A Study on Context Length and Efficient Transformers for Biomedical Image Analysis

Sarah Hooper

Office of AI Research, NHLBI, NIH, Bethesda, MD, USA

Hui Xue

Health Futures, Microsoft Research, Redmond, WA, USA

¹ Abstract

 Biomedical images are often high-resolution and multi-dimensional, presenting computa- tional challenges for deep neural networks. These computational challenges are com- pounded when training transformers due to the self-attention operator, which scales quadrat- ically with context length. Recent works have proposed alternatives to self-attention that scale more favorably with context length, alle- viating these computational difficulties and po- tentially enabling more efficient application of transformers to large biomedical images. How- ever, a systematic evaluation on this topic is lacking. In this study, we investigate the impact of context length on biomedical image analy- sis and we evaluate the performance of recently proposed substitutes to self-attention. We first curate a suite of biomedical imaging datasets, including 2D and 3D data for segmentation, de- noising, and classification tasks. We then ana- lyze the impact of context length on network performance using the Vision Transformer and Swin Transformer. Our findings reveal a strong relationship between context length and per- formance, particularly for pixel-level prediction tasks. Finally, we show that recent attention- free models demonstrate significant improve- ments in efficiency while maintaining compara-ble performance to self-attention-based models,

³¹ though we highlight where gaps remain.

³² Keywords: Efficiency, long-context models,

³³ transformers, self-attention, medical imaging.

Data and Code Availability Code will be avail- able on GitHub. Five of the datasets are public datasets; the cardiac MR denoising dataset is a pri-vate dataset that is not currently available externally.

38 Institutional Review Board (IRB) This study ³⁹ did not require IRB approval.

1. Introduction 40

Biomedical and clinical imaging modalities often pro- ⁴¹ duce high-resolution, multi-dimensional images that ⁴² contain rich and detailed information. These large ⁴³ image sizes present computational challenges for deep ⁴⁴ neural networks, such as increased memory require- ⁴⁵ ments and long processing times [\(Dinsdale et al.,](#page-9-0) ⁴⁶ [2022;](#page-9-0) [Suzuki,](#page-12-0) [2017;](#page-12-0) [Berisha et al.,](#page-9-1) [2021\)](#page-9-1). ⁴⁷

The popularity of transformers has compounded 48 the computational difficulties of training neural net- ⁴⁹ works on medical images. Central to transformers 50 is the self-attention operator, which scales quadrati- ⁵¹ cally with context length [\(Keles et al.,](#page-10-0) [2023\)](#page-10-0). This 52 quadratic scaling can be prohibitive when training 53 models on medical images, where capturing fine- ⁵⁴ grained details in high-resolution, multi-dimensional ⁵⁵ images is critical.

In natural language processing (NLP), recent efforts have improved the efficiency of self-attention $\frac{58}{56}$ [\(Dao et al.,](#page-9-2) [2022;](#page-9-2) [Beltagy et al.,](#page-9-3) [2020;](#page-9-3) [Child et al.,](#page-9-4) ⁵⁹ [2019;](#page-9-4) [Katharopoulos et al.,](#page-10-1) [2020;](#page-10-1) [Choromanski et al.,](#page-9-5) 60 [2020;](#page-9-5) [Tay et al.,](#page-12-1) [2020\)](#page-12-1) or have investigated replacing ϵ_{61} [i](#page-11-1)t all together [\(Gu et al.,](#page-10-2) [2021a;](#page-10-2) [Poli et al.,](#page-11-0) [2023;](#page-11-0) [Peng](#page-11-1) $\overline{}$ 62 [et al.,](#page-11-1) [2023;](#page-11-2) [Fu et al.,](#page-10-3) [2022;](#page-10-3) [Sun et al.,](#page-11-2) 2023; [Gu and](#page-10-4) 63 [Dao,](#page-10-4) [2023\)](#page-10-4). These works aim to design operators that $\overline{64}$ match the performance of self-attention while scaling 65 more favorably with context length, enabling models 66 to process longer inputs. Such advances have gained ϵ popularity in NLP, driving new innovation and ca- ⁶⁸ pabilities [\(Dong et al.,](#page-9-6) [2023;](#page-9-6) [Tsirmpas et al.,](#page-12-2) [2024;](#page-12-2) ⁶⁹ [Huang et al.,](#page-10-5) [2023;](#page-10-5) [Pawar et al.,](#page-11-3) [2024\)](#page-11-3). While such π long-context models also hold promise for biomed- ⁷¹ ical image analysis—potentially making transform- ⁷² ers more efficient and effective when applied to high- ⁷³ resolution images—a systematic study on this topic ⁷⁴ is lacking. ⁷⁵

In this work, we investigate long-context models for $\frac{76}{6}$ biomedical imaging. We ask two questions: do medi- $\frac{7}{77}$

Figure 1: Visualization of how context length changes with patch size and attention window size. When using ViT, we use smaller patches to tokenize the input image, resulting in longer context lengths. When using Swin, we use larger windows of attention, resulting in longer context lengths.

 cal imaging applications benefit from longer context, and if so, what are efficient and effective approaches for training long-context models? We present a thor- ough investigation on the impact of context length on imaging applications and assess the performance of recently proposed alternatives to self-attention.

 We begin by curating a suite of biomedical imaging datasets comprising both two- and three-dimensional data as well as common medical imaging tasks: seg- mentation, image denoising, and classification. In- cluding these diverse data and task types enables us to evaluate long-context models in different settings. We then examine how varying context length im- pacts performance on these tasks using common transformers for computer vision. We evaluate the impact of patch size on the vision transformer (ViT, [Dosovitskiy et al.](#page-9-7) [\(2020\)](#page-9-7)) and the impact of the at- tention window on the Swin transformer [\(Liu et al.,](#page-11-4) [2021\)](#page-11-4)—both of which increase transformer context length (Figure [1\)](#page-1-0). We find a strong relationship be- tween patch size and performance, particularly for pixel-level prediction tasks (e.g., denoising).

 Finally, we evaluate recently proposed alterna- tives to self-attention (Hyena [\(Poli et al.,](#page-11-0) [2023\)](#page-11-0) and Mamba [\(Gu and Dao,](#page-10-4) [2023\)](#page-10-4)) to evaluate how each impacts performance and efficiency. Our results show these operators can achieve comparable performance to self-attention while improving efficiency by over 80%, underlining the importance of efficient long-context processing for biomedical imaging.

¹⁰⁸ 2. Related Work

109 Vision Transformers. The transformer, initially ¹¹⁰ introduced for NLP [\(Vaswani,](#page-12-3) [2017\)](#page-12-3), has been widely

adapted and applied to vision tasks. ViT showed 111 that a transformer architecture nearly identical to $\frac{112}{112}$ those used in NLP achieved strong performance on $_{113}$ image recognition [\(Dosovitskiy et al.,](#page-9-7) [2020\)](#page-9-7). Follow- ¹¹⁴ on works adapted the transformer for specific vision ¹¹⁵ [t](#page-11-5)asks [\(Han et al.,](#page-10-6) [2022;](#page-10-6) [Khan et al.,](#page-10-7) [2022;](#page-10-7) [Shamshad](#page-11-5) ¹¹⁶ [et al.,](#page-11-5) [2023\)](#page-11-5). For example, Swin introduced a shift- ¹¹⁷ and-merge windowing scheme, wherein image patches 118 only attended to local windows, reducing compu- ¹¹⁹ tational complexity and improving performance on ¹²⁰ pixel-level prediction [\(Liu et al.,](#page-11-4) [2021\)](#page-11-4). Similarly, ¹²¹ PVT and Segformer introduced hierarchical trans- ¹²² former architectures designed for dense prediction 123 tasks [\(Wang et al.,](#page-12-4) [2021;](#page-12-4) [Xie et al.,](#page-12-5) [2021\)](#page-12-5). Finally, $_{124}$ work like DeiT introduced training and distillation 125 strategies to improve the data efficiency of vision ¹²⁶ transformers [\(Touvron et al.,](#page-12-6) [2021\)](#page-12-6).

