
Gaussian Elimination of Side-Channels:
Linear Algebra for Memory Coloring

Jana Hofmann
∗

jana.hofmann@mpi-sp.org

MPI-SP

Bochum, Germany

Cédric Fournet

fournet@microsoft.com

Azure Research, Microsoft

Cambridge, UK

Boris Köpf

boris.koepf@microsoft.com

Azure Research, Microsoft

Cambridge, UK

Stavros Volos

svolos@microsoft.com

Azure Research, Microsoft

Cambridge, UK

Abstract
Memory coloring is a software-based technique to ensure microar-

chitectural isolation between trust domains sharing a CPU. Prior

coloring schemes target individual microarchitectural components

and thus provide only partial solutions. In this paper, we provide

theoretical foundations and practical algorithms to infer compre-

hensive coloring schemes for modern cloud CPUs.

To this end, we first formulate the requirements for effective

memory coloring schemes in a set-theoretic model, including defini-

tions for simultaneous isolation of shared components and uniform

utilization of private components. We then algebraically character-

ize these requirements for microarchitectural components that are

indexed by linear functions, which is the prevalent case in today’s

CPUs. Based on this, we develop efficient algorithms for computing

multi-resource coloring schemes from linear indexing functions,

and for reverse-engineering unknown linear indexing functions

under minimal assumptions.

In a case study, we use our algorithms to compute coloring

schemes for recent Intel CPUs, and we show how to design indexing

functions that maximize the number of supported trust domains.

CCS Concepts
• Security andprivacy→ Formal securitymodels; Side-channel
analysis and countermeasures; Hardware reverse engineering.

Keywords
memory coloring; side-channels; reverse engineering

ACM Reference Format:
Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos. 2024. Gauss-

ian Elimination of Side-Channels: Linear Algebra for Memory Coloring. In

Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3690263

∗
Work carried out while at Azure Research, Microsoft.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690263

1 Introduction
Cloud CPUs can host multiple tenants, each running within their

own trust domain that must remain isolated from the others. How-

ever, trust domains often share memory and microarchitectural

components, such as branch predictors, buffers, and caches. Their

access patterns can then be observed from other trust domains,

giving rise to side-channel attacks that break isolation [17, 18, 22,

23, 32, 40, 41, 44]. The usual way to prevent this problem is to par-

tition microarchitectural components, so that each trust domain is

assigned its own physically isolated part of each microarchitectural

component. There are two types of microarchitectural components

that need to be partitioned across trust domains: core-local and

off-core components.

• Core-local components, such as CPU buffers, branch predic-

tors, L1/L2 caches, and prefetchers are private to each core. These

components can be easily partitioned using exclusive core sched-
uling [1, 13], which guarantees that a physical core never runs

threads from different trust domains at the same time.

• Off-core components, such as the L3 cache, cache coherence

directories, and DRAM, are shared across all cores, and hence they

require other hardware or software isolation mechanisms. On the

hardware side, the L3 cache can often be partitioned using, e.g.,

Intel’s cache allocation technology or AMD’s platform quality of

service extensions, but there are no corresponding mechanisms for

directories or DRAM banks. On the software side, the prevalent

technique accounting for these components is resource partitioning

via memory coloring [2, 5, 14, 16, 19, 25, 28, 31, 43].

Memory Coloring. Memory coloring works by assigning a color
to each system physical address, and by using the memory manager

(in the hypervisor or in the host operating system) to ensure that

each color is assigned to at most one trust domain [5, 34].

A suitably chosen memory coloring scheme can achieve microar-

chitectural isolation by indirectly partitioning shared microarchi-

tectural components. Components (e.g., L3 cache or DRAM) are

collections of separate hardware resources (e.g., L3 cache sets or

DRAM banks) such that access patterns to one of these resources

cannot be observed from the others. A component’s indexing func-
tion maps each system physical address to one of its resources. To

achieve isolation, it thus suffices to choose a coloring scheme that

assigns different colors to addresses mapped to different resources.

https://doi.org/10.1145/3658644.3690263
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3658644.3690263

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos

Memory coloring is attractive as it does not require changes to

hardware and applications: Since coloring is based on system physi-

cal addresses, VMs and applications can still be assigned contiguous

guest physical and virtual memory. Thus, coloring implemented by

the virtualization layer is transparent to VMs and tenants.

Challenges. So far, memory coloring has mostly been used to

partition microarchitectural components individually. To achieve

full microarchitectural isolation, one must solve three challenges:

• Simultaneous Isolation: When trust domains share multiple

microarchitectural components, the coloring scheme must partition

all of them simultaneously.

• Uniform Utilization: A coloring scheme should not inadver-

tently partition private (core-local) resources, as this would lead to

under-utilization and performance loss.

• Reverse-Engineering: Coloring depends on the knowledge of

the components’ indexing functions, which are often undocumented

for commercial CPUs, so we need efficient ways to infer them.

Approach. In this paper, we provide theoretical foundations and

practical algorithms for tackling these three challenges. We proceed

in several steps.

• We provide a set-theoretic model for memory partitioning.

This includes definitions of the isolation and utilization require-

ments. When considering multiple components at once, we show

that these definitions compose to a well-defined constraint system.

• We design efficient algorithms for computing coloring schemes

that satisfy all isolation and utilizations requirements. They build

on algebraic characterizations of these requirements, and reduce

to well-known algebraic tools, such as Gaussian elimination. Our

algorithms apply to indexing functions that are (at least partially)

linear, i.e., definable in terms of XORs of address bits, which is the

prevalent case in today’s CPUs. A key feature of our algorithms

is that they operate on the kernel (also called nullspace) of the

indexing functions, which means that we do not need to know the

exact implementation of the function in hardware.

• We perform a case study, where we apply our theory and algo-

rithms to analyze the colorability of caches, coherence directories,

and DRAM on consumer-grade and server-class Intel CPUs. Our

results show that coloring is often possible, but the number of avail-

able colors varies. Using the example of a recent Intel server-class

CPU, Sapphire Rapids, we showcase how we would have designed

its indexing functions with the explicit goal of maximizing the

number of isolated trust domains.

• To make our approach applicable to black-box CPUs, we de-

velop novel algorithms for linearity testing and reverse-engineering
of linear indexing functions. We leverage that, for coloring pur-

poses, it suffices to infer the kernel of the functions; this enables

us to complete reverse-engineering using a single eviction set and

without accessing the function’s output value. Both algorithms are

based on the simplest algebraic primitive: testing for congruence,

i.e., whether two addresses are mapped to the same output value.

Our simulation shows that it only takes a few hundred congruence

checks to infer various existing indexing functions, which signifi-

cantly improves efficiency over state-of-the-art reverse-engineering

algorithms for linear functions.

Contributions. To summarize, our contributions are as follows.

• We present a theory of microarchitectural resource partition-

ing using memory coloring. This includes definitions for simulta-

neous isolation of shared components and uniform utilization of

private components, together with algebraic characterizations for

the case of linear indexing functions.

• We develop algorithms for computing coloring functions that

guarantee the isolation and utilization requirements for linearly

indexed components.

• We show how to design indexing functions with the explicit

goal of maximizing the number of colors.

• We define novel algorithms for checking linearity of black-box

indexing functions and for reverse-engineering linear functions.

2 Modelling Memory Coloring
We start by formally modelling memory coloring on a set-theoretic

level as partition of the physical address space. Next, we define the

requirements on such a partition, namely isolation with respect to

shared components and uniform utilization of private components.

We also show how memory coloring composes for hierarchically

organized microarchitectures.

2.1 Partitions
A partition 𝑃 of a set 𝑆 is a collection of disjoint non-empty subsets

of 𝑆 whose union covers 𝑆 , that is, 𝑃 = {𝐶𝑖 | 𝑖 ∈ 𝐼 } with𝐶𝑖 ∩𝐶 𝑗 = ∅
for all 𝑖 ≠ 𝑗 and

⋃
𝑖∈𝐼 𝐶𝑖 = 𝑆 . We refer to each subset 𝐶𝑖 of the

partition as a class. The set 𝐼 is the set of class indices.
The different partitions of a set can be partially ordered as follows:

𝑃 is finer than 𝑄 (and 𝑄 coarser than 𝑃), written 𝑃 ⊑ 𝑄 , if each

class of 𝑃 is a subset of a class of 𝑄 . Hence, the finest partition of 𝑆

is {{𝑠} | 𝑠 ∈ 𝑆}, whereas the coarsest partition is {𝑆}.
For two partitions 𝑃 and 𝑄 of the same set, the join 𝑃 ⊔ 𝑄 is

the finest partition that is coarser than both 𝑃 and 𝑄 , and the meet
𝑃 ⊓𝑄 is the coarsest partition that is finer than both 𝑃 and 𝑄 .

Example 1. Consider the following two partitions of the set of binary
words of length 3:

𝑃 = {{𝑥 | 𝑥0 = 0, 𝑥1 = 0}, {𝑥 | 𝑥0 = 0, 𝑥1 = 1},
{𝑥 | 𝑥0 = 1, 𝑥1 = 0}, {𝑥 | 𝑥0 = 1, 𝑥1 = 1}}

𝑄 = {{𝑥 | 𝑥0 = 0, 𝑥2 = 0}, {𝑥 | 𝑥0 = 0, 𝑥2 = 1},
{𝑥 | 𝑥0 = 1, 𝑥2 = 0}, {𝑥 | 𝑥0 = 1, 𝑥2 = 1}}

We use 𝑥𝑖 to refer to bit 𝑖 (starting with bit 𝑥0). The join of 𝑃 and 𝑄
keeps their common split along the value of bit 𝑥0:

𝑃 ⊔𝑄 = {{𝑥 | 𝑥0 = 0}, {𝑥 | 𝑥0 = 1}}
Their meet 𝑃 ⊓𝑄 is a set of 8 sets, one for each valuation of the bits
𝑥0, 𝑥1, 𝑥2.

It is often convenient to define partitions as preimages of total

functions 𝑓 : 𝑆 → 𝐼 , where each preimage of 𝑓 forms a class, i.e.,

𝑥 ∈ 𝐶𝑖 if and only if 𝑓 (𝑥) = 𝑖 . We denote the resulting partition by

𝑃𝑓 = {𝑓 −1 (𝑖) | 𝑖 ∈ 𝐼 }.
While a function uniquely determines a partition, the converse is

not true, i.e. a partition can be defined by several different functions.

Example 2. Functions 𝑓1 (𝑥) = 𝑥0 and 𝑓2 (𝑥) = ¬𝑥0 both describe
partition 𝑃 ⊔𝑄 from Example 1.

Gaussian Elimination of Side-Channels: Linear Algebra for Memory Coloring CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2.2 Memory Coloring
Memory coloring describes the process of partitioning the memory

into classes called colors. Each color is assigned to a trust domain
(e.g., a tenant in the cloud). The goal of memory coloring is to

prevent information flow between trust domains without impacting

their individual performance. We model the memory𝑀 as the set

F𝑛
2
of 𝑛-bit physical addresses, where 𝑛 = 48 is common.

Architectural Partitioning. When partitioning memory, we usu-

ally cannot partition the space arbitrarily but have to take certain

architectural constraints into account. The memory is already par-

titioned into pages,
1
and pages should not be split between colors.

For 4KiB-sized pages, partitioning into pages can be defined as

𝑃4𝐾 = {{𝑥 | 𝑥47 = 0, . . . , 𝑥12 = 0}, . . . , {𝑥 | 𝑥47 = 1, . . . , 𝑥12 = 1}}.
The partition describes that addresses agreeing on all but the 12

least significant bits 𝑥0, . . . , 𝑥11 belong to the same page. We use

the refinement relation to express that a partition 𝑃 should assign

addresses of the same page to the same color: 𝑃𝑎𝑟𝑐ℎ ⊑ 𝑃 .

Microarchitectural Partitioning. Another natural partitioning of

the memory is described by the CPU’s microarchitectural compo-
nents (e.g., caches). Each component consists of a set of resources 𝑅
(e.g., cache sets). Components can thus be represented with their

indexing function 𝑓 : 𝑀 → 𝑅 that maps each physical address to

one of the component’s resources.

Example 3. The cache set indexing function of a typical L3 cache
projects on address bits 𝑥6 to 𝑥16:

𝑓𝐿3 (𝑥) = 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15, 𝑥16
Function 𝑓𝐿3 is of type F48

2
→ F11

2
, i.e., it has 11 output bits. Each

output 𝑜 ∈ F11
2

refers to one cache set.

2.3 Isolation Through Coloring
We consider a threat model where different trust domains run on

the same CPU, but not on the same core, which is the common case

in cloud computing. This means that core-local microarchitectural

components, such as the L1 and L2 caches, are private to each trust

domain, while off-core microarchitectural components, such as the

last-level cache (typically L3), are shared between the trust domains.

When two trust domains share a component, this can lead to

information leakage, as visualized in Figure 1 (a). If they share a

cache set, for example, one trust domain can observe which cache

lines are evicted by the other domain’s computation using a timing

side-channel. Our goal is to prevent such side-channels with the

help of memory coloring.

Definition 1. A memory partition 𝑃 is isolating for a shared
component 𝑓 if 𝑓 maps addresses of distinct colors to distinct resources:

∀𝐶1,𝐶2 ∈ 𝑃 . {𝑓 (𝑥) | 𝑥 ∈ 𝐶1} ∩ {𝑓 (𝑥) | 𝑥 ∈ 𝐶2} = ∅

Note that Definition 1 is is equivalent to 𝑃𝑓 ⊑ 𝑃 .

Example 4. Partition 𝑃𝑓 defined by 𝑓 = 𝑥14, 𝑥15, 𝑥16 provides eight
colors. It is isolating for 𝑓𝐿3, because addresses with different values
of bits 𝑥14, 𝑥15, 𝑥16 are mapped to different cache sets.

