
 

ABSTRACT

 

This paper describes several new cepstral-based compensation
procedures that render the SPHINX-II system more robust with
respect to acoustical environment. The first algorithm, phone-
dependent cepstral compensation, is similar in concept to the
previously-described MFCDCN method, except that cepstral
compensation vectors are selected according to the current pho-
netic hypothesis, rather than on the basis of SNR or VQ code-
word identity. We also describe two procedures to accomplish
adaptation of the VQ codebook for new environments. Use of the
various compensation algorithms in consort produces a reduction
of error rates for SPHINX-II by as much as 40 percent relative to
the rate achieved with cepstral mean normalization alone. 

 

1. INTRODUCTION

 

A continuing problem with current speech recognition technol-
ogy is the lack of robustness with respect to environmental vari-
ability. For example, the use of microphones other than the
ARPA standard Sennheiser HMD-414 “close-talking” headset
(CLSTLK) severely degrades the performance of systems like
the original SPHINX system, even in a relatively quiet office
environment [

 

e.g. 

 

1, 2]. Applications such as speech recognition
in automobiles, over telephones, on a factory floor, or outdoors
demand an even greater degree of environmental robustness.

In this paper we describe and compare the performance of a
series of cepstrum-based procedures that enable the CMU
SPHINX-II [3] speech recognition system to maintain a high
level of recognition accuracy over a wide variety of acoustical
environments. In previous years we described the performance of
cepstral mapping procedures such as the CDCN algorithm,
which is effective but fairly computationally costly [2]. More
recently we discussed the use of cepstral highpass-filtering algo-
rithms, such as the popular RASTA and cepstral-mean-normal-
ization algorithms (CMN) [4]. These algorithms are very simple
to implement but somewhat limited in effectiveness. CMN, in
which the mean of the cepstral vectors is subtracted on a frame-
by-frame basis before recognition, is now a component of rou-
tine baseline processing for the CMU SPHINX-II system and for
many other systems. 

In this paper we describe several new procedures that when used
in consort can provide as much as an additional 40 percent
improvement over baseline processing with CMN. These tech-
niques include phone-dependent cepstral compensation, environ-
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mental interpolation of compensation vectors, and codebook
adaptation. In Sec. 2 we describe the various compensation pro-
cedures in detail, and we examine their effect on recognition
accuracy in Sec. 3. 

 

2. ENVIRONMENTAL COMPENSATION 
ALGORITHMS

 

We begin this section by reviewing the previously-described
MFCDCN algorithm. We then discuss blind environment selec-
tion and environmental interpolation as they apply to MFCDCN.
Finally, the complementary procedures of phone-dependent cep-
stral normalization and codebook adaptation are described. 

 

2.1. Multiple Fixed Codeword-Dependent 
Cepstral Normalization (MFCDCN)

 

Multiple fixed codeword-dependent cepstral normalization

 

(MFCDCN) provides additive cepstral compensation vectors that
depend on signal-to-noise ratio (SNR) and that also vary from
codeword to codeword of the vector-quantized (VQ) representa-
tion of the incoming speech at each SNR [4]. At low SNRs these
vectors primarily compensate for effects of additive noise. At
higher SNRs, the algorithm compensates for linear filtering,
while at intermediate SNRs, they compensate for both of these
effects. Environmental independence is provided by computing
compensation vectors for a number of different environments
and selecting the compensation environment that results in mini-
mal residual VQ distortion. 

Figure 1 illustrates some typical compensation vectors obtained
with the FCDCN algorithm, computed using the ARPA standard
close-talking Sennheiser HMD-414 microphone and the unidirec-
tional desktop PCC-160 microphone used as the testing environ-
ment. The vectors are computed at the extreme SNRs of 0 and 29
dB, as well as at 5 dB. The horizontal axis represents frequency,
warped nonlinearly according to the mel scale, with a maximum
frequency of 8000 Hz. We note that the spectral profile of the
compensation vector varies with SNR, and that especially for the
intermediate SNRs the various VQ clusters require compensation
vectors of different spectral shapes.

