
Time Warp: The Gap Between Developers’ Ideal vs
Actual Workweeks in an AI-Driven Era

Sukrit Kumar∗†, Drishti Goel§†, Thomas Zimmermann¶, Brian Houck§∥, B. Ashok¶∥, Chetan Bansal§∥
∗Georgia Institute of Technology, §Microsoft, ¶Microsoft Research

Abstract—Software developers balance a variety of different
tasks in a workweek, yet the allocation of time often differs
from what they consider ideal. Identifying and addressing these
deviations is crucial for organizations aiming to enhance the
productivity and well-being of the developers. In this paper, we
present the findings from a survey of 484 software developers
at Microsoft, which aims to identify the key differences between
how developers would like to allocate their time during an ideal
workweek versus their actual workweek. Our analysis reveals
significant deviations between a developer’s ideal workweek and
their actual workweek, with a clear correlation: as the gap be-
tween these two workweeks widens, we observe a decline in both
productivity and satisfaction. By examining these deviations in
specific activities, we assess their direct impact on the developers’
satisfaction and productivity. Additionally, given the growing
adoption of AI tools in software engineering, both in the industry
and academia, we identify specific tasks and areas that could be
strong candidates for automation. In this paper, we make three
key contributions: 1) We quantify the impact of workweek devi-
ations on developer productivity and satisfaction 2) We identify
individual tasks that disproportionately affect satisfaction and
productivity. 3) We provide actual data-driven insights to guide
future AI automation efforts in software engineering, aligning
them with the developers’ requirements and ideal workflows for
maximizing their productivity and satisfaction.

Index Terms—developer productivity, satisfaction, software
development, ideal workweek, automation

I. INTRODUCTION

In software engineering, the productivity and satisfaction of
developers are pivotal factors that influence both individual
performance, customer experience and ultimately, organiza-
tional success [1], [2]. The day-to-day activities which define
a developer’s workweek encompass a broad spectrum of
tasks; from coding and designing new systems, to preparing
documents, attending meetings, on-boarding new employees,
adhering to security and compliance tasks, etc [3]. Each of
these tasks is integral to the software development life cycle.
Ideally, developers would prefer to allocate their time across
these tasks in a way that optimizes both productivity and
satisfaction— this can be referred to as their ‘ideal work-
week’. However, in practice, their ‘actual workweek’, can vary
significantly from their ‘ideal’ due to fluctuating workloads,
shifting organizational priorities, dependencies on other teams,
technical challenges, the influence of the work environment,
etc [4], [5], [6].

∥ Contacts: chetanb@microsoft.com, brian.houck@microsoft.com,
bash@microsoft.com.

† Sukrit Kumar and Drishti Goel are joint first authors of this work.

This misalignment between the ideal and actual workweek
raises several intriguing research questions. Key among them
is how these deviations impact developers’ productivity and
satisfaction. By examining these deviations, we can uncover
patterns that may not only reveal the activities where devel-
opers struggle the most but also where they feel most pro-
ductive and satisfied. Understanding these dynamics provides
actionable insights for engineers, managers and organizations
to create more effective work environments.

Furthermore, gaining deeper insights into the relationship
between time allocation across activities, productivity, and
satisfaction could inform the development of future and current
AI-driven automation tools. With the growing role of AI in
software engineering, understanding which tasks developers
are most eager to automate becomes crucial. For instance,
certain tasks may seem to offer high productivity but are inher-
ently dissatisfying for developers to engage with. Identifying
these tasks can help guide future research and development of
these tools to be better aligned with real-world needs of the
developers, allowing them to focus on more satisfying work.

In this paper, we a present the findings from our study
aimed at analyzing the differences between a developer’s
‘ideal’ and ‘actual’ workweek. Our study builds upon existing
research in this field, particularly those exploring developers’
typical and optimal workdays [3]. By analyzing deviations at
the weekly level, we capture the cumulative effects of task
allocation, while providing a more fine-grained understanding
of how various activities impact productivity and satisfaction.
To the best of our knowledge, this study is the first work
that focuses on how deviations, both at the overall workweek
and individual activity levels, affect developers’ productivity
and satisfaction. Our research additionally quantifies how
deviations across different activities impact self-reported de-
veloper productivity and satisfaction. We also explore how
AI tool usage influences the productivity and satisfaction of
developers. In addition to that, we systematically analyze and
present the developers’ feedback on which tasks they would
prefer to see automated using AI, providing valuable insights
for future AI tool development.

An outline of the key research questions driving this study
are as follows:

RQ1: How do developers allocate their time during a typical
workweek, and how does this compare to their perception
of an ideal workweek?

RQ2: How are developer’s satisfaction and productivity affected
by deviations from their ideal workweek?

RQ3: For which tasks do developers prefer using AI tools, and
how does the frequency of AI tool usage influence their
satisfaction and productivity?

The remainder of the paper is structured as follows, In
Section II, we describe our survey design and limitations. In
Section III we perform an analysis on the developers’ ideal
and actual workweeks. In Section IV, we analyze the impact of
deviation from an ideal workweek on developer productivity
and satisfaction. Section V discusses the impact of AI tool
usage on developers and identify activities that developers
want to automate. In Section VI, we discuss the implications
of our findings for developers, managers and organizations. In
Section VII, we discuss related works and, we finally present
the conclusion in Section VIII.

II. METHODOLOGY

In this section, we provide a detailed description of the
methodology used to design and conduct the survey. We then
discuss potential limitations of our study.

A. Survey Design

To gain insights into the types of activities developers en-
gage in during a typical workweek, we first conducted a series
of exploratory interviews with 12 randomly selected partici-
pants. These semi-structured exploratory interviews provided
a qualitative foundation, allowing us to iteratively develop a
comprehensive list of high-level activities that reflect what a
developer does over the course of a workweek. The findings
from these interviews were instrumental in refining our survey
design.

