
SilvanForge: A Schedule Guided Retargetable Compiler
for Decision Tree Inference

Ashwin Prasad
Indian Institute of Science and NI R&D

Bangalore, India
ashwinprasad@iisc.ac.in

Sampath Rajendra
Microsoft Research
Bangalore, India

srajendra@microsoft.com

Kaushik Rajan
Microsoft Research
Redmond, USA

krajan@microsoft.com

R Govindarajan
Indian Institute of Science

Bangalore, India
govind@iisc.ac.in

Uday Bondhugula
Indian Institute of Science and PolyMage Labs

Bangalore, India
udayb@iisc.ac.in

Abstract
The proliferation of machine learning together with the rapid
evolution of the hardware ecosystem has led to a surge in
the demand for model inference on a variety of hardware.
Decision tree based models are the most popular models
on tabular data. This paper is motivated by the problems
encountered when targeting inference of these models to
run at peak performance on CPU and GPU targets. Existing
solutions are neither portable nor achieve the best possible
performance for the specific hardware they target. This is
because they do not explore and customize optimization
configurations to the target processor and the model being
used.
We present SilvanForge, a schedule-guided, retargetable

compiler for decision tree based models that searches over
several optimization choices and automatically generates
high-performance inference routines for CPUs and GPUs.
SilvanForge has two core components. The first is a sched-
uling language that encapsulates the optimization space, and
techniques to efficiently explore this space. The second is an
optimizing retargetable compiler that can generate code for
any specified schedule. SilvanForge’s ability to use different
data layouts, loop structures and caching strategies enables
it to achieve portable performance across a range of targets.
We evaluate SilvanForge on several hundred decision

tree models across different batch sizes and target architec-
tures. We find that our schedule exploration strategy is able
to quickly find near-optimal schedules. In terms of perfor-
mance, SilvanForge generated code is an order of mag-
nitude faster than XGBoost, about 2–4× faster on average

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695958

than RAPIDS FIL and Tahoe, and 2.5–3× faster than Hum-
mingbird over several batch sizes. While most systems only
target NVIDIA GPUs, SilvanForge achieves competent per-
formance on AMD GPUs as well. On CPUs, SilvanForge
is able to outperform Treebeard by up to 5× by utilizing
additional sources of parallelism at small batch sizes.

CCS Concepts: • Software and its engineering→ Com-
pilers; Domain specific languages.

Keywords: Optimizing Compiler, Decision Tree Ensemble,
Decision Tree Inference, Parallelization, Machine Learning,
GPU
ACM Reference Format:
Ashwin Prasad, Sampath Rajendra, Kaushik Rajan, R Govindarajan,
and Uday Bondhugula. 2024. SilvanForge: A Schedule Guided Retar-
getable Compiler for Decision Tree Inference. In ACM SIGOPS 30th
Symposium on Operating Systems Principles (SOSP ’24), November
4–6, 2024, Austin, TX, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3694715.3695958

1 Introduction
We are in the midst of a hardware revolution, a new golden
age for computer architecture [26]. The last decade has seen
a shift in architectural paradigms, with the rise of GPUs
and accelerators. This shift has been driven by the necessity
to innovate in the post Moore’s law and Dennard’s scaling
era. This transformation has also played a significant role in
the success of modern deep learning models, as they enable
scaling training and inference to models with billions of pa-
rameters across amassive number of threads. Such scalability
would be essential for all performance critical applications,
including other machine learning models that need to scale
with increasing data sizes and model complexities.

Decision forest models remain the mainstay for machine
learning over tabular data [24, 49]. Their robustness, inter-
pretability, and ability to handle missing data make them
a popular choice for a wide range of applications [14, 20,
31, 32, 39, 50]. The Kaggle AI report for 2023 [1] highlights
the continuing dominance of gradient boosted trees as the
algorithm of choice for tabular data. It also estimates that

https://doi.org/10.1145/3694715.3695958
https://doi.org/10.1145/3694715.3695958

SOSP ’24, November 4–6, 2024, Austin, TX, USA Prasad et al.

between 50% and 90% of practicing data scientists use tabular
data as the primary type of data in their professional setting.
This has also been observed in other surveys [2, 43]. Recent
work has noted that the cost of inference is the most critical
factor in the overall cost of deploying a machine learning
model [8, 37]. This is because, in production settings, each
model is trained once and often used for inference millions of
times. Further, inference is run on a variety of hardware plat-
forms, ranging from low to high-end CPUs and GPUs. This
paper is motivated by the need to accelerate decision tree
inference to achieve portable performance on commodity
platforms with CPUs and GPUs.

Decision forest models are composed of a large collection
of decision trees (typically 100–1000), and inference involves
traversing down each tree in the forest and aggregating the
predictions. Inference is typically done in a batched setting,
where multiple inputs are processed simultaneously. Despite
the simplicity of the model and the availability of multiple
sources of coarse-grain parallelism (parallelism across inputs
in a batch and parallelism across trees), existing systems do
not consistently perform well across different models even
on the limited set of targets they support.
Evaluation on a diverse set of models highlights that the

best implementation often requires a careful composition of
many optimization strategies like data layout optimizations,
loop transformations, parallelization, and memory access op-
timizations. Existing systems today are mostly library based,
only support a predefined combination of optimizations, and
typically only target a single platform. On the CPU, XG-
Boost [18] uses a sparse representation for the model and
a loop structure that processes one tree for a block of rows
before moving to the next tree. On the GPU, RAPIDS FIL [6]
uses a reorg representation [6] and partitions trees across
a fixed number of threads. Tahoe [57] uses a variation of
the reorg representation and has four predefined inference
strategies from which it picks one based on an analytical
model. The GPU systems are CUDA based and only work on
NVIDIA GPUs.Hummingbird [37], a compiler that compiles
decision tree inference to tensor operations, performs all
tree walks in parallel and generates a separate kernel for
reduction. It is restricted to tensor based representations
and supports two that are similar to the array and sparse
representation (Section 6).

This paper presents SilvanForge, a novel schedule-guided
compiler for decision tree inference onmultiple hardware tar-
gets. SilvanForge is able to generate high-performance code
for decision tree inference by exploring a large optimization
space. This is achieved by a compilation framework consist-
ing of a custom scheduling language that can represent a
wide range of implementation strategies and techniques to
efficiently explore the optimization space. We demonstrate
that the language is capable of expressing all optimizations
proposed by prior work and more. Further, our schedule ex-
ploration heuristic can quickly find a near optimal schedule

for the model being compiled. The second component of
SilvanForge is a retargetable multi-level compiler that can
generate efficient code for any specified schedule for both
CPUs and GPUs. For this purpose, we re-architect Tree-
beard [42] to support schedule-guided code generation, and
incorporate several new optimizations that are critical to
target GPUs. These two components of SilvanForge are
intertwined, each benefitting from the other.

We evaluated SilvanForge on a large number of synthetic
and real-world benchmark models and compared against
state-of-the-art systems RAPIDS [10], Tahoe [57], Humming-
bird [37], XGBoost [18] and Treebeard [42]. SilvanForge’s
geomean speedup (across all benchmarks) over several batch
sizes is 2.5–4× over RAPIDS, 2–2.5× over Tahoe, and 2.5–3×
over Hummingbird. The geomean speedup over XGBoost is
more than 10×. While most systems [5, 10, 17, 18, 30, 42, 57]
only run on specific hardware, SilvanForge can provide
portable performance across a range of target hardware in-
cluding AMD GPUs and CPUs. SilvanForge also enables
better scalability on CPUs by parallelizing across multiple
dimensions. We also demonstrate that SilvanForge’s sched-
uling heuristic is able to find near-optimal schedules in less
than 30 seconds on average.
In summary, this paper makes the following important

contributions.

• We identify that there are many different ways to im-
plement decision tree inference. Often, the best imple-
mentation depends both on the model and the target
processor. We design a scheduling language that al-
lows us to represent this solution space.
• We propose a retargetable compiler that can generate
code as specified by the schedule. The compiler also
includes new abstractions for caching, reduction and
representing models in memory. These are critical to
generate efficient GPU code.
• Since the scheduling language can represent an un-
bounded number of schedules, we design and imple-
ment techniques to search over this space and find
high-performance schedules in tens of seconds.
• We exhaustively evaluate SilvanForge and report that
it achieves portable performance across a range of
hardware targets. It consistently outperforms state-of-
the-art decision tree inference frameworks for both
CPU and GPU.

2 Motivation
In this section, we first motivate our work by showing how
a model can be compiled in different ways. Subsequently,
we show the drastic performance difference across these
variants for real benchmarks.