1
Systems support multiple page sizes: 4KiB, 2MiB, and 1GiB

𝐴1 𝐴2 𝐴3 𝐴4
𝑃arch

memory

𝑅1

𝑠 𝑅2

𝑠 𝑅1

𝑠 𝑅3

𝑠 𝑅4

𝑠 𝑅3

𝑠𝑃shared

𝐶1

1
𝐶2

1
𝐶3

1
𝐶4

1
𝑃1

information leakage

𝐶1

2
𝐶2

2
𝑃2

𝑅1

𝑝 𝑅2

𝑝 𝑅3

𝑝 𝑅4

𝑝 𝑅5

𝑝 𝑅6

𝑝 𝑅7

𝑝 𝑅8

𝑝𝑃private

under-utilization

(a)

(b)

Figure 1: Visualization of information leakage (a) and under-
utilization (b). It sketches the partitions induced by an archi-
tectural requirement (𝑃4𝐾), as well as a shared and private
microarchitectural component (𝑃shared , 𝑃private). Memory par-
tition 𝑃1 defines a color for each 𝑃4𝐾 class, which respects
the architectural requirements of 𝑃4𝐾 , but is not isolating
for 𝑃shared (information leakage between colors 𝐶1

1
and 𝐶2

1

through share resource 𝑅2𝑠). Memory partition 𝑃2 respects
𝑃4𝐾 and is isolating for 𝑃shared . 𝑃2 under-utilizes the private
component, however, as it only uses half its classes.

2.4 Uniform Utilization Despite Coloring
We call microarchitectural components that are not shared between

trust domains private. Since trust domains run on separate cores,

core-local buffers, predictors, and core-local (L1/L2) caches are by

construction private, no matter how we partition memory.

While private components are not susceptible to side-channels,

they are still affected by memory coloring: When we restrict a trust

domain to a set of addresses, this may lead to under-utilization of

the private resources, depending on their indexing function. This

is visualized in Figure 1 (b).

Example 5. Let 𝑓 = 𝑥14, 𝑥15, 𝑥16 be defined as in Example 4, and
let 𝑓L2 be the cache set indexing function of the L2 cache:

𝑓L2 (𝑥) = 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥13, 𝑥14
A trust domain that is assigned color 𝐶 = {𝑥 | 𝑥14 = 𝑥15 = 𝑥16 = 0}
would only utilize half of the L2 cache, as none of 𝐶’s addresses is
mapped to the cache sets with 𝑥14 = 1.

Our second goal is to define partitions that do not lead to under-

utilization.

Definition 2. A memory partition 𝑃 uniformly utilizes a com-
ponent 𝑓 , short 𝑃 ⊥ 𝑃𝑓 , if

∀𝐶1 ∈ 𝑃,𝐶2 ∈ 𝑃𝑓 .
|𝐶1 ∩𝐶2 |

|𝐶1 |
=

|𝐶2 |
|𝑀 |

The definition ensures that the portion of a color mapped to

resource 𝑟 is equal to the portion of the entire memory mapped

to 𝑟 . Note that ⊥ is commutative (for a proof see Appendix A).

Uniform utilization has a direct connection to probabilistic in-
dependence. Consider a probability distribution 𝑝 : F𝑛

2
→ [0, 1],

and write 𝑝 (𝐴) for the probability of subsets ("events") 𝐴 ⊆ F𝑛
2
.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos

With this, Definition 2 is equivalent to 𝑝 (𝐴 ∩ 𝐶) = 𝑝 (𝐴)𝑝 (𝐶), or
(equivalently) 𝑝 (𝐴 | 𝐶) = 𝑝 (𝐴). This means that restricting random

memory accesses to a color 𝐶 does not change their probability of

being mapped to a specific cache set.

2.5 Memory Coloring as a Constraint System
To summarize, our goal is to partition memory into colors that are

isolating for all shared components and uniformly utilizing for all

private components. Formally, given architectural constraints 𝑃𝑎𝑟𝑐ℎ
(e.g., the page constraint 𝑃4𝐾), shared components 𝑓1, . . . , 𝑓𝑛 , and

private components 𝑔1, . . . 𝑔𝑚 , we want to find the finest memory

partition 𝑃 such that

(1) 𝑃arch ⊑ 𝑃
(2) 𝑃𝑓𝑖 ⊑ 𝑃 for all 𝑓𝑖
(3) 𝑃𝑔𝑖 ⊥ 𝑃 for all 𝑔𝑖

The trivial partition 𝑃 = {𝑀} satisfies these requirements, but it

supports only a single trust domain. To maximize the number of

trust domains, we seek for the finest partition that satisfies the

requirements. Note that this partition need not be unique: For

𝑓 (𝑥) = 𝑥1, 𝑥2 and 𝑔(𝑥) = 𝑥1 ⊕ 𝑥2 (where ⊕ is the XOR operator),

both ℎ(𝑥) = 𝑥1 and ℎ(𝑥) = 𝑥2 satisfy 𝑃𝑓 ⊑ 𝑃ℎ and 𝑃𝑔 ⊥ 𝑃ℎ .

2.6 Coloring and Composition
Many microarchitectural components are organized hierarchically.

For example, typical last-level caches are composed of slices, and
each slice contains the same number of cache sets. Similarly, DRAM

(dynamic random access memory) is organized into channels, dual

inline memory modules (DIMMs) per channel, ranks per DIMM,

and banks per rank.

We model this by defining local indexing functions 𝑓𝑖 : 𝑀 → 𝑅𝑖
for each level, and we represent the entire component using the

global indexing function 𝑓 : 𝑀 → 𝑅1 × . . . × 𝑅𝑚 = (𝑓1, . . . , 𝑓𝑚).
The following proposition establishes how isolation and utilization

properties extend from the local to the global indexing function.

Proposition 1. Let 𝑓 = (𝑓1, . . . , 𝑓𝑚) and 𝑃 be a partition with
𝑃𝑓𝑖 ⊑ 𝑃 for some 𝑓𝑖 . Then

• 𝑃𝑓 ⊑ 𝑃
• 𝑃𝑓𝑗 ⊥ 𝑃𝑓𝑖 implies 𝑃𝑓𝑗 ⊥ 𝑃

The first bullet point shows that if 𝑃 is isolating for one indexing

function, it is also isolating for the entire function. This is because

𝑃𝑓 intersects the preimages of all 𝑓𝑖 , and therefore 𝑃𝑓 ⊑ 𝑃𝑓𝑖 ⊑ 𝑃 .
The second bullet point shows that, whenever a partition 𝑃𝑖

uniformly utilizes a component 𝑓𝑗 , then any partition 𝑃 that is

coarser than 𝑃𝑖 will also uniformly utilize 𝑓𝑗 . This statement is

targeted towards hierarchical structures, where indexing functions

are often independent: For example, the cache slice selection is

usually independent of the cache set selection within the slice, to

achieve uniform utilization of all cache sets. Then, if we compute a

coloring function based on cache set indexing, every trust domain

will uniformly utilize all slices. The proof for Proposition 1 is given

in the appendix (Appendix A), as are all other proofs of this paper.

Proposition 1 has two valuable implications. First, if we do not

know the entire indexing function (e.g., we only know the cache

set indexing function but not the slicing function), we can compute

isolating and uniformly utilizing partitions based on only part of

the function. Second, if the indexing function is only partly linear,

it is sufficient to compute partitions based on the linear part.

3 Coloring with Linear Functions
We develop algorithms to automatically infer memory partitions

that satisfy the requirements described in Section 2.5. Our algo-

rithms apply to the important class of linear indexing functions.

Most indexing functions are linear, e.g., cache set indexing func-

tions, Intel’s DRAM indexing functions (for channels, ranks, and

banks) [23, 36], many cache slicing functions [6, 20], and the in-

dexing function of cache coherence directories [40]. Furthermore,

non-linear indexing functions are often at least partially linear. As

Proposition 1 shows, if we infer coloring functions based on the

linear part of a function, we obtain a partition that is isolating and

uniformly utilizing also for the non-linear parts.

3.1 Linear Functions
The set F𝑛

2
of physical addresses forms a vector space over the field

F2, where addition corresponds to bitwise XOR (⊕) and multiplica-

tion corresponds to bitwise AND (&). In particular, for 𝑥,𝑦 ∈ F𝑛
2
,

𝑥 + 𝑦 = 𝑥 − 𝑦. In this paper, we use three ways to represent linear

functions over F2: (1) as output bits defined as XOR of input bits,

(2) as matrices, and (3) in terms of the kernel.

XOR Representation. In a linear function 𝑓 : F𝑛
2
→ F𝑚

2
, each of

the𝑚 output bits is defined as 𝑓𝑖 (𝑥) = 𝑎𝑖
0
&𝑥0 ⊕ . . . ⊕ 𝑎𝑖𝑛−1&𝑥𝑛−1.

Since all scalars 𝑎𝑖
0
, . . . , 𝑎𝑖

𝑛−1 are either 0 or 1, 𝑓𝑖 can be represented

by a chain of XORs of some of 𝑥 ’s address bits. Examples 3 and 5 in

Section 2 use this representation.

Matrix Representation. The matrix representation of a function 𝑓

is obtained by applying 𝑓 to all standard unit vectors of the domain

F𝑛
2
and using the result as columns: 𝐴𝑓 = (𝑓 (𝑒0), . . . , 𝑓 (𝑒𝑛−1)).

Example 6. Let function 𝑓 : F3
2
→ F2

2
define two output bits as

follows: 𝑓 (𝑥) = 𝑥0, 𝑥1 ⊕ 𝑥2. The matrix representation of 𝑓 is

𝐴𝑓 =

[
1 0 0

0 1 1

]
The 𝑖th row of 𝐴𝑓 indicates which bits of 𝑥 are XORed in output bit 𝑖 .

Kernel Representation. For the the third representation, recall

that the kernel of 𝑓 is defined as the set of addresses for which 𝑓

maps to 0, i.e., ker (𝑓) = {𝑥 | 𝑓 (𝑥) = 0}. The kernel characterizes
the preimages of a linear function as follows: Two addresses 𝑥 and

𝑦 are in the same preimage of 𝑓 iff their difference is in the kernel,

i.e., 𝑓 (𝑥) = 𝑓 (𝑦) ≡ 𝑓 (𝑥 −𝑦) = 0. Thus, two functions with the same

kernel define the same partition: 𝑃𝑓 = 𝑃𝑔 iff ker (𝑓) = ker (𝑔). Also
note that 𝑃𝑓 ⊑ 𝑃ℎ iff ker (𝑓) ⊆ ker (ℎ). The relationship between

𝑃𝑓 and ker (𝑓) can be concisely expressed by

𝑃𝑓 = F𝑛
2
/ker (𝑓) ,

where the quotient 𝑉 /𝑊 of two vector spaces𝑊 ⊆ 𝑉 is defined

as the set of equivalence classes of the equivalence relation 𝑥 ≡ 𝑦
iff 𝑥 − 𝑦 ∈ 𝑊 . While the kernel uniquely defines 𝑃𝑓 , recall from

Example 2 that it does not uniquely define 𝑓 .

Gaussian Elimination of Side-Channels: Linear Algebra for Memory Coloring CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

3.2 Computing the Join of Partitions
As a first step, we describe how to compute a partition that re-

spects our architectural requirements and guarantees isolation

for shared components (see Requirements 1 and 2 in Section 2.5).

Given architectural constraints 𝑃arch and shared microarchitec-

tural components 𝑓1, . . . , 𝑓𝑛 , our goal is to compute a function ℎ

such that 𝑃arch ⊑ 𝑃ℎ and 𝑃𝑓𝑖 ⊑ 𝑃ℎ for all 𝑓𝑖 . Since 𝑃ℎ should pro-

vide as many colors as possible, this is equivalent to computing

𝑃ℎ = 𝑃arch⊔𝑃𝑓1 ⊔ . . .⊔𝑃𝑓𝑛 . We describe how to compute ℎ such that

𝑃ℎ = 𝑃𝑓1 ⊔ 𝑃𝑓2 for two arbitrary linear functions 𝑓1 and 𝑓2, which

generalizes to computing the join for multiple components.

In general, computing the join of two partitions boils down to

computing the transitive closure of overlapping pairs of classes and

is not straightforward. Fortunately, for the case of linear functions,

there is a direct connection between the join of partitions of two

functions and the (vector-space) sum of their kernels:

Proposition 2. Let 𝑓1, 𝑓2 be linear functions defined on F𝑛
2
. Then

𝑃𝑓1 ⊔ 𝑃𝑓2 = F𝑛
2
/ker (𝑓1)+ker (𝑓2)

Proposition 2 directly translates into an algorithm to compute

the join for linear functions: compute the kernel of functions 𝑓1 and

𝑓2, and find a function whose kernel is the sum of vector spaces

ker (𝑓1) and ker (𝑓2). Both steps crucially rely on computing a basis

of the kernel of a linear function. This can be done using standard

algorithms built on Gaussian elimination [38]. We denote this algo-

rithm as basis(ker (·)). The pseudocode for computing 𝑃𝑓1 ⊔ 𝑃𝑓2 is
given in Algorithm 1.

Algorithm 1: Computing the join of partitions

Input :Linear functions 𝑓1 and 𝑓2
Output :Linear function ℎ given as matrix 𝐴ℎ such that

𝑃ℎ = 𝑃𝑓1 ⊔ 𝑃𝑓2
𝑣1, . . . , 𝑣 𝑗 = basis(ker (𝑓1));
𝑣 𝑗+1, . . . , 𝑣𝑡 = basis(ker (𝑓2));
𝑢1, . . . , 𝑢𝑙 = basis(ker ((𝑣1, . . . , 𝑣𝑡)𝑇));
return (𝑢1, . . . , 𝑢𝑙)𝑇 ;

The first two calls to basis(ker (·)) obtain bases of ker (𝑓1) and
ker (𝑓2), respectively.We combine these to a (not necessarily linearly

independent) set of vectors 𝑣1, . . . , 𝑣𝑡 spanning ker (𝑓1) + ker (𝑓2).
The remaining step is to find a function ℎ whose kernel is the

space spanned by 𝑣1, . . . , 𝑣𝑡 , i.e., we look for a matrix 𝐴ℎ such that

𝐴ℎ𝑣𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑡 . Put differently, if 𝐵 = (𝑣1, . . . , 𝑣𝑡) is the
matrix whose columns are 𝑣1, . . . , 𝑣𝑡 , we need to solve 𝐴ℎ𝐵 = 0.