Efficient Attention. While transformers achieve 128 strong performance, their self-attention operator 129 scales quadratically with context length [\(Keles et al.,](#page-10-0) 130) 2023), leading to prohibitive computational demands $_{131}$ for processing long-context inputs. In response, many ¹³² works have proposed approaches to improve atten- ¹³³ tion's efficiency. Flash attention is a popular ap- ¹³⁴ proach that is an exact, hardware-aware implemen- ¹³⁵ tation of attention, reproducing attention but with ¹³⁶ subquadratic scaling [\(Dao et al.,](#page-9-2) [2022;](#page-9-2) [Dao,](#page-9-8) [2023;](#page-9-8) 137 [Shah et al.,](#page-11-6) [2024\)](#page-11-6). Other approaches propose approximations to attention, including sparse and local 139 attention [\(Beltagy et al.,](#page-9-3) [2020;](#page-9-3) [Child et al.,](#page-9-4) [2019\)](#page-9-4), lin-ear attention [\(Katharopoulos et al.,](#page-10-1) [2020\)](#page-10-1), and others $_{141}$ [\(Choromanski et al.,](#page-9-5) [2020;](#page-9-5) [Tay et al.,](#page-12-1) [2020\)](#page-12-1). These ¹⁴² approaches are more efficient than self-attention, but ¹⁴³ typically trade-off speed with expressivity and per- ¹⁴⁴ formance $(Poli et al., 2023)$ $(Poli et al., 2023)$ $(Poli et al., 2023)$. Alternatives to Attention. An alternative ap- proach to making attention more efficient is to re- place it entirely [\(Poli et al.,](#page-11-0) [2023;](#page-11-0) [Peng et al.,](#page-11-1) [2023;](#page-11-1) [Fu et al.,](#page-10-3) [2022;](#page-10-3) [Nguyen et al.,](#page-11-7) [2022;](#page-11-7) [Sun et al.,](#page-11-2) [2023\)](#page-11-2). This class of approaches tries to construct operators that maintain attention's performance while scaling more favorably with context length. For example, the Hyena operator leverages long convolutions to match self-attention's ability to capture global dependencies but with an operation that scales subquadratically with context length [\(Poli et al.,](#page-11-0) [2023\)](#page-11-0). Other ap- proaches include state space models (SSMs), which take inspiration from traditional signal processing models [\(Gu et al.,](#page-10-2) [2021a](#page-10-2)[,b\)](#page-10-8). [Gu and Dao](#page-10-4) [\(2023\)](#page-10-4) re- cently proposed the selective SSM in a model called Mamba, which increases the expressivity of SSMs and achieves promising performance on NLP and audio ¹⁶³ tasks.

 Some of these alternatives have been evaluated for vision tasks. For example, early SSM models were adapted to image classification [\(Nguyen et al.,](#page-11-7) [2022\)](#page-11-7), [H](#page-11-0)yena showed proof-of-principal on ImageNet [\(Poli](#page-11-0) [et al.,](#page-11-0) [2023\)](#page-11-0), and Mamba has been adapted for nat- ural image processing [\(Zhu et al.,](#page-12-7) [2024;](#page-12-7) [Liu et al.,](#page-11-8) [2024\)](#page-11-8). Similarly, related work has proposed new ar- chitectures leveraging some of these efficient opera- tors for medical applications [\(Fillioux et al.,](#page-10-9) [2023;](#page-10-9) [Archit and Pape,](#page-9-9) [2024;](#page-9-9) [Xing et al.,](#page-12-8) [2024;](#page-12-8) [Wang et al.,](#page-12-9) [2024;](#page-12-9) [Ma et al.,](#page-11-9) [2024;](#page-11-9) [Nasiri-Sarvi et al.,](#page-11-10) [2024\)](#page-11-10), how- ever these applications typically focus on a single task and architecture instead of a systematic evaluation over many operators, tasks, and data types.

178 Image Resolution and Context Length. There is a growing body of evidence that context length and image resolution play key roles in the quality of representations learned by transformers. While not synonymous, image resolution and context length are closely linked, as smaller patches used to tokenize the image better preserve image resolution at the expense of increased context length (Figure [1\)](#page-1-0).

 For example, a study on masked autoencoding showed improved performance for increasing context length [\(Hu et al.,](#page-10-10) [2022\)](#page-10-10). Diffusion models have shown improved performance with decreased patch size [\(Peebles and Xie,](#page-11-11) [2023\)](#page-11-11). A recent work showed competitive performance tokenizing images at the pixel-level [\(Nguyen et al.,](#page-11-12) [2024\)](#page-11-12), a finding consistent with the results of this work and which further mo- tivates our exploration of efficient alternatives to at-tention. Recent work in multimodal pretraining have

found improved performance with higher-resolution ¹⁹⁶ images [\(Meng et al.,](#page-11-13) [2024;](#page-11-13) [McKinzie et al.,](#page-11-14) [2024\)](#page-11-14). A ¹⁹⁷ few studies have looked at the impact of ViT patch ¹⁹⁸ size on classification, finding improved performance ¹⁹⁹ with smaller patches [\(Than et al.,](#page-12-10) [2021;](#page-12-10) [Ibrahimovic,](#page-10-11) 200 [2023;](#page-10-11) [Beyer et al.,](#page-9-10) [2023\)](#page-9-10). Finally, prior work has ²⁰¹ explored conceptually similar questions using CNNs. ²⁰² For example, several studies have highlighted the im- ²⁰³ portance of preserving image resolution to achieve ²⁰⁴ high CNN performance [\(Thambawita et al.,](#page-12-11) [2021;](#page-12-11) 205 [Sabottke and Spieler,](#page-11-15) [2020\)](#page-11-15), and some work has sug- 206 gested larger convolutional filter sizes improve CNN ²⁰⁷ performance [\(Ding et al.,](#page-9-11) [2022\)](#page-9-11).

Summary. While significant progress has been ²⁰⁹ made improving transformer efficiency for long- ²¹⁰ context inputs in NLP, a systematic evaluation of the $_{211}$ relationship between context length, efficiency, and 212 performance in biomedical imaging is lacking. Fur- ²¹³ ther, many efficient operators have not been tested in ²¹⁴ common medical imaging settings (e.g., with 3D data, ²¹⁵ for improving image quality). We aim to fill these ²¹⁶ gaps by investigating the impact of context length ²¹⁷ and the performance of efficient attention alterna- ²¹⁸ tives on diverse biomedical imaging datasets, offering 219 insights into the development of more efficient deep 220 learning models for biomedical applications.

3. Approach 222

We begin with background on self-attention and the 223 alternative operators we evaluate. We then discuss ²²⁴ model architectures, our approach to changing con- ²²⁵ text length, and our evaluation datasets.

3.1. Background: Attention and Alternatives 227

Self-Attention We show the standard transformer 228 block in Figure [2,](#page-3-0) which is traditionally powered ²²⁹ by self-attention [\(Vaswani,](#page-12-3) [2017;](#page-12-3) [Dosovitskiy et al.,](#page-9-7) ²³⁰ [2020\)](#page-9-7). For an input sequence $X \in \mathbb{R}^{n \times d}$, where n_{231} is the sequence length and d is the sequence dimension, self-attention maps this sequence to $Y \in \mathbb{R}^{n \times d}$ 233 using the set of trainable parameters $W_q \in \mathbb{R}^{d \times d}$, ²³⁴ $W_k \in \mathbb{R}^{d \times d}$, $W_v \in \mathbb{R}^{d \times d}$. First, the query, key, 235 and value matrices are computed as $Q = XW_q$, 236 $K = XW_k$, and $V = XW_v$. The softmax dot-product 237 self-attention operation is then defined as: 238

$$
Attention(Q, K, V) = Softmax\left(\frac{QK^{\top}}{\sqrt{d}}\right)V.
$$

Figure 2: Attention and alternative operators. Left, we show a standard transformer block. Right, we show the operators we evaluate in the transformer blocks: self-attention, Hyena, and MambaVision.

 The computational complexity of self-attention 240 is $O(n^2)$ [\(Keles et al.,](#page-10-0) [2023\)](#page-10-0), meaning using self- attention with longer sequences results in quadratic increases to memory and computation.

 Alternatives to Attention. Many alternative op- erators have been proposed to enable longer context processing. To do a thorough analysis across tasks, datasets, and context lengths, we carefully selected which alternatives to evaluate. We selected operators that showed proof-of-principal performance on imag- ing tasks and outperformed similar baselines. Fur- ther, we selected operators that could be swapped out for attention in existing architectures, enabling a direct comparison between operators without con-founding influences from other architectural changes.

 Hyena. We selected the Hyena operator as the first attention alternative to evaluate [\(Poli et al.,](#page-11-0) [2023\)](#page-11-0) (Figure [2\)](#page-3-0). Hyena uses long convolutions to achieve subquadratic scaling with respect to con- text length, while still maintaining token-level pre- cision and global context. Hyena further introduces element-wise gating to inject data dependence into the operator, mimicking the data dependence prop- erty of self-attention. The computational complexity 263 of Hyena is $O(n \log_2(n))$ [\(Poli et al.,](#page-11-0) [2023\)](#page-11-0).

 We selected Hyena because it maintains two char- acteristics of attention—token-level precision and global context—that we hypothesized would help maintain performance on both sparse and dense im-age analysis tasks. Additionally, Hyena has shown strong performance on ImageNet and has exceeded ²⁶⁹ the performance of or generalized related methods ²⁷⁰ [\(Nguyen et al.,](#page-11-7) [2022;](#page-11-7) [Fu et al.,](#page-10-3) [2022;](#page-10-3) [Poli et al.,](#page-11-0) [2023\)](#page-11-0). ²⁷¹

Mamba. We selected MambaVision as the second 272 operator to evaluate. Mamba is a selective SSM that ²⁷³ transforms an input X into output Y via a learn-able hidden state [\(Gu and Dao,](#page-10-4) [2023\)](#page-10-4). We evaluated $_{275}$ [t](#page-10-12)he MambaVision operator proposed by [Hatamizadeh](#page-10-12) 276 [and Kautz](#page-10-12) (2024) , which adapts the selective SSM $_{277}$ module in [Gu and Dao](#page-10-4) [\(2023\)](#page-10-4) to vision tasks. MambaVision incorporates a selective SSM along with a ²⁷⁹ skip connection (Figure [2\)](#page-3-0), defined as: 280

$$
Z_1 = Scan(\sigma(Conv(Linear_{d \to \frac{d}{2}}(X))))
$$

\n
$$
Z_2 = \sigma(Conv(Linear_{d \to \frac{d}{2}}(X)))
$$

\n
$$
Y = Linear_{\frac{d}{2} \to d}(Concat(Z_1, Z_2))
$$

where $Scan(\cdot)$ is the selective scan operation in [Gu](#page-10-4) 281 [and Dao](#page-10-4) [\(2023\)](#page-10-4) and σ is the SiLU function.