The survey was distributed to software engineers working in
Microsoft teams across India and the United States between
June to July 2024. A total of 6000 randomly selected indi-
vidual contributor (IC) developers were invited to participate
in the survey via email across multiple batches. We also sent
follow ups to people who had started the survey but had not
finished it and also to those who hadn’t started it. We framed it
as a study aimed at boosting developer productivity by helping
us understand how they allocate their time in a workweek.
The survey received 484 complete responses (responses rate
of 8.06%). In the invite the participants were also informed
that they could enter a sweepstake to win one out of ten $50
Amazon.com Gift Cards after finishing the survey. The ethics
for this survey were reviewed and approved by the Microsoft
Research Institutional Review Board (MSR-IRB), which is an
IRB federally registered with the United States Department of
Health & Human Services.

From the exploratory interviews, we identified sixteen key
high-level activities, which were subsequently used to quantify
the developers’ time allocation in the survey. The list of
activities are listed out in Table I. We designed the survey
questions to broadly cover the main research questions that we
had in mind and also included additional questions which we

TABLE I
KEY ACTIVITIES IDENTIFIED DURING THE EXPLORATORY INTERVIEWS

Developer Activities

Architecting and designing new systems
Coding new features

Development Environment Setup
Documentation

Pull Requests/Code Review
Code Refactoring

Debugging during development
Setting-up Monitoring and Dashboards

Authoring Tests
Security and Compliance

Addressing Customer Support Tickets
Communication and Meetings

Task Creation and Management
Giving Technical Presentations

Mentoring and Onboarding
Learning New Technologies

thought could offer interesting new insights. A brief summary
of the questions is given below :

• Their current role and years of experience in the industry
& team

• The number of hours spent on various activities in the
previous workweek

• The percentage of time they would want to allocate to
each activity in an ideal workweek

• How productive and satisfied they felt in the past work-
week

• Activities they found to be most cognitively challenging
• How often do they use AI tools to assist them in various

activities
• Two open-ended questions about the tasks they would

want to automate using AI tools, and advice for new hires
to boost their productivity and satisfaction levels

B. Limitations

This study presents an exploratory survey, which, to the
best of our knowledge, is the first of its kind to introduce
the concept of a developer’s perceived ideal workweek and
assess how deviations from it impact productivity and satisfac-
tion. Additionally, it explores the specific activities developers
would prefer to automate using AI tools. While this research
provides valuable insights, the following limitations should be
addressed by future studies.

External Validity: Since the study was conducted within
a single company, the results may not be generalizable to
organizations of different sizes, structures, or roles. Addition-
ally, the low response rate and the survey’s confinement to
specific teams further limit the generalizability of the findings
to developers in other contexts.

Construct Validity: The survey relies on the developers
to accurately self-report the time they spend on the key

activities, productivity and satisfaction levels, which may
introduce inaccuracies and biases. Additionally, the sequence
of questions could have influenced the responses (e.g. activities
to automate)

Internal Validity: The key activities identified in the survey
may vary across different developers and organizations. While
we sought to minimize this variability through exploratory
interviews, the findings may still differ for other developer
populations. Additionally, the survey data was collected during
a security push at Microsoft, which may have impacted the
typical workweek. To mitigate this, we distributed the survey
in batches over a month and asked developers to report time
spent on activities over the last five workdays, helping to
average out short-term fluctuations from the security push and
feature releases.

III. COMPARING DEVELOPER’S ACTUAL VS. IDEAL
WORKWEEK

To answer RQ1, we asked the developers to specify the
number of hours that they spend on key activities during a
typical workweek, as well as the percentage of time they would
ideally allocate to these activities. We transform the actual
workweek responses into the percentage scale by dividing
the time spent on each activity by the total number of hours
in the response. We present the developers’ actual and ideal
workweek responses in Fig. 1(a) and Fig. 1(b) respectively,
and also highlight the key differences in the percentage of
time spent between them in Fig. 2.

A. The Actual Week: How Developers Spend Their Time

In the actual workweek, as depicted in Fig. 1(a), there is
a considerable variation in the time developers spend across
activities, specifically for ‘Coding’, ‘Architecting & designing
new systems’, ‘Security & Compliance’, ‘Debugging’, and
‘Communication & Meetings’, with wide inter-quartile ranges
and the presence of many outliers. This could be attributed to
the differences in the type of project, team structure, level
of experience, or individual roles. Furthermore, developers
dedicate the majority of their time on ‘Communication &
Meetings’ (≈12%), ‘Coding’ (≈11%), ‘Debugging’ (≈9%),
‘Architecting and designing new systems’ (≈6%), and ‘Pull
Requests/Code Reviews’ (≈5%). Conversely, they spend the
least time on ‘Learning New Technologies’, ‘Mentoring and
Onboarding’, ‘Giving Technical Presentations’, and ‘Setting-
up Monitoring and Dashboards’.

B. The Ideal Week: How Developers Want to Spend Their Time

In contrast to the actual workweek, the ideal workweek
shows a less varied distribution across most activities, as
seen in Fig. 1(b). Developers prefer to allocate their time
primarily to ‘coding’ (≈ 20%) and ‘Architecting & designing
new systems’ (≈ 15%), while maintaining a more balanced
distribution across the remaining activities. This desire for
balance is echoed by individual developers in their personal
experiences. For instance, developer D223 offers this advice to
new employees: “Maintain a good balance of all the activities

Fig. 1. Box Plot of Percentage Time Spent in an Actual Workweek and Ideal
Workweek. (a) Top plot: Real Workweek. (b) Bottom plot: Ideal Workweek.

Fig. 2. Average percentage of time spent on the key activities in the Actual
vs Ideal Workweek

needed to prevent burn out, and start with the activities that
you find interesting.”