This is equivalent to 𝐵𝑇𝐴𝑇
ℎ
= 0. Thus, a basis of the kernel of 𝐵𝑇

exactly describes the rows of 𝐴ℎ , which define the output bits of ℎ.

Lemma 1. Algorithm 1 computes 𝐴ℎ with 𝑃ℎ = 𝑃𝑓1 ⊔ 𝑃𝑓2 .
We provide a formal correctness argument in Appendix B. For

the rest of the paper, to simplify notation, we write 𝑓1 ⊔ 𝑓2 for the

function ℎ with 𝑃ℎ = 𝑃𝑓1 ⊔ 𝑃𝑓2 . For a complexity analysis, note that

Gaussian elimination is in time O(𝑛3). Therefore, Algorithm 1 is

also in time O(𝑛3).
Importantly, Algorithm 1 is applicable even if we only know the

kernel of the indexing functions. In that case, we would simply skip

the first two steps. We leverage this fact in Section 5, where we

develop a linearity check and reverse-engineering algorithm based

solely on the kernel representation of a function.

Example 7. In the simple case that the functions’ output bits do not
use XORs, the join describes the intersection of the output bits. For
example, for 𝑓1 (𝑥) = 𝑥0, 𝑥1, 𝑥2 and 𝑓2 (𝑥) = 𝑥2, 𝑥3, 𝑥4, we obtain
(𝑓1 ⊔ 𝑓2) (𝑥) = 𝑥2.

3.3 Computing Uniformly Utilizing Partitions
The next step is to refine the coloring function ℎ computed in the

last subsection such that it uniformly utilizes all private components.

Since 𝑃ℎ is the finest partition that respects architectural constraints

and provides isolation for shared resources (Requirements 1 and

2 from Section 2.5), we can only achieve uniform utilization by

merging colors, i.e., removing output bits from ℎ. Our algorithm

relies on the following proposition, which states that a partition

defined by function ℎ is uniformly utilizing component 𝑔 if the row

vectors of 𝐴ℎ and 𝐴𝑔 are linearly independent of each other.

Proposition 3. Let ℎ,𝑔 be linear functions defined on F𝑛
2
. Then the

following are equivalent
(1) 𝑃ℎ ⊥ 𝑃𝑔

(2) rank
([
𝐴𝑔
𝐴ℎ

])
= rank (𝐴ℎ) + rank

(
𝐴𝑔

)
Proposition 3 gives rise to Algorithm 2 for computing uniformly

utilizing partitions.

Algorithm 2: Computing uniformly utilizing partitions

Input :ℎ as matrix 𝐴ℎ with rows 𝑣1, . . . , 𝑣𝑚 , and 𝑔 as a

matrix 𝐴𝑔
Output :ℎ′ as matrix 𝐴ℎ′ such that 𝑃ℎ ⊑ 𝑃ℎ′ and 𝑃ℎ′ ⊥ 𝑃𝑔

𝐴ℎ′ = []
for 𝑖 = 1 to𝑚 do

if rank ©«

𝐴𝑔
𝐴ℎ′

𝑣𝑖

ª®¬ == rank
([
𝐴𝑔
𝐴ℎ′

])
+ 1 then

𝐴ℎ′ =

[
𝐴ℎ′

𝑣𝑖

]
;

return 𝐴ℎ′ ;

The algorithm iteratively selects rows from𝐴ℎ , in each stepmain-

taining the invariant that rank
([
𝐴𝑔
𝐴ℎ′

])
= rank

(
𝐴𝑔

)
+ rank (𝐴ℎ′).

The rank equality check can be implemented using Gaussian elimi-

nation by testing if 𝑣𝑖 is linearly independent of

[
𝐴𝑔
𝐴ℎ′

]
.

With Proposition 3, correctness of the algorithm follows from a

simple inductive argument and the fact that the rows of the initial

matrix 𝐴ℎ are linearly independent (guaranteed by Algorithm 1),

i.e., if 𝐴ℎ is a𝑚 × 𝑛 matrix, then rank (𝐴ℎ) =𝑚.

Lemma 2. Algorithm 2 computes 𝐴ℎ′ with 𝑃ℎ ⊑ 𝑃ℎ′ and 𝑃ℎ′ ⊥ 𝑃𝑔 .

Guaranteeing 𝑃ℎ ⊑ 𝑃ℎ′ is important to ensure that 𝑃ℎ′ still

satisfies the isolation requirement for shared components. We also

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos

note that the algorithm might produce different (valid) solutions

depending on the order of the rows in𝐴ℎ . As for the join, to simplify

notation, we may write ℎ ⊥ 𝑔 instead of 𝑃ℎ ⊥ 𝑃𝑔 .

Algorithm 2 inherits an upper bound of O(𝑛3) from Gaussian

elimination for the first rank check. We can store the result in

upper echelon form so that each of the O(𝑛) subsequent checks for
independence of 𝑣𝑖 requires only O(𝑛2) steps, leading to an overall

O(𝑛3) bound.

Example 8. In the simple case that the functions’ output bits do not
use XORs, Algorithm 2 achieves uniform utilization by eliminating
bits that are shared between both functions. For ℎ(𝑥) = 𝑥0, 𝑥1, 𝑥2
and 𝑔(𝑥) = 𝑥0, for example, we obtain ℎ′ (𝑥) = 𝑥1, 𝑥2.

3.4 Design Patterns for Indexing Functions
We conclude this section by exploring how to design indexing func-

tions with coloring requirements in mind. Here, we give high-level

patterns that maximize the number of colors obtained with Algo-

rithms 1 and 2. In the next section, we apply these insights in a case

study of modern Intel CPUs.

Assume we need to design three indexing functions 𝑓1, 𝑓2, and

𝑔, where 𝑓1 and 𝑓2 index shared microarchitectural components

and 𝑔 indexes a private component. Our goal is to design these

functions such that (1) they adhere to given systems constraints,

(2) they maximize the number of colors provided by 𝑓1 ⊔ 𝑓2, and (3)

we guarantee that (𝑓1 ⊔ 𝑓2) ⊥ 𝑔.

Goal 1: Adhering to Systems Constraints. The components have a

fixed size, which means that 𝑓1, 𝑓2, and 𝑔 must have fixed ranks. We

focus on system constraints that require specific address bits to be

used in the functions. A common pattern found across many CPUs

is that the lower significant bits of physical addresses are used for

indexing of caches, as this ensures that linear memory traversals

are spread out over all cache sets. This can be achieved by either

using the requested bits as singleton output bits (as in the definition

of 𝑓𝐿3 in Example 3) or by XORing them with other address bits.

Goal 2: Maximizing the Number of Colors. Our second goal is to

maximize the number of colors provided by 𝑓1 ⊔ 𝑓2. Proposition 2

only gives an indirect handle on the size of the join because it

requires reasoning about the kernels of 𝑓1 and 𝑓2. To reason more

directly about the output bits of the functions, we connect the kernel

of a function 𝑓 with its rowspace. The rowspace row(𝐴𝑓) of a matrix

𝐴𝑓 is the vector space spanned by its rows. From the definition of the

rowspace it follows that ker (𝑓) = row(𝐴𝑓)⊥, where (·)⊥ denotes

the orthogonal complement with respect to the dot product.

It holds that (𝑈 ∩𝑉)⊥ = 𝑈⊥ +𝑉⊥
, which directly gives us the

following proposition.

Proposition 4. ker (𝑓) + ker (𝑔) = (row(𝐴𝑓) ∩ row(𝐴𝑔))⊥

Propositions 2 and 4 together imply that in order to increase the

number of classes of 𝑃𝑓1 ⊔ 𝑃𝑓2 , we need to increase the overlap of

the rowspaces of 𝐴𝑓1 and 𝐴𝑓2 .

An immediate consequence is that a larger number of shared

output bits increases the number of colors. Adhering to the systems

constraints of using certain address bits, this can be achieved by

XORing output bits of both functions 𝑓1 and 𝑓2.

Example 9. Consider again functions 𝑓1 (𝑥) = 𝑥0, 𝑥1, 𝑥2 and 𝑓2 =
𝑥2, 𝑥3, 𝑥4 from Example 7. If we replace output bit 𝑥0 in 𝑓1 and output
bit 𝑥4 in 𝑓2 by their sum 𝑥0 ⊕ 𝑥4, we obtain functions

𝑓 ′
1
(𝑥) = 𝑥0 ⊕ 𝑥4, 𝑥1, 𝑥2 𝑓 ′

2
(𝑥) = 𝑥2, 𝑥3, 𝑥0 ⊕ 𝑥4

with (𝑓 ′
1
⊔ 𝑓 ′

2
) (𝑥) = 𝑥0 ⊕ 𝑥4, 𝑥2. We thus increase the number of

colors from two to four while still using all address bits of the systems
constraints and without changing the rank of the functions.

Sharing output bits are a sufficient condition for increasing the

intersections of the rowspaces, but not a necessary one, as demon-

strated by the following example.

Example 10. Consider the functions

𝑓1 (𝑥) = 𝑥1, 𝑥2⊕𝑥3, 𝑥3⊕𝑥4 𝑓2 (𝑥) = 𝑥2⊕𝑥5, 𝑥3⊕𝑥5, 𝑥4⊕𝑥5
We have (𝑓1 ⊔ 𝑓2) (𝑥) = 𝑥2 ⊕ 𝑥3, 𝑥2 ⊕ 𝑥4 admitting four colors, even
though 𝑓1 and 𝑓2 do not share any output bit. This is because 𝑥2 ⊕ 𝑥3
and 𝑥2 ⊕ 𝑥4 are both in the rowspaces of 𝐴𝑓1 and 𝐴𝑓2 .

Goal 3: Ensuring Uniform Utilization. Our third goal is to achieve

uniform utilization of component 𝑔 when coloring with 𝑓1 ⊔ 𝑓2.

Proposition 3 gives us a direct handle on this problem: We need

to increase the number of output bits in 𝑔 and 𝑓1 ⊔ 𝑓2 that are

independent of each other. This can be achieved, for example, by

XORing address bits to 𝑔’s output bits that are neither present in

𝑔 nor in 𝑓1 ⊔ 𝑓2. To achieve the same effect for 𝑓1 ⊔ 𝑓2, we need to

add address bits to 𝑓1 and 𝑓2 such that they carry over to 𝑓1 ⊔ 𝑓2.

Example 11. Consider 𝑓1, 𝑓2 and 𝑔 defined as follows:

𝑓1 (𝑥) = 𝑥0 ⊕ 𝑥1 𝑓2 (𝑥) = 𝑥0 ⊕ 𝑥1 ⊕ 𝑥2, 𝑥2

(𝑓1 ⊔ 𝑓2) (𝑥) = 𝑥0 ⊕ 𝑥1 𝑔(𝑥) = 𝑥0, 𝑥1
𝑓1 ⊔ 𝑓2 is not uniformly utilizing 𝑔, as 𝑥0 ⊕ 𝑥1 is linearly dependent
on 𝑥0 and 𝑥1. If we add bit 𝑥3 to 𝑔, we obtain 𝑔′ (𝑥) = 𝑥0 ⊕ 𝑥3, 𝑥1
and (𝑓1 ⊔ 𝑓2) ⊥ 𝑔′. Alternatively, if we added 𝑥3 to the output bits
of 𝑓1 and 𝑓2 that generate 𝑥0 ⊕ 𝑥1, we would obtain the same effect:
𝑓 ′
1
(𝑥) = 𝑥0 ⊕ 𝑥1 ⊕ 𝑥3 and 𝑓 ′

2
(𝑥) = 𝑥0 ⊕ 𝑥1 ⊕ 𝑥2, 𝑥2 ⊕ 𝑥3 results in

(𝑓 ′
1
⊔ 𝑓 ′

2
) (𝑥) = 𝑥0 ⊕ 𝑥1 ⊕ 𝑥3, which is independent of 𝑥0 and 𝑥1.

4 Case Study: Coloring Intel CPUs
In this section, we apply the theory, algorithms, and design pat-

terns from Section 3 to infer memory coloring schemes for three

generations of Intel CPUs.

4.1 Background: Microarchitecture of Intel
CPUs

Intel CPUs feature multiple cores with private L1 and L2 caches.

All cores share a sliced L3 cache, where the number of cache slices

typically matches the number of cores. DRAM is shared among

all cores; it is organized hierarchically into channels, Dual Inline

Memory Modules (DIMMs), ranks, and banks. Each bank comprises

multiple rows and includes a row buffer, which holds the row that

has been accessed most recently within a bank.