We selected Mamba as a SotA SSM approach that 283 has been adapted to vision with promising initial ²⁸⁴ results. Further, MambaVision reportedly exceeds ²⁸⁵ the performance of other Mamba vision architectures 286 [\(Liu et al.,](#page-11-8) [2024;](#page-11-8) [Zhu et al.,](#page-12-7) [2024;](#page-12-7) [Pei et al.,](#page-11-16) [2024\)](#page-11-16). ²⁸⁷

3.2. Model Architectures 288

We evaluated two widely used architectures for vi[s](#page-11-4)ion: ViT [\(Dosovitskiy et al.,](#page-9-7) [2020\)](#page-9-7) and Swin [\(Liu](#page-11-4) ²⁹⁰ [et al.,](#page-11-4) [2021\)](#page-11-4). ViT closely mirrors transformers used ²⁹¹

Figure 3: Task visualization. We visualize a network input and ground truth output for each task. Starting from the upper left and moving clockwise: retinal vessel segmentation, microscopy denoising, pneumothorax classification, pulmonary embolism classification, CMR denoising, and abdominal CT organ segmentation.

 in NLP. Swin restricts attention to local windows, then shifts and merges these windows. By stacking multiple Swin transformer blocks, the effective recep- tive field grows. To keep the number of parameters similar between ViT and Swin, we used ViT's small

²⁹⁷ configuration and Swin's tiny configuration.

 We selected ViT and Swin as two common vision transformers used in medical imaging applications [\(He et al.,](#page-10-13) [2023;](#page-10-13) [Shamshad et al.,](#page-11-5) [2023\)](#page-11-5) that other transformers share similarities with. For example, DeiT's architecture is nearly identical to ViT, while PVT and Segformer compress patches in attention-based blocks, similar to Swin.

 Both ViT and Swin are made up of repeating trans- former blocks. Traditionally, these blocks are pow- ered by self-attention. We evaluated attention as well as Hyena and MambaVision when used as drop-in re-placements for attention, as shown in Figure [2.](#page-3-0)^{[1](#page-4-0)} 309

 For classification tasks, we used a linear layer as the task head. For pixel-level prediction tasks, we used the ViT UNETR head [\(Hatamizadeh et al.,](#page-10-14) [2022\)](#page-10-14) for ViT and the UPerNet head [\(Xiao et al.,](#page-12-12) [2018\)](#page-12-12) for Swin. We chose these prediction heads as they are relatively lightweight and maintain similar parameter counts between ViT and Swin models.

3.3. Changing Context Length 317

Consistent with most transformers for computer vi- ³¹⁸ sion, both ViT and Swin begin with a patch em- ³¹⁹ bedding layer that partitions the image into non- ³²⁰ overlapping patches, which are then embedded and ³²¹ used as tokens. The context length of the self- ³²² attention operator is defined by how many tokens are 323 processed concurrently. Thus, longer context lengths ³²⁴ occur when attending to more image patches.

We can vary context length by (i) changing the $\frac{326}{2}$ patch size, thereby increasing the number of tokens 327 per image region; or (ii) changing the size of the at- ³²⁸ tention window, enabling attention among a greater $\frac{329}{200}$ portion of the image. We explore both in this work. 330

To change the context length in ViT, we swept the 331 patch size used in the patch embedding layer. We $_{332}$ evaluated 32-, 16-, 8-, and 4-pixel isotropic patches. 333 Reducing the patch size increases context length and $\frac{334}{4}$ computational complexity, but results in a higher res- ³³⁵ olution representation of the input image (Figure [1\)](#page-1-0). $\frac{336}{2}$

For Swin, we fixed the embedding patch size to 337 2-pixel isotropic patches while we varied the size of ³³⁸ the local attention window. We evaluated 4-, 8-, and 339 16-token isotropic windows. Larger windows increase ³⁴⁰ context length and computational complexity, but en- ³⁴¹ able the network to use a greater portion of the im- ³⁴² age to inform each token's representation (Figure [1\)](#page-1-0). $\frac{343}{2}$ In the Appendix, we also evaluate the impact of the ³⁴⁴ patch size on Swin performance.

^{1.} We removed Swin's shift operation when using Hyena and MambaVision, as the masking procedure used with attention does not translate to the alternative operators. We evaluate the impact of the shift operator in the Appendix.

 These changes to context length do not strongly impact the parameterization of the attention mod- ules. However, changing ViT's patch size does change the number of parameters in the patch embedding layer. We provide parameter counts in the Appendix.

³⁵¹ 3.4. Dataset and Task Selection

 We selected diverse biomedical imaging tasks to eval- uate the impact of context length and self-attention. We included segmentation to evaluate the networks' ability to identify pixel-level features. We included image denoising as a task that requires models to re- store high-fidelity details. Finally, we included clas- sification to evaluate the networks' ability to aggre- gate global information and predict image-level la- bels. For each task type, we included 2D and 3D data from different imaging modalities. This compre- hensive evaluation allowed us to analyze how context length and different operators influence performance across many datasets as well as tasks that require fine-grained precision and global understanding.

³⁶⁶ Our tasks are visualized in Figure [3](#page-4-1) and described ³⁶⁷ below, with additional details in the Appendix.

 • 2D Retinal Vessel Segmentation. This public fun- dus photograph dataset contains 800 images, each of shape 2048×2048 pixels with three channels [\(Jin et al.,](#page-10-15) [2022\)](#page-10-15). Each image has pixel-wise anno-tations of retinal vessels.

 • 3D Abdominal CT Organ Segmentation. This pub- lic dataset contains 945 images, each with nine or- gans segmented [\(Qu et al.,](#page-11-17) [2024;](#page-11-17) [Antonelli et al.,](#page-9-12) 376×2022 . We resized each axial slice to 256×256 pix-els and cropped to 64 axial slices per volume.

 • 2D Microscopy Denoising. This public fluorescence microscopy dataset contains 360 images, each of μ ₃₈₀ shape 1024×1024 [\(Zhou et al.,](#page-12-13) [2020\)](#page-12-13). Each sample contains a paired high- and low-SNR image.

 • 3D Cardiac MRI (CMR) Denoising. This pri- vate dataset contains 13,964 retro-gated cines, each ³⁸⁴ with 32 frames and center cropped to 128×128 pixels. Each sample contains a paired high- and low-SNR image.

 • 2D Pneumothorax Classification. This public chest x-ray dataset contains 18,887 chest x-rays, each of 389 1024 × 1024 pixels [\(Feng et al.,](#page-10-16) [2021\)](#page-10-16). 15\% of the images contain a pneumothorax.

³⁹¹ • 3D Pulmonary Embolism Classification. This pub-³⁹² lic CT dataset contains 7,205 images, 32% posi-³⁹³ tive for pulmonary embolism [\(Colak et al.,](#page-9-13) [2021\)](#page-9-13). We resized each axial slice to 256×256 pixels and 394 cropped to 64 axial slices per volume.

4. Experiments 396

We first describe our experimental setup, then eval-
 397 uate task performance and training efficiency as a 398 function of context length.

4.1. Experimental Setup 400

We split the datasets randomly by patient into 60% 401 train, 20% validation, and 20% test, except for the 402 vessels dataset which has pre-defined splits. We ⁴⁰³ tuned the learning rate for each experiment; final 404 learning rates are given in the Appendix. ⁴⁰⁵

We trained the classification and segmentation $\frac{406}{200}$ tasks using the cross entropy loss and the denois- ⁴⁰⁷ ing tasks using the sum of the mean squared error ⁴⁰⁸ loss, Charbonnier loss, and Gaussian loss. We used ⁴⁰⁹ an affine transform and brightness jitter as training ⁴¹⁰ augmentations for all tasks except CMR denoising, ⁴¹¹ where we only used an affine transform. We did not $_{412}$ use brightness jitter on CMR denoising since the pixel 413 values are representative of the SNR.

Other training parameters were kept constant for ⁴¹⁵ all experiments. We used the Adam optimizer with ⁴¹⁶ a one cycle learning rate scheduler and no weight ⁴¹⁷ decay. All experiments were run for 250 epochs on ⁴¹⁸ eight 80GB NVIDIA A100s using Python 3.11. Mod- ⁴¹⁹ els were checkpointed using the minimum validation ⁴²⁰ \log s. $\frac{421}{20}$

4.2. Task Performance 422

We next report the task performance for each network with changing context lengths and operators, as 424 shown in Figures [4](#page-6-0) and [5.](#page-7-0) We evaluated segmentation 425 performance using the Dice coefficient, denoising per- ⁴²⁶ formance using the structural similarity index mea- ⁴²⁷ sure (SSIM), and classification performance using the $_{428}$ area under the receiver operating curve (AUROC). ⁴²⁹ We computed 95% confidence intervals by bootstrapping over the test set.

