language model. 

We used one noise model and one garbage model in the system. 
The noise model is like a phonetic HMM; its parameters are 
estimated using noise-specific data such as phone rings  and 
coughs. The garbage model is a one-state Markov model whose 
output probability is guided by the rejection path.  A garbage word 
based on this model may be placed anywhere in the grammar as a 
kind of phonetic wildcard, absorbing or alerting to the user 
ungrammatical phonetic segments after recognition.  The noise 
model, in turn, absorbs non-speech noise data. 



 

We measure the rejection accuracy using a multi-speaker data set 
with a mixture of grammatical and ungrammatical utterances as 
well as noise. With our rejection models, Whisper rejects 76% of 
utterances that are ungrammatical or noise and 20% of 
misrecognized grammatical utterances, while falsely rejecting 
fewer than 3% of correctly recognized grammatical utterances.  
Feedback supplied by the user is used to train the confidence 
threshold;  this increases per-speaker rejection accuracy, 
especially for non-native speakers. 

One interesting result is that our confidence measures used for 
noise rejection can be used to improve recognition accuracy.  
Here, word transitions are penalized by a function of the 
confidence measure. So the less confident theories in the search 
beam are  penalized more than theories that have higher 
confidence intervals, which provides us with different information 
than the accumulated probability for each path in the beam. This is 
in the same spirit of our general RGR strategy used throughout the 
system. We found that the error rate for our command and control 
task was reduced by more than 20% by incorporating this penalty 
[[5]]. 

3.3 Speaker Adaptation 
To bridge the gap between speaker-dependent and speaker-
independent speech recognition, we incorporated speaker 
adaptation as part of the Whisper system. We modify the two most 
important parameter sets for each speaker, i.e. the vector 
quantization codebooks (or the SCHMM mixture components) 
and the output distributions (or the SCHMM mixing coefficients) 
in the framework of semi-continuous models. We are interested in 
developing adaptation algorithms that are consistent with the 
estimation criterion used in either speaker-independent or speaker-
dependent systems. We observed in general a 50% error reduction 
when a small amount of enrollment data is used. The adaptation is 
particularly important for non-native English speakers 

4. SUMMARY 
We have significantly improved Whisper’s accuracy, efficiency 
and usability over the past two years. On a 260-word Windows 
continuous command-and-control task and with 800KB working 
memory configuration (all the RAM required, including code and 
data), the average speaker-independent word recognition error rate 
was 1.4% on a 1160 utterance testing set. The system runs real-
time on a PC equipped with a 486DX and 4MB of memory. 

The emergence of an advanced speech interface is a significant 
event that will change today’s dominant GUI-based computing 
paradigm. It is obvious that the paradigm shift will require not 
only accurate speech recognition, but also integrated natural 
language understanding as well as a new model for building 
application user interfaces. The speech interface cannot be 
considered highly intelligent until we make it transparent, natural, 
and easy to use. Through our ongoing research efforts, we believe 
that we can continue to push the quality of our system above and 
beyond what is implied by its acronym. 
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