The most striking differences are observed in ‘Commu-
nication & Meetings’ and ‘Task Creation & Management’,
where developers show a strong preference for reducing the
time spent. These activities are marked by high variability
in the actual workweek, but are more contained in the ideal
scenario, reflecting a widespread desire to minimize the time
spent on these activities. Developer D342 emphasizes this
sentiment: “Optimize for operations. Automate EVERYTHING
for Continuous Delivery. The word ‘manual’ should not be in
your vocabulary unless referring to something to read. This
way, you will have more time to focus on the creative process
that is software engineering and be able to release often and
with confidence.”. Similarly, D238 adds, “More focus time and
fewer meetings.”

In Fig. 2 we highlight several areas where there is a signif-
icant gap between the developers’ ideal and actual workweek,
shown by the percentage of time spent on each development

related activity. Developers want to spend more time on core
activities such as ‘Coding’, ‘Architecting and designing new
systems’, and less time on ‘Communication’, ‘Addressing
Customer Support Tickets’, and ‘Security & Compliance’.
Additionally, the developers desire to spend less time on
debugging code, and instead want to invest more time on
preventative measures like ‘PR/Code Reviews’, ‘Documen-
tation’, and ‘Mentoring/Onboarding’ that could potentially
alleviate pains fixing issues due to poor documentation or
code. This indicates a potential desire for improving code qual-
ity and reducing long-term maintenance costs and focusing
and reducing technical debt [7]. Similarly, the preference to
spend more time on learning new technologies, and engaging
in technical presentations suggests that developers consider
continuous learning and knowledge-sharing an essential part
of their workweek. Developer D158 shares their personal
experience regarding the importance of continuous learning
in a workweek: “Initially, my learning somewhat slowed as I
was too caught up in the urgency to release features. The
workweek was about completing as many ADO items as
possible. However, my development as an engineer actually
came from setting aside blocks of 2-3 hours whenever possible
to go deep into certain topics. In my opinion, each team should
have a mini boot-camp for onboarding engineers. The material
does not need to be fully comprehensive but there should at
least be a list of topics that the new member can deeply
research. For example, if your job is to connect two internal
systems together, you should make it your responsibility to
deeply understand both systems even though it’s not directly
related to your task.”

 Takeaway: A developer’s perception of an ideal work-
week is not well aligned with their actual workweek.
Developers want to spend more time on core development
activities such as coding, designing new systems, learning
new technologies, and knowledge sharing, while wanting
to reduce the time spent on dealing with tasks related
to security & compliance, communication, debugging,
addressing incident/support tickets, and task management.

IV. IMPACT OF DEVIATIONS FROM THE IDEAL WORKWEEK
ON DEVELOPER PRODUCTIVITY & SATISFACTION

In this section, we address RQ2 by evaluating how devia-
tions from a developer’s self-perceived ideal workweek influ-
ence their levels of satisfaction and productivity. Additionally,
we identify the specific activity-level deviations and how they
contribute to the observed effects.

A. Bridging the Gap: How Deviations from the Ideal Work-
week affect Developers’ Productivity and Satisfaction

In the survey, we asked the developers to rate their previous
week on five different levels of productivity (‘Very productive’,
‘Productive’, ‘Neither productive nor unproductive’, ‘Unpro-
ductive’, and ‘Very unproductive’) and satisfaction (‘Very

satisfied’, ‘Satisfied’, ‘Neither satisfied nor dissatisfied’, ‘Dis-
satisfied’, and ‘Very Dissatisfied’). We split the developers
based on each of these different categories and calculate and
plot the Spearman rank correlation coefficient [8], and mean
absolute error [9] between the actual and ideal workweek,
which are defined by the time they spend on the 16 key
activities and the time they would ideally allocate to each
activity.

Fig. 3. (a) Spearman’s Rank Correlation Coefficient for different categories
of Productivity. (b) Mean Absolute Error for different levels of productivity

Fig. 4. (a) Spearman’s Rank Correlation Coefficient for different categories
of Satisfaction. (b) Mean Absolute Error for different levels of Satisfaction

Fig. 3(a) and Fig. 3(b), show how differences between
actual and ideal workweeks affect developers’ productivity. We
observe two interesting trends in both the computed metrics.
Developers who felt very productive had the highest median
Spearman correlation (about 0.52) between their actual and
ideal workweeks. This correlation decreased for less produc-
tive developers, reaching about 0.18 for unproductive and 0.34

for very unproductive developers. For the mean absolute error
(MAE), the difference between actual and ideal workweeks
increased as productivity decreased. The MAE rose from 5.3
for very productive developers to 7.5 for very unproductive
ones. This shows that the deviation from the ideal work-week
is relatively lower for developers who felt productive during
a work-week.

A similar, but more pronounced pattern is observed in the
satisfaction levels (Fig. 4(a) and Fig. 4(b)). The Spearman’s
rank correlation between their actual and ideal workweek was
again highest for developers who felt very satisfied in that
workweek (0.59) and it’s lower at 0.10 for those who were
very dissatisfied. Likewise, the MAE demonstrates a similar
pattern, showing that developers who are more satisfied tend
to be closer to their ideal workweek hence having lower MAE
values (4.73 for very satisfied vs 10.37 for the very dissatisfied
group).

 Takeaway: As developers’ actual workweek diverges
from their perceived ideal workweek, both productivity
and satisfaction show a downward trend. This suggests
that aligning with an ideal workweek is not merely a
preference, but also crucial for maintaining high levels of
performance. It also underscores the necessity of stream-
lining current research efforts on automation using AI to
effectively bridge the gap between the actual and ideal
workweek.

B. Impact of activity-level deviations on productivity & satis-
faction

In the previous section, we highlighted the impact of devi-
ation from a developer’s ideal workweek on their productivity
and satisfaction levels. To gain a more detailed understanding
of these deviations, we calculate the differences between the
time spent on these activities in the actual and ideal workweek
(Actual - Ideal). Each variable in the Table II and Table III
is the difference between the actual and ideal workweek for
that particular activity. Positive difference values imply more
time being spent on the activity than desired (over-allocation),
while negative values imply less time being spent than desired
(under-allocation). We apply an Ordinary Least Squares (OLS)
regression model to identify specific activities that significantly
influence developers’ productivity and satisfaction. OLS was
chosen for its ability to model linear relationships for contin-
uous variables. Since the primary goal is to assess how incre-
mental changes in activity allocation impact productivity and
satisfaction, OLS provides a straightforward, and interpretable
framework for the same.