Consider a model with four trees, two trees of depth 1
and two of depth 2 (A in Figure 1a). We first describe the
simple schedule shown in Figure 1b that processes one tree

SilvanForge SOSP ’24, November 4–6, 2024, Austin, TX, USA

(a) A sample model and an illustration of the effect of the schedule construct unroll

(b) A serial CPU schedule (c) A GPU schedule

Figure 1. Figure 1a shows the model for the motivating example. Figure 1b and 1c show some possible schedules to compile
the motivating example and the generated SilvanForge IR. The arrows connect entities in the schedule to related entities in
the IR. Indices that go over trees are shown in orange and those that go over input rows are shown in green.

at a time for all input rows.1 In this schedule, the loop over
the trees is split into two – one that iterates over the first
two trees (Trees 1 and 2 with depth 1) and the second that
iterates over the last two trees (Trees 3 and 4 with depth 2).
Straightforward traversal of trees requires a while loop and
involves branching to check if a leaf has been reached. One
way to avoid this, as done in this schedule, is to unroll the
tree walks for each tree. When the schedule specifies that
the tree walks should be unrolled, SilvanForge pads the
trees so that all leaves of a tree are at the same depth (B in
Figure 1a). The concrete implementation of this schedule (in
SilvanForge’s IR) is as shown in Figure 1b.2 This schedule is
ideally suited for a single-core CPU. It maximizes the reuse
of trees in the L1 cache. However, it doesn’t exploit any
parallelism.
One form of parallelism that can be exploited is to pro-

cess rows in parallel. While this may work for multi-core
CPUs,3 with massively parallel processors like GPUs, this
strategy may not yield sufficient parallel work. To expose
more parallelism, we can additionally parallelize across trees
as done in the schedule in Figure 1c. The corresponding GPU
inference routine is shown in the same figure. This schedule
generates a routine that processes one input row per thread
block (batch loop is mapped to grid.x). The schedule also
tiles the tree loop into a nest of two loops with indices 𝑡0

1Since the scheduling constructs are fairly intuitive, we defer a detailed
explanation of the scheduling language to Section 3.
2We do not show the full listing of the IR. Instead, we present inference
routines as pseudo-code for the sake of clarity.
3As we report in Section 9, other ways to parallelize can benefit inference
on CPUs as well.

and 𝑡1. It then additionally parallelizes across the 𝑡1 loop.
Finally, it splits 𝑡0 and unrolls the walks for each tree depth.
Note that while unrolling helps avoid branching, it in-

creases the total amount of computation. Another option is
to not unroll and let the GPU manage the branching. The
schedules with and without unrolling place different con-
straints on the target processor, and the best choice depends
on the characteristics of the model and micro-architectural
features like register file size and handling of branch diver-
gence [22, 48].

These SilvanForge schedules just use a combination of 4-
8 constructs and already generate strategies that are different
from what existing systems like Hummingbird, XGBoost,
Tahoe and RAPIDs FIL use. As one can imagine, several other
schedules with different trade-offs can be generated using
these constructs.

2.1 Performance of Different Schedules
To establish the importance of choosing the right schedule,
we compare the performance of the schedules generated by
SilvanForge on several real-world benchmarks. Figure 2a
shows the variation in performance when the best schedule
for a given batch size is used across different batch sizes
for one of the models. Figure 2b shows the variation when
schedules are used across models at a fixed batch size. As can
be seen, performance degrades by 2×when the best schedule
for a smaller batch size is used for a larger batch size and
vice-versa. Across all our benchmarks, the largest slowdown
is 5×. The degradation is much worse when schedules are
used across different models. In many (∼ 20%) instances,
using the best schedule for one model on another results in
a 5× slowdown. As we report in Section 9, reusing schedules

SOSP ’24, November 4–6, 2024, Austin, TX, USA Prasad et al.

across different architecture also leads to significant slow-
downs. Clearly, using a single strategy across models, batch
sizes and targets leaves significant performance on the table.

(a) covtype batch sensitivity (b)Model sensitivity at batch size
4096

Figure 2. Batch and model sensitivity plots. Each point
shows the slowdown when the best schedule for the x-axis
batch size (model) is used for the y-axis batch size (model).

These performance considerations, coupled with the im-
portance of running ML applications on a diverse set of hard-
ware targets, motivates the need for a retargetable compiler
for decision tree inference. Building such a configurable com-
piler and supporting code generation for CPUs and GPUs
required us to solve several fundamental problems. The rest
of the paper describes these challenges in detail and how we
solved them in SilvanForge.

3 SilvanForge’s Scheduling Language
SilvanForge’s scheduling language provides an abstract
way to specify loop structure and other optimizations as
an input to the compiler. The specified schedule controls
the lowering of model inference to a set of loop nests. The
configurability provided by the schedule allows us to build
automatic schedulers (Section 8).

3.1 Language Definition
The core construct of SilvanForge’s scheduling language is
an index variable which abstractly represents a loop. Each
index variable has a range of values that it can take along
with a step. The language provides directives to manipulate
these index variables. There are two special index variables –
batch and tree that are used to represent the batch and tree
loops.4 A schedule derives new index variables from these
root index variables by applying directives.
SilvanForge’s scheduling language has three classes of

directives. The first is a set of loop modifiers that are used
to specify the structure of the loop nest to walk the iteration
space (Table 1). The second is a set of directives that enable
optimizations (Table 2). Finally, we have a class of attributes
that enable reduction specific optimizations (Table 3).
4The canonical inference routine has a batch loop that goes over all rows
and a loop that goes over all trees nested within it.

The compiler internally represents loops (index variables)
as nodes in a tree where the children of a node represent
immediately contained loops. Each schedule primitive modi-
fies this tree in some way. Also, the compiler automatically
infers the ranges of all loops by tracking its lineage.

Directive Inputs Description

tile

indexVar Tile the loop corresponding to indexVar
with the specified tile size. Resulting loops
will be represented by outer and inner.

outer
inner
tileSize

split

indexVar Perform loop fission on the loop repre-
sented by indexVar at iteration splitIter.
Resulting loops will be represented by
first and second.

first
second
splitIter

reorder

Permute the specified loops. The loops
must be perfectly nested, i.e. only the
innermost loop contains program state-
ments.

indices[]

gpuDimension
indexVar Map the passed index variable to a dimen-

sion of either the grid or thread block.gpuDim

Table 1. List of all the loop modifiers in SilvanForge’s
scheduling language. We use index variable and loop inter-
changeably in descriptions for clarity of exposition.

Directive Inputs Description

cache
indexVar Cache the working set of one iteration of

the specified loop. Cache rows for a batch
loop and trees for a tree loop.

parallel
indexVar Execute the iterations of the specified

loop in parallel.

interleave

Interleave tree walks within the specified
loop (must be innermost loop). Walk mul-
tiple trees simultaneously by interleaving
instructions at a fine granularity [42].

indexVar

unrollWalk
indexVar Unroll tree walks at the specified loop for

unrollDepth hops. Loop must be an in-
nermost loop.

unrollDepth

Table 2. List of optimization directives in SilvanForge’s
scheduling language.

3.2 Expressiveness of the Scheduling Language
SilvanForge’s scheduling language is expressive enough
to represent a wide range of strategies used in existing sys-
tems. We show examples of how it can be used to represent
XGBoost [18] and Tahoe’s strategies [57].

XGBoost [18] implements inference on the CPU by going
over a fixed number of rows (64 in the current version) for
every tree and then moving to the next tree. It moves to
the next set of rows when all trees have been walked for

SilvanForge SOSP ’24, November 4–6, 2024, Austin, TX, USA

Directive Inputs Description

atomicReduce
indexVar Use atomic memory operations to accu-

mulate values across parallel iterations of
the specified loop.

sharedReduce
indexVar Specifies that intermediate results are to

be stored in shared memory (GPU only).

vectorReduce

indexVar Use vector instructions with the specified
vector width to reduce intermediate val-
ues across parallel iterations of the speci-
fied loop.

width

Table 3. List of reduction optimization directives in Silvan-
Forge’s scheduling language.

the current set of rows. Different sets of rows are processed
in parallel. This is expressed in SilvanForge’s scheduling
language as:

1 tile(batch , b0, b1, CHUNK_SIZE)

2 reorder(b0, tree , b1)

3 parallel(b0)

Tahoe [57] has four strategies for inference on the GPU
that it picks from for a given model. We show how two of
these strategies can be encoded using SilvanForge’s sched-
uling language. The rest can be encoded similarly.
In the direct method [57], a single GPU thread walks all

trees for a given input row. The schedule for this strategy is:
1 tile(batch , b0, b1, ROWS_PER_TB)

2 reorder(b0, b1, tree)

3 gpuDimension(b0, grid.x)

4 gpuDimension(b1, block.x)

Here, ROWS_PER_TB is the number of rows that are processed
by a single thread block.
In the shared data strategy [57], a thread block walks all

the trees for a given row in parallel. Input rows are cached
in shared memory. The schedule for this strategy is:

1 reorder(batch , tree)

2 gpuDimension(batch , grid.x)

3 gpuDimension(tree , block.x)

4 cache(batch)

In summary, SilvanForge’s scheduling language provides
a convenient way to encode a wide range of strategies and
to control how the compiler lowers the inference routine to
optimized target code. The next section discusses how the
rest of the compiler is structured.

4 Overview of SilvanForge Compiler
SilvanForge takes a serialized decision tree ensemble as
input (XGBoost JSON, ONNX, etc.) and automatically gen-
erates an optimized inference function that can either tar-
get CPUs or GPUs. Figure 3 shows the structure of the Sil-
vanForge compiler. The inference computation is lowered
through three intermediate representations – high-level IR
(HIR), mid-level IR (MIR) and low-level IR (LIR). The LIR

is finally lowered to LLVM and then JIT’ed to the speci-
fied target processor. SilvanForge extends the open-source
Treebeard compiler [42]. The Treebeard compiler is built
using MLIR [33] and generates efficient CPU code for deci-
sion tree inference. Treebeard lacks a scheduling language
and does not support code generation for different imple-
mentation strategies. We enhance Treebeard to support
schedule-guided compilation for CPUs and GPUs. The parts
of SilvanForge that are new or significantly different are
shown as shaded boxes in Figure 3.

Figure 3. SilvanForge compiler structure.

Table 4 lists the operations in the three IRs. In HIR, the
model is represented as a collection of binary trees. This
abstraction allows the implementation of optimizations that
require the manipulation of the model or its constituent
trees. We extend Treebeard with loop rewrites on the HIR
that are implemented through the scheduling language (Sec-
tion 3). The schedule is implemented as an MLIR attribute
on the predictEnsemble operation. We use this object to
implement the automatic scheduling described in Section
8. We reuse HIR transformations to reorder and pad trees
from Treebeard. The tree transformations that reorder and
pad trees are used in conjunction with loop transformations
like splitting to specialize inference code as the example in
Section 2 shows.
The HIR is lowered to MIR as dictated by the schedule.