Patch Size Strongly Impacts ViT Perfor- ⁴³² mance. In Figure [4,](#page-6-0) we observe a strong relationship between patch size and performance. Using selfattention, the best performance across all tasks was ⁴³⁵ achieved by the smallest patch size.

We notice a particularly strong correlation for $\frac{437}{437}$ pixel-level prediction, with all operators consistently ⁴³⁸

Figure 4: ViT performance. We visualize performance for each task, operator, and patch size with 95% confidence intervals. An X on the x-axis indicates that the patch size exceeded available memory.

 achieving improved performance across the four pixel-level prediction tasks with smaller patch sizes. The trend on classification is less clear. Attention- based networks still saw improved performance with decreasing patch size, with an average 4.85% increase in performance comparing the largest and smallest patch size. However, the Mamba-based networks did not show this same relationship, as discussed in more detail later in this section.

 In the Appendix, we further evaluate the impact of patch size on Swin performance to verify we ob- serve the same trends shown above with ViT. To sum- marize our findings, we observed an average 8.66% improvement to performance using 2-pixel isotropic patches instead of 4-pixel isotropic patches in Swin, with performance improving across all of our six tasks with the smaller patch size. These results indicate that preserving resolution via smaller patch sizes is important to performance in both architectures. In the remainder of the main text, we evaluate Swin with 2-pixel isotropic patches.

 Attention Window Size has Only Minor Im- pacts on Swin Performance. We do not ob- serve a strong relationship between the attention win- dow size and Swin performance (Figure [5\)](#page-7-0). While CMR denoising performance improved with larger windows in attention-based networks—with 16-token windows improving performance 11.37% compared to 4-token windows—we observed only minor differences for segmentation and classification, with performance $\frac{468}{468}$ sometimes decreasing. The improved performance in the CMR denoising task might be attributed to the ⁴⁷⁰ dataset containing videos, as increasing the window ⁴⁷¹ size provides the network with additional frames of the same structure to aid in the denoising process. ⁴⁷³ For other tasks, local information captured in small windows combined with Swin's window merging may provide a sufficient balance of local and global infor- ⁴⁷⁶ mation to achieve high performance.

Attention Alternatives Perform Well at Pixel- ⁴⁷⁸ Level Prediction Tasks. On segmentation and denoising tasks, both attention alternatives showed ⁴⁸⁰ promising performance. We summarize their change ⁴⁸¹ in performance compared to attention in Table [1.](#page-6-1) $\qquad 482$

Table 1: Average performance change compared to networks that use self-attention.

Performance change	Segment	Denoise	Classify
Hyena	-1.23%	2.91%	-2.75%
MambaVision	-0.09%	4.12\%	-18.34%

However, MambaVision struggled to consistently ⁴⁸³ match the performance of attention on classifica- ⁴⁸⁴ tion tasks, with MambaVision performance degrad- ⁴⁸⁵

Figure 5: Swin performance. We visualize performance for each task, operator, and patch size with 95% confidence intervals. An X on the x-axis indicates that the window size exceeded available memory.

 ing with increasing context length on ViT classifica- tion. Classification requires global reasoning, since predictions are made at the image level, and one of self-attention's strengths is the ability to identify im- portant information across global contexts. In our experiments, we observe MambaVision cannot yet re-liably match this performance.

 In contrast, Hyena more closely tracks attention's performance over all task types. While there is a performance gap on Swin classification with Hyena, the differential may be attributed to the absence of the shift operation (see Appendix for more details).

⁴⁹⁸ 4.3. Training Efficiency

 We next evaluate training efficiency. While smaller patches can improve performance, they also increase computational complexity due to increased context length. For example, when training a self-attention- based ViT on our datasets, using 16- or 8-pixel patches increased the time required for a forward and backward pass by 252.90% and 2,335.48% compared to using 32-pixel patches, respectively. This drastic increase in computation with longer context lengths motivates the use of more efficient operators.

 To assess the efficiency of each model, we evaluated the time required to perform a forward and backward pass as well as the maximum memory allocated. We provide results for all runs in the Appendix and sum-marize key findings in Tables [2](#page-7-1) and [3,](#page-7-2) where we report the average speedup achieved by Hyena and Mam- ⁵¹⁴ baVision compared to attention. 515

Table 2: Average ViT speedup compared to networks that use self-attention.

Speedup over ViT-attn	Patch 32	Patch 16	Patch	Patch
Hyena	-48.66%	5.50%	42.79%	81.49\%
MambaVision	-7.68%	32.67\%	57.74%	86.82%

Table 3: Average Swin speedup compared to networks that use self-attention.

Attention Alternatives Improve Efficiency at $_{516}$ Long Context Lengths. We observe speedups 517 with longer context lengths, with both Hyena and $_{518}$ MambaVision achieving over 80% speedups with 4- ⁵¹⁹ pixel patches in ViT. At smaller context lengths, we $\frac{520}{2}$ ⁵²¹ observe the alternative operators slow down training, ⁵²² as expected given the complexity terms (Section [3\)](#page-2-0).

 Attention Alternatives Enable Longer Context Lengths. In addition to speeding up training at long context lengths, both Hyena and MambaVision enabled longer context lengths than could be achieved with self-attention given our hardware. For exam- ple, in abdominal CT segmentation, memory lim- itations prevented a self-attention ViT from being trained with 8-pixel patches, while both Hyena and MambaVision reduced memory requirements enough to train with 8-pixel patches. This enabled Hyena and/or MambaVision to exceed the maximum per- formance achieved by attention-based ViTs on mul- tiple tasks, including vessel segmentation, organ seg- mentation, microscopy denoising, and pneumothorax classification.

⁵³⁸ 5. Discussion and Conclusion

 In this study, we evaluated the impact of context length on the performance and efficiency of trans- formers for biomedical image analysis. We further in- vestigated two alternatives to self-attention—Hyena and MambaVision—on diverse imaging tasks.

 Key Findings. Our results indicate a strong re- lationship between patch size and task performance, particularly for pixel-level prediction tasks. Smaller patch sizes, which correspond to longer context lengths, consistently yielded better performance. This finding underscores the importance of preserv- ing high-resolution information in biomedical images, which often contain critical fine-grained details nec-essary for accurate predictions.

 In contrast, Swin's window size did not strongly impact performance, although denoising tasks showed some performance gains with larger windows. This suggests that while local context is crucial, Swin's hierarchical design may already provide a suf- ficient balance between local and global information for many tasks. In this case, dedicating more context length to preserving image resolution may be more impactful than extending context length to achieve larger attention windows.

 We found both Hyena and MambaVision to be promising alternatives to self-attention that en- able smaller patches and greater attention win- dows, though Hyena more consistently tracked self- attention's performance. For ViT pixel-level predic-tion tasks, we found that both operators could exceed the performance achieved by self-attention net- ⁵⁶⁹ works while also offering significant speedups—up 570 to 80% faster—for longer context lengths. This efficiency gain is critical for biomedical applications, ⁵⁷² where high-resolution images are common and computational resources are often a limiting factor in net- ⁵⁷⁴ work design.

Limitations and Future Work. This work focuses on a specific set of alternative operators. Fur- ⁵⁷⁷ ther work may explore a wider range of efficient at- ⁵⁷⁸ tention alternatives and their suitability for diverse 579 medical imaging tasks. Additionally, the datasets we $\frac{580}{20}$ used are relatively small. Future work using larger ⁵⁸¹ datasets may show additional strengths and weak- ⁵⁸² nesses of each of these operators. Similarly, the maximum context lengths in this work were limited by ⁵⁸⁴ GPU memory. Future work may further extend con- ⁵⁸⁵ text length with alternative training environments. 586 Finally, future work may study how context length 587 and attention alternatives impact pretraining strategies and self-supervision performance.

Conclusion. In this study, we explored the role $\frac{590}{2}$ that context length plays in biomedical image anal- ⁵⁹¹ ysis, investigating the relationship between context ⁵⁹² length, performance, and efficiency. We found that 593 smaller patch sizes improved performance across a $\frac{594}{2}$ range of task and data types, underscoring the im- ⁵⁹⁵ portance of preserving high-resolution information in ⁵⁹⁶ biomedical image analysis. However, the increased ⁵⁹⁷ computational demands associated with longer con- ⁵⁹⁸ text lengths present challenges for practical clinical ⁵⁹⁹ applications. 600

We demonstrated that replacing the traditional ω attention operator with alternatives like Hyena or 602 Mamba can help alleviate these computational chal- $\frac{603}{200}$ lenges. These operators facilitate computation over 604 longer context lengths by reducing the compute $\frac{605}{605}$ time and memory requirements while maintaining— $\frac{606}{200}$ sometimes even improving—performance, particu- ω larly for pixel-level prediction tasks. The efficiency 608 of Hyena and Mamba offers advantages for real-time, ⁶⁰⁹ real-world clinical implementations, where computa- ⁶¹⁰ tional resources can be limited, fast processing is de- ⁶¹¹ sired, and performance is paramount.