We highlight activities having statistically significant pos-
itive relations in the color green and significant negative
relations in red in both the tables. Conventionally, a p-value
of < 0.05 indicates statistically significant results at a 95%
confidence level, suggesting that the observed deviations in
these activities are likely to have a meaningful impact on
productivity or satisfaction.

TABLE II
OLS REGRESSION RESULTS - PRODUCTIVITY

Variable coef std err t P> |t|

const 4.1078 0.055 74.621 0.000
Arch. & Design 0.0009 0.003 0.355 0.723
Coding 0.0061 0.002 3.027 0.003
Dev. Environment -0.0158 0.005 -3.422 0.001
Docs 0.0103 0.005 1.995 0.047
PR/Code Review -0.0046 0.006 -0.803 0.423
Refactoring 0.0130 0.004 2.935 0.003
Debugging -0.0021 0.003 -0.643 0.521
Monitoring & Dashboards 0.0063 0.005 1.197 0.232
Testing 0.0045 0.004 1.093 0.275
Security & Compliance -0.0033 0.002 -1.431 0.153
Customer Support -0.0051 0.003 -1.651 0.099
Communication -0.0079 0.004 -2.120 0.034
Task Mgmt. -0.0149 0.010 -1.451 0.147
Tech-Talks 0.0001 0.012 0.011 0.992
Mentoring/Onboarding 0.0007 0.006 0.119 0.905
Learning Tech. 0.0118 0.005 2.372 0.018

TABLE III
OLS REGRESSION RESULTS - SATISFACTION

coef std err t P> |t|

const 4.0436 0.061 66.061 0.000
Arch. & Design 0.0057 0.003 1.950 0.052
Coding 0.0043 0.002 1.907 0.057
Dev. Environment -0.0151 0.005 -2.935 0.004
Docs 0.0161 0.006 2.803 0.005
PR/Code Review -0.0133 0.006 -2.086 0.038
Refactoring 0.0128 0.005 2.584 0.010
Debugging -0.0010 0.004 -0.267 0.789
Monitoring & Dashboards -0.0098 0.006 -1.692 0.091
Testing 0.0031 0.005 0.684 0.494
Security & Compliance -0.0090 0.003 -3.470 0.001
Customer Support -0.0065 0.003 -1.900 0.058
Communication -0.0129 0.004 -3.114 0.002
Task Mgmt. 0.0085 0.011 0.743 0.458
Tech-Talks -0.0032 0.013 -0.243 0.808
Mentoring/Onboarding 0.0077 0.007 1.142 0.254
Learning Tech. 0.0126 0.006 2.279 0.023

In Table II we observe statistically significant positive
relations between the time spent on coding, documentation,
code refactoring and learning, on developer productivity, while
a negative relation for maintaining development environment,
and communication. Moreover, for satisfaction, Table III high-
lights a statistically significant positive relation of satisfaction
with documentation and learning, while a negative relation
for development environment, PR/Code reviews, security and
compliance, and communication. As described by developer
D141 and D18 respectively: “Keeping organized documen-
tation of project related knowledge will certainly improve
productivity”, “S360 takes up the majority of my time, which
means I spend almost no time creating useful features and
responding to customer requests.”

C. Mapping Activity Time Across Productivity-Satisfaction
Profiles: A Path Toward Smart Automation

In Fig. 5, we categorize developers into three distinct
groups: ‘High Productivity, High Satisfaction,’ ‘High Produc-

tivity, Low Satisfaction,’ and ‘Low Productivity, Low Satisfac-
tion,’ based on their self-reported productivity and satisfaction
levels from the previous workweek (as detailed in IV-A). For
the sake of simplicity, we merged the ‘Very Productive’ and
‘Productive’ groups into a single ‘High Productivity’ category,
and similarly for other categories. The ‘Low Productivity, High
Satisfaction’ group was excluded due to its small sample size
of two developers. For each remaining group, we visualize the
average hours spent on the 16 key activities, highlighting pat-
terns in how time allocation varies across different productivity
and satisfaction combinations.

The developers who felt highly productive and satisfied were
the ones who spent the most time on activities such as ‘Ar-
chitecting & designing new systems’, ‘Coding’, ‘Debugging’,
‘Refactoring Code’, and ‘Learning New Technologies’, while
lesser time on ‘Documentation’, ‘Security & Compliance’,
‘Addressing Customer Support Tickets’, ‘Communication’,
‘ADO Task Creation and Management’ and ‘Mentoring &
Onboarding’. An opposite trend is observed for the developers
from the ‘Low Productivity, Low Satisfaction’ group, as they
tend to spend more time on ‘Security & Compliance’, ‘Ad-
dressing Customer Support Tickets’, and ‘Communication’.

Fig. 5. Average actual Weekly Hours Allocated to Various Activities by
Developers in High vs. Low Productivity-Satisfaction Groups

Developers in the ‘High Productivity, Low Satisfaction’
category dedicate most of their time to activities such as
‘Pull Requests/Code Review,’ ‘Setting up Monitoring and
Dashboards,’ ‘Communication,’ and ‘Mentoring and Onboard-
ing.’ Despite feeling highly productive during the week, these
developers report lower satisfaction levels. This suggests that
while they recognize the value of these tasks, they prefer
spending less time on them, making these activities ideal
candidates for automation.

 Takeaway: Developers who experience a sense of pro-
ductivity, yet feel dissatisfied with their workweek present
an excellent opportunity for task automation. Our analysis
reveals that this group invests significant time in activi-
ties such as ‘PR/Code Reviews’, ‘Monitoring & Dash-
boards’, ‘Communication’, and ‘Mentoring/Onboarding’.
Consequently, these tasks emerge as ideal candidates for
automation.