Optimizations like tree-walk unrolling and tree-walk inter-
leaving are performed on the MIR. One surprising thing we
found while developing SilvanForge was that we could use
ILP to improve performance on GPUs. One of the perfor-
mance bottlenecks in inference code targeted to GPUs was
that warps spent significant time being stalled. We were able
to alleviate this bottleneck by interleaving tree walks.
In the generated MIR, the compiler uses the reduce op

from the reduction dialect we design (details in Section
5) to represent reduction operations. The lowering of the
reduce operation involves introducing temporary buffers
and splitting the operation to correctly implement reduction
in the presence of parallel loops. This process, that we call
legalization, is described in Section 5.

SOSP ’24, November 4–6, 2024, Austin, TX, USA Prasad et al.

The MIR is further lowered to a low-level IR (LIR). Sig-
nificant changes to Treebeard were required to get LIR to
correctly lower to GPU code. The most important of these
was changing how the compiler implements support for in-
memory representations of models (Section 6). Also, when
the target processor is a GPU, the required memory transfers
and kernel invocations are inserted into the LIR. Buffers to
hold model values are inserted and abstract tree operations
are lowered to explicitly refer to these buffers. Subsequently,
the LIR is lowered to LLVM and then JIT’ed to the specified
target processor.

4.1 Portability and Reuse
From a user’s perspective, there is no difference between
targeting CPUs and GPUs using SilvanForge. The same
scheduling language is used to specify the structure of in-
ference code on CPUs and GPUs. When a schedule does not
map any loops to a GPU dimension, CPU code is generated.

The implementations of the scheduling language, HIR and
MIR, and optimizations on them are fully shared between
the CPU and GPU compilation pipelines. The compilation
pipelines diverge starting at the point where MIR is lowered
to LIR. Even so, we are able to share a significant amount of
code between the CPU and GPU lowering because of how
in-memory representations are abstracted (Section 6).

5 Representing and Optimizing Reductions
SilvanForge needs to sum up individual tree predictions
to compute the prediction of the model while performing
inference. However, generating fused reductions within ar-
bitrary loop nests specified using SilvanForge’s scheduling
language is non-trivial. We found that existing reduction sup-
port in MLIR is insufficient to code generate and optimize
these reductions. MLIR currently supports parallel reduc-
tions for value types (scf.reduce) and reducing dimensions
of tensors (linalg.reduce). Neither of these meet the re-
quirements for generating code for decision tree inference.
Lowering reductions of arbitrary value types to GPUs is
non-trivial and MLIR currently does not have support for it.
With linalg.reduce, the reduction cannot be fused with
another loop as the tensor of values to be reduced needs to
be materialized first. To address this gap, we design an MLIR
dialect that allows us to specify accumulating values into an
element of a multidimensional array and can be lowered to
CPU or GPU.
The main abstraction we introduce is the reduce op. It

models atomically accumulating values into an element of
a multidimensional array (represented by an MLIR memref).
Consider the following SilvanForge schedule. In our ex-
ample, N_t is the number of trees and batch_size is the
batch size. The schedule tiles the tree loop and parallelizes
the resulting outer loop.

1 tile(tree , t0, t1, N_t/2);

2 reorder(t0, t1, batch);

3 parallel(t0);

The MIR generated by SilvanForge for the above sched-
ule is as follows.

1 float result[batch_size]

2 model = ensemble (...)

3 par.for t0 = 0 to N_t step N_t/2:

4 for t1 = 0 to N_t/2:

5 for batch = 0 to batch_size:

6 t = getTree(model , t0 + t1)

7 p = walkDecisionTree(t, rows[batch])

8 reduce(result[batch], p)

The compiler simply generates a reduce op to perform
the required parallel reduction. The semantics of the reduce
op is exactly the semantics of an atomic accumulation, i.e. it
guarantees that all accumulations are correctly performed
even in the presence of parallel loops. The reduce op is
defined for all associative and commutative reduction opera-
tionswith awell-defined initial value. The reduction operator
and the initial value are attributes on the reduce op.

Having modeled the reductions with an abstract operation,
the aim now is to lower this to a correct and optimized imple-
mentation on both CPU and GPU. In order to do this, we first
determine if any parallel loop iterations can accumulate into
the same array element. We call such loops reduction loops.
If such loops exist, we privatize the array for each iteration
of the loop. We call this process legalization. Subsequently,
each privatized dimension can be reduced at the end of the
reduction loop it was inserted for.

In our example, SilvanForge determines that the t0 loop
is a reduction loop w.r.t the result array and therefore legal-
izes the reduction by inserting a privatized array partResults.
The privatized dimension of this array is reduced at the end
of the t0 loop.

1 float result[batch_size]

2 float partResults [2][batch_size]

3 model = ensemble (...)

4 par.for t0 = 0 to N_t step N_t/2:

5 for t1 = 0 to N_t/2:

6 for batch = 0 to batch_size:

7 t = getTree(model , t0 + t1)

8 p = walkDecisionTree(t, rows[batch])

9 reduce(partResults[t0/(N_t/2)][batch], p)

10
11 results = reduceDimension(partResults [:, :], 0)

The op reduceDimension reduces values across the speci-
fied dimension of an n-dimensional array. Here, it reduces all
elements of the first dimension (dimension 0). and produces
a result memref with a single dimension of size batch_size.
To reduce the amount of memory used by arrays intro-

duced for reduction, we introduce the reduceDimInplace
operation. It is similar to the reduceDimension op except
that it updates the input array inplace rather than writing
results to a target array. It writes results to the zeroth index
of the dimension being reduced. We use this op to compute
intermediate results when several reduction loops are iden-
tified.

SilvanForge SOSP ’24, November 4–6, 2024, Austin, TX, USA

Operation Inputs Outputs Attributes Description

predictEnsemble

rows[] result ensemble Performs inference on the data in rows[] using the model specified by
the ensemble attribute. The schedule attribute contains the schedule
described in Section 3. predicate specifies the operator to use to compare
feature values and thresholds (Eg: <, ≤).

predicate
schedule

walkDecisionTree
trees[] results[] predicate Represents an interleaved walk on all the element-wise pairs of trees and

rows. unrollDepth specifies the number of hops to unroll. An array of
tree walk results is returned.

rows[] unrollDepth

ensemble
ensemble model Represents the forest of trees that constitute the model. The model at-

tribute contains the actual trees model.

getTree
ensemble tree Get the tree at the specified index (treeIndex) from the ensemble.
treeIndex

getTreeClassId
ensemble classId Get the class ID for the tree at index treeIndex in the ensemble. This is

used for multi-class models.treeIndex

getRoot tree rootNode Get the root node of the specified tree.

isLeaf
tree bool Returns a boolean value indicating whether node is a leaf of tree.
node

getLeafValue
tree value

Returns the value of the leaf node in tree.node

traverseTreeTile
trees[] nodes[] predicate Represents an interleaved traversal of the nodes in nodes based on the

data in rows. predicate specifies the operator to use to evaluate nodes.nodes[]
rows[]

cacheTrees
ensemble ensemble Cache the trees in the ensemble between the specified start and end

indices. The returned ensemble has the specified trees cached.start
end

cacheRows
rows[] cachedRows[] Cache the rows in rows[] between the specified start and end indices.

Returns an array of cached rows cachedRows[].start
end

loadThreshold
buffer threshold Load the threshold value for the node specified by nodeIndex in the tree

specified by treeIndex from buffer. Returns the loaded threshold.treeIndex
nodeIndex

loadFeatureIndex
buffer threshold Load the feature index for the node specified by nodeIndex in the tree

specified by treeIndex from buffer. Returns the loaded feature index.treeIndex
nodeIndex

Table 4. List of all the operations in the SilvanForge MLIR dialect. These operations are used in conjunction with operations
from other MLIR dialects like scf, arith, gpu etc. to represent and optimize decision tree inference. Different IR levels (HIR,
MIR and LIR) are separated by double lines.

5.1 Lowering Reduction Operations
For both CPU and GPU, reduce is lowered to a sequence of
load, compute and write operations. This is possible because
legalization ensures that parallel threads do not write to the
same array element.
For CPUs, we lower reduceDimInplace and reduceDi-

mension to a simple loop nest that goes over the specified
subset of the input array, performs the reduction and writes
the result into the appropriate location of the target array. If
the schedule specifies that the reduction is to be vectorized,
the lowering passes generate vector (LLVM IR) instructions
for the reduction.

The same reduction abstractions can be lowered to effi-
cient GPU implementations and simplify higher-level code
generation. SilvanForge can lower these ops to exploit
either the parallelism across independent reductions or the
inherent parallelism in a single reduction. It does this by
using a divide and conquer reduction strategy when there
aren’t enough independent reductions to keep all threads in
a thread block busy.
Additionally, if the schedule specifies that the reduction

needs to be performed using shared memory, the privatized
buffer is allocated in shared memory. Our abstractions for re-
ductions allow our lowering passes to be agnostic of whether
we use shared memory and therefore allow us to enable or

SOSP ’24, November 4–6, 2024, Austin, TX, USA Prasad et al.

disable shared memory use independently from the other
parts of the compiler.

SilvanForge’s reduction support, including the lowering
implementations for ops in the reduction dialect, is fairly
general. At present, only the process of identifying reduction
loops is specific to decision tree inference.5

6 Model Representations
The design of the SilvanForge compiler allows the imple-
mentation of different strategies for the in-memory represen-
tation of the model. The compiler currently has implementa-
tions for the three representations shown in Figure 4. The
array and sparse representations are as proposed in Tree-
beard [42]. The reorg representation is the representation
used by the RAPIDs library [6]. The array representation
is the simplest representation where the trees are stored in
an array in level order. The sparse representation stores
the trees in a sparse format where memory is allocated only
for nodes present in the tree and nodes contain pointers to
their children. The reorg representation interleaves the
array representation of each tree in the model: all root nodes
are stored first, then the left children of all the roots and so
on. This representation was designed to improve memory
coalescing when tree nodes are being loaded.