Different CPUs use different techniques for keeping private

caches coherent. The traditional technique is to use an inclusive L3
cache. Inclusivity means that every line present in one of the L2

caches is also present in the L3 cache, which allows the L3 to track

the global memory state. With the trend towards non-inclusive L3

Gaussian Elimination of Side-Channels: Linear Algebra for Memory Coloring CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

𝑓 1slice (𝑥) = 𝑥6 ⊕ 𝑥10 ⊕ 𝑥12 ⊕ 𝑥14 ⊕ 𝑥16 ⊕ 𝑥17 ⊕ 𝑥18 ⊕ 𝑥20 ⊕ 𝑥22 ⊕ 𝑥24 ⊕ 𝑥25 ⊕ 𝑥26 ⊕ 𝑥27 ⊕ 𝑥28 ⊕ 𝑥30 ⊕ 𝑥32 ⊕ 𝑥33 ⊕ 𝑥35 ⊕ 𝑥36
𝑓 2slice (𝑥) = 𝑥7 ⊕ 𝑥11 ⊕ 𝑥13 ⊕ 𝑥15 ⊕ 𝑥17 ⊕ 𝑥19 ⊕ 𝑥20 ⊕ 𝑥21 ⊕ 𝑥22 ⊕ 𝑥23 ⊕ 𝑥24 ⊕ 𝑥26 ⊕ 𝑥28 ⊕ 𝑥29 ⊕ 𝑥31 ⊕ 𝑥33 ⊕ 𝑥34 ⊕ 𝑥35 ⊕ 𝑥37
𝑓 3slice (𝑥) = 𝑥10 ⊕ 𝑥11 ⊕ 𝑥13 ⊕ 𝑥16 ⊕ 𝑥17 ⊕ 𝑥18 ⊕ 𝑥19 ⊕ 𝑥20 ⊕ 𝑥21 ⊕ 𝑥22 ⊕ 𝑥27 ⊕ 𝑥28 ⊕ 𝑥30 ⊕ 𝑥31 ⊕ 𝑥32 ⊕ 𝑥33
𝑓 4slice (𝑥) = 𝑥9 ⊕ 𝑥12 ⊕ 𝑥16 ⊕ 𝑥17 ⊕ 𝑥19 ⊕ 𝑥21 ⊕ 𝑥22 ⊕ 𝑥23 ⊕ 𝑥25 ⊕ 𝑥26 ⊕ 𝑥27 ⊕ 𝑥29 ⊕ 𝑥31 ⊕ 𝑥32 ⊕ 𝑥33 ⊕ 𝑥34 ⊕ 𝑥35

Figure 2: Cache slice function of Intel Core i9-9980HK (Coffee Lake) [6]. The four bits can be used to address 16 slices.

(1) Skylake i5-6200U, 4GiB DRAM: 𝑓bank (𝑥) = 𝑥6 ⊕ 𝑥13, 𝑥14 ⊕ 𝑥16, 𝑥15 ⊕ 𝑥17
(2) Coffee Lake i5-9400, 8GiB DRAM: 𝑓bank (𝑥) = 𝑥6 ⊕ 𝑥13, 𝑥14 ⊕ 𝑥17, 𝑥15 ⊕ 𝑥18, 𝑥16 ⊕ 𝑥19
(3) Coffee Lake i5-9400, 16GiB DRAM: 𝑓bank (𝑥) = 𝑥7 ⊕ 𝑥14, 𝑥15 ⊕ 𝑥19, 𝑥16 ⊕ 𝑥20, 𝑥17 ⊕ 𝑥21, 𝑥18 ⊕ 𝑥22

Figure 3: DRAM indexing functions in various Intel machines [4, 36].

caches, the emerging technique is to use a cache coherence directory,
which is an inclusive cache that only keeps track of the tags (not

the data) of the lines cached across all L2 caches [30]. Directories

are sliced and indexed similarly to the L3 cache [40].

In the following, we use memory coloring (at 4K-page granular-

ity) to prevent the sharing of cache sets and DRAM banks. We also

rely on cache allocation technology (CAT) for partitioning the L3

cache. Compared to memory-based coloring, CAT is a hardware-

based technique that partitions the cache along its ways, not its
sets. With CAT enabled, a thread can only cause evictions in the

ways assigned to it, but it can still read from the entire cache. Thus,

CAT is not isolating for shared memory.

4.2 Coloring the Past: Coffee Lake & Skylake(-X)
We first investigate how shared resources can be partitioned on

Coffee Lake and Skylake machines with inclusive L3 caches. We

consider two scenarios: one where we rely on coloring to partition

the shared L3 and another where we rely on hardware support,

i.e., CAT. We then investigate resource partitioning on Skylake-X,

which features a non-inclusive L3 cache.

4.2.1 Partitioning the L3 Cache using Coloring. First, we aim to

simultaneously color the L3 cache and DRAM only using memory

coloring. The full cache set selection function 𝑓L3full = (𝑓slice, 𝑓𝐿3) is
composed of the slice selection function 𝑓slice (depicted in Figure 2)

and the set indexing function 𝑓𝐿3 (defined in Example 3). For DRAM,

we consider the functions displayed in Figure 3. Assuming 𝑓bank to

be function (1) in Figure 3, the following function jointly colors the

two resources at 4K-page granularity.

ℎ(𝑥) = (𝑓4K ⊔ 𝑓L3full ⊔ 𝑓bank) (𝑥) = 𝑥14 ⊕ 𝑥16

This function also satisfies ℎ ⊥ 𝑓𝐿2 for the set indexing function

function 𝑓𝐿2 (𝑥) = 𝑥6, . . . 𝑥14 of a typical 8-way 256KiB L2 cache.

This shows that joint coloring of L3 and DRAM is possible – albeit

with only one coloring bit, i.e., two trust domains. The other DRAM

bank functions displayed in Figure 3 are not suited for coloring.

4.2.2 Partitioning the L3 Cache Using CAT. As away to obtain more

colors, we now partition the L3 ways using CAT, which effectively

turns it into a private resource. Thus, when partitioning DRAM

using coloring,
2
we need to make sure that each color uniformly

utilizes all L3 cache sets. That is, we now seek a coloring function

ℎ such that 𝑃𝑓bank ⊑ 𝑃ℎ , ℎ ⊥ 𝑓L3 , and ℎ ⊥ 𝑓L2 . From Proposition 1,

we know that it is enough to guarantee ℎ ⊥ 𝑓L3 , as this implies

ℎ ⊥ 𝑓L3full . For bank indexing function (3) in Figure 3, we obtain

ℎ(𝑥) = 𝑥15 ⊕ 𝑥19, 𝑥16 ⊕ 𝑥20, 𝑥17 ⊕ 𝑥21

On Coffee Lake i5-9400, partitioning the L3 cache with CAT and

DRAM using coloring thus supports eight trust domains.

4.2.3 Partitioning with a Non-Inclusive L3. Skylake-X is one of

the first Intel microarchitectures with a non-inclusive L3 cache

and a dedicated cache coherence directory. Reverse-engineering

efforts [40] revealed that the directory relies on the same slicing

function as the L3 cache. It also has the same number of sets, indi-

cating that the set indexing function is the same as well.

This means that partitioning via CAT is ineffective, as it would

not affect the directory, requiring that the L3 cache and directory

are partitioned using coloring. This may result in fewer colors, if

at all, as in Section 4.2.1. While this is bad news for coloring on

past microarchitectures, Section 4.3 shows that current and future

microarchitectures can be more amenable to coloring.

4.3 Coloring the Future: Designing Indexing
Functions for Sapphire Rapids

We now apply the insights described in Section 3.4 to design hy-

pothetical indexing functions for a 60-core Xeon Platinum 8490H,

Intel’s most recent server-class CPU. That is, we seek indexing

functions that maximize the number of colors while satisfying the

constraints laid out in Section 2.5.

We first define an indexing function template based on public

information about the CPU’s microarchitecture (see [10]) and on hy-

potheses informed by common design principles. We then complete

the template with coloring and utilization constraints in mind.

4.3.1 Indexing Function Templates. The CPU features 4 chiplets

(aka quadrants), each with a 16-node mesh interconnect.

2
Coloring also avoids sharing memory (for which CAT is not isolating) across trust

domains as each color and its memory pages are private to one trust domain.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos

DRAM Banks. One node per quadrant hosts the memory con-

troller with two channels. We assume that each memory channel

hosts 2 DIMMs with 2 ranks each. In DDR5, a rank consists of up to

32 banks. To address 8 Channels × 2 DIMMs × 2 ranks × 32 banks,

i.e., 1024 DRAM banks in total, we require 10 bits. We assume that

the indexing function is composed of the following components.

• The CPU features a sub-NUMA clustering mode, where the
memory controller in each quadrant is responsible for a

contiguous chunk of physical memory. Assuming a total

memory size of 512GiB (i.e., chunk sizes of 128GiB), we add

output bits 𝑥37, 𝑥38 to the function, which select one of the 4

quadrants.

• Each chunk is partitioned into 64B-sized smaller chunks,

which are interleaved between the two channels. We there-

fore use 𝑥6 to index the channel.

• The remaining 7 bits are typically chosen above the 4K-page

offset, i.e., from bit 𝑥12 and above.

This yields the following template for DRAM bank indexing:

𝑓 ′bank (𝑥) = 𝑥6, 𝑥37, 𝑥38, and 7 bits 𝑥𝑖 with 𝑖 ≥ 12

Caches and Directory. The remaining 15 nodes per quadrant

each host one core and one slice of the non-inclusive L3 cache

and the cache coherence directory. The slices are determined by

the two quadrant bits and (since we have 15 nodes) a non-linear

function 𝑓 ′slice . We hypothesize that the L2 caches, L3 cache slices,

and directory slices each feature 2048 sets and thus require 11 bits

for indexing. This matches the cache size specifications, under the

assumption that L2 has associativity 16 and L3 has associativity 15,

as often seen in Intel microarchitectures. As is common in most

caches, we use the least significant bits for such indexing. This

yields the following templates for the cache indexing functions:

𝑓 ′L2 (𝑥) = 𝑥6, . . . , 𝑥16
𝑓 ′L3 (𝑥) = 𝑥6, . . . , 𝑥16, 𝑥37, 𝑥38, and a non-linear component 𝑓 ′slice

We further assume 𝑓 ′dir = 𝑓 ′
𝐿3
, which matches prior Intel microar-

chitectures [40].

4.3.2 Optimizing for Coloring. We complete the templates with

two coloring constraints in mind.

• To ensure a large number of colors, we maximize the overlap

between the bits in 𝑓bank and 𝑓L3 = 𝑓dir .

• To ensure uniform utilization of the private L2, we minimize

the overlap of 𝑓bank ⊔ 𝑓L3 with 𝑓L2 .

Fortunately, we can achieve both goals simultaneously. We add

some of the free bits 𝑥17, . . . , 𝑥36 to the indexing function of the L3

cache and the directory to guarantee uniform utilization of L2 cache.

We implicitly also consider the 4K-page architectural constraint,

i.e., we do not modify those output bits that use address bits below

12. We mark the newly introduced bits with the lighter color.

𝑓L3 (𝑥) = 𝑓dir (𝑥) =𝑥6, . . . , 𝑥11, 𝑥37, 𝑥38,

𝑥12⊕𝑥17, 𝑥13⊕𝑥18, . . . , 𝑥16⊕𝑥21

We do not modify the non-linear component. For the bank indexing

function, we recycle output bits of 𝑓L3 to instantiate five of the

seven free bits in the bank indexing function.

𝑓bank (𝑥) =𝑥6, 𝑥37, 𝑥38,

𝑥12 ⊕ 𝑥17, 𝑥13 ⊕ 𝑥18, . . . , 𝑥16 ⊕ 𝑥21, 𝑥22, 𝑥23

Overall, this yields a coloring function ℎ = 𝑓𝐿3 ⊔ 𝑓bank ⊔ 𝑓4𝐾
defined by

ℎ(𝑥) = 𝑥12 ⊕ 𝑥17, 𝑥13 ⊕ 𝑥18, . . . , 𝑥16 ⊕ 𝑥21, 𝑥37, 𝑥38

with ℎ ⊥ 𝑓𝐿2 and ℎ supporting 2
7 = 128 colors. That means that we

can support at least as many colors as there are cores.

4.3.3 Maxing out Colors. The number of banks (1024 in our setting)

puts a natural limit on the number of colors. Achieving this limit is

within reach. For example, when the number of cores per quadrant

is divisible by 2 (e.g., 12, 14, or 16) one could index the slice using one

to four additional linear bits, which are amenable to coloring if page

offset bits are excluded from the slicing function. Alternatively, one

could double the number of L3 and directory sets (e.g., by reducing

their associativity), which would yield an additional linear bit that

is independent of the L2 indexing function. With such changes, the

limit of 1024 colors is readily achievable.

5 Inferring Linear Indexing Functions
We now switch perspective from hardware vendors, who design

indexing functions, to cloud providers, who wish to provide iso-

lation across trust domains using a memory coloring scheme. In

the absence of information about indexing functions (which are

usually proprietary and not shared by the hardware vendors), cloud

providers need to first reverse-engineer the functions before infer-

ring the memory coloring scheme.

We develop a reverse-engineering algorithm (Section 5.4) for

linear functions that capitalizes on the observation from Section 3.2

that knowing the kernel is sufficient for computing a coloring

scheme. Like this, it avoids computing the complete truth table

of the function, which significantly improves efficiency over state-

of-the-art reverse-engineering algorithms.

Before reverse-engineering, we test the unknown indexing func-

tion for linearity, for which we design a novel algorithm (Sec-

tion 5.3). Both algorithms are based on the simplest algebraic prim-

itive: a test for congruence (i.e., if 𝑓 (𝑥) = 𝑓 (𝑦)). Like this, we forgo
common assumptions in state-of-the-art reverse-engineering ap-

proaches, including the need to know the rank of the function or

to observe its output values.

5.1 State of the Art
We first recapitulate existing approaches for reverse-engineering

linear indexing functions. They can be categorized into two classes.

5.1.1 Linear Algebraic Approaches. Most algebraic approaches re-

quire access to the output values 𝑓 (𝑥) for chosen addresses 𝑥 [6, 8,

11, 20, 40], and they assume 𝑓 has a known rank. Using the access

to output values, the subset of address bits occurring in an output

bit can by identified by simply checking if flipping 𝑥 𝑗 changes the

value of 𝑓𝑖 [6, 20]. If yes, then 𝑓𝑖 = 𝑥 𝑗 ⊕ 𝑓 ′
𝑖
.

The output value for an address is most reliably obtained using

performance counters [6, 8, 20]. If performance counters are not

available, timing side-channels are used to group a large number

of addresses into congruence classes. Each class is associated with

Gaussian Elimination of Side-Channels: Linear Algebra for Memory Coloring CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

one output value, and it is assumed that all possible values are

captured [6, 11, 40]. This approach carries the risk of “guessing” the

wrong output value, which could result in inferring a non-linear

function even if the actual function is linear; we further discuss

this in Section 5.3. This approach also requires a large number of

timing measurements to find witnesses for all output values.