V. IMPACT OF AI TOOL USAGE ON DEVELOPER
PRODUCTIVITY AND SATISFACTION

The rapid advancement of artificial intelligence (AI) and its
growing adoption across industries, particularly in automating
development tasks, brings forth a crucial question: Which tasks
should be automated using AI to maximize both productivity
and satisfaction? In this section, we observe how the fre-
quency of AI tool usage impacts the developers’ productivity
and satisfaction and analyze the responses gathered from
developers, examining which tasks they believe are most suited
for automation.

A. How does the Frequency of AI Tool Usage Influence
Productivity & Satisfaction

In the survey, we asked the developers to indicate how
frequently they incorporate AI tools during their workweek,
(‘Daily’, ‘Weekly’, ‘Monthly’, ‘Once every 6 months’, or
‘Once every year’). We again collapse the top 2 and bottom 2
categories for both productivity and satisfaction into a single
category (Productive/Unproductive).

Fig. 6 reveals that developers who use AI tools daily report
the highest levels of productivity, with 83.7% reporting to
be “productive” However, as the frequency of AI tool usage
decreases (e.g., from weekly to annually), the proportion of
productive developers steadily declines, while the percentage
of those reporting neutrality or even negative productivity
outcomes increases.

Fig. 7 shows a similar trend between AI tool usage and
satisfaction levels. Developers who utilize AI tools on a daily
basis experience the highest levels of satisfaction (74.5%),
with most of them reporting to be “satisfied.” Again, as
AI usage frequency decreases, dissatisfaction becomes more
prevalent.

B. Which tasks do developers want to automate?

In the survey, we asked the developers to answer the
question “Which of your current tasks would you most like
to see automated? Which processes do you think could be
enhanced to minimize repetitive work?”

We received 242 open-ended responses from the develop-
ers. To analyze the responses, we utilized the GPT-4 model
to identify an initial set of task categories highlighted in
the data. The model identified 17 distinct categories. To
ensure comprehensive coverage, we uniformly sampled 60
responses based on their length. Four annotators independently
reviewed these responses using a closed-coding approach.

Fig. 6. Effect of the frequency of AI tools usage on productivity

Fig. 7. Effect of the frequency of AI tools usage on satisfaction

They assigned labels to each response based on the initial
categories suggested by GPT-4, while also identifying any
new categories that emerged during the process. The inter-
rater agreement, measured using the Jaccard similarity metric,
was 81.5%, indicating a substantial level of agreement among
annotators. Additionally, through discussions, the annotators
agreed to introduce one new category (“Cloud Infrastructure
Maintenance”), resulting in a final list of 18 categories of
tasks that developers would like to automate using AI. The
remaining 182 responses were distributed equally amongst
the four annotators and manually labelled using the extended
taxonomy to identify the frequency of each category.

The final categories are summarized in Table IV. For each
category, we provide the name and a short description. The
table also illustrates the results from the manual annotation
process and the frequency of each category based on the
manual annotation results.

Documentation emerged as the most frequent category
in our analysis of tasks that could be automated with AI.

Developers suggested the use of AI to create and update
documentation, maintain team knowledge bases, and also to
efficiently understand existing code and systems from the
available information. For example, D302 highlighted the
importance of efficient documentation by saying: “I would
love to see automated documentation of infrastructure and
code. A lot of time is lost trying to understand the current
resources that go into securing, building, and deploying our
products and trying to understand how the different parts of
our code base interact and depend on each other. It’d really
lessen the cognitive load if this was well-documented in a way
that is automatically kept up-to-date.” Similarly, developer
D165 expressed the growing need for automating code docu-
mentation to keep pace with the rapid development cycles:
“I would love it if there were some way to automatically
generate architectural documentation or either a data flow or
call stack diagram based on the structure of the actual code
in the repository. While tools like CodeFlow exist for VSCode
and Visual Studio, there’s a learning curve and the lack
of reward for better internal documentation means creating
and updating documentation is on a volunteer basis. This,
and the rapid pace of development means that onboarding
any new engineer or existing engineer to a new area is a
time-consuming manual process of last-minute documentation
updates, or passing down tribal knowledge verbally. Would be
nice if there were some way to tie internal documentation to
a particular code base, so that every PR also ‘refreshes’ the
internal documentation or diagrams.”

Following this, several developers emphasized the need for
automating tasks associated with the setup and maintenance
of development environments, which often involve complex
processes such as configuring SSH keys, installing software
dependencies, and initializing new development instances. De-
veloper D81 points out the current challenges, stating, “Setting
up the Dev. environment could be way simpler. Right now it is
somewhat involved, time consuming, and brittle.” Furthermore,
D403 emphasizes the significant impact of automation on
productivity, noting, “Setting up a development environment
takes up a huge amount of time in the development cycle, hence
I feel that enhancing the same will greatly boost developer
productivity.”

Developers also suggested the need to automate tasks sur-
rounding the authoring, execution and monitoring of tests.
For instance, D81 envisions a future where AI could generate
comprehensive acceptance tests based on system usage logs:
“Dreaming wild, what I would like AI to do is to create all the
(missing) acceptance tests of the system (maybe by looking at
all the usage logs?) because currently any attempt to improve
or refactor the code monolith is a risky venture. The only thing
that would make it less risky is to have tests that validate that
the system functionality is still there.”

Beyond the aforementioned technologies, developers also
convey the importance of enhancing automation efforts to
improve various aspects of project management. This in-
cludes the efficient creation and management of tasks in
systems like Azure DevOps (ADO), which encompasses han-

dling sub-tasks and repeatable tasks, as well as tracking
project status effectively. Developer D38 shares his insights
on utilizing AI to generate work items in ADO using a
structured prompt, such as: “Create work item with title
[Task][GIVE TASK DESCRIPTION] related to work [Fea-
ture Item], work description [1 line description] - assigned
to [UserName](Given the user name it path to correct team).”

