
RUSTASSISTANT: Using LLMs to Fix Compilation
Errors in Rust Code

Pantazis Deligiannis
Microsoft Research, USA

Email: pdeligia@microsoft.com

Akash Lal, Nikita Mehrotra, Rishi Poddar, Aseem Rastogi
Microsoft Research, India

Email: {akashl, nmehrotra, t-ripoddar, aseemr}@microsoft.com

Abstract—The Rust programming language, with its safety
guarantees, has established itself as a viable choice for low-
level systems programming language over the traditional, unsafe
alternatives like C/C++. These guarantees come from a strong
ownership-based type system, as well as primitive support for
features like closures, pattern matching, etc., that make the code
more concise and amenable to reasoning. These unique Rust
features also pose a steep learning curve for programmers.

This paper presents a tool called RUSTASSISTANT that lever-
ages the emergent capabilities of Large Language Models (LLMs)
to automatically suggest fixes for Rust compilation errors. RUS-
TASSISTANT uses a careful combination of prompting techniques
as well as iteration between an LLM and the Rust compiler to
deliver high accuracy of fixes. RUSTASSISTANT is able to achieve
an impressive peak accuracy of roughly 74% on real-world
compilation errors in popular open-source Rust repositories. We
also contribute a dataset of Rust compilation errors to enable
further research.

I. INTRODUCTION

Code comprehension capabilities of Large Language Mod-
els (LLMs) are disrupting the way we build and maintain
software systems. LLMs are rapidly becoming an integral
part of the workflow, starting from software development [1],
to testing [2], repair and debugging [3], [4], [5], [6], [7],
[8], [9], [10]. One can interact with pre-trained LLMs [11],
[12], [13], [14], [15], without any need of fine-tuning, through
prompts that details a particular task simply with instructions
in natural language. Using prompt engineering to study and
harness LLMs has become an active area of research [16],
[17].

In this paper, we consider the task of fixing Rust [18]
compilation errors using LLMs. Rust, with its safety guar-
antees, has established itself as a viable choice for low-level
systems programming language over the traditional, unsafe
alternatives like C/C++. Rust enjoys strong support from
both the open-source community [19], [20], and technology
companies alike [21], [22].

The Rust typechecker, with a novel borrow checker at its
core, ensures that Rust programs are free of memory-safety
errors and data races that have plagued low-level systems for
decades.1 In addition, Rust has primitive support for features
like closures, pattern matching, etc., that make the code more
concise and amenable to reasoning.

1A Microsoft study found that ∼ 70% of the vulnerabilities Microsoft
assigns a CVE each year continue to be memory safety issues [23].

15 struct Foo { map: RwLock<HashMap<String, Bar>> }
16

17 impl Foo {
18 pub fn get(&self, key: String) → &Bar {
19 self.map.write().unwrap().entry(key).or insert(Bar::new())
20 }
21 }

Fig. 1: Snippet from a Stack Overflow question

However, this also means that there is a steep learning curve
for programmers coming to Rust for the first time. Although
Rust tooling (compiler error messages, IDE support [24]) is
well-designed to help programmers understand and fix the
compilation errors, they can still be intimidating for Rust
beginners. A recent survey by the Rust team [25] reports that
83% of the responders who adopted Rust at work found it
to be challenging. Though adopting a new language and its
ecosystem is always challenging, 27% of the responders also
say that using Rust is at times a struggle.

Consider, for example, Figure 1 showing snippet from a
Stack Overflow question [26] about the following error that
the Rust compiler emits on this code:

error[E0515]: cannot return value referencing temporary value
−−> src/example.rs:21:4

|
19 | self.map.write().unwrap().entry(key).or insert(Bar::new())

| −−−−−−−−−−−−−−−−−−−−−ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
| |
| returns a value referencing data owned by the current func
| temporary value created here

For non-experts, making sense of the Rust borrow checking
rules, especially with mutex and concurrency can be daunting.
And even if the solution is conceptually clear, one still needs
to know about Rust libraries that can be used for the fix.

Contributions: We present RUSTASSISTANT, an LLM-
based tool for automatically fixing Rust compilation errors.
RUSTASSISTANT specializes prompt construction for the pur-
pose of fixing compilation errors, and uses a novel changelog
format in order to harness the LLM capabilities (Section III).
RUSTASSISTANT is capable of generating non-trivial fixes that
are required for real-world scenarios. Section II shows how
RUSTASSISTANT is able to fix the error described above.

