Towards Optimal Algorithms For Prediction With Expert Advice
We study the classic problem of prediction with expert advice in the adversarial setting. Focusing on settings with a constant number of experts, we develop optimal algorithms and obtain precisely optimal regret values for the case of 2 and 3 experts. Our main tool is the minimax principle which lets us analyze the optimal adversary to compute optimal regret values. While analyzing the optimal adversary, we establish connections with non-trivial aspects of random walk. We further use this connection to develop an improved regret bound for the case of 4 experts. All prior work on this problem has been restricted to optimal algorithms for special cases of adversary, or, algorithms that are optimal only in the doubly asymptotic sense: when both the number of experts and the time horizon go to infinity. In contrast to these results, our algorithms are exactly optimal for the most general adversary and obtain a constant gap separation in regret from all previously known results. (Joint work with Nick Gravin and Yuval Peres.)
Speaker Bios
Balu Sivan is a postdoc in the Theory Group at Microsoft Research Redmond. He received his PhD in Computer Science from the University of Wisconsin-Madison advised by Prof. Shuchi Chawla. His primary research interests are in Algorithmic Game Theory and online/approximation algorithms. More details here: http://research.microsoft.com/en-us/um/people/bsivan/
- Séries:
- Microsoft Research Talks
- Date:
- Haut-parleurs:
- Balu Sivan
- Affiliation:
- Microsoft Research
-
-
Jeff Running
-
-
Taille: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
Speakers:- Pascal Zinn,
- Ivan Tashev
-
-
-
-
Galea: The Bridge Between Mixed Reality and Neurotechnology
Speakers:- Eva Esteban,
- Conor Russomanno
-
Current and Future Application of BCIs
Speakers:- Christoph Guger
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
Speakers:- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
Speakers:- Sophia Mehdizadeh
-
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
Speakers:- Shoken Kaneko
-
-
Recent Efforts Towards Efficient And Scalable Neural Waveform Coding
Speakers:- Kai Zhen
-
-
Audio-based Toxic Language Detection
Speakers:- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
Speakers:- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
Speakers:- Monojit Choudhury
-
-
-
-
-
'F' to 'A' on the N.Y. Regents Science Exams: An Overview of the Aristo Project
Speakers:- Peter Clark
-
Checkpointing the Un-checkpointable: the Split-Process Approach for MPI and Formal Verification
Speakers:- Gene Cooperman
-
Learning Structured Models for Safe Robot Control
Speakers:- Ashish Kapoor
-