 

2.2. Phone-Dependent Cepstral Normaliza-
tion (PDCN)

 

It is also possible to select additive cepstral compensation vec-
tors on the basis of the current phoneme hypothesis in the search
process, rather than according to physical parameters such as
SNR or VQ codeword identity as in MFCDCN. This approach to* Currently at Microsoft Corporation



 

environmental compensation is referred to as 

 

phone-dependent
cepstral normalization

 

 (PDCN), and is described in this section.

 

Estimation of PDCN compensation vectors.

 

 In the current
implementation of PDCN, we develop compensation vectors that
are specific to individual phonetical events, using a base phone
set of 51 phonemes, including silence but excluding other types
of non-lexical events. This is accomplished by running the
decoder in supervised mode using CLSTLK data and correction
transcriptions. All CLSTLK utterances are divided into phonetic
segments. For every phonetic label, a difference vector is com-
puted by accumulating the difference between the cepstral vector
in a given frame in the CLSTLK training data, and its counter-
part in the secondary environment.

Figure 2 illustrates some typical compensation vectors obtained
with the PDCN algorithm, again computed using the CLSTLK
microphone, with the unidirectional desktop PCC-160 micro-
phone used as the testing environment. Typical compensation
vectors are shown for three front vowels, three nasals, and three
fricatives. The compensation vectors for the various types of pho-
nemes show systematic differences in shape that are related to
phoneme type.

 

Application of PDCN compensation in recognition.

 

 The
SPHINX-II system uses the senone [3], a generalized state-based
probability density function, as the basic unit to compute the like-
lihood from acoustical models. Multiple compensated cepstral
vectors are formed in PDCN by adding various compensation
vectors such as those depicted in Fig. 2, to the incoming cepstra.
The compensation vectors are selected frame by frame, based on
the presumed phoneme identity. The amount of computation
needed for this procedure is reduced because in SPHINX-II, each
senone corresponds to only one distinctive base phoneme. Each
cepstral vector is normalized with a PDCN compensation vector
that corresponds to its base phonetic identity. 

 

2.3. Blind Environment Selection

 

A number of ensembles of compensation vectors in MFCDCN
and PDCN are compiled for a number of environments, of which
one must be selected for the compensation process. We consid-
ered two procedures for environment selection. 

The first procedure, referred to as 

 

selection by compensation

 

,
applies compensation vectors from each possible environment
successively to the incoming test utterance. The environment

 

 

 

is
chosen that minimizes the average residual VQ distortion over
the entire utterance. The second procedure, referred to as the

 

Gaussian environment classifier

 

, models each environment with
mixtures of Gaussian densities. The chosen environment is the
one that maximizes the probability of observing the incoming
cepstra. This approach is similar to one proposed previously by
BBN [5]. The two methods produce similar speech recognition
accuracy for most domains of interest. 

 

2.4. Environmental Interpolation

 

In cases where the testing environment does not closely resemble
any particular environment used to develop compensation
parameters for MFCDCN or PDCN, interpolating the compensa-
tion vectors of several environments can be more helpful than
using compensation vectors from a single (incorrect) environ-
ment. We refer to interpolated versions of the MFCDCN and
PDCN algorithms as IMFCDCN and IPDCN, respectively. In
both cases, compensation vectors for new environments are
obtained by linear interpolation of several of the MFCDCN com-
pensation vectors, respectively. The weighting factors for each
environment are set to equal the probability that that environ-
ment is present given the observed incoming cepstral vectors. In
the work described in this paper, interpolation was generally car-
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Figure 1. Comparison of compensation vectors using the 
FCDCN method with the PCC-160 unidirectional desktop 
microphone, at three different signal-to-noise ratios. The maxi-
mum SNR used by the FCDCN algorithm is 29 dB.
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Figure 2. Comparison of compensation vectors used in the 
PDCN method with the PCC-160 unidirectional desktop micro-
phone, for (from top to bottom) three front vowels, three nasals, 
and three fricatives.