In contrast to past algebraic work, we use a kernel-centered ap-

proach that in particular does not require a group of addresses for

every possible output value. A concurrent reverse-engineering ap-

proach [34] follows a similar idea. It infers the indexing function by

observing how it acts on a basis of the address space. This requires

generating numerous eviction sets, which can be computationally

expensive [33]. The algorithm presented in this paper requires only

a single eviction set for reverse-engineering the kernel.

5.1.2 Brute-Force Approaches. Non-algebraic approaches also rely

on grouping a large number of addresses into congruence classes.

The function is then either inferredmanually [9, 26, 42] or by search-

ing the function space for a solution respecting these classes [7,

23, 36]. To reduce the search space, these approaches often rely on

domain knowledge, e.g., knowledge about used address bits [9, 23],

or assuming a specific function shape [36, 39].

5.2 Congruence Tests and Eviction Sets
Our algorithms are centered around congruence tests. Two ad-

dresses 𝑥,𝑦 are congruent with respect to 𝑓 if 𝑓 (𝑥) = 𝑓 (𝑦). For
linear functions, congruence tests can be used to check if an ad-

dress is in the kernel of 𝑓 . To do so, fix an address 𝑥 and compute

an eviction set for 𝑥 . An eviction set for a microarchitectural compo-

nent (e.g., L3 cache, DRAM) is a sufficiently large set of addresses

that map to the same resource (e.g., L3 cache set, DRAM bank) [33].

Accessing all addresses in the set will evict all previous data (e.g.,

cache lines, DRAM row) from the resource. Address 𝑦 is in the ker-

nel of 𝑓 iff 𝑥 +𝑦 is evicted by 𝑥 ’s eviction set, i.e., if 𝑓 (𝑥) = 𝑓 (𝑥 +𝑦).
Using this approach, we can test any address for kernel membership

using a single eviction set.

The complexity of generating an eviction set and testing for

eviction greatly varies across components and is impacted by their

microarchitecture, e.g., their replacement policy.

Caches. The size of an eviction set is the number of cache ways,

e.g., 16 for a typical L3 cache. For inclusive caches with a least-

recently-used replacement policy, eviction set generation is known

to be quite efficient with a complexity of O(𝑤𝑠 log 𝑠), where𝑤 is

the number of ways and 𝑠 is the number of cache sets [15]. To test

if 𝑦 is evicted by an eviction set, one just accesses all addresses in

the set and then measures the time of accessing 𝑦. If the access time

is above a certain threshold, 𝑦 was evicted.

For non-inclusive caches, generating an eviction set and checking

for congruence is still feasible, but considerably harder. This is

because the cache line is allocated only after being evicted from

lower-level caches; and the replacement policy may depend on the

coherence state of the cache line [40].

DRAM Banks. The DRAM row buffer holds the DRAM row that

has been most recently accessed within a DRAM bank, i.e., an

eviction set consists of a single address. Congruence checking is

based on distinguishing row hits and row misses [23]. To check

congruence of 𝑥 and 𝑦, first find an address 𝑧 that maps to the same

bank as 𝑥 but a different row. This is observable because of the

higher access latencies needed to close and open the rows. Then,

repeatedly access 𝑥 and 𝑦, and 𝑧 and 𝑦. If 𝑥 and 𝑦 map to the same

bank, at least one of the pairs will cause high latencies.

5.3 Testing for Linearity
In this section, we investigate the linearity of an unknown indexing

function 𝑓 : F𝑛
2
→ F𝑚

2
, where the rank𝑚 is unknown as well.

We say 𝑓 is congruent to linear if there is a linear function 𝑔

that generates the same preimages as 𝑓 , i.e. 𝑃𝑓 = 𝑃𝑔 . For example,

the function 𝑓 : F2 → F2 with 𝑓 (𝑥) = ¬𝑥 is not linear (because

𝑓 (0) ≠ 0) – but it is congruent to linear because 𝑔(𝑥) = 𝑥 is linear

and has the same preimages as 𝑓 . This generalization is natural in

our context because colors could be computed based on 𝑔.

We show that checking if an indexing function is congruent to lin-

ear reduces to performing congruence tests. Using this observation,

we deduce a general algorithm for testing congruence-to-linearity.

Lemma 3. A function 𝑓 is congruent to linear iff

∀𝑥,𝑦, 𝑒𝑖 . 𝑓 (𝑥) = 𝑓 (𝑦) ⇒ 𝑓 (𝑥 + 𝑒𝑖) = 𝑓 (𝑦 + 𝑒𝑖),
where 𝑒𝑖 is a standard unit vector.

Proof Sketch. Intuitively, this proposition holds because any

preimage class 𝐶 can be represented by a vector 𝑣 , i.e., 𝐶 = [𝑣] =
{𝑣 + 𝑎 | 𝑎 ∈ ker (𝑓)}. Thus, if 𝑤 = 𝑣 + 𝑒𝑖 for some standard unit

vector 𝑒𝑖 , then adding 𝑒𝑖 to any element of 𝐶 results in a vector

from [𝑤]. Appendix C details the full proof. □

To avoid cumbersome terminology and whenever there is no

room for confusion, we use congruence to linear and linear inter-
changeably in the rest of the section.

Algorithm for Testing Linearity. Lemma 3 directly translates to

an algorithm that tests if an indexing function is linear. First, create

an arbitrary eviction set 𝐸 for an arbitrary address 𝑥 that is as close

to minimal as possible. Then, for some 𝑖 ∈ [0..1−𝑛], flip bit 𝑖 in all

addresses contained in 𝐸, resulting in set 𝐸′. Test if 𝐸′ is an eviction

set for 𝑥 +𝑒𝑖 . If not, then Lemma 3 is not satisfied and the function is

definitely not linear. Repeat the process for all indices 𝑖 and possibly

more eviction sets 𝐸.

Complexity. In the worst case, 𝑓 behaves mostly linearly, except

that two addresses are swapped between two preimage classes,

making the function non-linear. Finding these classes and the ad-

dresses within may require eviction sets that cover all addresses in

F𝑛
2
, resulting in a worst-case complexity that is exponential in 𝑛,

i.e., comparable to building the complete truth table.

In Section 5.6, we evaluate this algorithm in a simulation on

common functions and find that only a handful of eviction sets are

needed for this approach to determine that a function is linear. This

shows that in practice, the check for linearity does not incur the

worst-case complexity.

5.4 Reverse-Engineering the Kernel
In the following, we assume that the check for linearity was suc-

cessful. We now aim to reverse-engineer the kernel of 𝑓 . The naive

algorithm is to test all 2
𝑛
addresses for kernel membership using

congruence tests, which is prohibitive for an address length of 48

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos

Algorithm 3: Reverse-engineering the kernel of a linear

indexing function 𝑓 .

Input :Minimal eviction set 𝐸 for some address 𝑥

Output :Linear function ℎ such that 𝑃ℎ = 𝑃𝑓

𝐾 = basis({𝑎 + 𝑏 | 𝑎, 𝑏 ∈ 𝐸});
while True do

ℎ = toFunction(𝐾);
let𝑈 s.t. ℎ(𝑈) = im(ℎ) and𝑈 is minimal;
if ∃𝑢 ∈ 𝑈 s.t. 𝑥 + 𝑢 is evicted by 𝐸 then

𝐾 = 𝐾 ∪ {𝑢};
else

return ℎ;

bits. To reduce the search space, we observe that if we have found

a strict subspace 𝐾 ⊂ ker (𝑓) of the real kernel, then any space 𝑈

that extends 𝐾 to F𝑛
2
must contain a kernel vector not yet in 𝐾 . If

ℎ is a function with ker (ℎ) = 𝐾 , then we can choose 𝑈 as a set of

vectors that ℎ maps to a basis of its image.

Proposition 5. Let ℎ : F𝑛
2
→ F𝑚

2
be a linear function and𝑈 ⊆ F𝑛

2

be a minimal subspace with ℎ(𝑈) = im(ℎ). Then ker (ℎ) ⊕ 𝑈 = F𝑛
2
.

Above, ⊕ is the direct sum of two vector spaces, im(ℎ) is the im-

age of ℎ, and ℎ(𝑈) is the set {ℎ(𝑢) | 𝑥 ∈ 𝑈 }. Since im(ℎ) is spanned
by the column vectors of 𝐴ℎ , 𝑈 can be chosen as a subset of the

standard unit vectors. We have chosen𝑈 such that it’s dimension

dim(𝑈) equals 𝑛−dim(𝐾). Thus, every kernel vector we find halves
the remaining search space. Algorithm 3 implements this idea.

The algorithm takes as input an eviction set 𝐸 for an arbitrary

address 𝑥 . The set 𝐸 should be minimal, i.e., it should only evict

addresses from one cache set. We first construct an initial set of

kernel vectors obtained by collecting all sums of addresses in the

eviction set (if 𝑎, 𝑏 ∈ 𝐸, then 𝑓 (𝑎) = 𝑓 (𝑏) and thus 𝑓 (𝑎 + 𝑏) = 0).

This set spans a vector space that is a subspace of ker (𝑓). We store

in𝐾 a basis for this space. The next step generates a function ℎ with

ker (ℎ) = 𝐾 . toFunction(𝐾) can be implemented as in Algorithm 1

as basis(ker (𝐾𝑇))𝑇 . Next, we compute a vector space𝑈 according

to Proposition 5. We traverse𝑈 to check if it contains an address 𝑢

that is in the kernel of 𝑓 . If yes, we add it to 𝐾 . As 𝐾 spans a vector

space that is disjoint from 𝑈 (by definition of the direct sum), 𝑢

is linearly independent of the vectors in 𝐾 . If there is no such 𝑢,

ker (𝑓) = 𝐾 , and we can terminate. To ensure that we never check

the same vector twice for kernel membership, our implementation

of this algorithm caches all vectors 𝑢 that fail the eviction test for

the next iteration of the loop (not displayed in Algorithm 3).

Complexity. Since the cost of implementing a congruence check

depends on the target resource, we describe the algorithm’s com-

plexity with respect to the number of congruence tests needed. For

relevant ranges of the dimension 𝑛, other operations like checking

linear dependency are negligible in comparison.

In the worst case, if the eviction set 𝐸 contains only one vector

and dim(ker (𝑓)) = 1, we have to search the entire address space

for that single non-zero kernel vector. Then, the complexity is

exponential in 𝑛. In Section 5.6, we evaluate this algorithm in a

simulation for common cache and DRAM indexing functions, and

find that it infers the correct kernel with at most a few hundred

congruence tests, even when starting with a small eviction set. This

is because in practice, a random eviction set of size 𝑘 is likely to

contain close to𝑘 independent initial kernel vectors (with𝑘 < 𝑛−𝑚).

The first space𝑈 is then of size 2
𝑛−𝑘

, the next one of size 2
𝑛−𝑘−1

,

and so on, until we reach a space of size 2
𝑚
, and we confirm that

we found the entire kernel. Usually,𝑚 is significantly smaller than

𝑛, making the kernel quite large. We therefore quickly find the next

independent vector when searching the subspaces𝑈 .

This algorithm can also be applied if the function is partially

linear and we know the non-linear part. However, it requires more

than one eviction set. We describe the details in Appendix C.2.

5.5 Refining the Search Strategy
Algorithm 3 does not define how to search the subspace𝑈 for the

next kernel basis vector. In practice, it makes sense to first check the

standard unit vectors for kernel membership. Using this strategy,

we first find all address bits that are not used by the function: If bit 𝑖

is not used by 𝑓 , then the 𝑖th standard unit vector is in the kernel of

𝑓 . This approach quickly reduces the domain of the space we still

have to search. For example, if 𝑓 only uses 20 of the 48 address bits,

then 48 congruence checks will give us the first 28 basis vectors of

the kernel. As a result, the remaining space to search now has a

dimension of only 20.

Next, we search for all kernel vectors that have exactly two bits

set to 1. That way, we find all functions that use every address bit

at most once. We call these functions simple.

Definition 3. A linear function is 𝑓 simple if its matrix repre-
sentation 𝐴𝑓 has at most one 1 in each column.

Examples for simple functions are typical cache set indexing

functions that use only singleton bits and Intel’s DRAM bank func-

tions depicted in Figure 3. Our refined search strategy exploits the

fact that the kernel of simple functions is spanned by vectors with

at most two bits set to 1.

Proposition 6. If 𝑓 is simple, then ker (𝑓) is defined by a basis 𝐵
such that in each 𝑣 ∈ 𝐵, at most two bits are set to 1.

5.6 Experiments
We evaluate the linearity testing and the reverse-engineering algo-

rithm in a simulation environment implemented in Python. This

enables us to evaluate the algorithms not only with various previ-

ously reported functions but also with randomly generated ones,

which better highlights the boundaries of the algorithms.

5.6.1 Linearity Testing. We implement the bit-flip algorithm de-

scribed in Section 5.3. By construction, the algorithm does not

produce false negatives (linear functions labeled as non-linear). We

therefore investigate the false-positive rate for various non-linear

functions with domain F48
2
. The algorithm is parametric in the num-

ber of eviction sets and in the size of each of the sets. We construct

eviction sets as random collections of addresses that evaluate to the

same output. For each eviction set, we test bit flips for all 48 bits.

Random Functions. We first evaluate the algorithm on randomly

generated non-linear functions. The functions are generated with

Gaussian Elimination of Side-Channels: Linear Algebra for Memory Coloring CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Rank # Eviction Error Rate

Sets Fully Non-Linear Almost Linear

s = 5 s = 10 s = 20 s = 5 s = 10 s = 20

2 1 1% 0.6% 0.3% 5% 3.5% 1.9%

5 0% 0% 0% 0.2% 0% 0%

10 0% 0% 0% 0.1% 0% 0%

4 1 0% 0% 0% 3.6% 1.4% 1.3%

5 0% 0% 0% 0.2% 0% 0.1%

10 0% 0% 0% 0% 0% 0%

8 1 0% 0% 0% 25.5% 18.9% 13.4%

5 0% 0% 0% 2.1% 0.4% 0.6%

10 0% 0% 0% 0% 0% 0%

16 1 0% 0% 0% 40.0% 31.6% 27.5%

5 0% 0% 0% 5.1% 3.2% 2.7%

10 0% 0% 0% 1.4% 1.2% 0.5%

Table 1: Simulation of linearity check on random non-linear
functions. s indicates the size of the eviction set.