Figure 4. The three representations supported by Silvan-
Forge.

We change the design of Treebeard [42] to separate the
implementation of representations from the rest of the com-
piler. This allows us to implement representations as plugins
to the compiler. We define an interface that representations
implement. The code generator is implemented using this in-
terface thus hiding details of the actual representation from
the core compiler. Crucially, the interface abstracts how and
what buffers are allocated, how to move from a node to its
child, how trees are cached, reading the value of leaves and
how threshold and feature indices are read from the allocated
buffers.

5The compiler uses annotations to mark loops as reduction loops. Imple-
menting a different analysis to annotate reduction loops is straightforward.

In summary, the representation interface abstracts the
details of how the model is stored in memory and allows the
compiler to generate code without having to explicitly know
the details of the representation. This design allows us to
implement new representations without changing the core
compiler infrastructure. Implementing the representations
as plugins also allows us to reuse the implementations across
different lowering pipelines.

7 Caching
SilvanForge provides mechanisms to cache both trees and
input rows on both the CPU andGPU. As described in Section
3, the user can specify that the working set of an iteration of
a loop needs to be cached using the cache directive. Silvan-
Forge implements caching at the granularity of a tree or a
row.
Caching is encoded in the mid-level IR using the cache-

Trees and cacheRows operations (Table 4). When the HIR
is being lowered and a cached index variable is encountered,
the compiler generates a cacheTrees or cacheRows opera-
tion depending on whether the index variable is a tree or a
batch index variable. SilvanForge also determines the work-
ing set of one iteration of the loop and generates a caching
operation with the appropriate limits.

When theMIR is lowered to LIR, the cache ops are lowered
to target-specific code. Each of the two caching operations
is lowered differently for the CPU and the GPU. On CPU,
the cache operations are lowered to prefetches while on the
GPU they are lowered to reads into shared memory.

Lowering the cacheRows operation is straightforward be-
cause the input is currently assumed to be a dense array.
The lowering for the cacheRows operation is implemented
directly in the SilvanForge compiler as a series of coalesced
loads into shared memory.

For the cacheTrees operation, the lowering is representa-
tion-specific. Each representation provides a lowering to the
target-specific code generator to lower the cacheTrees op.

8 Exploring the Schedule Space
The set of schedules that can be constructed using the sched-
uling language described in Section 3 is unbounded. Addi-
tional tools are required to help search for a high-performance
schedule. Likewith other schedule-guidedML compilers [19],
we expect schedule exploration will be performed offline
(before model deployment), but spending more than a few
minutes on this search is likely not acceptable. We propose
a set of heuristics to guide the search for a good schedule
for GPUs. These heuristics work by first defining a bounded
search space and then pruning this search space further
based on the batch size and model characteristics.

SilvanForge SOSP ’24, November 4–6, 2024, Austin, TX, USA

8.1 Bounding the search space
We bound the space using a few meta-parameters that to-
gether define the primitives used to construct a template
schedule. We do so while making sure that the space (at-
least) covers the known strategies published in prior work.
Specifically, we use the 9 parameters listed in Table 5. We
picked the specific values listed through experimentation.
The first three numeric parameters assign a configurable
number of rows to each thread block, to each thread, and de-
termine how trees are distributed across a specified number
of threads. These parameters together define the loop sched-
ule primitives to use (including the arguments to pass) from
Table 1 and the parallelization strategy. The next four param-
eters determine the caching strategy, unrolling strategy and
how many trees to traverse simultaneously within a single
thread (the remaining primitives from Table 2). The last two
parameters determine reduction optimizations (Table 3) and
the layout6 to use.

Parameter Values

Rows per thread block {8, 32, 64}
Rows per thread {1, 2, 4}

Number of tree threads {2, 10, 20, 50}
Cache rows {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }
Cache trees {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }
Unroll walks {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }

Tree walk interleave factor {1, 2, 4}
Shared memory reduction {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }

Representation {𝑎𝑟𝑟𝑎𝑦, 𝑠𝑝𝑎𝑟𝑠𝑒, 𝑟𝑒𝑜𝑟𝑔}

Table 5. List of parameter values we explored for the tem-
plate GPU schedule.

It is important to note that the SilvanForge compiler itself
does not place any restrictions on the schedule. The user is
free to specify any schedule they wish. The compiler pass
that implements the template schedule is also implemented
as a module outside the core SilvanForge compiler.
We evaluated all the schedules in this space on several

real world models and observed that there is huge variation
in performance with different parameter values. Figure 5
shows the distribution of normalized execution times for
our real-world benchmark models with different parameter
values (inference times normalized w.r.t fastest time for that
model). As can be seen, very few schedules perform close to
the best while a vast majority perform poorly.
Exhaustive exploration over this bounded space (5184

schedules) is still very expensive, taking between 30 − 300
minutes to explore the entire space for a given model.

6This does not have a schedule primitive. We always explore all three layout
options.

Figure 5. Distribution of normalized execution times for
real-world benchmark models with different combinations
of parameter values shown in Table 5

.

8.2 Pruning the search space
A careful analysis of the search space reveals that certain
schedules are not likely to perform well as they either do not
exploit the parallelism available in the model or do not take
advantage of the hardware features. We use a combination of
four strategies to further prune the search space. Algorithm
1 presents our final heuristic to find a good schedule.

Insufficient parallelism. Some configurations do not ex-
pose sufficient parallelism, we prune these out. For example
when the batch size is small, it does not make sense to have
many rows per thread block or to partition the trees across a
few threads. We therefore limit the combinations used based
on batch size (see lines 3—8).

Utilizing shared memory. Shared memory is a critical
resource on GPUs and it helps to only bring objects that
would be reused into it. We observe that tree nodes have
limited reuse and the one time cost of loading trees is not
sufficiently amortized when the whole tree is not accessed
during inference. On the other hand caching rows almost
always improves performance. Further when the inputs have
many features, it may not be possible to cache all rows. In
this scenario it helps to retain a few rows in memory, and
pick schedules similar to the small batch size case (lines
15,3—5).

Unrolling walks. Unrolling tree walks completely when
multiple walks are being interleaved leads to performance im-
provements, while unrolling non-interleaved walks is some-
times detrimental to performance without any significant
gains in other cases. We therefore choose to unroll walks
only when they are interleaved (line 17).

Orthogonal parameters. We find that some parameters
like reduction type are orthogonal to the rest. We therefore
break the exploration into two phases, first we pick the best

SOSP ’24, November 4–6, 2024, Austin, TX, USA Prasad et al.

schedules without reduction optimizations and then evaluate
reduction options on the best schedules. Evaluating the top
3 schedules for reduction is sufficient in practice.

SilvanForge performs an exhaustive search over the pruned
schedules to find the best one. The model is compiled with
each of these schedules and evaluated on a few input batches.
The best schedule among all the evaluated schedules is se-
lected as the schedule to use. We report that this heuristic
is able to find schedules that are close to the best schedules
while improving the search time by two orders of magnitude
(see Section 9).

Algorithm 1 Heuristic to find a good schedule
1: procedure TBConfigs(𝑁𝑏𝑎𝑡𝑐ℎ , 𝑁𝑓)
2: 𝑇𝑏𝑎𝑡𝑐ℎ ← 2048, 𝑇𝑓 ← 128
3: if 𝑁𝑏𝑎𝑡𝑐ℎ ≤ 𝑇𝑏𝑎𝑡𝑐ℎ or 𝑁𝑓 > 𝑇𝑓 then
4: 𝑟𝑜𝑤𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 ← {8, 32}
5: 𝑡𝑟𝑒𝑒𝑇ℎ𝑟𝑒𝑎𝑑𝑠 ← {20, 50}
6: else
7: 𝑟𝑜𝑤𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 ← {32, 64}
8: 𝑡𝑟𝑒𝑒𝑇ℎ𝑟𝑒𝑎𝑑𝑠 ← {2, 10}
9: end if
10: return 𝑟𝑜𝑤𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘, 𝑡𝑟𝑒𝑒𝑇ℎ𝑟𝑒𝑎𝑑𝑠

11: end procedure
12:
13: 𝑏𝑒𝑠𝑡𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 ← 𝑠ℎ𝑀𝑒𝑚𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 ← ∅
14: 𝑟𝑜𝑤𝑠𝑃𝑒𝑟𝑇𝐵, 𝑡𝑟𝑒𝑒𝑇ℎ𝑑𝑠 ← 𝑇𝐵𝐶𝑜𝑛𝑓 𝑖𝑔𝑠 (𝑁𝑏𝑎𝑡𝑐ℎ, 𝑁𝑓)
15: 𝑐𝑎𝑐ℎ𝑒𝑅𝑜𝑤𝑠 ← True, 𝑐𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒𝑠 ← False
16: 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒 ← {1, 2, 4}
17: 𝑢𝑛𝑟𝑜𝑙𝑙 ← 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒 ≠ 1
18: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 ← (𝑟𝑜𝑤𝑠𝑃𝑒𝑟𝑇𝐵, 𝑡𝑟𝑒𝑒𝑇ℎ𝑑𝑠, 𝑐𝑎𝑐ℎ𝑒𝑅𝑜𝑤𝑠,