 

ried out over the best three environments. In the case of IPDCN,
the interpolation made use of the closest four Gaussian mixtures. 

 

2.5. Codebook Adaptation (DCCA and 
BWCA)

 

Compensation procedures like MFCDCN and PDCN apply addi-
tive corrections to incoming vectors. An alternative approach is to
use information about environmental differences to modify the
internal templates to which these incoming feature vectors are
compared, the means and variances of the vector quantization
(VQ) codebook. In this section we discuss two approaches to

 

codebook adaptation

 

, in which we modify the mean vectors and/
or covariance matrices of the VQ codebooks in order to compen-
sate for acoustical differences between training and testing envi-
ronments. 

Dual-Channel Codebook Adaptation (DCCA). 

 

Dual-Channel
Codebook Adaptation (DCCA)

 

 exploits the existence of speech
that is simultaneously recorded using the CLSTLK microphone
and a number of secondary microphones. This information is used
to modify the means and variances of the mixture densities that
comprise the probability density functions for the senones used in
SPHINX-II. Specifically, VQ encoding is performed on speech
from the CLSTLK microphone processed with CMN. The output
VQ labels are shared by the CLSTLK data and the corresponding
data in the secondary (or target) environment. For each subspace
in the CLSTLK training environment, we generate the corre-
sponding means and variances for the target environment. Thus, a
one-to-one mapping between the means and variances of the cep-
stral space of the CLSTLK training condition and that of the tar-
get condition is established. 

 

Baum-Welch Codebook Adaptation (BWCA).

 

 There are many
applications in which stereo data simultaneously recorded in the
CLSTLK and target environments are unavailable. In these cir-
cumstances, transformations can be developed between environ-
ments using the adaptation utterances in conjunction with the
Baum-Welch algorithm.

In Baum-Welch codebook adaptation, mean vectors and covari-
ance matrices, along with senones, are re-estimated and updated
using the Baum-Welch algorithm [6] during each iteration of
training process. To compensate for the effect of changes in
acoustical environments, the Baum-Welch approach is used to
transform the means and covariances toward the cepstral space
of the target testing environments. This is exactly like baseline
training, except that only a few adaptation utterances are avail-
able, and that number of free parameters to be estimated (

 

i.e.

 

 the
means and variances of the VQ codewords) is very small.

 

3. EXPERIMENTAL RESULTS

 

In this and the following section we describe the results of a
series of experiments that compare the recognition accuracy of
the various algorithms described in Sec. 2 using the ARPA CSR
Wall Street Journal task. The 7000 WSJ0 utterances recorded
using the CLSTLK microphone were used for the training cor-
pus, and the system was evaluated using the 330 utterances from
secondary microphones in the ARPA WSJ 1992 evaluation test
set, which has a closed vocabulary of 5000 words. 

To expedite processing, we used a smaller and faster version of
SPHINX-II than the implementation used for the official ATIS
and CSR Hub evaluations. The faster system differs from the hub
evaluation system in four ways: it uses a bigram grammar (rather
than a trigram grammar), it uses only one codebook (rather than
27 phone-dependent codebooks), it performs sex classification on
the basis of VQ distortion of the incoming cepstral vectors, and it
uses a forward pass only, rather than three passes. While error
rates obtained using the faster system is 50 percent greater than
the corresponding rates obtained using the official evaluation sys-
tem, the relative errors observed using the different compensation
procedures are the same.

The conventional SPHINX-II system uses signal processing that
extracts Mel-frequency cepstral coefficients (MFCC) over an
analysis range of 130 to 6800 Hz. When speech is determined to
be of telephone bandwidth using the Gaussian environment clas-
sifier described in Sec. 2.3, the analysis bandwidth is reduced.
This is accomplished by performing the normal DFT analysis
with the normal 16,000-Hz sampling rate, but only retaining DFT
coefficients after the triangular frequency smoothing from center
frequencies of 200 to 3700 Hz. Reduced-bandwidth MFCC coef-
ficients are obtained by performing the discrete-cosine transform
only on these frequency-weighted DFT coefficients. Two sets of
VQ codebooks and senones are used, one for telephone speech
using a wideband front-end analysis and another for non-tele-
phone speech. 