In conclusion, our findings can inform the design $_{613}$ of model backbones for biomedical imaging tasks and ⁶¹⁴ provide insights for the development of new biomed- ⁶¹⁵ ical imaging models that balance performance and ⁶¹⁶ efficiency, ultimately supporting more effective solutions for biomedical image analysis. $\qquad \qquad \text{618}$

⁶¹⁹ References

 Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette Kopp-Schneider, Ben- nett A Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M Summers, et al. The medical segmentation decathlon. Nature commu-nications, 13(1):4128, 2022.

⁶²⁶ Anwai Archit and Constantin Pape. Vim-unet: Vi- 627 sion mamba for biomedical segmentation. $arXiv$ ⁶²⁸ preprint arXiv:2404.07705, 2024.

 Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri ⁶³¹ Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. arXiv:2312.04927, 2023.

⁶³⁴ Iz Beltagy, Matthew E Peters, and Arman Co-⁶³⁵ han. Longformer: The long-document transformer. ⁶³⁶ arXiv preprint arXiv:2004.05150, 2020.

 Visar Berisha, Chelsea Krantsevich, P Richard Hahn, Shira Hahn, Gautam Dasarathy, Pavan Turaga, and Julie Liss. Digital medicine and the curse of di- μ_{40} mensionality. *NPJ digital medicine*, 4(1):153, 2021.

 Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flexivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14496–14506, 2023.

 M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, An- driy Myronenko, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu, Ali Hatamizadeh, An- driy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang, Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Moham- mad Zalbagi Darestani, Charlie Budd, Marc Mo- dat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal, Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger, Michael Baum- gartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D. Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris Shuaib, Keyvan Farahani, Klaus H.

Maier-Hein, Stephen Aylward, Prerna Dogra, Se- ⁶⁶⁵ bastien Ourselin, and Andrew Feng. Monai: An 666 open-source framework for deep learning in health- ⁶⁶⁷ $care, 2022.$ 668

- Rewon Child, Scott Gray, Alec Radford, and Ilya 669 Sutskever. Generating long sequences with sparse $\frac{670}{670}$ transformers. $arXiv$ preprint $arXiv:1904.10509$, ϵ_{71} $2019.$ 672
- Krzysztof Choromanski, Valerii Likhosherstov, David 673 Dohan, Xingyou Song, Andreea Gane, Tamas Sar- ⁶⁷⁴ los, Peter Hawkins, Jared Davis, Afroz Mohiud- ⁶⁷⁵ din, Lukasz Kaiser, et al. Rethinking attention ⁶⁷⁶ with performers. $arXiv$ preprint $arXiv:2009.14794$, σ $2020.$
- Errol Colak, Felipe C Kitamura, Stephen B Hobbs, ⁶⁷⁹ Carol C Wu, Matthew P Lungren, Luciano M ⁶⁸⁰ Prevedello, Jayashree Kalpathy-Cramer, Robyn L 681 Ball, George Shih, Anouk Stein, et al. The rsna 682 pulmonary embolism ct dataset. Radiology: Arti- ⁶⁸³ ficial Intelligence, $3(2)$:e200254, 2021.
- Tri Dao. Flashattention-2: Faster attention with ⁶⁸⁵ better parallelism and work partitioning. $arXiv$ 686 preprint arXiv:2307.08691, 2023.
- Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and ⁶⁸⁸ Christopher Ré. Flashattention: Fast and memory- 689 efficient exact attention with io-awareness. $Ad-$ 690 vances in Neural Information Processing Systems, 691 35:16344–16359, 2022. ⁶⁹²
- Xiaohan Ding, Xiangyu Zhang, Jungong Han, and ⁶⁹³ Guiguang Ding. Scaling up your kernels to 31x31: ⁶⁹⁴ Revisiting large kernel design in cnns. In Proceed- ⁶⁹⁵ ings of the IEEE/CVF conference on computer vi sion and pattern recognition, pages 11963–11975, 697 $2022.$ 698
- Nicola K Dinsdale, Emma Bluemke, Vaanathi Sun- ⁶⁹⁹ daresan, Mark Jenkinson, Stephen M Smith, and ⁷⁰⁰ Ana IL Namburete. Challenges for machine learning in clinical translation of big data imaging stud- ⁷⁰² ies. Neuron, 110(23):3866–3881, 2022.
- Zican Dong, Tianyi Tang, Lunyi Li, and Wayne Xin ⁷⁰⁴ Zhao. A survey on long text modeling with trans- ⁷⁰⁵ formers. $arXiv$ preprint $arXiv:2302.14502$, 2023. $\qquad \qquad$ 706
- Alexey Dosovitskiy, Lucas Beyer, Alexander 707 Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, ⁷⁰⁸ Thomas Unterthiner, Mostafa Dehghani, Matthias 709

 Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

 Sijing Feng, Damian Azzollini, Ji Soo Kim, Cheng- Kai Jin, Simon P Gordon, Jason Yeoh, Eve Kim, Mina Han, Andrew Lee, Aakash Patel, et al. Cu- ration of the candid-ptx dataset with free-text reports. Radiology: Artificial Intelligence, 3(6): e210136, 2021.

 Leo Fillioux, Joseph Boyd, Maria Vakalopoulou, 721 Paul-Henry Cournède, and Stergios Christodoulidis. Structured state space models for multiple instance learning in digital pathology. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 594–604. Springer, 2023.

 Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W ⁷²⁸ Thomas, Atri Rudra, and Christopher Ré. Hun- gry hungry hippos: Towards language model- ing with state space models. arXiv preprint arXiv:2212.14052, 2022.

⁷³² Albert Gu and Tri Dao. Mamba: Linear-time se-⁷³³ quence modeling with selective state spaces. arXiv ⁷³⁴ preprint arXiv:2312.00752, 2023.

735 Albert Gu, Karan Goel, and Christopher Ré. Ef-⁷³⁶ ficiently modeling long sequences with structured σ_{737} state spaces. $arXiv$ preprint $arXiv:2111.00396$, ⁷³⁸ 2021a.

 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, 740 Tri Dao, Atri Rudra, and Christopher Ré. Combin- ing recurrent, convolutional, and continuous-time models with linear state space layers. Advances in neural information processing systems, 34:572–585, ⁷⁴⁴ 2021b.

 Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. A sur- vey on vision transformer. IEEE transactions on pattern analysis and machine intelligence, 45(1): 87–110, 2022.

⁷⁵¹ Ali Hatamizadeh and Jan Kautz. Mambavision: A $_{752}$ hybrid mamba-transformer vision backbone. $arXiv$ ⁷⁵³ preprint arXiv:2407.08083, 2024.

- Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, ⁷⁵⁴ Dong Yang, Andriy Myronenko, Bennett Land- ⁷⁵⁵ man, Holger R Roth, and Daguang Xu. Unetr: 756 Transformers for 3d medical image segmentation. $\frac{757}{757}$ In Proceedings of the IEEE/CVF winter conference $\frac{758}{150}$ on applications of computer vision, pages 574–584, ⁷⁵⁹ $2022.$ 760
- Kelei He, Chen Gan, Zhuoyuan Li, Islem Rekik, Zi- ⁷⁶¹ hao Yin, Wen Ji, Yang Gao, Qian Wang, Junfeng 762 Zhang, and Dinggang Shen. Transformers in med- ⁷⁶³ ical image analysis. Intelligent Medicine, 3(1):59– ⁷⁶⁴ 78, 2023.
- Ronghang Hu, Shoubhik Debnath, Saining Xie, and ⁷⁶⁶ Xinlei Chen. Exploring long-sequence masked ⁷⁶⁷ autoencoders. arXiv preprint arXiv:2210.07224, 768 $2022.$ 769
- Yunpeng Huang, Jingwei Xu, Zixu Jiang, Junyu Lai, ⁷⁷⁰ Zenan Li, Yuan Yao, Taolue Chen, Lijuan Yang, ⁷⁷¹ Zhou Xin, and Xiaoxing Ma. Advancing trans- ⁷⁷² former architecture in long-context large language $\frac{773}{2}$ models: A comprehensive survey. $arXiv$ preprint τ $arXiv:2311.12351, 2023.$
- E Ibrahimovic. Optimizing vision transformer per- ⁷⁷⁶ formance with customizable parameters. In 2023 777 46th MIPRO ICT and Electronics Convention π $(MIPRO)$, pages 1721–1726. IEEE, 2023.
- Kai Jin, Xingru Huang, Jingxing Zhou, Yunxiang Li, ⁷⁸⁰ Yan Yan, Yibao Sun, Qianni Zhang, Yaqi Wang, ⁷⁸¹ and Juan Ye. Fives: A fundus image dataset for ar- ⁷⁸² tificial intelligence based vessel segmentation. Scientific data, $9(1):475$, 2022 .
- Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap- ⁷⁸⁵ pas, and François Fleuret. Transformers are rnns: 786 Fast autoregressive transformers with linear attention. In International conference on machine learn- ⁷⁸⁸ $ing, pages 5156–5165. PMLR, 2020.$
- Feyza Duman Keles, Pruthuvi Mahesakya Wijew- ⁷⁹⁰ ardena, and Chinmay Hegde. On the computa- ⁷⁹¹ tional complexity of self-attention. In *International* 792 Conference on Algorithmic Learning Theory, pages 793 597–619. PMLR, 2023.
- Salman Khan, Muzammal Naseer, Munawar Hayat, ⁷⁹⁵ Syed Waqas Zamir, Fahad Shahbaz Khan, and ⁷⁹⁶ Mubarak Shah. Transformers in vision: A sur- ⁷⁹⁷ vey. ACM computing surveys $(CSUR)$, $54(10s):1$ – 798 41, 2022. ⁷⁹⁹
- ⁸⁰⁰ Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu,
- ⁸⁰¹ Lingxi Xie, Yaowei Wang, Qixiang Ye, and Yunfan

⁸⁰² Liu. Vmamba: Visual state space model, 2024.