To evaluate RUSTASSISTANT, we built a dataset of Rust
compilation errors collected from three different sources:
(a) 270 micro-benchmarks that we have written ourselves,

covering 270/506 official Rust error codes [27], (b) 50 Rust
programs collected from Stack Overflow questions, and (c)
182 GitHub commits with compilation errors from the top-
100 Rust crates from crates.io (Section IV).

Using RUSTASSISTANT, we systematically study and eval-
uate capabilities of two LLMs, GPT-3.5 [11] and GPT-
4 [12], for fixing Rust compilation errors. With GPT-4, we
find that RUSTASSISTANT is able to fix 92.59% of the
micro-benchmarks, 72% of the Stack Overflow programs, and
73.63% of the GitHub commits. We also find that GPT-
4 performs better than GPT-3.5 in the task. We report on
several ablation studies, to investigate the impact of prompting
variations (Section V).

We also demonstrate the generalizability of RUSTASSIS-
TANT beyond compilation errors. With only minor prompt
modifications, it can handle linter errors generated by Rust
Clippy, one of the most popular static analysis tool for Rust
[28]. RUSTASSISTANT achieves an accuracy of 75% on the
top-10 Rust crates for fixing Clippy-reported errors, which is
almost 2.4 times better fix rate than Clippy’s own auto-fix
feature (RQ4, Section V).

We plan to open-source both our dataset as well as the
implementation of RUSTASSISTANT2.

II. OVERVIEW

This section provides an overview of RUSTASSISTANT and
walks through the example from Section I.

Scope: Our goal is to build a toolchain and systematically
evaluate the capabilities of LLMs for generating fixes for
Rust compilation errors. These fixes must pass the compiler
and must also retain the intended semantics of the code. The
former is an objective criterion while the latter is subjective.
Since the code that we start with is not even well-typed, let
alone have a well-defined semantics, one requires external
judgement to assess the quality of a fix. In the evaluation of
RUSTASSISTANT (Section V), we either rely on test cases (fix
must build and pass the test) or a comparison with the actual
fix made by a developer to establish quality.

We focus on fixing code-related issues and, thus, consider
editing only the Rust source files. Errors that require changing
a configuration (e.g., adding a package to a .toml file) are
currently out of scope. We also do not consider errors related
to the use of the unsafe keyword, which provides an escape
hatch from the typechecker.3

Example: The code snippet in Figure 1 contains struct
Foo, which maintains a HashMap mapping String keys to Bar
values. The hashmap is concurrency-protected with a RwLock,
a locking mechanism in Rust that allows multiple readers but
at-most one writer at a time. The programmer’s intent in the
function get is to return a reference to the value mapped to
key in the hashmap.

2See https://aka.ms/rust-build-fix
3We note that the unsafe keyword actually does not turn off all type-

checking in Rust. In some cases, especially when interacting with C APIs,
an idiomatic translation might necessarily require the use of unsafe. Inves-
tigating the performance of LLMs in generating idomatic unsafe code, while
interesting, is outside the scope of this paper.

ChangeLog:1@src/example.rs
FixDescription: Change the return type of the ’get’ method to
return an Arc<Bar> and wrap the Bar in an Arc when inserting
it into the HashMap.
OriginalCode@19−23:
[19] impl Foo {
[20] pub fn get(&self, key: String) → &Bar {
[21] self.map.write().unwrap().entry(key).or insert(Bar::new())
[22] }
[23] }
FixedCode@19−24:
[19] impl Foo {
[20] pub fn get(&self, key: String) → std::sync::Arc<Bar> {
[21] self.map.write().unwrap().entry(key).or insert with(
[22] || std::sync::Arc::new(Bar::new())).clone()
[23] }
[24] }

Fig. 2: Output of RUSTASSISTANT.

error[E0308]: mismatched types
−−> src/example.rs:22:6
22 | || std::sync::Arc::new(Bar::new())).clone()

| ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
| expected struct ‘Bar’, found struct ‘Arc’

Fig. 3: Error after the first fix suggested by RUSTASSISTANT

The implementation of get first calls RwLock::write to get
exclusive write access to the hashmap object. The write access
is released as the guard goes out-of-scope, e.g., when the
function call returns. The function then proceeds to read the
value of key, and return a reference to the read value. When
this code is compiled, the compiler complains with the error
shown in Section I.