 Takeaway: Incorporating AI tools is crucial for en-
hancing developers’ productivity, while also boosting their
overall professional satisfaction. However, to maximize
the benefits of automation, it is essential to align AI
development efforts with the specific tasks and activities
that developers most desire to automate. By focusing on
these areas, research and automation initiatives can more
effectively streamline workflows and address developers’
real-world needs.

VI. DISCUSSION

Our study provides valuable insight into the complex dy-
namics of a software developers’ workweek. We aim to un-
derstand how the deviations from ideal and actual workweeks
impact productivity and satisfaction levels. Additionally, we
explored the role of up and coming AI tools and how we can
modify our approach towards building new tools to build more
tools that developers want. In this sections we will discuss a
short summary of our findings and discuss the implications
of our findings and impact on developers, managers and
organizations in the software development industry as a whole.

A. Time allotment vs productivity/satisfaction

Our results show most developers generally have very
different workweeks from their ideal ones. This deviation has
a measurable impact on both productivity and satisfaction
levels. We quantitatively showed that as the gap between the
actual and ideal workweek increases there is a substantial
negative impact on both productivity and satisfaction levels.
This finding highlights the importance of having a better
balance between what a developer wants to do vs what they
typically do in practice.

Unsurprisingly, activities that positively influence both pro-
ductivity and satisfaction are those typically considered core
development tasks, such as coding, documentation, and code
refactoring. Conversely, time spent on maintaining and creat-
ing development environments, dealing with security and com-
pliance issues, and excessive communication negatively im-
pacts both metrics. These activity-level insights offer broader
suggestions for how organizations can optimize their work-
flows to maximize time on core development activities while
minimizing time on less preferred tasks.

These findings present several opportunities for software
developers, teams, organizations and researchers working in
this field. Organizations can potentially redesign or optimize
existing workflows to better align with the needs of developers.
There may also be opportunities to adjust team structures to

distribute tasks more effectively, allowing developers to focus
more on their preferred activities. Additionally, introducing
new tools or improving existing ones could help streamline
less desirable tasks, freeing up more time for core development
activities.

A potential interesting direction for future research would
be to explore the longer-term impact of better aligning devel-
opers’ workweeks with their ideal ones. This could involve
examining changes in code quality, project success metrics,
and overall user experience over time. However, it’s important
to note that finding the right balance will likely require
ongoing assessment and adjustment, as the ideal workweek
may vary not only between individuals but also evolve over
time for each developer.

B. Future impact of AI tools

We observed a strong correlation between how frequently
developers used AI tools and their reported satisfaction and
productivity levels. Developers who use these tools daily
tended to report the highest level of both satisfaction and
productivity. This underscores the importance of these tools
in the modern software development landscape.

As discussed earlier, developers most want to see activi-
ties automated which we observed to correlate with lower
satisfaction and productivity levels. These findings present
a new exciting direction for future AI tools and automation
development efforts. By focusing the development of AI tools
on areas which can have dual benefit of boosting developer
productivity and satisfaction whilst at the same time allowing
them to focus on tasks they enjoy and find more fulfilling.

Currently a large number of AI tools focus specifically
on helping developers write code [10]–[12]. However, our
findings suggest a strong desire for automation in non-coding
related tasks such as documentation, task management, secu-
rity and compliance, and communication. This reveals a gap
in the current AI tool landscape and presents a significant
opportunity for innovation. Developing new AI tools that
address these areas could offer substantial benefits not only
to individual developers but also to organizations as a whole.

The potential impact of such targeted AI tool development
is far-reaching. By automating tasks that developers find less
productive or satisfying, we could see a shift in how developers
allocate their time, potentially bringing their actual workweeks
more in line with their ideal ones. This could lead to higher
job satisfaction, increased productivity, and potentially even
improvements in code quality and project outcomes as de-
velopers are able to focus more on core development tasks
they find most engaging. However, as the adoption of these
tools grow there might be a change in the what a developer
considers to be an ideal workweek. Future research should not
only focus on developing these tools but also on understanding
their broader impacts on the software development as a whole.

VII. RELATED WORK

To our knowledge, this is the first work that compares
a developer’s ideal and typical workweek and assesses the

TABLE IV
WHICH TASKS DO DEVELOPERS WANT TO AUTOMATE?

Category Category description Count

Documentation Creating & updating documentation, generating API docs from code comments, & maintaining
team knowledge bases. Efficiently understanding existing code, APIs, & systems from docu-
mentation & reports.

82

Environment set-up/maintenance Setting up SSH keys, installing software dependencies, syncing Git repositories, updating local
branches, initializing new development instances/containers.

66

Write/maintain tests Unit test creation for routine/similar coding tasks. Authoring, execution, & monitoring of tests. 60

Task Tracking & Backlog Management Task creation & management in systems such as Azure DevOps, sub-tasks, repeatable tasks, or
project status tracking.

47

Security & Compliance Reviews, tracking, addressing issues (S360 tasks), handling security wave items, & managing
renewals or permissions.

40

Incident/Customer Issue Management Live site reporting, root cause analysis, incident correlation, triage, customer communication,
and ICM handling.

38

Communication Summarizing long email threads, creating ADO tasks, answering frequent technical questions
from different developers. Efficient ways to handle meeting minutes, schedules, notes, action
items, etc.

33

Deployment & Release Management Deployments along with build-and-release pipelines often involve many manual steps and
repetitive tasks. This includes validation checks, release notes creation, and understanding
deployment health metrics.

26

PR/Code Review/Change Management Code review feedback & formatting, detection of anti-patterns, merge conflict resolutions,
branch management, rerunning flaky jobs, merging development branches, handling pull request
iterations, reviews, & descriptions.

25

Infrastructure Monitoring & Alerts The setup, maintenance, and interpretation of monitoring dashboards, alert rules, and other
telemetry data.