 

3.1. Comparison of MFCDCN, IFCDCN, 
PDCN, and IPDCN

 

Figure 3 and Table 1 compare word error rates obtained using var-
ious processing schemes along with the corresponding reduction
of word error rates with respect to the baseline with CMN. Com-

pensation vectors used for these comparisons were developed
from training data that include the testing environments. Table 2
summarizes similar results that were obtained when the actual
testing environment was excluded from the set of data used to de-
velop the compensation vectors.

The results of Figure 3 and Table 1 indicate that PDCN when
applied in isolation provides a recognition error rate that is not as
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Figure 3.  Comparison of recognition error rates using CMN, 
PDCN, and MFCDCN. Results are tabulated separately for the 
non-telephone and telephone microphones of the 1992 WSJ 
secondary-microphone evaluation data.



 

good as that obtained using MFCDCN. Nevertheless, the effects
of PDCN and MFCDCN are complementary in that the use of
the two algorithms in combination provides a lower error rate
than was observed with either algorithm applied by itself, result-
ing in 39.7 percent fewer errors than with CMN alone. In fact,
for the non-telephone microphones, the error rate obtained for
the compensated secondary microphones is only 15.7 percent
worse than that obtained training and testing using the CLSTLK
microphone. The results in Table 2 demonstrate that the use of
environment interpolation is helpful when the testing environ-
ment is not included in the set used to develop compensation
vectors. As seen in Table 1, environmental interpolation degrades
performance slightly when the actual testing environment is
included in the development of the compensation vectors. 

 

3.2. Performance of Codebook Adaptation

 

Table 3 compares word error rates obtained with the DCCA and
BWCA as described in Sec. 2.5 with error rates obtained with
CMN and MFCDCN. The Baum-Welch codebook adaptation
was implemented with four iterations of re-estimation of the
means of the codebook. (Means and variances were re-estimated
in a pilot experiment, but with no improvement in performance.)
These results indicate that the effectiveness of codebook adapta-
tion used in isolation to reduce error rate is about equal to that of
MFCDCN, but that the application of DCCA in conjunction with
MFCDCN can provide further improvements in recognition
accuracy. 

COMPENSATION
ALGORITHM

CLSTLK
mic

OTHER
mics

CMN (baseline) 7.6 21.4

CMN+MFCDCN 7.6 14.5

CMN+IMFCDCN 7.8 15.1

CMN+PDCN 7.9 16.9

CMN+IPDCN 7.7 16.5

CMN+MFCDCN+PDCN 7.6 12.9

Table 1: Word error rates obtained on the secondary-mic data 
from the 1992 WSJ evaluation test using CMN, MFCDCN, and 
PDCN with and without environment interpolation.

COMPENSATION
ALGORITHM

CLSTLK
mic

OTHER
mics

CMN (baseline) 7.6 21.4

CMN+MFCDCN 7.6 16.1

CMN+IMFCDCN 7.6 14.8

CMN+PDCN 7.6 16.9

CMN+IPDCN 7.6 16.8

CMN+MFCDCN+PDCN 7.6 14.8

CMN+IMFCDCN+IPDCN 7.6 13.5

Table 2:  Word error rates obtained using CMN, MFCDCN, and 
PDCN as in Table 1, but with the testing environments excluded 
from the corpus used to develop compensation vectors.

 

4. SUMMARY AND CONCLUSIONS

 

In this paper we describe a number of procedures that improve
the recognition accuracy of the SPHINX-II system in unknown
acoustical environments. We found that the use of MFCDFN and
phone-dependent cepstral normalization reduces the error rate by
40 percent compared to that obtained with CMN alone. The use
of Baum-Welch codebook adaptation with MFCDCN reduces
the error rate by 37 percent compared to that obtained with CMN
alone. 
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