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Abstract 

In this paper we report our initial efforts to make SPHINX, the CMU 
continuous-speech speaker-independent recognition system, robust to 
changes in the environment. To deal with differences in noise level and 
spectral ti l t  between closc-tcking atid desk-top microphones, we propose 
two novel methods based on additive corrections in the cepstral domain. 
In the first algorithm, the additive correction depends on the instantaneous 
SNR of the signal. In the second technique, EM techniques are used to 
bes~ match the cepstral vectors of the input utter.mces to the ensemble of 
codebook entries representing a standard acoustical ambience. Use of the 
proposed algorithms dramatically improves recognition accuracy when 
the system is tested on a microphone other than the one on which it was 
trained. 

1. Introduction 
Real applications demand that the performance of speech recog- 
nition systems is not affected by changes in the environment. 
However, it is well known that when a system is trained and 
tested under different conditions, the recognition rate drops un- 
acceptably. In this study we are concerned with the variability 
present when different microphones are used in training and 
testing, and specifically the development of procedures that can 
signficantly improve the accuracy of speech-recognition systems 
that use desk-top microphones. 

There are many sources of acoustical distortion that can degrade 
the accuracy of speech-recognition systems. For example, 
obstacles to robustness include additive noise from machinery, 
competing takers, etc., reverberation from surface reflections in a 
room, and spectral shaping by microphones and the vocal tracts 
of individual speakers. These sources of distortion cluster into 
two complementary classes: additive noise (as in the fmt two 
examples) and distortions resulting from the coiivolution of the 
speech signal with an unknown linear system (as in the remaining 
three). 

A number of algorithms for speech enhancement have been 
proposed in the literature. For example, Boll 111 and Berouti et al. 
[2J introduced the spectral subtraction of DFT coefficients, and 

Porter and Boll [3] used MMSE techniques to estimate the DET 
coefficients of coriupted speech. Spectral equalization to com- 
pensate for convolved distortions was introduced by Stockham et 
al. [4]. Recent applications of spectral subtraction and spectral 
equalization include the work of Van Compernolle [5] and Stem 
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and Acero [6]. Although relatively successful, the above 
methods all depend on the assumption of independence of the 
spectral estimates across frequencies. EreU and Weintraub 
[7] demonstrated improved performance with an MMSE es- 

timator in which correlation among frequencies is modeled ex- 
plicitly. 

In this paper we present two algorithms for speech normalization 
based on additive corrections in the cepstral domain. We have 
chosen the cepstral domain rather than the frequency domain so 
that we work directly with the parameters that SPHINX uses, and 
because speech can be characterized with a smaller number of 
parameters in the cepstral domain than in the frequency domain. 
The first algorithm, SNR-deperidenf cepstral normalization 
(SDCN) is simple and effective, but it cannot be applied to new 
microphones without microphone-specific training. The second 
algorithm, codeword-deperident cepstral norntalizution (CDCN) 
computes an ML estimate for the noise and spectral tilt, and then 
an MMSE estimate for the speech cepstrum. These algorithms are 
evaluated using an alphanumeric database in which utterances 
were recorded simultaneously with two different microphones. 

2. A Model of the Environment 
We assume that the speech signal x ( t )  is first passed through a 
linear filter h(r )  whose output is then corrupted by uncorrelated 
additive noise n ( t ) .  We can characterize the power spectral 
density (PSD) of the processes involved as 

If we let the cepstral vectors x, n, y and q represent the Fourier 
series expansion of In Px (f), In P,, (f), In Py (f) and In I H ( f )  l2  
respectively, (1) can be rewritten as 

y = x + q + r(x ,n ,q)  or y = n + s (x ,n ,q)  (2) 
where the correction vectors r (x, n, q) and s (x, n, q) are given by 

r (x, n, q) = IDFT (In (1 + eDFT [" - q - 

s (x ,n ,q )  = IDFT (In (1 + eDFTIx + q - nl )! 
1) (3) 

(4) 

If x (0) + q (0) D n(0) (i.e. high SNR), r = 0, and y = x + q. On 
the other hand, when x(0) + q(0) <( n(0) (i.e. low SNR), s = 0, 

and y = n. We can obtain an estimate 2 (f) of the PSD P (f) 
from a sample function of the process y ( I)  (i .e.  a frame of speech 
that is assumed to be locally stationary). If z represents the 

Y Y 
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A 
Fourier expansion of In P (f), our goal is to estimate the uncor- 
rupted vectors X = xo, ... xN- I of an utterance given the obser- 
vations Z = Z ~ , . . . Z ~ - ~ .  