23

Debugging Automation around debugging processes, particularly surrounding build failures, errors, and
runtime exceptions.

15

Code Refactoring Automating parts of the refactoring process, enforcing code quality standards, and detecting
anti-patterns.

13

Build Automation Faster and reliable build systems to swiftly integrate and manage new code changes into existing
codebases.

11

Maintenance of Internal Tools Maintenance tasks related to the upkeep of existing tools and systems. 10

Onboarding Adding new team members, giving them walk-throughs of the best practices, resources, setting
up their development environment, and access permissions are areas suggested for improvement.

7

Cloud Infrastructure Maintenance Resource provisioning, scaling, performance monitoring, security patching, backups, cost
optimization, network management, and incident response for efficient cloud operations.

5

Workflow Integration Better integration between version control systems, issue trackers, & other development tools. 3

Reworking Legacy Code Assistance in dealing with codebase legacies, updating old systems, or adapting to new systems. 3

impact of their deviations on productivity and satisfaction. We
also explore the role of AI tools in the software development
process and capture potential future directions for AI tool
development. We give a brief summary of existing work in
three areas: developer activities and time spent, developer
productivity and satisfaction, and AI tools and automation.

A. Developer activities and time allotment

Understanding how developers spend their time across
various activities has been a very well explored topic. Prior
work analyzed how developers spend their time within the
IDE by specifically tracking IDE usage, monitoring test and
other refactoring feature usage [13], [14]. This work did not
focus on other activities outside the IDE like collaboration,
communication and planning.

More recent works have captured a more holistic picture
of what a developer does and aimed to capture the time
spent through various methods of capturing data like surveys
[3], [15], [16], observations and interviews [17], and through
tracking usage of the computer [13], [14]. While many studies
focus on understanding the daily activities, fewer have looked
at patterns across an entire workweek. Our study builds on this
gap, extending our window to the past work week allowing us
to get a more comprehensive understanding of how a developer
spends their time and also reducing the impact of day to day
variations. In addition, we compare the actual workweek with
an ideal workweek.

B. Developer productivity and satisfaction

There exists a substantial amount of prior work on trying
to understand the factors that influence developer productivity

and satisfaction [2], [18]–[20]. There is significant work in
understanding how different factors like interruptions [21],
[22], emails and communication [23] impact both productivity
and satisfaction.

Prior work [24]–[27] showed also a link between developer
happiness and increased productivity. Therefore, it is important
to analyze how different activities affect a developers satis-
faction and in-turn productivity. Masood et al. [28] analyzed
how different tasks and activities affect developer happiness
and productivity.

C. AI tools and automation in software development

The rapid development and adoption of AI tools and au-
tomation in software development has opened new avenues
for understanding their impacts on the field. There have been
works [29]–[32] that analyze how different AI tools impact
developer productivity. There is also a body of work [33],
[34] on understanding specific tasks that developers want to
use AI tools.

We build upon these existing studies by analyzing the
impact of AI tool usage on productivity and satisfaction. We
further investigate whether developers want particular tasks to
be automated. This can drive future development of AI tools
and ensure that they are aligned with the actual requirements
of the developers.

VIII. CONCLUSION

In this paper, we provide valuable insights on the complex
relationship between software developers’ workweek and how
it’s deviation from their ideal workweek affects their produc-
tivity and satisfaction levels. Here are our key findings:

1) There is a large deviation between the ideal and actual
workweeks, with developers clearly wanting to spend
more time on core developmental activities and less on
communication/maintenance ones.

2) As the deviation between the ideal and actual workweek
increases the productivity and satisfaction levels tend to
fall.

3) Usage of AI tools by a software developer is positively
correlated with higher levels of productivity and satis-
faction. This effect is especially more pronounced when
the frequency of usage increases.

4) Developers have strong preferences towards automation
on activities like documentation, environment setup,
testing, monitoring etc. These insights will inform the
research and development of future AI tools.

The insights we present in this paper have important impli-
cations for developers, managers and companies as a whole.
Teams and companies can potentially boost satisfaction and
productivity levels by working on more closely aligning a
typical workweek with a developer’s ideal workweek. Fur-
thermore, the development of future AI tools can take into
account the needs of a developer as discussed in our paper
and fill gaps in this area.

While our work is restricted to Microsoft, it would be
interesting to see how our research fits into different organiza-
tional contexts and over longer intervals of time. Additionally,
another interesting aspect to look at would be how AI-tools
potentially change a typical and ideal workweek of a developer
as the adoption and scope of AI increases.

In conclusion, we try to understand how time spent on
different activities over a workweek and the deviation from a
developers “ideal” workweek impact productivity and satisfac-
tion levels. Our findings reveal significant potential to reshape,
innovate, and streamline workflows, enhancing developer pro-
ductivity and satisfaction. This will lead to more fulfilling
work experiences and higher quality outcomes, benefiting both
developers and the organizations.

REFERENCES

[1] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “What
happens when software developers are (un)happy,” Journal of Systems
and Software, vol. 140, pp. 32–47, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121218300323

[2] M.-A. Storey, T. Zimmermann, C. Bird, J. Czerwonka, B. Murphy,
and E. Kalliamvakou, “Towards a theory of software developer
job satisfaction and perceived productivity,” IEEE Transactions
on Software Engineering, September 2019. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/towards-a-theory-
of-software-developer-job-satisfaction-and-perceived-productivity/

[3] A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a
good day: The daily life of software developers,” IEEE Transactions on
Software Engineering, vol. 47, no. 5, pp. 863–880, 2021.

[4] T. DeMarco and T. Lister, “Programmer performance and the effects of
the workplace,” in Proceedings of the 8th International Conference on
Software Engineering, ser. ICSE ’85. Washington, DC, USA: IEEE
Computer Society Press, 1985, p. 268–272.