Rust maintains a list of all the error codes that can be
emitted by the compiler [27]. Here the error code is E0515
on line 21, meaning that the function is trying to return
reference to a local variable. The error comes from the Rust
borrow checker. The returned reference, which is derived from
the mutex owned hashmap, escapes the function scope, and
therefore, outlives the mutex guard lifetime—a violation of
the borrow checking rules.

Let’s see how RUSTASSISTANT fixes the code. RUSTAS-
SISTANT first invokes the Rust compiler on the input code
and collects the error message. It then feeds the code and
the error message, along with instructions in a prompt, to the
LLM. RUSTASSISTANT is parametric in the choice of LLM;
we show the interactions with GPT-4 in this section. Figure 2
shows the output of GPT-4. The output contains the suggested
fix in text and a code patch in the form of a changelog; this
format is explained in the next section.

The suggested fix is to change the return type of get to Arc
<Bar>, and also insert Arc<Bar> in the hashmap. Arc in Rust
is an atomically reference-counted, thread-safe pointer. With
this change, the get function can return a copy of the value, an
Arc pointer that points to the same heap location as the value
in the map (clone creates the copy).

RUSTASSISTANT parses this LLM output, applies the sug-
gested patch, and compiles the program again. This time, the

https://aka.ms/rust-build-fix
https://doc.rust-lang.org/error_codes/E0515.html

Rust compiler complains with the error shown in Figure 3.
The error is about the mismatch between the declared type of
hashmap, mapping String keys to Bar values, and the usage
of it as a map from String keys to Arc<Bar> values—indeed,
the previous patch did not fix the declaration of the hashmap.

RUSTASSISTANT sends the code and the error to the LLM
again. In this instance, GPT-4 responds with the following fix,
correctly suggesting to change the type of map.

ChangeLog:1@src/example.rs
FixDescription: Change the type of values stored in the HashMap

to Arc<Bar>.
OriginalCode@16−16:
[16] map: RwLock<HashMap<String, Bar>>
FixedCode@16−16:
[16] map: RwLock<HashMap<String, std::sync::Arc<Bar>>

After applying this patch, the compilation succeeds and
RUSTASSISTANT returns. Using Arc is also the accepted
Stack Overflow answer for this question [26].

III. RUSTASSISTANT IMPLEMENTATION

Algorithm 1 The RUSTASSISTANT algorithm.

Require: m: LLM, N : Number of completions
Require: project: Rust project

1: errs← check(project)
2: while errs ̸= ∅ do
3: e← choose any(errs)
4: g ← {e}
5: snap← project
6: while g ̸= ∅ do
7: e′ ← choose any(g)
8: p← instantiate prompt(e′)
9: n← invoke llm(m, p,N)

10: c← best completion(project, n)
11: project← apply patch(project, c)
12: g ← check(project)− errs
13: if giveup() then
14: project← snap
15: break
16: end if
17: end while
18: errs← check(project)
19: end while

RUSTASSISTANT is a command-line tool that takes as
input the filesystem path to a Rust project, potentially with
errors. RUSTASSISTANT parses the project to build an in-
memory index of the Rust source files. The index allows
RUSTASSISTANT to retrieve the contents of the files, edit
them, or even revert them to a previous state.

RUSTASSISTANT must handle the complexities of fixing
errors in real-world scenarios. Source files can be large relative
to the LLM prompt sizes that were available to us (maximum
of 32K tokens, for GPT-4), and most of the code in a file might
not be relevant to a reported error any way. RUSTASSISTANT,
therefore, performs localization for each error to identify

relevant parts of the source code and presents only those parts
to the LLM. This implies that we need a way of parsing the
LLM response to know which change needs to be applied
where. We tried a naive approach where we asked the LLM
to simply give us the entire revised code snippets but this
did not work well (Section V). We instead define a simple,
but effective, changelog format that only captures the changes
that need to be made to the given code snippets. We describe
this format in the prompt and instruct the model to follow
it. RUSTASSISTANT uses a lightweight parser to understand
the changelog in the LLM’s response and can then easily
apply the changes to the original source code. This approach
significantly increases RUSTASSISTANT’s accuracy, possibly
because the LLM output stays focussed on the code changes.
The format is also easy to parse and check for validity.