3. SNR-Dependent Cepstral Normalization 
If we assume that the estimation error is negligible (i.e. 
p ( z / y ) = 6 ( z - y ) ) ,  and that the correction vector r in (3) 
depends only on x(0)-n(0)  (i.e. that we can apply an average 
correction to all spectral shapes with the same SNR), then we can 

estimate x by the expression 

Y 

A 

A 
x = z - w(SNR) ( 5 )  

which subtracts from the observed vector a correction w that 
depends only on the instantaneous S N R  of the observed signal, 
z(0) - n(0).  We have estimated these compensation vectors 
w(SNR) by computing the average difference between cepstral 
vectors for the test condition versus a standard acoustical en- 
vironment from simultaneous stereo recordings. Although this 
technique performs acceptably, it has the disadvantage that new 
microphones must be "calibrated" by collecting long-term statis- 
tics from a new stereo database. Since only long-term averages 
are used, the SDCN is clearly not able to model a non-stationary 
environment. 

4. Codeword-Dependent Cepstral Normalization 
A robust speech recognizer should be immune to the transfor- 
mation described by (I). To reverse the effects of H ( f )  and 
PJf) we have to solve two problems: 

1. Estimate q and n, the equalization and noise vec- 
tors, given the observations Z for an utterance. An 
ML estimator of the parameter vectors will be used. 

2. Estimate the uncorrupted vector x given the obser- 
vation for that frame z  and the equalization and 
noise vectors q and n. For this task we will use an 
MMSE estimator. 

In the absence of exact statistics for the AR spectral estimator, we 
modeled the distribution p ( z / y )  as a multivariate gaussian 
N,(y ,T) .  We have confirmed the validity of this assumption 
empirically for the signal processing in SPHINX. The probability 
density function of x will be assumed to be a mixture of K 
gaussian densities with means ck, covariance matrices Ck and 
weights pk: 

K- 1 K- 1 

4.1. MMSE Estimator of the Cepstral Vector 
The MMSE estimate for x has the form 

K-1 

A 

xMMS 

Since the true MMSE estimate for x cannot be obtained directly 

due to nonlinearities introduced by the correction vectors, we 
obtained approximate estimates with the following procedure: 

1. We assign the mixture component 0 to the noise 
event, and assume that the elements of the 
covariance matrix CO are much smaller than the 
corresponding elements from r. This implies that 
p(x /k=O)  = 6(x-co).  

2. All other components are assumed to belong to 
some class of speech event. We assume that the 
elements of their covariance matrices C, are much 
larger than the corresponding elements of r, which 
implies thatp(z /x ,n ,q ,k)  = F(z -x -q-r ) .  

With these approximations, the estimate has the form 
K- I 

'MMSE =fOcO + c f k  ' k  
k=l 

A 
where x k =  z -  q  - r k  and 

-I A 
do = ($-CO) r1 (Go-Co); dk = (gk-Ck) ck (Xk-Ck) 

In this procedure the correction vectors rk = r (ck, n, q) and 
S k  = s(ck,n,q)  are no longer a function of x, so the cepstral 
normalization is codeword-dependent. 

4.2. ML Estimation of Noise and Spectral Tilt 
If no a priori information is given about the noise and equaliza- 
tion vectors n and q, the optimum estimation method is max- 
imum likelihood: 

A A  

( n M L ,  qML) = argmax p ( Z / q , n )  (11) 

By assuming that different kames are independent from each 
other, we can use the expression 

N- I 

In p(Z/q,n)  = 2 ~n p(zj /q ,n)  (12) 
i=O 

whose maximization leads to 

A similar expression can be derived for q.  

By using the approximations described above we can express the 
distribution of zi as 

1 
2 

K-1 Pik 

k=l lckl  
c 1/2 exp(-- (zi- q  - rk- ck) ck-' (zi- q - rk- ck)) 

except for a constaqt factor. The f i s t  term is expressed as a 
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function of the noise n explicitly to reflect the fact that the noise 
codeword (k=O) is largely insensitive to q, and depends mostly 
on 11. Similarly, the other codewords are largely insensitive to n 
and depend mostly on q. 

Since (13) leads to a highly nonlinear equation, we will use a 
varkant of the well-known EM algorithm 181 that has been exten- 
sively used in the literature to obtain ML solutions with incom- 
plete data: 

1 .  Assume initial values of GcO) and 

2. Estimate the correction vectors rk and sk given 

no-'), $U-'), and x = c k  according to (3) and (4). 

3. Maximize the log-likelihood (12). The new es- 

timates for Go1 and are 

for j  = 1. 

A .  

N- 1 

C fi0 
i=O 

N-1 K-1 

$01 = 

where 

N-I K-1 c c fik 
i=O k=l 

k '  
qi = z. - c k  - ' k  

4. Stop if convergence has been reached, otherwise go 
to Step 2. 

4.3. Implementation and Discussion 
For simplicity, all the covariance matrices C, are assumed to be 

equal to 021. We also assumed that r equals ?I, which is 
actually not the case when frequency warping is performed. The 
codebook elements ( c k )  are estimated with a standard Lloyd 
algorithm. Furthermore, all l)k are considered identical, except 
for powluch is somewhat greater. 