[5] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination of
software engineering work practices,” in Proceedings of the 1997 Con-
ference of the Centre for Advanced Studies on Collaborative Research,
ser. CASCON ’97. IBM Press, 1997, p. 21.

[6] D. Perry, N. Staudenmayer, and L. Votta, “People, organizations, and
process improvement,” IEEE Software, vol. 11, no. 4, pp. 36–45, 1994.

[7] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[8] C. Spearman, “The proof and measurement of association
between two things.” International journal of epidemiology,
vol. 39 5, pp. 1137–50, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:14780428

[9] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error
(mae) over the root mean square error (rmse) in assessing average model
performance,” Climate Research, vol. 30, pp. 79–82, 2005. [Online].
Available: https://api.semanticscholar.org/CorpusID:120556606

[10] “Github copilot,” https://github.com/features/copilot, accessed: 2024-10-
10.

[11] “Cursor,” https://www.cursor.com/, accessed: 2024-10-10.
[12] “Cody by sourcegraph,” https://sourcegraph.com/cody, accessed: 2024-

10-10.
[13] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last summer-

an investigation of how developers spend their time,” in 2015 IEEE 23rd
international conference on program comprehension. IEEE, 2015, pp.
25–35.

[14] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A study of visual
studio usage in practice,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1.
IEEE, 2016, pp. 124–134.

[15] M. Beller, V. Orgovan, S. Buja, and T. Zimmermann, “Mind the gap:
On the relationship between automatically measured and self-reported
productivity,” IEEE Software, vol. 38, no. 5, pp. 24–31, 2021.

[16] D. Russo, P. H. Hanel, S. Altnickel, and N. van Berkel, “The daily
life of software engineers during the covid-19 pandemic,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), 2021, pp. 364–373.

[17] M. K. Gonçalves, C. R. de Souza, and V. M. González, “Collaboration,
information seeking and communication: An observational study of
software developers’ work practices.” J. Univers. Comput. Sci., vol. 17,
no. 14, pp. 1913–1930, 2011.

[18] N. Forsgren, M.-A. Storey, C. Maddila, T. Zimmermann, B. Houck,
and J. Butler, “The space of developer productivity: There’s more to it
than you think.” Queue, vol. 19, no. 1, p. 20–48, Mar. 2021. [Online].
Available: https://doi.org/10.1145/3454122.3454124

[19] E. Murphy-Hill, C. Jaspan, C. Sadowski, D. Shepherd, M. Phillips,
C. Winter, A. Knight, E. Smith, and M. Jorde, “What predicts software
developers’ productivity?” IEEE Transactions on Software Engineering,
vol. 47, no. 3, pp. 582–594, 2021.

[20] C. Sadowski and T. Zimmermann, Eds., Rethinking productivity in
software engineering. Apress, 2019.

[21] G. Mark, D. Gudith, and U. Klocke, “The cost of interrupted work: more
speed and stress,” in Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, 2008, pp. 107–110.

[22] B. P. Bailey, J. A. Konstan, and J. V. Carlis, “The effects of interruptions
on task performance, annoyance, and anxiety in the user interface.” in
Interact, vol. 1, 2001, pp. 593–601.

[23] B. Houck, H. Yelin, J. Butler, N. Forsgren, and A. McMartin,
“The best of both worlds: Unlocking the potential of hybrid
work for software engineers,” May 2023. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/the-best-of-both-
worlds-unlocking-the-potential-of-hybrid-work-for-software-engineers/

[24] D. Graziotin, X. Wang, and P. Abrahamsson, “Happy software devel-
opers solve problems better: psychological measurements in empirical
software engineering,” PeerJ, vol. 2, p. e289, 2014.

[25] ——, “Software developers, moods, emotions, and performance,” IEEE
Software, vol. 31, no. 4, pp. 24–27, 2014.

[26] Y.-H. Kim, E. K. Choe, B. Lee, and J. Seo, “Understanding personal
productivity: How knowledge workers define, evaluate, and reflect on
their productivity,” in Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, 2019, pp. 1–12.

[27] D. Girardi, F. Lanubile, N. Novielli, and A. Serebrenik, “Emotions and
perceived productivity of software developers at the workplace,” IEEE
Transactions on Software Engineering, vol. 48, no. 9, pp. 3326–3341,
2022.

[28] Z. Masood, R. Hoda, K. Blincoe, and D. Damian,
“Like, dislike, or just do it? how developers approach
software development tasks,” Information and Software Tech-
nology, vol. 150, p. 106963, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584922001045

[29] A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister,
G. Sittampalam, and E. Aftandilian, “Measuring github copilot’s impact
on productivity,” Commun. ACM, vol. 67, no. 3, p. 54–63, Feb. 2024.
[Online]. Available: https://doi.org/10.1145/3633453

[30] M. Borg, D. Hewett, D. Graham, N. Couderc, E. Söderberg,
L. Church, and D. Farley, “Does co-development with ai assistants
lead to more maintainable code? a registered report,” arXiv preprint
arXiv:2408.10758, 2024.

[31] R. Ulfsnes, N. B. Moe, V. Stray, and M. Skarpen, “Transforming soft-
ware development with generative ai: Empirical insights on collaboration
and workflow,” in Generative AI for Effective Software Development.
Springer, 2024, pp. 219–234.

[32] S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The impact of ai
on developer productivity: Evidence from github copilot,” arXiv preprint
arXiv:2302.06590, 2023.

[33] M. Khemka and B. Houck, “Towards effective ai support
for developers: A survey of desires and concerns,” ACM
Queue, vol. 22, no. 3, July 2024. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/towards-
effective-ai-support-for-developers-a-survey-of-desires-and-concerns/

[34] C. Bird, D. Ford, T. Zimmermann, N. Forsgren, E. Kalliamvakou,
T. Lowdermilk, and I. Gazit, “Taking flight with copilot: Early in-
sights and opportunities of ai-powered pair-programming tools,” Queue,
vol. 20, no. 6, pp. 35–57, 2022.