19: 𝑐𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒𝑠, 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒,𝑢𝑛𝑟𝑜𝑙𝑙)
20: for (𝑠𝑐ℎ𝑒𝑑, 𝑟𝑒𝑝) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 × {𝑎𝑟𝑟𝑎𝑦, 𝑠𝑝𝑎𝑟𝑠𝑒, 𝑟𝑒𝑜𝑟𝑔} do
21: 𝑡𝑖𝑚𝑒 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 (𝑠𝑐ℎ𝑒𝑑, 𝑟𝑒𝑝)
22: 𝑏𝑒𝑠𝑡𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑡𝑖𝑚𝑒, 𝑠𝑐ℎ𝑒𝑑, 𝑟𝑒𝑝)
23: end for
24:
25: for 𝑠𝑐ℎ𝑒𝑑, 𝑟𝑒𝑝 ∈ 𝑇𝑜𝑝3(𝑏𝑒𝑠𝑡𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠) do
26: 𝐸𝑛𝑎𝑏𝑙𝑒𝑆ℎ𝑎𝑟𝑒𝑑𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑠𝑐ℎ𝑒𝑑)
27: 𝑡𝑖𝑚𝑒 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 (𝑠𝑐ℎ𝑒𝑑, 𝑟𝑒𝑝)
28: 𝑠ℎ𝑀𝑒𝑚𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑡𝑖𝑚𝑒, 𝑠𝑐ℎ𝑒𝑑, 𝑟𝑒𝑝)
29: end for
30: return𝑚𝑖𝑛 (𝑠ℎ𝑀𝑒𝑚𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 ∪ 𝑏𝑒𝑠𝑡𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠)

8.3 CPU Schedule Exploration
For CPUs, searching over a small set of pre-defined schedules
with different parallelization strategies (parallelize across
rows, parallelize across trees, parallelize across both) and
interleaving factors works well. As the set of schedules to
explore is small, exhaustive search is sufficient.

9 Experimental Evaluation
We evaluate SilvanForge on four different target processors,
a low resource NVIDIA T400 GPUwith 2GB RAM, a medium-
tier NVIDIA RTX 4060 GPU with 8GB RAM, a large AMD
MI210 GPU with 64GB RAM, and an Intel Core i9-11900K

(Rocket Lake) CPU with 16 virtual cores and 128 GB RAM.
We compare SilvanForge with five other systems: NVIDIA
RAPIDS [10] v23.10, Tahoe [57], Hummingbird [37] v0.4.117
running on PyTorch v2.4.0, XGBoost [18] v1.7.6 and Tree-
beard [42] CPU. We measure both kernel time and total
time (including time for data transfers to the GPU and back)
for RAPIDS, only kernel time for Tahoe8 and total time for
Hummingbird.9 For SilvanForge, we use schedules found
using the schedule exploration heuristic (Section 8) unless
otherwise specified.

We use two sets of benchmarks to perform the comparison.
We use 8 real-world models trained on data from the Intel
Machine Learning Benchmark suite [7]. These models were
also used to evaluate Treebeard. To enable more exhaustive
evaluation we generated 700 random models with varying
number of trees (100—1000) and features (powers of two
in the range 8—1024). Each tree has leaves at depths 2 to a
maximum depth of 6, 7 or 8.

9.1 Performance comparisons on NVIDIA GPUs
Real-worldModels. Figure 6a shows the geomean speedup
of SilvanForge over RAPIDS and Tahoe at different batch
sizes on RTX 4060. We do not show results for XGBoost since
the speedups are an order of magnitude higher (9×—40×)
and too large to fit on the same graph.

Figure 6a has lines for kernel time and total time speedup
over RAPIDS and kernel time speedup over Tahoe. As can
been seen SilvanForge is uniformly faster than Tahoe10
by 2 − 2.5× at all batch sizes. Compared to RAPIDS, Sil-
vanForge is about 4× faster at batch size 512. The relative
performance of RAPIDS improves with batch size from 512—
4096 as RAPIDS is optimized for larger batches. SilvanForge
is still consistently faster by 1.5− 2× all the way up to a very
large batch size of 16𝑘 . The plot also shows that the speedups
are significant even when the overhead of data transfer to
and from the GPU is included. They are lower than kernel
time speedup as both systems have a constant additional
transfer overhead.

Figures 6b and 6c show per benchmark results at two differ-
ent batch sizes. SilvanForge is able to find better schedules
than both RAPIDS and Tahoe on each of the benchmarks. It

7This is the current version of Hummingbird as of September 2024, and has
several improvements compared to the system used in the Hummingbird
paper.
8Tahoe only allows us to measure the kernel time since it is written as
an executable that performs inference repeatedly on the same data that is
transferred to the GPU once.
9We report only total time comparisons with Hummingbird because
we could not find a reliable method to measure the kernel times for
Hummingbird.
10Tahoe does not support multiclass models. To enable comparison, we ran
the multiclass models (covtype and letters) as regression models with
Tahoe. We also noticed that some variants of Tahoe produce wrong results
(as reported by its own tests) for letters and year. In these cases, we pick
the time of the fastest variant that gives the correct results.

SilvanForge SOSP ’24, November 4–6, 2024, Austin, TX, USA

(a) Speedup vs batch size. (b) Batch size 1024. (c) Batch size 8192.

Figure 6. The first graph shows kernel and total time speedup of SilvanForge over RAPIDS and Tahoe (geomean over
real-world benchmarks) across batch sizes on NVIDIA RTX 4060. The bar graphs show the kernel time speedup of SilvanForge
per benchmark. Numbers on the bars are inference times per sample in 𝜇s for RAPIDS and Tahoe.

(a) Speedup vs batch size. (b) Batch size 1024. (c) Batch size 8192.

Figure 7. The first graph shows the total time speedup of SilvanForge over different Hummingbird backends (geomean over
real-world benchmarks) across batch sizes on NVIDIA RTX 4060. The bar graphs show the total time speedup of SilvanForge
per benchmark (clipped to a maximum of 10×). Numbers on the bars are inference times per sample in 𝜇s for Hummingbird.

consistently outperforms both systems, achieving a speedup
of upto 12×. For about half the benchmarks, the speedup is
2× or more over both baselines at batch size 8192.
Figure 7 shows the result of our comparison with Hum-

mingbird. Figure 7a shows that SilvanForge is significantly
faster than all supportedHummingbird backends, evenwhen
the transfer time is taken into account. As noted in the Hum-
mingbird paper, the TVM backend is the fastest. Silvan-
Forge is 2.5 − 3× faster than the TVM backend. It is 4 − 8×
faster than the torchscript backend and 6−10× faster than
the torch backend.
Figures 7b and 7c show that SilvanForge is able to find

schedules that out-perform all Hummingbird backends. To-
tal time speedups are greater than 2× for most benchmarks,11
which implies that SilvanForge is able to generate signifi-
cantly faster kernels.

11Performance for epsilon is the same for both SilvanForge and Hum-
mingbird as this benchmark’s total time is dominated by transfer times
due to the large number of features (2000).

Synthetic Models. To establish that SilvanForge can con-
sistently find better schedules, we compared SilvanForge
to RAPIDS and Hummingbird on the synthetic models. Fig-
ure 8 and Figure 9 plot the results at batch sizes 512 and 4096
on RTX 4060. The plots show the speedup of SilvanForge
over RAPIDS and Hummingbird along the z-axis, with the
x-axis and y-axis representing the number of trees and the
number of features.

As Figure 8 shows, while the exact trends at different batch
sizes vary, SilvanForge consistently outperforms RAPIDS
by 1.5 − 8×. Along the tree dimension we find that the
speedup is very highwith fewer trees and stabilizes at around
2× from 300 onwards. We note that SilvanForge continues
to scale well when the number of trees are increased even fur-
ther. It achieves a speedup of around 2× compared to RAPIDS
on letters, a real-world benchmark with 26K trees.
Figure 9 shows that SilvanForge significantly outper-

forms Hummingbird on all models at batch size 4096 and
all except one (64 features, 100 trees), at batch size 512. We
also observe that the speedup offered by SilvanForge is

SOSP ’24, November 4–6, 2024, Austin, TX, USA Prasad et al.

(a) Batch size 512. (b) Batch size 4096.

Figure 8. Kernel time speedup of SilvanForge over RAPIDS
for random models.

higher when the number of trees in the model is larger and
the number of features is smaller (since the data transfer
overheads are smaller). Overall, SilvanForge is faster than
Hummingbird by about 2.5× at both batch sizes.

(a) Batch size 512. (b) Batch size 4096.

Figure 9. Total time speedup of SilvanForge over Hum-
mingbird for random models.

Utility of Schedule Constructs. A detailed analysis of the
generated schedules indicate that caching, in-memory repre-
sentation and reduction optimizations are crucial for perfor-
mance. We observe that all three representations are neces-
sary, array representation is used 60% of the time, sparse 30%
of the time and reorg 10% of the time for the best schedules
on the NVIDIA 4060. Next, shared reduction significantly
improves performance especially for multi-class models. For
example, the letters and covtype benchmarks achieve
speedups of 1.5× with shared reduction (over the best sched-
ule without shared reduction). Shared reduction increases
the memory pressure (on shared memory) and not all sched-
ules use it. Finally, while GPUs have a hardware managed
cache, explicitly caching the rows in shared memory us-
ing the scheduling primitives helps exploit the reuse of rows
across trees. We find that caching rows is beneficial for many
models with speedups as large as 1.5× over the best schedule
without caching.

Comparison on T400. To test the portability of Silvan-
Forge’s techniques, we compare SilvanForge on the T400

GPU with RAPIDS and Tahoe. Figure 10 shows that even on
the smaller GPU, SilvanForge is able to outperform them
consistently (speedup always greater than 1.5×). As we ad-
just the batch size, we notice trends that are similar to those
observed on the RTX 4060.