Algorithm 1 shows the RUSTASSISTANT core algorithm.
The algorithm starts by invoking the compiler on the project
to gather the initial list of errors, and starts fixing them one
at a time (line 2).

a) Inner loop for fixing an input error: The inner
loop (lines 6 − 17) iterates with the LLM with the goal
of fixing a single input error (e). During this iteration, the
source files may change and those changes may themselves
induce additional errors. To accommodate this, we introduce
an abstraction called an error group as the working unit of
the RUSTASSISTANT inner loop. An error group is a set of
errors that RUSTASSISTANT is currently trying to fix. An error
group is initialized with the input error (line 4) and may grow
or shrink within the loop. The loop terminates when either the
error group becomes empty, implying that the original error
e was fixed, or RUSTASSISTANT gives up on the error group
(line 13), in which case the project is restored to its initial
state at the beginning of the outer loop. We now explain the
body of the inner loop.

b) Prompt construction (instantiate prompt): For
each error (e′) in the current error group, RUSTASSISTANT
constructs a prompt p, shown in Figure 4 (the headings are for
illustration purposes only), asking for a fix to the error. The
prompt is parameterized over error-specific content, using the
‘{}’ syntax. The preamble section instantiates the compiler
command that was used (cmd). The next section of the prompt
contains the text of the error message. This is followed by code
snippet(s) that RUSTASSISTANT deems necessary to present
to the LLM for fixing the error. These are obtained by first
identifying source locations in the error. The Rust compiler,
for instance, not just points to the error location, but to related
locations as well. In the example error message below, the
location after note is a related location:

error[E0369]: binary operation ‘>=’ cannot be applied to ‘
Verbosity’

−−> src/logger.rs:53:21
53 | if self.verbosity >= Verbosity::Exhaustive {

| −−−−−−−−−−− ˆˆˆ −−−−−−−−−−−−−
note: an implementation of ‘PartialOrd< >’ might be missing
−−> src/logger.rs:16:1
16 | pub enum Verbosity {

| ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ must implement ‘PartialOrd< >’
help: consider annotating with ‘#[derive(PartialEq, PartialOrd)]’

RUSTASSISTANT then extracts a window of ±50 lines
around each location, and adds these snippets to the prompt.
(The size of this window is configurable; we settled on ±50
to balance prompt size against accuracy on a small subset of
benchmarks.) RUSTASSISTANT also adds the line number for
each line of code as a prefix, which helps the LLM to better
identify the code lines in the prompt. In an initial attempt,
we tried only extracting code segments in a proper lexical
scope (e.g., the entire body of a function where a relevant line
appears). This not only increased the complexity of our tooling
(because one needs to parse the Rust code and obtain an AST)
but we also found that LLMs are robust even to non-lexical
scopes. We decided in favor of keeping our tooling simple.

The next section of the prompt (instructions) are simple
instructions that ask for a fix. For instance, it instructs the
model to avoid adding unsafe code, in an effort to keep the
tool focused on generating good Rust code.

The final section of the prompt contains instructions to the
LLM for formatting the output, as a list of one or more
change logs. It contains meta-instances of change log to
explain the format to LLM. Each changelog begins with an
ID numbered starting with 1 and the source file to which
it is applied (ChangeLog line in Figure 4). The next part
(FixDescription line) asks the LLM to add a free-form
description of the fix that it is proposing. This description is
not even parsed by RUSTASSISTANT. Its purpose is to enable
chain-of-thought reasoning [29] that has been found to help
increase the accuracy of the model’s response. Next part is
a repetition of the input code that was given to the model
(OriginalCode). This part is defensive because it is a
repetition of the input; RUSTASSISTANT rejects the changelog
if the OriginalCode segment fails to match the actual
original code. Finally, the output must have the fixed code
(FixedCode) that should replace all the lines of the original
code. If this segment is empty, for example, then it implies that
the corresponding original code segment should be deleted.
There are other defensive checks in the changelog format:
each of OriginalCode and FixedCode segments must
mention the line number range; and this number range repeats
again in the code segment. All such checks act as a guard;
change logs are rejected when this information fails to match.

c) LLM invocation (invoke llm): Once the prompt
is instantiated, RUSTASSISTANT invokes the LLM with the
prompt (line 9) asking for N completions, essentially, N
responses to the same prompt. On receiving these completions,
RUSTASSISTANT ranks them and picks the best completion
(line 10). To rank the completions, RUSTASSISTANT applies
all the changelogs in a completion and counts the number of
resulting errors reported by the compiler. The completion that
results in the least number of errors is ranked the highest.