Type Function Rank # Evict. Error Rate

Sets s = 5 s = 10

Cache Intel Skylake, 20 cores [6, 21] 5 1 0.1% 0%

Slice 5 0% 0%

Intel Skylake, 24 cores [6, 21] 5 1 3.5% 0.1%

5 0% 0%

DRAM AMD Zen+, 16 GiB [12] 5 1 34.6% 24.3%

5 0.5% 0.1%

AMD Zen2, 16 GiB [12] 5 1 25.9% 12.3%

5 0% 0%

AMD Zen4, 32 GiB [12] 6 1 44.5% 41.5%

5 1.1% 1.0%

Table 2: Simulation of linearity testing on previously re-
ported non-linear functions. s indicates the eviction set size.

an AST depth of at most 5 using ¬,∧,∨, ⊕ as logical operators. Our

results are reported in Table 1. In a first set of experiments (Fully

Non-Linear), we generate random functions of varying rank and

check their linearity using an increasing number and size of eviction

sets. In the second set of experiments (Almost Linear), we increase

the difficulty by using functions in which only one of the output

bits is non-linear, the others are linear. We test each configuration

on 1000 randomly generated functions.

We see that our check reliably detects fully non-linear func-

tions; the error rate is less than 1% as long as the eviction set has

10 elements. For almost-linear functions, detecting linearity gets

naturally harder with an increasing rank and we see that a single

eviction set is clearly not sufficient. If we generate at least 5 eviction

sets with 10 or more addresses, the error rate is less than 5%. For

10 eviction sets of size 20 each, we obtain an error rate of only 0.5%

even for functions with rank 16.

Existing Functions. We also evaluate the check on previously

reverse-engineered non-linear indexing functions; results are given

in Table 2. The first two non-linear functions form the base se-

quence of slicing functions in Intel Skylake processors [21]. We

use a recently reverse-engineered simplified formulation of the

functions [6]. Both consist of 2 linear and 3 non-linear output bits.

The last two functions are DRAM bank indexing functions used in

AMD Zen+, Zen2, and Zen4 machines [12]. These functions first

subtract a constant offset from the address and then behave like

Type Rank Eviction # Congruence Checks

Set Size avg min max

Fully Random 2 1 104 50 171

10 83 48 115

4 1 255 123 447

10 214 91 383

8 1 4756 984 9552

10 3148 1080 7853

12 1 66k 20k 139k

10 55k 16k 138k

16 1 876k 260k 2359k

10 680k 122k 1718k

Simple Random 12 1 4274 4196 4383

10 4221 4162 4288

16 1 66k 66k 66k

10 66k 66k 66k

Table 3: Simulation of reverse-engineering random func-
tions.

a linear function. Computing constant offsets can be formulated

as non-linear Boolean functions (see Appendix C.3). All functions

under test are detected as non-linear with an error rate ≤ 1% when

using at least 5 eviction sets.

Discussion. Our evaluation shows that non-linearity can be very

reliably detected with the help of 5 to 10 eviction sets. Constructing

10 eviction sets is easily feasible on all currently used microarchi-

tectural components. This is a sterile simulation environment, of

course, and there will be noise on a real system. Our results make

us confident, though, that a sufficient number of repetitions will

yield similarly good results even with noise present.

5.6.2 Reverse-Engineering. To evaluate the reverse-engineering

algorithm, we count the number of congruence checks needed

to determine the kernel. As before, we test the approach on ran-

domly generated functions (Table 3) as well as previously reverse-

engineered indexing functions (Table 4).

Random Functions. We generate linear indexing functions of

varying rank where each output bit XORs a random subset of ad-

dress bits. We consider initial eviction set sizes of 1 (corresponding

to the eviction set size of DRAM row buffers) and 10 (an under-

approximation of typical cache eviction set sizes). We test each

configuration on 100 different functions and repeat each experi-

ment 10 times. As expected, the number of required congruence

tests grows exponentially with the rank of the function. A larger

eviction set size decreases the number of needed tests, but not

hugely. The experiments confirm that the average complexity of

the approach is indeed significantly below the worst-case complex-

ity of 2
𝑛
(remember that 𝑛 = 48). To evaluate the impact of our

search strategy, we also generate random simple functions accord-

ing to Definition 3. We see that simple functions are found with

significantly fewer congruence checks.

Existing Functions. Finally, we evaluate our approach on a range

of previously reverse-engineered linear indexing functions. To sim-

ulate actual eviction sets, we use an eviction set size 1 for DRAM

functions and 16 for L3 cache slicing and cache set functions. For

Intel machines, DRAM indexing functions are typically linear with

a small number of XORs (functions (1) - (3) are the ones provided

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos

Type CPU Rank Evict. Avg

Set #Congr.

Size Checks

DRAM (1) Intel Coffee Lake, 16 GiB [4, 36] 5 1 89

(2) Intel Coffee Lake, 8 GiB [4, 36] 4 1 69

(3) Intel Skylake, 4GiB [4, 36] 3 1 58

(4) Intel Haswell [23] 7 1 201

(5) AMD Zen+, 16GiB (linear part) [12] 5 1 231

(6) AMD Zen4, 16GiB (linear part) [12] 6 1 153

Cache (7) Intel Coffee Lake [6] 4 16 260

Slice (8) Intel Ivy Bridge to Haswell, 8 cores [20] 3 16 131

(9) Intel Ivy Bridge to Haswell, 4 cores [20] 2 16 78

𝑓L3 (10) all CPUs 11 16 43

Table 4: Simulation of reverse-engineering previously re-
ported indexing functions.

in Figure 3). For the recently reverse-engineered AMD DRAM in-

dexing functions (functions (5) and (6)), we tested our algorithm

on the linear part, simulating the assumption that the previously

applied bit-shift is known. This is realistic as the bit-shift is caused

by the fixed ranges for the memory-mapped I/O devices, which

can be inferred from the system’s primary PCI memory mapping

(see [12]). Intel’s cache slice functions usually XOR a larger number

of address bits (see Figure 2, which is function (7) in Table 4.) Lastly,

we also tested the L3 cache set indexing function, which consists

of singleton output bits. For all these functions, we need at most a

few hundred congruence checks to determine their kernel.

Discussion. Our experiments demonstrate that inferring linear

functions requires only a single eviction set and a few hundred

congruence tests. This is especially useful for reverse-engineering

DRAM functions, where current approaches perform congruence

checks for thousands of addresses to enable a brute-force search

that does not provide any formal guarantees (see the overview in

Section 5.1). Our contributions are on the algorithmic side and our

experiments were conducted in a simulation.We leave an evaluation

on real hardware to future work.

6 Related Work
Cache Coloring and Beyond. Memory coloring has a long his-

tory with different but related use cases. Early uses of cache col-

oring aimed at better single-tenant performance, e.g., to achieve

a cache-friendly layout of virtual memory pages, or to speed up

virtual-to-physical address translation [2, 14, 31]. Coloring has later

been used for performance predictability and worst-case execution

time analysis of multi-core systems [37]. Cache partitioning for

performance isolation and predictability for cloud workloads has

been achieved with coloring [16, 25] or with hardware mechanisms

such as CAT [27]; DRAM bank coloring for performance isolation

was explored in [43].

The first security applications of memory coloring aimed to

prevent side-channel attacks on a shared cache without considering

other shared resources [5, 28]. A recent security application is

the mitigation of RowHammer by coloring DRAM subarrays [19].

To our knowledge, the only attempt at simultaneous coloring of

two resources is [29], which partitions the L3 cache and DRAM

banks for performance isolation. It relies on the intersection of the

indexing functions’ output bits to be non-empty, which is a stricter

requirement than the join. Our work is the first to propose thorough

theoretical foundations and practical algorithms for comprehensive

multi-resource memory coloring.

Resource-Exclusive VMs. Concurrent work [34] introduces re-
source isolation contracts, which combine constraints on compute

scheduling with memory coloring schemes to achieve microarchi-

tectural isolation between VMs in the cloud. Using the algorithms

from Section 3, we can confirm that the coloring schemes inferred

in [34] are indeed isolating and uniformly utilizing.

Reverse-Engineering Indexing Functions. For an overview of re-

lated work on reverse-engineering linear indexing functions, we

refer to Section 5.1. For non-linear functions, there only exists very

few systematic approaches. These works exploit system knowl-

edge about subtracted offsets [12] or need to know the indexing

function’s output for a large number of addresses [6, 21].

Further Off-Core Resources. Finally, we remark that there are

microarchitectural components that we do not consider in this

paper. Some are not amenable to software-based partitioning, such

as the staging buffer, which is shared across all cores and accessed

during execution of specific instructions [24]. Others are potential

candidates for an extension of our coloring schemes. An example

is the mesh interconnect, for which recent approaches use smart

placements to prevent leakage through latencies [3, 35].

7 Conclusion
We have presented theoretical foundations and practical algorithms

for designing comprehensive memory coloring schemes for cloud

CPUs. Our algorithms simultaneously achieve isolation with re-

spect to shared resources while guaranteeing that private resources

are fully utilized. We have further presented design patterns for

indexing functions that maximize the number of available colors.

Lastly, we have shown how to reverse-engineer the algebraic kernel

of linear indexing functions under minimal assumptions.

Concurrent work [34] shows how modern hypervisors can lever-

age multi-resource coloring schemes to provide strong microarchi-

tectural isolation between guest VMs. Since the associated perfor-

mance overhead is small, such an approach provides practical and

principled protection against cross-VM side-channel attacks.

Acknowledgments
We would like to thank the anonymous reviewers for their help-

ful suggestions and comments. We also thank our colleagues at

Microsoft, in particular Oleksii Oleksenko, for their feedback.

References
[1] Azure. 2022. Hyper-V HyperClear. https://techcommunity.microsoft.com/

t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-

p/382429. Accessed: 2024-08-31.

[2] Edouard Bugnion, Jennifer M Anderson, Todd C Mowry, Mendel Rosenblum, and

Monica S Lam. 1996. Compiler-directed page coloring for multiprocessors. ACM
SIGPLAN Notices 31, 9 (1996), 244–255.

[3] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and

Mengjia Yan. 2022. Don’t mesh around: Side-channel attacks and mitigations on

mesh interconnects. In USENIX Security Symposium. USENIX Association.

[4] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuffrida,

and Kaveh Razavi. 2021. SMASH: Synchronized many-sided rowhammer attacks

from JavaScript. In USENIX Security Symposium. USENIX Association.

https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429
https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429
https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429

Gaussian Elimination of Side-Channels: Linear Algebra for Memory Coloring CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[5] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time protection:

the missing OS abstraction. In 14th EuroSys Conference. ACM.

[6] Lukas Gerlach, Simon Schwarz, Nicolas Faroß, and Michael Schwarz. 2024. Effi-

cient and generic microarchitectural hash-function recovery. (2024).

[7] Martin Heckel and Florian Adamsky. 2023. Reverse-engineering bank addressing

functions on amd cpus. https://dramsec.ethz.ch/papers/revengamd.pdf. Accessed:

2024-08-31.

[8] Christian Helm, Soramichi Akiyama, and Kenjiro Taura. 2020. Reliable reverse

engineering of Intel DRAM addressing using performance counters. In 2020 28th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE.

[9] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side

channel attacks against kernel space ASLR. In Symposium on Security and Privacy
(S&P). IEEE.

[10] Intel. 2022. 4th Gen Intel Xeon Processor Scalable Overview. https:

//www.intel.com/content/www/us/en/developer/articles/technical/fourth-

generation-xeon-scalable-family-overview.html.

[11] G. Irazoqui, T. Eisenbarth, and B. Sunar. 2015. Systematic reverse engineering

of cache slice selection in Intel processors. In Euromicro Conference on Digital
System Design (DSD). IEEE Computer Society.

[12] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej Bölcskei, and

Kaveh Razavi. 2024. ZenHammer: Rowhammer attacks on AMD zen-based

platforms. In USENIX Security Symposium. USENIX Association.

[13] The Linux Kernel. 2023. Core Scheduling. https://www.kernel.org/doc/html/

next/admin-guide/hw-vuln/core-scheduling.html. Accessed: 2024-08-31.

[14] Richard E. Kessler and Mark D. Hill. 1992. Page placement algorithms for large

real-indexed caches. ACM Transactions on Computer Systems (TOCS) (1992).
[15] T. Kessous and N. Gilboa. 2024. Prune+PlumTree - finding eviction sets at scale.

In Symposium on Security and Privacy (S&P). IEEE.
[16] Hyoseung Kim and Ragunathan Rajkumar. 2016. Real-time cachemanagement for

multi-core virtualization. In 13th International Conference on Embedded Software
(EMSOFT). ACM.

[17] Zili Kou, Sharad Sinha, Wenjian He, and Wei Zhang. 2022. Attack directories on

ARM Big.LITTLE processors. In 41st International Conference on Computer-Aided
Design (ICCAD). ACM.

[18] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-

level cache side-channel attacks are practical. In Symposium on Security and
Privacy (S&P). IEEE.

[19] Kevin Loughlin, Jonah Rosenblum, Stefan Saroiu, Alec Wolman, Dimitrios Skar-

latos, and Baris Kasikci. 2023. Siloz: Leveraging DRAM isolation domains to

prevent inter-VM rowhammer. In Symposium on Operating Systems Principles
(SOSP). ACM.

[20] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen,

and Aurélien Francillon. 2015. Reverse engineering intel last-level cache complex

addressing using performance counters. In Research in Attacks, Intrusions, and
Defenses (RAID). Springer.

[21] John D McCalpin. 2021. Mapping addresses to l3/cha slices in intel processors.
Technical Report. https://repositories.lib.utexas.edu/server/api/core/bitstreams/

7c5a5389-d124-41e0-bcbe-b5e95c03fc9b/content Accessed: 2024-08-31.