9.2 Performance on AMD GPUs
While Tahoe, RAPIDS and XGBoost only support NVIDIA
GPUs, we demonstrate that SilvanForge is able to generate
competitive code for AMD GPUs as well. SilvanForge can
target AMD GPUs because it generates a combination of
MLIR’s gpu dialect and LLVM IR and these can be JIT’ed
to AMD GPUs. While our objective here is not to compare
directly between AMD and NVIDIA GPUs, we do find that
theMI210 (which is more powerful) achieves better inference
times on most benchmarks at large batch sizes (≥ 8k). For
example, at a batch size of 16k, the MI210 is 2× faster than
the RTX 4060 on the letters benchmark.

9.3 Evaluation of the Schedule Exploration Heuristic
We evaluated the schedule exploration heuristic described
in Section 8 on several fronts.

Efficacy and Speed of Scheduling Heuristic. Figure 11
compares the best schedule found by exhaustive exploration
on the RTX 4060 with the schedule found by the exploration
heuristic. The plot establishes that the heuristic is able to find
schedules that are very close to the best schedule (well within
5%). Importantly, the heuristic method is able to find good
schedules in a fraction(1/80 – 1/100) of the time taken by
exhaustive exploration. The exploration time ranges between
6 and 167 seconds for the heuristic with a mean of 28.7
seconds. These results show that our heuristic is able to
quickly find schedules that are close to the best schedule.

Schedule Sensitivity Across GPUs. We designed addi-
tional experiments to evaluate whether the best schedule
(as picked by the heuristic) from one GPU can be used on
another. Figure 12 reports the geomean performance im-
provements of using the best schedule on T400 and MI210
compared to using the best schedule found on the RTX 4060
(for a given batch size). As can be seen the T400 specific
schedule is 1.05× to 1.2× better with the maximum differ-
ence being 2× (epsilon at batch size 512). There is a much
larger variation in performance on MI120. For example, the
geomean speedup over all benchmarks is 1.5× at batch size
16k (maximum 2× for the letters benchmark). In conclu-
sion, schedules found on one GPU do not carry over to other
GPUs and often result in sub-optimal performance. Sched-
ules need to be tuned on each target to achieve the best
performance.

9.4 CPU Improvements
The enhancements made to the compiler enable Silvan-
Forge to explore additional schedules on the CPU compared

SilvanForge SOSP ’24, November 4–6, 2024, Austin, TX, USA

Figure 10. Speedup of SilvanForge
over RAPIDS and Tahoe across batch
sizes on T400.

Figure 11. Slowdown of heuristic vs
best schedule on RTX 4060 and heuris-
tic schedule exploration time normal-
ized w.r.t. full exploration time.

Figure 12. Geomean speedup of a
hardware specific schedule on T400
and MI210 vs the best schedule from
RTX 4060.

to Treebeard. In particular, we find that the ability to par-
allelize across trees improves performance significantly at
small batch sizes. At batch size 32, we find that the geomean
speedup over all 8 real-world benchmark models is 2.2×with
a max speedup of 5×. At batch size 64, the average speedup
is 1.1× with a max speedup of 2×. At batch size 32, paral-
lelizing across trees is faster for all models and at batch size
64 the Treebeard schedule that parallelizes across rows is
faster for only 2 of the 8 models. For small batch sizes, paral-
lelizing across rows does not offer the best performance as
there is limited reuse of trees in L1 cache. Also, the amount
of work per thread is very small leading to high overheads.
Parallelizing across trees addresses both these problems.

Overall, our evaluation shows that SilvanForge is able to
efficiently generate high-performance code for processors
ranging from NVIDIA and AMD GPUs to Intel CPUs. On all
platforms and models that we tested on, SilvanForge sig-
nificantly outperforms state-of-the-art systems like RAPIDS,
Tahoe, Hummingbird, XGBoost and Treebeard.

10 Discussion
This section qualitatively compares SilvanForge’s schedul-
ing language with that of prior systems and provides details
on the wide range of use-cases SilvanForge can support.

10.1 SilvanForge’s Scheduling Language
Unlike existing scheduling languages that target regular com-
putations [19, 45], SilvanForge addresses the challenges
associated with decision tree inference. A key contribution
of our work is the characterization of a scheduling space
for this domain and the demonstration of significant perfor-
mance variations across different scheduling strategies. The
proposed scheduling language builds on a loop-centric foun-
dation, extending it with SilvanForge-specific operators
that enable domain-specific optimizations.

This approach is similar in spirit to how TVM [19] extends
the Halide [45] scheduling language with domain-specific
primitives for deep neural network (DNN) compilation, such

as tensorization and cooperative data loading. While TVM and
Halide both target optimizations in similar regular domains,
the introduction of these additional primitives allows TVM
to express optimizations beyond those supported by Halide.

10.2 Choice of Hardware Platform and Batch Size
Decision tree models are used in a wide variety of appli-
cations, ranging from interactive web applications to data-
science pipelines that process large volumes of data. The
latency and throughput requirements of an application heav-
ily influence whether to target inference computation to the
CPU or GPU, as well as the optimal batch size. For interactive
applications requiring low latency, CPUs with small batch
sizes are often the best fit. Our evaluation shows that for
these smaller batch sizes, CPUs perform competitively, with
the primary overheads of GPU usage being kernel launch
and transfer overheads. While the exact crossover point be-
tween CPU and GPU depends on the model, we expect it to
be close to 100 rows in most cases. A parameter for this can
easily be added to our scheduling heuristic.
Larger batch sizes, while increasing latency, offer signifi-

cant throughput improvements due to better reuse of model
parameters and more efficient parallelization. Applications
processing large volumes of data together can capitalize on
larger batches, where GPU acceleration provides both per-
formance and cost benefits. The two NVIDIA GPUs we ran
experiments on are much cheaper than the CPU we used,
yet they deliver an order of magnitude better performance.
In summary, SilvanForge addresses the needs of a wide

range of applications by allowing users to explore the trade-
offs by seamlessly targeting computations to either CPU
or GPU. This enables data scientists to fully leverage the
processing capabilities of their hardware.

11 Related Work
This section discusses prior work related to SilvanForge.

Decision Tree Inference Systems: Tahoe [57] is a library-
based system that picks between four predefined strategies
to implement decision tree inference on GPUs. RAPIDS

SOSP ’24, November 4–6, 2024, Austin, TX, USA Prasad et al.

FIL [6], NVIDIA’s library for decision tree inference, imple-
ments some heuristics to pick a good configuration for every
model.12 But these techniques are limited, and the library
uses a single strategy (splits trees across 256 threads) and
in-memory representation (reorg) for all models. Similarly,
XGBoost’s [18] GPU library [12] uses the same strategy for
all models and batch sizes.
Some compilers for decision tree ensembles have been

proposed in the literature [5, 37, 42]. Treebeard and Treel-
ite exclusively target CPUs and all their optimizations are
designed purely for performance on CPUs. Treelite [5] is a
model compiler that only generates if-else code for each
tree in the model. lleaves [17], a system similar to Treelite,
generates if-else code for each tree in the model and can
only target CPUs. Treebeard [42] is the work most closely
related to SilvanForge. While we build on top of Treebeard,
SilvanForge is a significant enhancement over Treebeard
(Section 4). Hummingbird [37] compiles decision tree in-
ference to tensor operations, thereby enabling them to be
run using tensor-based frameworks like PyTorch [40]. The
generated tensor code performs all tree walks in parallel,
stores the individual tree predictions in a tensor and finally
performs a reduction. This approach often produces multiple
kernels as all tensor operators cannot be fused. For example,
the reduction operator needs a kernel of its own.

OnCPUs, XGBoost [18], LightGBM [30] and scikit-learn [4]
are extremely popular. Yggdrasil [25] is a system that inte-
grates with several libraries, and provides easy to use ab-
stractions for decision tree training and inference. A recent
paper [53] describes an adaptive mechanism to pick one of a
few predefined parallelization and vectorization strategies.
Other systems that hide dependency stalls by interleaving
tree walks [13], implement optimized algorithms for tree
inference [35, 36] and improve cache performance of deci-
sion tree ensembles on CPUs [28, 52] have been proposed.
Some systems have been proposed to parallelize decision
tree training on CPUs and GPUs [27, 38].

As we report in Section 9, SilvanForge’s domain-specific
approach achieves significantly better performance than sev-
eral existing systems while also providing better portability.
Other Systems and Techniques: Ren et al. [47] design an

intermediate language and a virtual machine to enable vec-
tor execution of decision tree inference. However, this vir-
tual machine is implemented by hand on different target
processors. Jo et al. [29] describe code transformations and
runtime techniques that vectorize tree-based applications
but these optimizations are not specific to decision trees.
Inspector-executor systems [34, 41] parallelize tree walks
but are not a good fit for decision tree inference as the in-
dividual node predicates are simple and the overhead of an
inspector-executor system would be prohibitive.

12It picks the number of rows that each thread block should process based
on shared memory capacity.

Code Generation Systems for Other Domains: TVM [19],
Tiramisu [16], and Tensor Comprehensions [55] are optimiz-
ing compilers for DNNs that can target a variety of proces-
sors. Similarly, Halide [45] is a DSL and compiler primarily
designed for image processing applications. The concept
of separating the computation from the schedule was ef-
fectively utilized by Halide and has since been adopted by
several other systems [16, 19, 58]. Libraries that compose or
generate optimized implementations for BLAS [3, 54, 56] and
signal processing [21, 44] have also been developed. How-
ever, SilvanForge is the first system that provides state-
of-the-art performance across targets by implementing a
scheduling language for decision tree inference.