The best completion is applied to the project (line 11), the
current error group is updated (line 12) and RUSTASSISTANT
then continues with the inner loop. When the inner loop
completes, RUSTASSISTANT updates the set of pending errors

RUSTASSISTANT prompt template preamble

You are given the below error from running ’{cmd}’ and
related Rust code snippets.

Prompt context with error information and code snippets

{error} {error_explanation}

{code_snippets}

Instructions for fixing the error

Instructions: Fix the error on the above code snippets.
Not every snippet might require a fix or be relevant to
the error, but take into account the code in all above
snippets as it could help you derive the best possible
fix. Assume that the snippets might not be complete and
could be missing lines above or below. Do not add comments
or code that is not necessary to fix the error. Do not
use unsafe or unstable features (through ’#![feature(...)
]’). For your answer, return one or more ChangeLog groups,
each containing one or more fixes to the above code
snippets. Each group must be formatted with the below
instructions.

Instructions and examples for formatting the changelog output

Format instructions: Each ChangeLog group must start with
a description of its included fixes. The group must then
list one or more pairs of (OriginalCode, FixedCode) code
snippets. Each OriginalCode snippet must list all
consecutive original lines of code that must be replaced
(including a few lines before and after the fixes),
followed by the FixedCode snippet with all consecutive
fixed lines of code that must replace the original lines
of code (including the same few lines before and after
the changes). In each pair, the OriginalCode and FixedCode
snippets must start at the same source code line number N.
Each listed code line, in both the OriginalCode and
FixedCode snippets, must be prefixed with [N] that matches
the line index N in the above snippets, and then be
prefixed with exactly the same whitespace indentation as
the original snippets above.

ChangeLog:1@<file>
FixDescription: <summary>.
OriginalCode@4-6:
[4] <white space> <original code line>
[5] <white space> <original code line>
[6] <white space> <original code line>
FixedCode@4-6:
[4] <white space> <fixed code line>
[5] <white space> <fixed code line>
[6] <white space> <fixed code line>
OriginalCode@9-10:
[9] <white space> <original code line>
[10] <white space> <original code line>
FixedCode@9-9:
[9] <white space> <fixed code line>
...
ChangeLog:K@<file>
FixDescription: <summary>.
OriginalCode@15-16:
[15] <white space> <original code line>
[16] <white space> <original code line>
FixedCode@15-17:
[15] <white space> <fixed code line>
[16] <white space> <fixed code line>
[17] <white space> <fixed code line>

Answer:

Fig. 4: The RUSTASSISTANT prompt template.

(line 18) because it is possible that fixing one error group
caused the errors to change. (As a detail, errors that were
previously given up, on line 13, are not tried again; but this
is omitted from the algorithm).

RUSTASSISTANT uses a few heuristics to ensure termination

of the inner and the outer loops. First, it provides a config-
urable option (default 100) to limit the maximum number of
unique errors that an error group can have over its lifetime in
the inner loop. If this limit is reached, the inner loop gives
up. Second, if the set of errors in an error group does not
change across iterations of the inner loop, RUSTASSISTANT
considers it as not making progress and gives up on the error
group. The outer loop is bounded to run for as many iterations
as the initial number of errors obtained on line 1. (For the
purpose of checking if two errors are same, which is needed
when performing set operations, RUSTASSISTANT represents
an error as the concatenation of its error code, error message,
and the file name, without any line numbers.)

IV. RUST ERROR DATASET

We build a dataset of Rust compilation errors collected from
three different sources. We also compile a collection of linting
errors reported by Clippy on these sources.

A. Micro-benchmarks

Rust offers a comprehensive catalog of errors, indexed by
error codes, that the Rust compiler may emit. The catalog is
accompanied by small programs that trigger the specific error
codes [27]. To build our micro-benchmarks dataset, we wrote
small Rust programs, one per error code, designed specially
to trigger that error code. We wrote these programs ourselves,
using the snippets in the Rust catalog as a reference.