[22] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. cache attacks and counter-

measures: the case of AES. In CT-RSA.
[23] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAM addressing for Cross-CPU attacks.

In USENIX Security Symposium. USENIX Association.

[24] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.

2021. Crosstalk: Speculative data leaks across cores are real. In Symposium on
Security and Privacy (S&P). IEEE.

[25] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul England. 2009. Resource

Management for Isolation Enhanced Cloud Services. In Workshop on Cloud Com-
puting Security. ACM.

[26] Mark Seaborn. 2015. L3 cache mapping on Sandy Bridge CPUs.

https://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-on-sandy-

bridge-cpus.html. Accessed: 2024-08-31.

[27] Mohammad Shahrad, Sameh Elnikety, and Ricardo Bianchini. 2021. Provisioning

differentiated last-level cache allocations to VMs in public clouds. In Symposium
on Cloud Computing (SoCC). ACM.

[28] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. 2011. Limiting cache-based

side-channel in multi-tenant cloud using dynamic page coloring. In International
Conference on Dependable Systems and Networks Workshops. IEEE/IFIP.

[29] Noriaki Suzuki, Hyoseung Kim, Dionisio De Niz, Bjorn Andersson, Lutz Wrage,

Mark Klein, and Ragunathan Rajkumar. 2013. Coordinated bank and cache

coloring for temporal protection of memory accesses. In International Conference
on Computational Science and Engineering. IEEE.

[30] Simon M. Tam, Harry Muljono, Min Huang, Sitaraman Iyer, Kalapi Royneogi,

Nagmohan Satti, Rizwan Qureshi, Wei Chen, Tom Wang, Hubert Hsieh, Sujal

Vora, and Eddie Wang. 2018. SkyLake-SP: A 14nm 28-Core Xeon processor. In

IEEE International Solid-State Circuits Conference.

[31] George Taylor, Peter Davies, and Michael Farmwald. 1990. The TLB slice – a

low-cost high speed address translation mechanism. In Annual International
Symposium on Computer Architecture. IEEE.

[32] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi

Miyauchi. 2003. Cryptanalysis of DES implemented on computers with cache. In

CHES.
[33] Pepe Vila, Boris Köpf, and José F. Morales. 2019. Theory and practice of finding

eviction sets. In Symposium on Security and Privacy (S&P). IEEE.
[34] Stavros Volos, Cédric Fournet, Jana Hofmann, Boris Köpf, and Oleksii Oleksenko.

2024. Principled microarchitectural isolation on cloud CPUs. In Conference on
Computer and Communications Security (CCS). ACM.

[35] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. 2022. MeshUp: Stateless

cache side-channel attack on CPU mesh. In Symposium on Security and Privacy
(S&P). IEEE.

[36] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal. 2020. DRAMDig:

A knowledge-assisted tool to uncover DRAM address mapping. Design Automa-
tion Conference (DAC).

[37] Bryan C Ward, Jonathan L Herman, Christopher J Kenna, and James H Ander-

son. 2013. Making shared caches more predictable on multicore platforms. In

Euromicro Conference on Real-Time Systems. IEEE.
[38] Wikipedia. 2024. Kernel (Linear Algebra). https://en.wikipedia.org/wiki/Kernel_

(linear_algebra). Accessed: 2024-08-31.

[39] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. 2016. One

bit flips, one cloud flops: Cross-VM row aammer attacks and privilege escalation.

In USENIX Security Symposium. USENIX Association.

[40] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy

Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side channel

attacks in a non-inclusive world. In Symposium on Security and Privacy (S&P).
IEEE.

[41] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A high resolution, low

noise, L3 cache side-channel attack. In USENIX Security Symposium. USENIX

Association.

[42] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. 2015. Mapping

the Intel last-level cache. Cryptology ePrint Archive, Paper 2015/905. https:

//eprint.iacr.org/2015/905

[43] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. 2014.

PALLOC: DRAM bank-aware memory allocator for performance isolation on

multicore platforms. In Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE.

[44] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz. 2023. (M)WAIT

for It: Bridging the gap between microarchitectural and architectural side chan-

nels. In USENIX Security Symposium. USENIX Association.

A Proofs of Section 2
Proposition 7. 𝑃1 ⊥ 𝑃2 iff 𝑃2 ⊥ 𝑃1.

Proof. Let 𝐶1 ∈ 𝑃1,𝐶2 ∈ 𝑃2. We have

|𝐶1 ∩𝐶2 |
|𝐶2 |

=
|𝐶1 |
|𝑀 | ≡ |𝐶1 ∩𝐶2 | =

|𝐶1 | · |𝐶2 |
|𝑀 |

and thus

|𝐶1 ∩𝐶2 |
|𝐶1 |

=
|𝐶1 | · |𝐶2 |
|𝐶1 | · |𝑀 | =

|𝐶2 |
|𝑀 |

□

Proposition 1. Let 𝑓 = (𝑓1, . . . , 𝑓𝑚) and 𝑃 be a partition with
𝑃𝑓𝑖 ⊑ 𝑃 for some 𝑓𝑖 . Then

• 𝑃𝑓 ⊑ 𝑃
• 𝑃𝑓𝑗 ⊥ 𝑃𝑓𝑖 implies 𝑃𝑓𝑗 ⊥ 𝑃

Proof. The first bullet point follows simply from 𝑃𝑓 ⊑ 𝑃𝑓𝑖 (by
definition of 𝑓). Transitively, we obtain 𝑃𝑓 ⊑ 𝑃𝑓𝑖 ⊑ 𝑃 . For the

second bullet point, assume 𝑃𝑓𝑗 ⊥ 𝑃𝑓𝑖 and let 𝐶 𝑗 ∈ 𝑃𝑓𝑗 and 𝐶 ∈ 𝑃 .
We show 𝑃 ⊥ 𝑃𝑓𝑗 using commutativity of ⊥.��𝐶 ∩𝐶 𝑗

����𝐶 𝑗 �� =

��(𝐶1 ∪ . . . ∪𝐶𝑛) ∩𝐶 𝑗
����𝐶 𝑗 ��

where each 𝐶𝑖 ∈ 𝑃𝑓𝑖 because 𝑃𝑓𝑖 ⊑ 𝑃

https://dramsec.ethz.ch/papers/revengamd.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.kernel.org/doc/html/next/admin-guide/hw-vuln/core-scheduling.html
https://www.kernel.org/doc/html/next/admin-guide/hw-vuln/core-scheduling.html
https://repositories.lib.utexas.edu/server/api/core/bitstreams/7c5a5389-d124-41e0-bcbe-b5e95c03fc9b/content
https://repositories.lib.utexas.edu/server/api/core/bitstreams/7c5a5389-d124-41e0-bcbe-b5e95c03fc9b/content
https://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html
https://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html
https://en.wikipedia.org/wiki/Kernel_(linear_algebra)
https://en.wikipedia.org/wiki/Kernel_(linear_algebra)
https://eprint.iacr.org/2015/905
https://eprint.iacr.org/2015/905

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos

=

��𝐶1 ∩𝐶 𝑗
�� + . . . + ��𝐶𝑛 ∩𝐶 𝑗

����𝐶 𝑗 ��
because 𝐶1, . . . ,𝐶𝑛 are pairwise disjoint

=

��𝐶1

��
|𝑀 | + . . . +

|𝐶𝑛 |
|𝑀 | because 𝑃𝑓𝑖 ⊥ 𝑃𝑓𝑗

=
|𝐶 |
|𝑀 |

□

B Proofs of Section 3
Proposition 2. Let 𝑓1, 𝑓2 be linear functions defined on F𝑛

2
. Then

𝑃𝑓1 ⊔ 𝑃𝑓2 = F𝑛
2
/ker (𝑓1)+ker (𝑓2)

Proof. Any partition 𝑃 defines an equivalence relation ∼𝑃 with

𝑥 ∼𝑃 𝑦 iff there is a 𝐶 ∈ 𝑃 such that 𝑥,𝑦 ∈ 𝐶 . We write ∼⊔ for the

equivalence relation defined by 𝑃𝑓1 ⊔𝑃𝑓2 and ∼/ for the one defined
by F𝑛

2
/ker (𝑓1)+ker (𝑓2) . We show 𝑥 ∼⊔ 𝑦 iff 𝑥 ∼/ 𝑦.

By the definition of the join as finest relation that refines both

𝑃𝑓1 and 𝑃𝑓2 , we have 𝑥 ∼⊔ 𝑦 iff there exist 𝑧0, . . . , 𝑧𝑛 such that

𝑥 ∼𝑓1 𝑧0 ∼𝑓2 𝑧1 ∼𝑓1 . . . ∼𝑓1 𝑧𝑛 ∼𝑓2 𝑦
As argued in Section 3.1, 𝑥 ∼𝑓1 𝑥 ′ iff 𝑥 + 𝑥 ′ ∈ ker (𝑓1), which is

equivalent to 𝑥 ′ = 𝑥 + 𝑎 for some 𝑎 ∈ ker (𝑓1). Thus, 𝑧0 = 𝑥 + 𝑎0
for 𝑎 ∈ ker (𝑓1), 𝑧1 = 𝑥 + 𝑎0 + 𝑎1 for 𝑎1 ∈ ker (𝑓2). Continuing
the argument, 𝑦 = 𝑥 + 𝑎0 + 𝑎1 + . . . + 𝑎𝑛 , where each 𝑎𝑖 is either
in ker (𝑓1) or in ker (𝑓2). By the definition of the sum of vector

spaces, 𝑎0 + . . . + 𝑎𝑛 ∈ ker (𝑓1) + ker (𝑓2). This is equivalent to
𝑦 ∈ 𝑥 + (ker (𝑓1) + ker (𝑓2)) and 𝑥 ∼/ 𝑦. □

Lemma 1. Algorithm 1 computes 𝐴ℎ with 𝑃ℎ = 𝑃𝑓1 ⊔ 𝑃𝑓2 .

Proof. Let 𝑉 = ker (𝑓1) + ker (𝑓2). With Proposition 2, our aim

is to compute a function ℎ with ker (ℎ) = 𝑉 . By definition of the

sum of vector spaces, 𝑣1, . . . , 𝑣𝑡 spans 𝑉 . If we find 𝐴 with 𝐴𝑤 = 0

for exactly all linear combinations 𝑤 of 𝑣1, . . . , 𝑣𝑡 , then 𝐴 defines

ℎ. Equivalently, 𝐴 · (𝑣1, . . . , 𝑣𝑡) = 0 (where 0 is the 0-matrix). Let

𝐵 = (𝑣1, . . . , 𝑣𝑡). Since𝐴 ·𝐵 = 0 iff 𝐵𝑇 ·𝐴𝑇 = 0, we can choose𝐴𝑇 as

the basis 𝑢1, . . . , 𝑢𝑙 of the kernel of 𝐵
𝑇
. Consequently, we have 𝐴 =

(𝑢1, . . . , 𝑢𝑙)𝑇 . Then, by construction, ker (𝑓1) + ker (𝑓2) ⊆ ker (𝐴). It
remains to show ker (𝑓1) + ker (𝑓2) = ker (𝐴). To do so, it is known

to be sufficient to show dim(ker (𝑓1) + ker (𝑓2)) = dim(ker (𝐴)),
where dim is the dimension of a vector space. Let’s recapitulate the

following known algebraic facts:

• For any linear function𝑔 :𝑊 𝑛 →𝑊𝑚
, we have𝑛 = dim(im(𝑔))+

dim(ker (𝑔)), where im(𝑔) is the image of a function.

• Furthermore, dim(im(𝑔)) = rank
(
𝐴𝑔

)
= rank

(
𝐴𝑇𝑔

)
, where

the rank of a matrix is the number of linearly independent column

vectors of a matrix.

With that we get:

dim(ker (𝐴)) = 𝑛 − dim(im(𝐴))

= 𝑛 − rank
(
𝐴𝑇

)
= 𝑛 − dim(ker (𝐵𝑇)) by definition of 𝐴

= 𝑛 − (𝑛 − rank (𝐵))
= dim(ker (𝑓1) + ker (𝑓2)) by definition of 𝐵

□

Proposition 3. Let ℎ,𝑔 be linear functions defined on F𝑛
2
. Then the

following are equivalent
(1) 𝑃ℎ ⊥ 𝑃𝑔

(2) rank
([
𝐴𝑔
𝐴ℎ

])
= rank (𝐴ℎ) + rank

(
𝐴𝑔

)
Proof. First observe that for any 𝑓 , rank

(
𝐴𝑓

)
= dim(im(𝑓)).

With the dimension formula 𝑛 = dim(im(𝑓)) + dim(ker (𝑓)), we
get dim(ker (𝑓)) = 𝑛 − rank (𝑓). Also, F𝑛

2
is a finite vector space of

cardinality 2
𝑛
. Finally, remember that for linear 𝑓 , for any 𝐶 ∈ 𝑃𝑓 ,

|𝐶 | = |ker (𝑓) |.
Now let 𝐴 ∈ 𝑃ℎ, 𝐵 ∈ 𝑃𝑔 . By definition, 𝐴 ∩ 𝐵 ∈ 𝑃 (ℎ,𝑔) . We obtain

|𝐴 ∩ 𝐵 |
|𝐵 | =

|𝐴|
2
𝑛

≡ 2
dim(ker ((ℎ,𝑔))) · 2𝑛 = 2

dim(ker (ℎ)) · 2dim(ker (𝑔))

≡ 𝑛 + dim(ker ((ℎ,𝑔))) = dim(ker (ℎ)) + dim(ker (𝑔))
≡ 𝑛 + (𝑛 − rank ((ℎ,𝑔))) = (𝑛 − rank (ℎ)) + (𝑛 − rank (𝑔))
≡ rank ((ℎ,𝑔)) = rank (ℎ) + rank (𝑔)

□

C Additional Material Section 5
C.1 Proofs
Lemma 3. A function 𝑓 is congruent to linear iff

∀𝑥,𝑦, 𝑒𝑖 . 𝑓 (𝑥) = 𝑓 (𝑦) ⇒ 𝑓 (𝑥 + 𝑒𝑖) = 𝑓 (𝑦 + 𝑒𝑖),
where 𝑒𝑖 is a standard unit vector.