Unlike in previous studies where estimates of the power nor- 
malization factor, spectral equalization function, and noise are 
obtained independently, these quantities are jointly estimated in 
CDCN using a common maximum likelihood framework that is 
based on a priori knowledge of the speech signal. In CDCN, 
power normalization is acomplished by the appropriate q(0). The 
criterion used in CDCN is the minimization of the distortion 
between the cepstral vectors of the input utterance and the en- 
semble of codebook entries of the normalized speech, rendering 
the need for long-term averages unnecessary. Since CDCN only 
requires a single utterance in order to estimate noise and spectral 
tilt, it can better capture the non-stationarity of the environment. 
Moreover, in a real application, long-term averages may not be 
available for every speaker and new microphone. 

5. Evaluation 

5.1. Database 
An alphanumeric database has been collected that consists of 
1018 training utterances (74 different speakers) and 140 (10 dif- 
ferent speakers) testing utterances. These utterances were 
recorded simultaneously in stereo using both the close-talking 
Sennheiser HMD224 microphone (CLSTLK), a standard in pre- 
vious DARF'A evaluations, and a desk-top Crown PZM6fs 
microphone (CRPZM). The recordings with the CRPZM exhibit 
not only background noise but also key clicks from workstations, 
interference from other talkers, and reverberation. The database 
consists of strings of letters, numbers and a few control words, 
that were naturally elicited in the context of a task in which 
speakers spelled their names, addresses and other personal infor- 
mation, and entered some random letter and digit strings. A total 
of 106 vocabulary items appear in the vocabulary, of which about 
40 were rarely uttered. 

Figure 1 compares averaged spectra from the database for frames 
believed to contain speech and background noise from each of 
the two microphones. By comparing these curves, it can be seen 
that the average SNR using the CLSTLK is about 25 dB. The 
signals from the CRPZM, on the other hand, exhibit an SNR of 
less than 10 dB for frequencies below 1500 Hz and about 15 dl3 
for frequencies above 2000 Hz. Furthermore, the response of the 
CRPZM exhibits a greater spectral tilt than that of the CLSTLK. 

4" -20 

.t-30 - - - - Noise/Spsc@m_ - _ _ - - - - -  
c s ? -40 

Sennheiser HMD224 Microphone (CLSTLK) 

I 
\ .: -20 NoiseSpectru$ - - - - - - - _m 1 - - - - -  - 2 -30L 

Crown PZM6fs Microphone (CRPZM) 

Figure 1: Average speech and noise spectra from the stereo 
alphanumeric database obtained using the CLSTLK and CRPZM 
microphones. The separation of the two curves in each panel 
provides an indication of SNR for each microphone. It can also 
be seen that the CRPZM produces greater spectral tilt. 

5.2. The Recognition System 
The first stages of signal processing in the evaluation system are 
virtually identical to those that have been reported for the S P ~  
speech recognition system previously 191, except that the number 
of cepstral coefficients before frequency warping was increased 
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TRAIN 
TEST 

1 BASE I 85.3% 1 18.6% I 36.9% I 76.5% 1 

CLSTLK CLSTLK CRPZM CRPZM 
CLSTLK CRPZM CLSTLK CRPZM 

I EQUAL. 1 85.3% I 38.3% I 50.9% 1 76.5% I 
I SUB I 82.7% I 64.8% I 75.1% I 72.8% I 
I SDCN I 85.3% I 67.2% I 76.4% I 75.5% I 
I CDCN I 85.3% 1 74.9% I 73.7% I 77.9% 1 
Table I: Comparison of recognition accuracy of SPHINX with no 
processing, spectral equalization, spectral subtraction, and the 
SDCN and CDCN algorithms. The system was trained and tested 
using all combinations of the CLSTLK and CRPZM 
microphones. 

6. Conclusions 
We described and evaluated two algorithms to make SPHINX 
more robust with respect to changes of microphone and acous- 
tical environment. With the first algorithm, SNR-dependent 
cepstral nornzalization, a correction vector is added that depends 
exclusively on the instantaneous SNR of the input. While SDCN 
is very simple, it provides a considerable improvement in perfor- 
mance when the system is trained and tested on different 
microphones, while maintaining the sanie performance for the 
case of training and testing on the same microphone. Two 
drawbacks of the method are that the system must be retrained 

using a stereo database for each new microphone considered, and 
that the normalization is based on long-term statistical models. 

The second algorithm, codeM,ord-depeiideiit cepstral 
nornializafion, uses a maximum likelihood technique to estimate 
noise and spectral tilt in the context of an iterative algorithm 
similar to the EM algorithm. With CDCN, the system can adapt 
to new speakers, microphones, and environments without the 
need for collecting statistics about them a priori. By not relying 
on long-term a priori information, the CDCN algorithm can 
dynamically adapt to changes in the acoustical environment as 
well. 

Both algorithms provided dramatic improvement in performance 
when SPHJNX is trained on one microphone and tested on another, 
without degrading recognition accuracy obtained when the same 
microhone was used for training and testing. 
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