Reductions: CUB [9] and Thrust [11] are libraries that im-
plement reductions on GPUs. However, it is not possible to
fuse these functions with other computations as required
in SilvanForge. Reddy et al. [46] describe language con-
structs in Pencil [15] to express reductions and optimize
them using the polyhedral framework. Their system does
not express the hierarchical nature of reductions and also
only targets GPUs. Suriana et al. [51] extend Halide to add
support for reductions in the Halide scheduling language
and to synthesize reduction operators. De Gonzalo et al. [23]
describe a system based on Tangram that composes several
partial reduction implementations into different reduction
implementations for GPUs and then searches through these
alternate implementations to find the best ones. In summary,
none of these systems provide abstractions and a general
framework to generate and optimize reductions across dif-
ferent target processors as SilvanForge does.

12 Conclusions
Two trendsmotivate the need for systems that provide portable
performance for ML inference – machine learning is becom-
ing more ubiquitous and hardware is getting more diverse.
This paper discussed the challenges in targeting decision tree
models to run at peak performance on CPUs and GPUs. To
address these, we designed SilvanForge, a schedule-guided,
retargetable compiler for decision tree inference. We demon-
strated that code generated by SilvanForge is significantly
faster than existing systems like XGBoost, RAPIDS FIL,Hum-
mingbird and Tahoe. We obtained such improvements be-
cause our scheduling language was able express more com-
binations of optimization strategies, and our schedule explo-
ration technique was able to quickly find high-performance
schedules.

Acknowledgments
We would like to thank our shepherd, Eddie Kohler, and
the reviewers for their insightful feedback that significantly
improved our paper. We would also like to thank the artifact
reviewers for evaluating our artifact. We are grateful to NI
India for providing financial support to the first author.

SilvanForge SOSP ’24, November 4–6, 2024, Austin, TX, USA

References
[1] [n. d.]. Kaggle AI Report 2023. https://www.kaggle.com/ai-report-2023.

Accessed: 2024-04-16.
[2] [n. d.]. Kaggle State of Data Science and Machine Learning 2021.

https://www.kaggle.com/kaggle-survey-2021. Accessed: 2022-04-16.
[3] [n. d.]. NVIDIA CUTLASS. https://github.com/NVIDIA/cutlass. Ac-

cessed: 2022-04-16.
[4] [n. d.]. scikit-learn : Machine Learning in Python. https://scikit-learn.

org/stable/. Accessed: 2022-04-16.
[5] [n. d.]. Treelite : model compiler for decision tree ensembles. https:

//treelite.readthedocs.io/en/latest/. Accessed: 2022-04-16.
[6] 2019. RAPIDS Forest Inference Library: Prediction at 100 million rows

per second. https://medium.com/rapids-ai/rapids-forest-inference-
library-prediction-at-100-million-rows-per-second-19558890bc35.
Accessed: 2024-04-15.

[7] 2020. Intel Machine Learning Benchmarks. https://github.com/
IntelPython/scikit-learn_bench.

[8] 2020. The total cost of ownership of Amazon SageMaker.
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon_
SageMaker_TCO_uf.pdf.

[9] 2024. CUB: API Reference for CUB. https://docs.nvidia.com/cuda/cub/
index.html. Accessed: 2024-04-15.

[10] 2024. RAPIDS: GPU Accelerated Data Science. https://rapids.ai/.
Accessed: 2024-04-15.

[11] 2024. Thrust. https://developer.nvidia.com/thrust. Accessed: 2024-04-
15.

[12] 2024. XGBoost GPU Support. https://xgboost.readthedocs.io/en/
stable/gpu/index.html. Accessed: 2024-04-15.

[13] Nima Asadi, Jimmy Lin, and Arjen P. de Vries. 2014. Runtime Op-
timizations for Tree-Based Machine Learning Models. IEEE Trans-
actions on Knowledge and Data Engineering 26, 9 (2014), 2281–2292.
https://doi.org/10.1109/TKDE.2013.73

[14] Ahmad Azar and Shereen El-Metwally. 2013. Decision tree classifiers
for automated medical diagnosis. Neural Computing and Applications
23 (11 2013), 2387–2403. https://doi.org/10.1007/s00521-012-1196-7

[15] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,
Michael Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alas-
tair F. Donaldson, Jeroen Ketema, Javed Absar, Sven Van Haastregt,
Alexey Kravets, Anton Lokhmotov, Robert David, and Elnar Ha-
jiyev. 2015. PENCIL: A Platform-Neutral Compute Intermediate
Language for Accelerator Programming. In 2015 International Con-
ference on Parallel Architecture and Compilation (PACT). 138–149.
https://doi.org/10.1109/PACT.2015.17

[16] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhedral
Compiler for Expressing Fast and Portable Code. In Proceedings of
the 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (Washington, DC, USA) (CGO 2019). IEEE Press, 193–205.

[17] Simon Boehm. [n. d.]. lleaves. https://github.com/siboehm/lleaves
[18] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree

Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (San Francisco,
California, USA) (KDD ’16). Association for Computing Machinery,
New York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[19] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). USENIX Association, Carlsbad, CA, 578–594.
https://www.usenix.org/conference/osdi18/presentation/chen

[20] Dursun Delen, Cemil Kuzey, and Ali Uyar. 2013. Measuring firm
performance using financial ratios: A decision tree approach. Expert

Systems with Applications 40 (08 2013), 3970–3983. https://doi.org/10.
1016/j.eswa.2013.01.012

[21] Matteo Frigo. 1999. A Fast Fourier Transform Compiler. In Proceedings
of the ACM SIGPLAN 1999 Conference on Programming Language Design
and Implementation (Atlanta, Georgia, USA) (PLDI ’99). Association
for Computing Machinery, New York, NY, USA, 169–180. https://doi.
org/10.1145/301618.301661

[22] Wilson W.L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt.
2007. Dynamic Warp Formation and Scheduling for Efficient GPU
Control Flow. In 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007). 407–420. https://doi.org/10.1109/
MICRO.2007.30

[23] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon
Hammond, Onur Mutlu, and Wen-mei Hwu. 2019. Automatic Gen-
eration of Warp-Level Primitives and Atomic Instructions for Fast
and Portable Parallel Reduction on GPUs. In 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). 73–84.
https://doi.org/10.1109/CGO.2019.8661187

[24] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. 2022. Why
do tree-based models still outperform deep learning on tabular data?
arXiv:2207.08815 [cs.LG]

[25] Mathieu Guillame-Bert, Sebastian Bruch, Richard Stotz, and Jan Pfeifer.
2023. Yggdrasil Decision Forests: A Fast and Extensible Decision
Forests Library. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (Long Beach, CA, USA)
(KDD ’23). Association for Computing Machinery, New York, NY, USA,
4068–4077. https://doi.org/10.1145/3580305.3599933

[26] John L. Hennessy and David A. Patterson. 2019. A new golden age
for computer architecture. Commun. ACM 62, 2 (jan 2019), 48–60.
https://doi.org/10.1145/3282307

[27] Karl Jansson, Håkan Sundell, and Henrik Boström. 2014. gpuRF and
gpuERT: Efficient and Scalable GPU Algorithms for Decision Tree
Ensembles. 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops (2014), 1612–1621.

[28] Xin Jin, Tao Yang, and Xun Tang. 2016. A Comparison of Cache Block-
ing Methods for Fast Execution of Ensemble-Based Score Computation.
In Proceedings of the 39th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (Pisa, Italy) (SIGIR ’16).
Association for Computing Machinery, New York, NY, USA, 629–638.
https://doi.org/10.1145/2911451.2911520

[29] Youngjoon Jo, Michael Goldfarb, and Milind Kulkarni. 2013. Automatic
Vectorization of Tree Traversals. In Proceedings of the 22nd Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(Edinburgh, Scotland, UK) (PACT ’13). IEEE Press, 363–374.

[30] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly
Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems (Long
Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook,
NY, USA, 3149–3157.

[31] Sotiris Kotsiantis. 2013. Decision trees: A recent overview. Artificial
Intelligence Review (04 2013), 1–23. https://doi.org/10.1007/s10462-
011-9272-4

[32] Vidhi Lalchand. 2020. Extracting more from boosted decision trees: A
high energy physics case study. https://doi.org/10.48550/ARXIV.2001.
06033

[33] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). 2–14.
https://doi.org/10.1109/CGO51591.2021.9370308

[34] Jianqiao Liu, Nikhil Hegde, and Milind Kulkarni. 2016. Hybrid CPU-
GPU Scheduling and Execution of Tree Traversals. In Proceedings of

https://www.kaggle.com/ai-report-2023
https://www.kaggle.com/kaggle-survey-2021
https://github.com/NVIDIA/cutlass
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://treelite.readthedocs.io/en/latest/
https://treelite.readthedocs.io/en/latest/
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35
https://github.com/IntelPython/scikit-learn_bench
https://github.com/IntelPython/scikit-learn_bench
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon_SageMaker_TCO_uf.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon_SageMaker_TCO_uf.pdf
https://docs.nvidia.com/cuda/cub/index.html
https://docs.nvidia.com/cuda/cub/index.html
https://rapids.ai/
https://developer.nvidia.com/thrust
https://xgboost.readthedocs.io/en/stable/gpu/index.html
https://xgboost.readthedocs.io/en/stable/gpu/index.html
https://doi.org/10.1109/TKDE.2013.73
https://doi.org/10.1007/s00521-012-1196-7
https://doi.org/10.1109/PACT.2015.17
https://github.com/siboehm/lleaves
https://doi.org/10.1145/2939672.2939785
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1016/j.eswa.2013.01.012
https://doi.org/10.1016/j.eswa.2013.01.012
https://doi.org/10.1145/301618.301661
https://doi.org/10.1145/301618.301661
https://doi.org/10.1109/MICRO.2007.30
https://doi.org/10.1109/MICRO.2007.30
https://doi.org/10.1109/CGO.2019.8661187
https://arxiv.org/abs/2207.08815
https://doi.org/10.1145/3580305.3599933
https://doi.org/10.1145/3282307
https://doi.org/10.1145/2911451.2911520
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.48550/ARXIV.2001.06033
https://doi.org/10.48550/ARXIV.2001.06033
https://doi.org/10.1109/CGO51591.2021.9370308