Proof. We show an equivalent claim, namely that 𝑓 is congruent

to linear iff

∀𝑥,𝑦, 𝑑. 𝑓 (𝑥) = 𝑓 (𝑦) ⇒ 𝑓 (𝑥 + 𝑑) = 𝑓 (𝑦 + 𝑑), (1)

where 𝑑 is an arbitrary vector. These two statements are equivalent:

One direction is trivial (𝑑 can be instantiated with 𝑒𝑖). The other

direction can be obtained by repeated application of Equation (1).

We now show both directions of the statement.

• If there is a linear 𝑔 with 𝑃𝑓 = 𝑃𝑔 , then Equation (1) holds for

𝑔 because it is linear and transfers to 𝑓 because 𝑃𝑓 = 𝑃𝑔 .

• Assume Equation (1) holds. To show that there is a linear

function 𝑔 with 𝑃𝑓 = 𝑃𝑔 , we show that 𝑓 has a proper kernel, i.e.

there is a vector space𝐾 such that 𝑘 ∈ 𝐾 iff ∀𝑥 . 𝑓 (𝑥) = 𝑓 (𝑥 +𝑘). We

define 𝐾 by fixing an arbitrary vector 𝑣 and setting 𝐾 = {𝑘 | 𝑓 (𝑣) =
𝑓 (𝑣 +𝑘)}. We show that 𝐾 is a vector space, i.e., closed under scalar

multiplication and addition:

– 𝐾 is closed under scalar multiplication because 0 ∈ 𝐾 .
– 𝐾 is closed under addition: ∀𝑥,𝑦 ∈ 𝐾. 𝑥 + 𝑦 ∈ 𝐾 . From 𝑓 (𝑣) =
𝑓 (𝑣 +𝑥) it follows 𝑓 (𝑣 +𝑦) = 𝑓 (𝑣 +𝑥 +𝑦) because of Equation (1).

From 𝑓 (𝑣) = 𝑓 (𝑣 + 𝑦) thus follows 𝑓 (𝑣) = 𝑓 (𝑣 + 𝑥 + 𝑦) and thus

𝑥 + 𝑦 ∈ 𝐾 .
Finally, we show 𝑘 ∈ 𝐾 iff ∀𝑥 . 𝑓 (𝑥) = 𝑓 (𝑥 + 𝑘). This holds because
𝑓 (𝑣) = 𝑓 (𝑣 + 𝑘) iff 𝑓 (𝑣 + (𝑣 + 𝑥)) = 𝑓 (𝑣 + 𝑘 + (𝑣 + 𝑥)) (because of
Equation (1)) iff 𝑓 (𝑥) = 𝑓 (𝑥 + 𝑘).

□

Proposition 5. Let ℎ : F𝑛
2
→ F𝑚

2
be a linear function and𝑈 ⊆ F𝑛

2

be a minimal subspace with ℎ(𝑈) = im(ℎ). Then ker (ℎ) ⊕ 𝑈 = F𝑛
2
.

Gaussian Elimination of Side-Channels: Linear Algebra for Memory Coloring CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Proof. We need to show two things. First, we have to show that

𝐾 ∩ 𝑈 = ∅, to justify the application of the direct sum operator.

Second, we need to show that 𝐾 +𝑈 = F𝑛
2
.

• Show: 𝐾 ∩ 𝑈 = ∅. Assume there was a 𝑢 with 𝑢 ∈ 𝐾 and

𝑢 ∈ 𝑈 . Let𝑢1, . . . , 𝑢𝑚 be a basis of𝑈 . Thus, there is a non-empty set

{𝑢𝑖1 , . . . , 𝑢𝑖𝑙 } ⊆ {𝑢1, . . . , 𝑢𝑚} such that𝑢 = 𝑢𝑖1+. . .+𝑢𝑖𝑙 . Asℎ(𝑢) = 0,

we have ℎ(𝑢𝑖1) + . . . + ℎ(𝑢𝑖𝑙) = 0. But then either ℎ(𝑢𝑖 𝑗) = 0 or

ℎ(𝑢𝑖 𝑗) = ℎ(𝑢𝑖𝑘) for some 𝑗, 𝑘 ∈ [1, . . . , 𝑙]. In either case, this breaks

the assumption that𝑈 is a minimal space such that ℎ(𝑈) = im(ℎ).
• Show: 𝐾 + 𝑈 = F𝑛

2
. 𝐾 + 𝑈 ⊆ F𝑛

2
follows trivially as both

𝐾 and 𝑈 are subspaces of F𝑛
2
. It is a known fact that dim(ℎ) =

dim(ker (ℎ)) + dim(im(ℎ)). Since dim(im(ℎ)) = dim(𝑈), and 𝐾 ∩
𝑈 = ∅, dim(𝐾) + dim(𝑈) = 𝑛 and equality follows.

□

Proposition 6. If 𝑓 is simple, then ker (𝑓) is defined by a basis 𝐵
such that in each 𝑣 ∈ 𝐵, at most two bits are set to 1.

Proof. Let 𝑋unused ⊆ 𝑥1, . . . , 𝑥𝑛 be all address bits that are not

used in 𝑓 . Let furthermore bits(𝑟) ⊆ 𝑥1, . . . , 𝑥𝑛 be all bits that are

set to 1 in a row 𝑟 of 𝐴𝑓 . Similarly, bits(𝑎) ⊆ 𝑥1, . . . , 𝑥𝑛 denotes all

bits set to 1 in an address 𝑎. Since 𝑓 is simple, 𝑎 ∈ ker (𝑓) iff either

• 𝑎 has exactly one bit 𝑥𝑖 set and 𝑥𝑖 ∈ 𝑋unused , or
• for each row 𝑟 in 𝐴𝑓 , |bits(𝑟) ∩ bits(𝑎) | is even.

Thus ker (𝑓) is spanned by the set that contains all

• standard vectors 𝑒𝑖 with 𝑥𝑖 ∈ 𝑋unused and

• addresses 𝑎 with exactly 𝑖, 𝑗 set in 𝑎 and for some row 𝑟 of

𝐴𝑓 , 𝑥𝑖 , 𝑥 𝑗 ∈ bits(𝑟).
□

C.2 Combination with Non-linear Functions
As afterthought, we discuss how we might be able to reverse-

engineer the linear output bits of an indexing function for the

case that other bits of the function are non-linear. Concretely, we

consider the case that the matrix representation of 𝑓 = (𝑓𝑛𝑙 , 𝑓𝑙),
where 𝑓𝑛𝑙 is a non-linear function and 𝑓𝑙 is a linear function. The

question is: Can we still reverse-engineer 𝑓𝑙 , still assuming that we

cannot determine the value of 𝑓 (𝑥) and do not know its rank𝑚?

We discuss two scenarios. In the first, we assume that 𝑓𝑛𝑙 is fully

known. We show that we can adapt Algorithm 3, but establish that

we might need more than one eviction set. In the second scenario,

𝑓 is entirely unknown. For this case, we illustrate the inherent

difficulties of the problem on examples.

KnownNon-linear Part. Assumewe know 𝑓𝑛𝑙 andwant to reverse-

engineer 𝑓𝑙 using Algorithm 3. We need to determine the kernel of

𝑓𝑙 . Since 𝑓𝑙 forms only a subset of the output bits of 𝑓 , we might have

𝑓 (𝑥 + 𝑦) ≠ 𝑓 (𝑥) even if 𝑦 ∈ ker (𝑓𝑙). For some other 𝑥 ′, however,
we might have 𝑓 (𝑥 ′ + 𝑦) = 𝑓 (𝑥 ′). To illustrate this issue, consider

the following example.

Example 12. Let 𝑓𝑛𝑙 = 𝑥1 ∨ 𝑥2 and 𝑓𝑙 = 𝑥2 ⊕ 𝑥3. For 𝑦 = 𝑥 =

(
1

0

0

)
,

we have𝑦 ∈ ker (𝑓𝑙), but 𝑓 (𝑥) =
(
1

0

)
≠
(
0

0

)
= 𝑓 (𝑥 +𝑦). For 𝑥 ′ =

(
1

1

1

)
,

on the other hand, 𝑓 (𝑥 ′) =
(
1

0

)
= 𝑓 (𝑥 ′ +𝑦). In particular, there is no

𝑥 s.t., for all 𝑦 ∈ ker (𝑓𝑙), 𝑓 (𝑥) = 𝑓 (𝑥 + 𝑦).

The above example illustrates that in order to apply Algorithm 3,

we need to create an eviction set for more than one address 𝑥 .

The number of eviction sets needed can be computed from the

non-linear function 𝑓𝑛𝑙 , resulting in the following adaption of Al-

gorithm 3:

(1) Compute for each address 𝑥 the set 𝑆𝑥 = {𝑦 | 𝑓𝑛𝑙 (𝑥) =

𝑓𝑛𝑙 (𝑥 + 𝑦)}.
(2) Pick a minimal set 𝑋 of addresses s.t,

⋃
𝑥∈𝑋 𝑆𝑥 = F𝑛

2
. Com-

pute an eviction set for each 𝑥 ∈ 𝑋 .
(3) To test if𝑦 ∈ ker (𝑓𝑙), check congruencewith the address𝑥 for

which 𝑦 ∈ 𝑆𝑥 holds. Since 𝑦 ∈ 𝑆𝑥 , we know that 𝑓𝑛𝑙 (𝑥 +𝑦) = 𝑓𝑛𝑙 (𝑥),
so 𝑥 + 𝑦 is evicted by 𝑥 ’s eviction set iff 𝑦 ∈ ker (𝑓𝑙).
We leave an estimate for theminimal number of eviction sets needed

for this approach for future work.

Unknown Non-linear Part. Finally, we point out the challenges
in reverse-engineering 𝑓𝑙 if 𝑓𝑛𝑙 is unknown. The following example

illustrates that there might be several possibilities to split a non-

linear function 𝑓 into a non-linear part 𝑓𝑛𝑙 and a linear part 𝑓𝑙 .

Example 13. Let 𝑓 = (𝑓1, 𝑓2) with 𝑓1 = (𝑥1 ∨ 𝑥2) ⊕ 𝑥3 and
𝑓2 = (𝑥1 ∨ 𝑥2) ⊕ ¬𝑥4. Individually, both 𝑓1 and 𝑓2 are non-linear
functions. However, there exist functions 𝑔 and ℎ that both have the
same preimages as 𝑓 :

𝑔1 = (𝑥1 ∨ 𝑥2) ⊕ 𝑥3, 𝑥3 ⊕ 𝑥4
ℎ1 = (𝑥1 ∨ 𝑥2) ⊕ ¬𝑥4, 𝑥3 ⊕ 𝑥4

The above example demonstrates that we might be able to factor

out linear parts of a function even if individually, all output bits

are non-linear. It is unclear, though, how to extract linear output

bits from non-linear functions. The example shows that we cannot

search for “linear” input bits: In ℎ, bit 𝑥4 is not used by the non-

linear function ℎ1 and could be called linear; in 𝑔, this would be bit

𝑥3. ℎ and 𝑔 have the same preimages, though, and should therefore

be considered equivalent. We leave the question of how to reverse-

engineer linear parts of a non-linear function for future work.

C.3 Implementing Offsets with Boolean
Functions

Assume we want to subtract a constant 𝑐 = 2
𝑖
from an address 𝑥 . If

bit 𝑥𝑖 is 1, we can just flip it to 0. If it is 0, however, we need to flip

it to 1, and attempt to flip bit 𝑖 + 1 from 1 to 0 instead. Here, again,

if bit 𝑥𝑖+1 is 0, we flip it to 1 and continue our search for the first

non-zero bit. This approach can be expressed with the following

non-linear function 𝑓 , which takes the value of bit 𝑥 𝑗 and returns

its value in the address 𝑥 − 𝑐 . For a linear function 𝑔, if we replace
every occurrence of 𝑥 𝑗 by 𝑓 (𝑥 𝑗), we obtain a non-linear function

that first subtracts 𝑐 and then applies 𝑔.

𝑓 (𝑥 𝑗) = 𝑥 𝑗 if 𝑗 < 𝑖

= ¬𝑥𝑖 if 𝑗 = 𝑖

= (𝑥𝑖 ∨ . . . ∨ 𝑥 𝑗−1) ⊕ ¬𝑥 𝑗 if 𝑗 > 𝑖

D Artifact
The artifact of this paper reproduces our linearity testing and

reverse-engineering results. Specifically, the reviewers confirmed

the numbers reported in Tables 1 to 4 in Section 5.6.

	Abstract
	1 Introduction
	2 Modelling Memory Coloring
	2.1 Partitions
	2.2 Memory Coloring
	2.3 Isolation Through Coloring
	2.4 Uniform Utilization Despite Coloring
	2.5 Memory Coloring as a Constraint System
	2.6 Coloring and Composition

	3 Coloring with Linear Functions
	3.1 Linear Functions
	3.2 Computing the Join of Partitions
	3.3 Computing Uniformly Utilizing Partitions
	3.4 Design Patterns for Indexing Functions

	4 Case Study: Coloring Intel CPUs
	4.1 Background: Microarchitecture of Intel CPUs
	4.2 Coloring the Past: Coffee Lake & Skylake(-X)
	4.3 Coloring the Future: Designing Indexing Functions for Sapphire Rapids

	5 Inferring Linear Indexing Functions
	5.1 State of the Art
	5.2 Congruence Tests and Eviction Sets
	5.3 Testing for Linearity
	5.4 Reverse-Engineering the Kernel
	5.5 Refining the Search Strategy
	5.6 Experiments

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Proofs of Section 2
	B Proofs of Section 3
	C Additional Material Section 5
	C.1 Proofs
	C.2 Combination with Non-linear Functions
	C.3 Implementing Offsets with Boolean Functions

	D Artifact