 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using 806 shifted windows. In Proceedings of the IEEE/CVF

⁸⁰⁷ international conference on computer vision, pages

- ⁸⁰⁸ 10012–10022, 2021.
- ⁸⁰⁹ Jun Ma, Feifei Li, and Bo Wang. U-mamba: Enhanc-⁸¹⁰ ing long-range dependency for biomedical image segmentation. arXiv preprint arXiv:2401.04722, ⁸¹² 2024.
- ⁸¹³ Brandon McKinzie, Zhe Gan, Jean-Philippe Faucon-⁸¹⁴ nier, Sam Dodge, Bowen Zhang, Philipp Dufter, ⁸¹⁵ Dhruti Shah, Xianzhi Du, Futang Peng, Floris ⁸¹⁶ Weers, et al. Mm1: Methods, analysis & insights \sin from multimodal llm pre-training. $arXiv$ preprint 818 *arXiv:2403.09611*, 2024.
- ⁸¹⁹ Lingchen Meng, Jianwei Yang, Rui Tian, Xiyang Dai, ⁸²⁰ Zuxuan Wu, Jianfeng Gao, and Yu-Gang Jiang. ⁸²¹ Deepstack: Deeply stacking visual tokens is sur- δ ₈₂₂ prisingly simple and effective for lmms. $arXiv$ ⁸²³ preprint arXiv:2406.04334, 2024.
- ⁸²⁴ Ali Nasiri-Sarvi, Vincent Quoc-Huy Trinh, Hassan ⁸²⁵ Rivaz, and Mahdi S Hosseini. Vim4path: Self-⁸²⁶ supervised vision mamba for histopathology im- 827 ages. In Proceedings of the IEEE/CVF Confer-⁸²⁸ ence on Computer Vision and Pattern Recognition, ⁸²⁹ pages 6894–6903, 2024.
- ⁸³⁰ Duy-Kien Nguyen, Mahmoud Assran, Unnat Jain, ⁸³¹ Martin R Oswald, Cees GM Snoek, and Xinlei 832 Chen. An image is worth more than $16x16$ patches: ϵ_{833} Exploring transformers on individual pixels. $arXiv$ ⁸³⁴ preprint arXiv:2406.09415, 2024.
- ⁸³⁵ Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, 836 Preey Shah, Tri Dao, Stephen Baccus, and Christo-837 pher Ré. S4nd: Modeling images and videos as ⁸³⁸ multidimensional signals with state spaces. Ad-⁸³⁹ vances in neural information processing systems, ⁸⁴⁰ 35:2846–2861, 2022.
- ⁸⁴¹ Saurav Pawar, SM Tonmoy, SM Zaman, Vinija Jain, 842 Aman Chadha, and Amitava Das. The what, why, ⁸⁴³ and how of context length extension techniques in \log_{10} large language models–a detailed survey. $arXiv$ 845 preprint arXiv:2401.07872, 2024.
- William Peebles and Saining Xie. Scalable diffusion 846 models with transformers. In Proceedings of the 847 IEEE/CVF International Conference on Computer 848 $Vision, pages 4195–4205, 2023.$
- Xiaohuan Pei, Tao Huang, and Chang Xu. Efficientv- ⁸⁵⁰ mamba: Atrous selective scan for light weight visual mamba. arXiv preprint arXiv:2403.09977, 852 $2024.$ 853
- Bo Peng, Eric Alcaide, Quentin Anthony, Alon Al- ⁸⁵⁴ balak, Samuel Arcadinho, Stella Biderman, Huanqi 855 Cao, Xin Cheng, Michael Chung, Matteo Grella, ⁸⁵⁶ et al. Rwkv: Reinventing rnns for the transformer 857 era. $arXiv$ preprint $arXiv:2305.13048$, 2023.
- Michael Poli, Stefano Massaroli, Eric Nguyen, ⁸⁵⁹ Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua 860 Bengio, Stefano Ermon, and Christopher Ré. 861 Hyena hierarchy: Towards larger convolutional lan- ⁸⁶² guage models. In International Conference on Ma- ⁸⁶³ $chine\, Learning, \, pages\, 28043–28078. \, \text{PMLR}, \, 2023. \quad \text{ }^{864}$
- Chongyu Qu, Tiezheng Zhang, Hualin Qiao, Yucheng 865 Tang, Alan L Yuille, Zongwei Zhou, et al. ⁸⁶⁶ Abdomenatlas-8k: Annotating $8,000$ ct volumes $80,000$ for multi-organ segmentation in three weeks. $Ad-$ 868 vances in Neural Information Processing Systems, $\frac{1}{100}$ 36, 2024.
- Carl F Sabottke and Bradley M Spieler. The effect of image resolution on deep learning in ra- ⁸⁷² diography. Radiology: Artificial Intelligence, $2(1)$: 873 e190015, 2020. 874
- Jay Shah, Ganesh Bikshandi, Ying Zhang, Vi- ⁸⁷⁵ jay Thakkar, Pradeep Ramani, and Tri Dao. ⁸⁷⁶ Flashattention-3: Fast and accurate attention with 877 asynchrony and low-precision. $arXiv$ preprint ∞ $arXiv:2407.08608, 2024.$
- Fahad Shamshad, Salman Khan, Syed Waqas Za- ⁸⁸⁰ mir, Muhammad Haris Khan, Munawar Hayat, Fa- ⁸⁸¹ had Shahbaz Khan, and Huazhu Fu. Transformers 882 in medical imaging: A survey. *Medical Image Anal*- 883 ysis, 88:102802, 2023.
- Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, 885 Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu 886 Wei. Retentive network: A successor to trans- 887 former for large language models. $arXiv$ preprint \quad $arXiv:2307.08621, 2023.$
- ⁸⁹⁰ Kenji Suzuki. Overview of deep learning in medical ⁸⁹¹ imaging. Radiological physics and technology, 10 892 (3):257–273, 2017.
- ⁸⁹³ Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald 894 Metzler. Efficient transformers: A survey. CoRR, $_{895}$ abs/2009.06732, 2020.
- 896 Vajira Thambawita, Inga Strümke, Steven A Hicks, 897 Pål Halvorsen, Sravanthi Parasa, and Michael A ⁸⁹⁸ Riegler. Impact of image resolution on deep learn-⁸⁹⁹ ing performance in endoscopy image classification: ⁹⁰⁰ An experimental study using a large dataset of en- ω_1 doscopic images. *Diagnostics*, 11(12):2183, 2021.
-
- ⁹⁰² Joel CM Than, Pun Liang Thon, Omar Mohd Ri-⁹⁰³ jal, Rosminah M Kassim, Ashari Yunus, Norl-⁹⁰⁴ iza M Noor, and Patrick Then. Preliminary study ⁹⁰⁵ on patch sizes in vision transformers (vit) for ⁹⁰⁶ covid-19 and diseased lungs classification. In 2021 ⁹⁰⁷ IEEE National Biomedical Engineering Conference ⁹⁰⁸ (NBEC), pages 146–150. IEEE, 2021.
- ⁹⁰⁹ Hugo Touvron, Matthieu Cord, Matthijs Douze, ⁹¹⁰ Francisco Massa, Alexandre Sablayrolles, and 911 Hervé Jégou. Training data-efficient image trans-⁹¹² formers & distillation through attention. In In-⁹¹³ ternational conference on machine learning, pages ⁹¹⁴ 10347–10357. PMLR, 2021.
- ⁹¹⁵ Dimitrios Tsirmpas, Ioannis Gkionis, Georgios Th ⁹¹⁶ Papadopoulos, and Ioannis Mademlis. Neural nat-⁹¹⁷ ural language processing for long texts: A survey ⁹¹⁸ on classification and summarization. Engineering ⁹¹⁹ Applications of Artificial Intelligence, 133:108231, ⁹²⁰ 2024.
- ⁹²¹ Ashish Vaswani. Attention is all you need. arXiv 922 preprint arXiv:1706.03762, 2017.
- ⁹²³ Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, ⁹²⁴ Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and ⁹²⁵ Ling Shao. Pyramid vision transformer: A versa-⁹²⁶ tile backbone for dense prediction without convo- $\frac{927}{227}$ lutions. In Proceedings of the IEEE/CVF interna-⁹²⁸ tional conference on computer vision, pages 568– ⁹²⁹ 578, 2021.
- ⁹³⁰ Ziyang Wang, Jian-Qing Zheng, Yichi Zhang, Ge Cui, ⁹³¹ and Lei Li. Mamba-unet: Unet-like pure visual 932 mamba for medical image segmentation. $arXiv$ 933 preprint arXiv:2402.05079, 2024.
- Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, ⁹³⁴ and Jian Sun. Unified perceptual parsing for scene 935 understanding. In Proceedings of the European con-
936 ference on computer vision $(ECCV)$, pages 418 – 937 434, 2018. ⁹³⁸
- Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anand- ⁹³⁹ kumar, Jose M Alvarez, and Ping Luo. Segformer: ⁹⁴⁰ Simple and efficient design for semantic segmenta- ⁹⁴¹ tion with transformers. Advances in neural information processing systems, 34:12077-12090, 2021. 943
- Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and ⁹⁴⁴ Lei Zhu. Segmamba: Long-range sequential mod- ⁹⁴⁵ eling mamba for 3d medical image segmentation. ⁹⁴⁶ $arXiv$ preprint $arXiv:2401.13560$, 2024.
- Ruofan Zhou, Majed El Helou, Daniel Sage, Thierry ⁹⁴⁸ Laroche, Arne Seitz, and Sabine Süsstrunk. W2s: 949 microscopy data with joint denoising and super- ⁹⁵⁰ resolution for widefield to sim mapping. In Com- ⁹⁵¹ puter Vision–ECCV 2020 Workshops: Glasgow, ⁹⁵² UK, August 23–28, 2020, Proceedings, Part I 16, ⁹⁵³ pages 474–491. Springer, 2020.
- Lianghui Zhu, Bencheng Liao, Qian Zhang, Xin- ⁹⁵⁵ long Wang, Wenyu Liu, and Xinggang Wang. Vi- ⁹⁵⁶ sion mamba: Efficient visual representation learn- ⁹⁵⁷ ing with bidirectional state space model. $arXiv$ 958 preprint $arXiv:2401.09417, 2024.$