We consider 270 error codes out of a total of 506. We
exclude error codes that are no longer relevant in the latest
version of the Rust compiler (1.67.1). Additionally, we exclude
all errors related to package use, build configuration files, and
foreign function interop, as well as error codes on the use of
unsafe; as mentioned in Section II, these errors are out-of-
scope for us. We also create a unit test for each error code.
This test is not shown to RUSTASSISTANT; it is written in
a separate file. It is only used to check if the fix meets the
intended semantics of the program. As an example, following
is a snippet from our micro-benchmark for error code E0382
(borrow of moved value), with the corresponding testcase
(comments are not present in the benchmark):

pub fn get value() −> u32 {
let calc1 = Calculator { val: 6 };
let mut calc2 = calc1; calc2.val = 5;
// inc increments val by 1
<Calculator as Math>::inc(&calc1)
// above line borrows calc1 after it has been moved (illegal)

}
#[test]
fn test e0382() {

let result = get value(); assert eq!(result, 6);
}

We further classified each of the errors codes into one of
the six categories: Syntax, Type, Generics, Traits, Ownership,
and Lifetime. The primary objective of this benchmark is
to determine if RUSTASSISTANT is more proficient at fixing
certain types of errors compared to others.

B. Stack Overflow (SO) code snippets

Stack Overflow (SO) is a popular online community where
programmers and developers seek help for coding issues. We
manually scrape SO to collect questions about Rust compila-
tion errors. To limit our effort, we concentrate on memory-
safety (including ownership and lifetime) and thread-safety
issues, two areas in which the Rust type system is stricter
than C/C++.

To ensure that the questions are relevant and substantial,
we apply some filtering criteria. For example, we require
each question to have at least one answer, we exclude cases
that we deem trivial (e.g., the question is misclassified or
contains syntax errors unrelated to the intended category), as
well as exclude questions that were tagged as duplicates of
a previously posted question. After applying these filtering
criteria, we select the first 50 most relevant questions with
total 65 compilation errors. 94% of the errors are related to
the Rust-specific concepts of lifetime, ownership, and traits.

Code snippets in these questions are not always self-
contained. We manually add code and stubs to scope the
compilation issue to only what was asked in the corresponding
SO question. This process of completing the program snippet
was generally quite straightforward. We manually add test
cases also, as we did for the micro-benchmarks. For example,
for the code snippet shown in Section I, we wrote the following
test:

pub fn get value() −> usize {
let foo = Foo { map: RwLock::new(HashMap::new()) };
let bar = foo.get("key".to string());
bar.val.load(Ordering::SeqCst)

}
#[test]
fn test so042() {

// 0 is the default value that is added for a new key
let result = get value(); assert eq!(result, 0);

}

C. Top-100 crates

For a more comprehensive real-world evaluation, we look
at the GitHub repositories of the top-100 Rust crates (the most
widely-used Rust library packages) from crates.io [30]. We
examine the history of these repositories and identify commits
that have compilation errors (we clone the commits and build
them locally, we also filter out commits where the errors are
out-of-scope). We found 182 such commits. The benchmark
then is to fix the commits so that they pass the Rust compiler.
In our evaluation, we manually audit the fixes to check whether
they preserve the intended semantics (see RQ3 in Section V).
These contain 204 errors, out of which 61 errors are related
to ownership, lifetime, and traits.

D. Linting errors

To build a dataset of linting errors, we pick top-10 crates,
and run rust-clippy on the latest commit in the main branch
of their corresponding GitHub repositories. Clippy [28] is one
of the most popular open-source static analysis tool for Rust
with roughly 10K stars on GitHub. It is designed to help

https://doc.rust-lang.org/error_codes/E0382.html

developers write idiomatic, efficient, and bug-free Rust code
by providing a set of predefined linting rules. Clippy also
provides helpful messages and suggestions to guide developers
in making improvements to their code. Fixing Clippy errors
tests the ability of RUSTASSISTANT to generalize beyond
compilation errors. Our dataset has a total of 346 Clippy errors.

Clippy has multiple categories of checks [28]. For our
dataset, we only consider Pedantic, Complexity, and Style.
The rest of the categories did not raise errors in the top-10
crates. Additionally, there is a category called Nursery, but it
consists of lints that are not yet stable, so we exclude it from
our consideration. Pedantic refers to stylistic or convention
violations, Complexity refers to unnecessarily complex or
convoluted code that hamper maintainability, and Style covers
various linting rules related to code style and best practices,
focusing on conventions such as naming, spacing, formatting,
and other stylistic aspects of the code.

V. EVALUATION

We evaluate RUSTASSISTANT to answer the following
research questions:

1) RQ1: To what extent is RUSTASSISTANT successful in
fixing Rust compilation errors?