SOSP ’24, November 4–6, 2024, Austin, TX, USA Prasad et al.

the 2016 International Conference on Supercomputing (Istanbul, Turkey)
(ICS ’16). Association for Computing Machinery, New York, NY, USA,
Article 2, 12 pages. https://doi.org/10.1145/2925426.2926261

[35] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, Nicola Tonellotto, and Rossano Venturini. 2015. QuickScorer:
A Fast Algorithm to Rank Documents with Additive Ensembles of
Regression Trees. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval (San-
tiago, Chile) (SIGIR ’15). Association for Computing Machinery, New
York, NY, USA, 73–82. https://doi.org/10.1145/2766462.2767733

[36] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, Nicola Tonellotto, and Rossano Venturini. 2016. Exploiting
CPU SIMD Extensions to Speed-up Document Scoring with Tree En-
sembles. In Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval (Pisa, Italy) (SI-
GIR ’16). Association for Computing Machinery, New York, NY, USA,
833–836. https://doi.org/10.1145/2911451.2914758

[37] Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos,
Carlo Curino, Markus Weimer, and Matteo Interlandi. 2020. A Tensor
Compiler for Unified Machine Learning Prediction Serving. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 899–917. https://www.usenix.org/
conference/osdi20/presentation/nakandala

[38] Aziz Nasridinov, Yangsun Lee, and Young-Ho Park. 2013. Decision
tree construction on GPU: ubiquitous parallel computing approach.
Computing 96 (2013), 403–413.

[39] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind
Kalaiah, Daya Shanker Khudia, James Law, Parth Malani, Andrey Male-
vich, Nadathur Satish, Juan Miguel Pino, Martin Schatz, Alexander
Sidorov, Viswanath Sivakumar, Andrew Tulloch, XiaodongWang, Yim-
ing Wu, Hector Yuen, Utku Diril, Dmytro Dzhulgakov, Kim M. Hazel-
wood, Bill Jia, Yangqing Jia, Lin Qiao, Vijay Rao, Nadav Rotem, Sungjoo
Yoo, and Mikhail Smelyanskiy. 2018. Deep Learning Inference in Face-
book Data Centers: Characterization, Performance Optimizations and
Hardware Implications. CoRR abs/1811.09886 (2018). arXiv:1811.09886
http://arxiv.org/abs/1811.09886

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[41] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prount-
zos, and Xin Sui. 2011. The Tao of Parallelism in Algorithms. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (San Jose, California, USA) (PLDI
’11). Association for Computing Machinery, New York, NY, USA, 12–25.
https://doi.org/10.1145/1993498.1993501

[42] Ashwin Prasad, Sampath Rajendra, Kaushik Rajan, R Govindarajan,
and Uday Bondhugula. 2022. Treebeard: An Optimizing Compiler for
Decision Tree BasedML Inference. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). 494–511. https://doi.org/10.
1109/MICRO56248.2022.00043

[43] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Matteo Interlandi, Avrilia
Floratou, Konstantinos Karanasos, Wentao Wu, Ce Zhang, Subru Kr-
ishnan, Carlo Curino, and MarkusWeimer. 2019. Data Science through
the looking glass and what we found there. https://doi.org/10.48550/
ARXIV.1912.09536

[44] M. Puschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W.
Singer, Jianxin Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R.W. Johnson, and N. Rizzolo. 2005. SPIRAL: Code Generation for DSP
Transforms. Proc. IEEE 93, 2 (2005), 232–275. https://doi.org/10.1109/
JPROC.2004.840306

[45] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Re-
computation in Image Processing Pipelines. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Seattle, Washington, USA) (PLDI ’13). Asso-
ciation for Computing Machinery, New York, NY, USA, 519–530.
https://doi.org/10.1145/2491956.2462176

[46] Chandan Reddy, Michael Kruse, and Albert Cohen. 2016. Reduction
Drawing: Language Constructs and Polyhedral Compilation for Re-
ductions on GPU. In Proceedings of the 2016 International Conference
on Parallel Architectures and Compilation (Haifa, Israel) (PACT ’16).
Association for Computing Machinery, New York, NY, USA, 87–97.
https://doi.org/10.1145/2967938.2967950

[47] Bin Ren, Todd Mytkowicz, and Gagan Agrawal. 2014. A Portable
Optimization Engine for Accelerating Irregular Data-Traversal Appli-
cations on SIMD Architectures. ACM Trans. Archit. Code Optim. 11, 2,
Article 16 (jun 2014), 31 pages. https://doi.org/10.1145/2632215

[48] Charitha Saumya, Kirshanthan Sundararajah, and Milind Kulkarni.
2022. DARM: Control-Flow Melding for SIMT Thread Divergence
Reduction. In 2022 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO). 1–13. https://doi.org/10.1109/CGO53902.
2022.9741285

[49] Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular data: Deep
learning is not all you need. Inf. Fusion 81, C (may 2022), 84–90.
https://doi.org/10.1016/j.inffus.2021.11.011

[50] Jyoti Soni, Ujma Ansari, Dipesh Sharma, and Sunita Soni. 2011. Pre-
dictive Data Mining for Medical Diagnosis: An Overview of Heart
Disease Prediction. International Journal of Computer Applications 17
(03 2011), 43–48. https://doi.org/10.5120/2237-2860

[51] Patricia Suriana, Andrew Adams, and Shoaib Kamil. 2017. Parallel
associative reductions in halide. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization (Austin, USA) (CGO
’17). IEEE Press, 281–291.

[52] Xun Tang, Xin Jin, and Tao Yang. 2014. Cache-Conscious Runtime
Optimization for Ranking Ensembles. In Proceedings of the 37th In-
ternational ACM SIGIR Conference on Research amp; Development in
Information Retrieval (Gold Coast, Queensland, Australia) (SIGIR ’14).
Association for ComputingMachinery, New York, NY, USA, 1123–1126.
https://doi.org/10.1145/2600428.2609525

[53] Jan Van Lunteren. 2023. Accelerating Decision-Tree-Based Inference
ThroughAdaptive Parallelization. In 2023 32nd International Conference
on Parallel Architectures and Compilation Techniques (PACT). 176–186.
https://doi.org/10.1109/PACT58117.2023.00023

[54] Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework
for Rapidly Instantiating BLAS Functionality. ACM Trans. Math. Softw.
41, 3, Article 14 (jun 2015), 33 pages. https://doi.org/10.1145/2764454

[55] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions. https:
//doi.org/10.48550/ARXIV.1802.04730

[56] R. Clint Whaley and Jack Dongarra. 1998. Automatically Tuned Linear
Algebra Software. In SuperComputing 1998: High Performance Network-
ing and Computing.

[57] Zhen Xie, Wenqian Dong, Jiawen Liu, Hang Liu, and Dong Li. 2021.
Tahoe: Tree Structure-Aware High Performance Inference Engine for
Decision Tree Ensemble on GPU. In Proceedings of the Sixteenth Euro-
pean Conference on Computer Systems (United Kingdom) (EuroSys ’21).

https://doi.org/10.1145/2925426.2926261
https://doi.org/10.1145/2766462.2767733
https://doi.org/10.1145/2911451.2914758
https://www.usenix.org/conference/osdi20/presentation/nakandala
https://www.usenix.org/conference/osdi20/presentation/nakandala
https://arxiv.org/abs/1811.09886
http://arxiv.org/abs/1811.09886
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/1993498.1993501
https://doi.org/10.1109/MICRO56248.2022.00043
https://doi.org/10.1109/MICRO56248.2022.00043
https://doi.org/10.48550/ARXIV.1912.09536
https://doi.org/10.48550/ARXIV.1912.09536
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2967938.2967950
https://doi.org/10.1145/2632215
https://doi.org/10.1109/CGO53902.2022.9741285
https://doi.org/10.1109/CGO53902.2022.9741285
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.5120/2237-2860
https://doi.org/10.1145/2600428.2609525
https://doi.org/10.1109/PACT58117.2023.00023
https://doi.org/10.1145/2764454
https://doi.org/10.48550/ARXIV.1802.04730
https://doi.org/10.48550/ARXIV.1802.04730

SilvanForge SOSP ’24, November 4–6, 2024, Austin, TX, USA

ACM, NY, USA, 426–440. https://doi.org/10.1145/3447786.3456251
[58] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Ju-

lian Shun, and SamanAmarasinghe. 2018. GraphIt: a high-performance

graph DSL. Proc. ACM Program. Lang. 2, OOPSLA, Article 121 (oct
2018), 30 pages. https://doi.org/10.1145/3276491

https://doi.org/10.1145/3447786.3456251
https://doi.org/10.1145/3276491

	Abstract
	1 Introduction
	2 Motivation
	2.1 Performance of Different Schedules

	3 SilvanForge's Scheduling Language
	3.1 Language Definition
	3.2 Expressiveness of the Scheduling Language

	4 Overview of SilvanForge Compiler
	4.1 Portability and Reuse

	5 Representing and Optimizing Reductions
	5.1 Lowering Reduction Operations

	6 Model Representations
	7 Caching
	8 Exploring the Schedule Space
	8.1 Bounding the search space
	8.2 Pruning the search space
	8.3 CPU Schedule Exploration

	9 Experimental Evaluation
	9.1 Performance comparisons on NVIDIA GPUs
	9.2 Performance on AMD GPUs
	9.3 Evaluation of the Schedule Exploration Heuristic
	9.4 CPU Improvements

	10 Discussion
	10.1 SilvanForge's Scheduling Language
	10.2 Choice of Hardware Platform and Batch Size

	11 Related Work
	12 Conclusions
	References