⁹⁶⁰ Appendix A. Training Details

961 A.1. Hyperparameters

 We tuned the learning rate for each experiment from 963 { $1e-5$, $1e-4$, $1e-3$, $1e-2$ }. Selected learning rates are given in Table [4](#page-14-0) and Table [5.](#page-14-1) We set batch size to maximize GPU memory. We required a minimum batch size of two to fit on the GPU to enable batch normalization layers.

968 A.2. Data Preprocessing

 For the retinal vessel segmentation dataset [\(Jin et al.,](#page-10-15) [2022\)](#page-10-15), we directly used the public data with no addi- tional preprocessing. When training the Swin mod- els, we resized the images to 1024×1024 to fit onto 973 the GPU.

 For the abdominal CT organ segmentation dataset, 975 we used the images supplied by [Antonelli et al.](#page-9-12) [\(2022\)](#page-9-12) 976 and segmentation masks supplied by Qu et al. (2024) for the aorta, gall bladder, kidneys, liver, pancreas, postcava, spleen, and stomach. We windowed the CT with a window level of 50 and window width of 400. We resized each axial image using linear interpolation 981 to 256×256 and center cropped to 64 axial slices.

 For the microscopy denoising dataset [\(Zhou et al.,](#page-12-13) $983 \quad 2020$, we treated each of the three supplied channels in the public dataset as different images. We selected a single frame from the widefield images as our low- SNR image and normalized each to zero mean and unit variance. We used the structured-illumination microscopy image as our paired high-SNR image, and scaled the high-SNR image using a least squares fit.

 For the cardiac MR denoising dataset, we used im- ages reconstructed in SNR units, meaning the ampli- tude of the signal in the reconstructed images is rep- resentative of its SNR. We added realistic MRI noise using an MRI noise model, reducing the SNR by a ratio selected from a uniform distribution between 996 [1, 40]. We center cropped each cine to 128×128 pixels and 32 frames.

⁹⁹⁸ For the pneumothorax dataset [\(Feng et al.,](#page-10-16) [2021\)](#page-10-16), ⁹⁹⁹ we normalized each image between [0, 1].

 For the pulmonary embolism dataset [\(Colak et al.,](#page-9-13) [2021\)](#page-9-13), we windowed the CT with a window level of 100 and window width of 700. We cropped around $_{1003}$ the lung region then resized each axial slice to 256 \times 256 and center cropped the axial slices to 64 slices, ensuring the embolism was captured in the cropped ¹⁰⁰⁶ region.

A.3. Model Implementation 1007

We used the ViT and Swin implementations from 1008 Monai [\(Cardoso et al.,](#page-9-14) [2022\)](#page-9-14). We used the MambaVision implementation provided by the authors of ¹⁰¹⁰ the MambaVision paper [\(Hatamizadeh and Kautz,](#page-10-12) ¹⁰¹¹ [2024\)](#page-10-12), which calls code provided by the authors of the $_{1012}$ original Mamba paper [\(Gu and Dao,](#page-10-4) [2023\)](#page-10-4). We used $\frac{1}{1013}$ the Hyena implementation from a study on efficient 1014 language models [\(Arora et al.,](#page-9-15) 2023), which provides 1015 a simple implementation of the method proposed in ¹⁰¹⁶

the Hyena paper [\(Poli et al.,](#page-11-0) 2023).

A.4. Model Parameter Count 1018

As discussed in Section [3,](#page-2-0) changing the patch size in 1019 ViT and local attention window in Swin changes the ¹⁰²⁰ initial patch embedding parameters and task head pa- ¹⁰²¹ rameters; otherwise, the backbone parameterization 1022 is largely unchanged. We report the number of pa- ¹⁰²³ rameters in the model for each experiment in Tables $6₁₀₂₄$ $6₁₀₂₄$ and [7.](#page-15-0) An X in these tables indicate the configuration 1025 could not be run due to GPU memory limits.

B.1.1. TRAINING TIMING 1029

To assess runtime efficiency, we timed a forward and ¹⁰³⁰ backward pass on a single NVIDIA A100 using a ¹⁰³¹ batch size of one. We only timed the backbone mod- ¹⁰³² els (i.e., we did not include the linear, UNETR, or 1033 UPerNet task heads). We took the average of ten ¹⁰³⁴ runs as the runtime reported in this work. We plot 1035 the runtime for each dataset and model configura- ¹⁰³⁶ tion in Figures 6 and 7 . Note that the abdominal 1037 CT dataset and chest CT embolism dataset have ap- ¹⁰³⁸ proximately the same runtime and the chest x-ray ¹⁰³⁹ pneumothorax dataset and the microscopy denoising ¹⁰⁴⁰ dataset have approximately the same runtime due to 1041 these pairs of datasets having the same image sizes. ¹⁰⁴² For Swin, the vessels dataset also has the same run- ¹⁰⁴³ time as the microscopy and chest x-ray datasets since 1044 it was resized to train the Swin models.

B.1.2. MAXIMUM MEMORY ALLOCATED 1046

To assess memory efficiency, we recorded the max- ¹⁰⁴⁷ imum memory allocated on a single NVIDIA A100 ¹⁰⁴⁸ using a batch size of one. We only assessed the back- ¹⁰⁴⁹ bone models (i.e., we did not include the linear, UN- ¹⁰⁵⁰

	ViT with Attention			ViT with Hyena			ViT with MambaVision					
	Patch	Patch 8	Patch 16	Patch 32	Patch 4	Patch 8	Patch 16	Patch 32	Patch 4	Patch 8	Patch 16	Patch 32
Vessel		л		1e-3			1e-3	1e-3			$1e-3$	$1e-3$
Ab. CT	Х	Х	$1e-3$	$1e-3$	X	1e-3	$1e-3$	1e-3	Х	1e-3	$1e-3$	$1e-3$
Microscopy	Χ	Х	$1e-3$	1e-3	Х	1e-3	$1e-3$	1e-3	1e-3	$1e-3$	$1e-3$	$1e-3$
CMR.	$1e-3$	$1e-2$	$1e-2$	$1e-2$	$1e-3$	1e-3	$1e-2$	$1e-2$	1e-3	$1e-3$	$1e-3$	$1e-3$
Pneumothorax	Х	Х	$1e-4$	1e-4	le-4	1e-4	$1e-4$	1e-4	$1e-5$	$1e-5$	$1e-5$	$1e-5$
Embolism	Х	$1e-5$	1e-4	1e-4	1e-3	1e-3	$1e-5$	$1e-5$	$1e-5$	1e-5	$1e-5$	$1e-5$

Table 4: Selected learning rates for the ViT backbone.

Table 5: Selected learning rates for the Swin backbone.

	Swin with Attention			Swin with Hyena			Swin with MambaVision		
	Window 16	Window 8	Window 4	Window 16	Window 8	Window 4	Window 16	Window 8	Window 4
Vessel	1e-3	1e-3	1e-3	1e-3	$1e-3$	1e-3	$1e-3$	1e-3	1e-3
Ab. CT		1e-4	1e-4	1e-3	$1e-3$	1e-3	$1e-4$	1e-4	1e-4
Microscopy	1e-4	1e-4	1e-4	1e-4	$1e-4$	$1e-4$	$1e-5$	1e-4	$1e-5$
CMR.	1e-4	1e-4	1e-4	1e-5	$1e-5$	1e-5	1e-4	1e-4	1e-4
Pneumothorax	1e-5	$1e-5$	1e-5	1e-5	$1e-4$	1e-5	$1e-5$	1e-5	1e-5
Embolism		1e-5	1e-5	1e-5	$1e-5$	1e-5	$1e-5$	1e-5	1e-5

Table 6: ViT parameter counts in the model backbone/task heads.

		Patch 32	Patch 16	Patch 8	Patch 4
	Attn	24,033,408/4,353,026	Х	X	X
Vessel	Hyena	26,659,776/4,353,026	30,493,632/4,328,450	X	Х
	MambaVision	20,674,176/4,353,026	24,508,032/4,328,450	X	X
	Attn	33,912,960/11,398,346	23,246,976/11,283,658	X	X
Ab. CT	Hyena	36,539,328/11,398,346	25,873,344/11,283,658	27,249,600/11,269,322	X
	MambaVision	30,553,728/11,398,346	19,887,744/11,283,658	21,264,000/11,269,322	X
	Attn	22,067,328/4,352,353	22,952,064/4,327,777	X	X
Microscopy	Hyena	24,693,696/4,352,353	25,578,432/4,327,777	30,223,296/4,321,633	Х
	MambaVision	18,708,096/4,352,353	19,592,832/4,327,777	24, 237, 696/4, 321, 633	43,093,632/4,206,945
	Attn	46,452,864/11,398,945	24,475,776/11,284,257	22,067,328/11,269,921	24,475,776/10,958,625
CMR.	Hyena	49,079,232/11,398,945	27, 102, 144/11, 284, 257	24,693,696/11,269,921	27, 102, 144/10, 958, 625
	MambaVision	43,093,632/11,398,945	21,116,544/11,284,257	18,708,096/11,269,921	21,116,544/10,958,625
	Attn	22,067,712/770	22,952,448/770	X	X
Pneumothorax	Hyena	24,693,696/770	25,578,432/770	30,223,296/770	49,079,232/770
	MambaVision	18,708,096/770	19,592,832/770	24,237,696/770	Х
	Attn	33,913,344/770	23,247,360/770	24,623,616/770	X
Embolism	Hyena	36,539,328/770	25,873,344/770	27,249,600/770	49,097,664/770
	MaMambaVisionmba	30,553,728/770	19,887,744/770	21,264,000/770	X

		Window	Window	Window
		4	8	16
	Attn	32,222,346/9,263,618	32,246,634/9,263,618	32,348,202/9,263,618
Vessel	Hyena	34,799,712/9,263,618	34,799,712/9,263,618	34,799,712/9,263,618
	MambaVision	28,090,272/9,263,618	28,090,272/9,263,618	28,090,272/9,263,618
	Attn	38,540,934/12,629,770	38,959,350/12,629,770	X
Ab. CT	Hyena	41,077,728/12,629,770	41,077,728/12,629,770	41,077,728/12,629,770
	MambaVision	34, 368, 288 / 12, 629, 770	34, 368, 288 / 12, 629, 770	34, 368, 288 / 12, 629, 770
	Attn	32,221,578/9,261,889	32,245,866/9,261,889	32, 347, 434/9, 261, 889
Microscopy	Hyena	34,798,944/9,261,889	34,798,944/9,261,889	34,798,944/9,261,889
	MambaVision	28,089,504/9,261,889	28,089,504/9,261,889	28,089,504/9,261,889
	Attn	38,541,702/12,583,105	38,960,118/12,583,105	42,605,526/12,583,105
CMR.	Hyena	41,078,496/12,583,105	41,078,496/12,583,105	41,078,496/12,583,105
	MambaVision	34, 369, 056/12, 583, 105	34, 369, 056/12, 583, 105	34, 369, 056/12, 583, 105
	Attn	32,221,578/3,074	32,245,866/3,074	32,347,434/3,074
Pneumothorax	Hyena	34,798,944/3,074	34,798,944/3,074	34,798,944/3,074
	MambaVision	28,089,504/3,074	28,089,504/3,074	28,089,504/3,074
	Attn	38,540,934/3,074	38,959,350/3,074	X
Embolism	Hyena	41,077,728/3,074	41,077,728/3,074	41,077,728/3,074
	MambaVision	34, 368, 288/3, 074	34, 368, 288/3, 074	34, 368, 288/3, 074

Table 7: Swin parameter counts in the model backbone/task heads.

Figure 6: ViT timing. We visualize timing for a forward and backward pass for each task, operator, and patch size. An X on the x-axis indicates that the patch size exceeded available memory.

Figure 7: Swin timing. We visualize timing for a forward and backward pass for each task, operator, and patch size. An X on the x-axis indicates that the window size exceeded available memory.

Figure 8: ViT maximum memory allocated. We visualize maximum memory allocated for each task, operator, and patch size. An X on the x-axis indicates that the patch size exceeded available memory.

Figure 9: Swin maximum memory allocated. We visualize maximum memory allocated for each task, operator, and patch size. An X on the x-axis indicates that the window size exceeded available memory.

 ETR, or UPerNet task heads). We plot the maximum memory allocated for each dataset and model config- uration in Figures [8](#page-16-1) and [9.](#page-17-0) Note that the abdominal CT dataset and chest CT embolism dataset have ap- proximately the same memory and the chest x-ray pneumothorax dataset and the microscopy denoising dataset have approximately the same memory due to these pairs of datasets having the same image sizes. For Swin, the vessels dataset also has the same mem- ory requirements as the microscopy and chest x-ray datasets since it was resized to train the Swin models.

¹⁰⁶² B.2. Additional Results on Swin

¹⁰⁶³ B.2.1. Swin Patch Size

 In the main text, we discussed how context length can be varied by either changing the patch size or at- tention window. We varied patch size on ViT, while we kept the patch size constant for Swin and instead varied the attention window. In this section, we eval-uate the impact of patch size on Swin performance.

 Specifically, we investigated tokenizing the image with 4-pixel patches instead of 2-pixel patches (as used in the main text). We evaluated performance on all tasks using self-attention with a window size of eight and report the results in Table [8.](#page-17-1) For seg- mentation, we report Dice; for denoising, we report SSIM; and for classification, we report AUROC. 95% confidence intervals are reported in parentheses, com- ¹⁰⁷⁷ puted by bootstrapping over the test set.

Table 8: Effect of patch size on Swin performance (95% confidence intervals).

	Patch	Patch
Vessel	$0.85(0.83-0.86)$	0.88 $(0.87-0.89)$
Ab. CT	$0.80(0.78-0.81)$	0.86 $(0.84 - 0.87)$
Microscopy	0.60 $(0.55-0.64)$	0.60 $(0.55-0.64)$
CMR.	$0.50(0.49-0.51)$	$0.64(0.64-0.65)$
Pneumothorax	0.83 $(0.81 - 0.85)$	0.86 $(0.84 - 0.87)$
Embolism	0.73 $(0.70 - 0.76)$	$0.79(0.77-0.82)$

We observe that smaller patches correspond to better performance. This is the same trend we observed 1080 in the main text with ViT, indicating that preserving $_{1081}$ resolution is important to achieving optimal perfor- ¹⁰⁸² mance in both architectures.

B.2.2. WINDOW SHIFTING IN SWIN 1084

In the main text, we did not use window shifting 1085 when training the Swin transformers with Hyena or 1086 MambaVision. We opted not to use window shifting 1087 because doing so efficiently requires masking parts ¹⁰⁸⁸ of the attention matrix; for additional details, see ¹⁰⁸⁹ [Liu et al.](#page-11-4) [\(2021\)](#page-11-4). This masking operation does not have a straightforward analog for Hyena or MambaV- ision, so we removed the shift instead. We retained the shift operation when training the attention-based Swin networks to maintain the fidelity of the Swin transformer, as originally proposed.

 To assess the impact of removing the shift opera- tion, we report the results of training an attention- based Swin network with and without the shift oper- ation. We trained these networks for all tasks and a window size of 8. We report results in Table [9.](#page-18-1)

Table 9: Effect of window shifting on Swin performance (95% confidence intervals).

	Without shift	With shift
Vessel	0.88 $(0.87-0.89)$	0.88 $(0.87-0.89)$
Ab. CT	$0.85(0.84 - 0.87)$	0.86 $(0.84 - 0.87)$
Microscopy	0.60 $(0.55-0.64)$	0.60 $(0.55-0.64)$
CMR.	0.68 $(0.67 - 0.68)$	$0.64(0.64-0.65)$
Pneumothorax	0.78 $(0.76-0.80)$	0.86 $(0.84 - 0.87)$
Embolism	0.76 $(0.73-0.79)$	0.79 $(0.77-0.82)$

 We observe that only classification tasks experience degraded performance without the shift operation. In this case, an efficient implementation of Swin with shifting for the Hyena and MambaVision operators may further boost their performance on classification tasks. We note that this shift operation may explain the performance difference between Swin classifica-tion using self-attention vs. Hyena in the main text.