2) RQ2: How effective are different prompting strategies
and algorithmic variations?

3) RQ3: How accurate are the fixes generated by RUSTAS-
SISTANT for real-world repositories?

4) RQ4: Can RUSTASSISTANT generalize to fix errors re-
ported by a Rust static analyzer?
LLM Configuration: We adopted a deterministic ap-

proach by using top_p=1, meaning that the most likely token
is selected at each generation step. To maintain the focus and
consistency of the outputs, we opt for a low temperature of
0.2. While the maximum length of the generated output is set
to the default value of 800 tokens, in practice, our changelog
snippets are concise and significantly smaller in length.

We evaluate both GPT-3.5-turbo [11] (which we call as
GPT-3.5) and GPT-4 [12]; a comparison between them helps
understand the effect of model scaling on RUSTASSISTANT’s
accuracy. For both LLMs, we also vary the number of LLM
completions (#N) from 1 to 5 to provide insights into the
optimal balance between computation time and quality of the
fixes.

A. RQ1: To what extent is RUSTASSISTANT successful in
fixing Rust compilation errors?

For micro-benchmarks and SO, we say that a benchmark
is fixed by RUSTASSISTANT if the result code compiles
and passes its unit test. A generated fix can fail for three
reasons: (1) Format Errors, where the generated changelog
is not correctly formatted, or the format is correct but the
original code or lines do not match, leading to the rejection
of the changelog; (2) Build Errors, the fix when applied still
results in compilation errors; (3) Failed Tests, there are no
formatting or compilation errors, but the corresponding unit
test fails. For the top-100 crates benchmark, we report the

Failures

Model N #Fixed Fmt Build Test

Micro-benchmarks
(cargo fix: 25 / 270) GPT-3.5

1 143 59 56 12
5 199 44 10 17

GPT-4
1 249 ✗ 8 13
5 252 ✗ 4 14

Stack Overflow
(cargo fix: 1/50)

GPT-3.5
1 12 18 18 2
5 25 21 2 2

GPT-4
1 37 1 7 5
5 36 3 4 7

TABLE I: Evaluation on micro-benchmark and SO datasets
(N is the number of completions, Fixed rate is out of 270 for
micro-benchmark and 50 for Stack Overflow).

number of commits that successfully compile after running
our tool as well as the number of compilation errors fixed
across all the commits. As an estimate for the cost of running
RUSTASSISTANT, we also report per commit average of (a)
number of LLM queries, (b) number of input and output tokens
per prompt, and (c) running time.

As a point of comparison, for each dataset, we report
the number of benchmarks that can be fixed by cargo fix

-broken-code, a Rust command that tries to fix compilation
errors by applying any suggestions from the Rust compiler
[31]. This tool is an open source effort maintained by the
Rust community and serves as a pattern-based baseline in our
evaluation, i.e., fixes that can be implemented as a pattern
derived from a compilation error.

1) Micro-benchmarks: The top half of Table I shows the
performance of RUSTASSISTANT on micro-benchmarks. RUS-
TASSISTANT achieves a peak accuracy of 93%. In comparison,
cargo fix is only able to fix less than 10% of the errors.
GPT-4’s performance is significantly better than GPT-3.5, so
model scaling helps. Increasing the number of completions
helps, but only minimally for GPT-4, potentially because its
fix rate is already very high with N = 1. We also notice that
GPT-3.5 often fails to follow our formatting requirement in its
output (59 failures with N = 1) or fails to satisfy the compiler
(56 failures with N = 1).

pub fn get value()
→ f64 {

let mut val: f64
= 7.0;

val <<= 2.0;
val

}

Interestingly, sometimes RUSTASSIS-
TANT produces a fix that fails the cor-
responding unit test (e.g., with GPT-4,
there are 13 test failures with N = 1).
Consider the code alongside. It fails to
build because it uses the bitwise operator
<<= on a floating point value (error
code E0368). GPT-4 proposes a fix to
change the operator to multiplication,
but it keeps the unit as 2.0, instead of changing it to 4.0.
Expectedly, this fix fails the unit test that we wrote for this
benchmark.

2) Stack Overflow (SO) benchmarks: The bottom half of
Table I shows the results on the SO benchmarks. Overall
trends, with respect to the two models and the number of
completions, are similar to microbenchmarks. However, the fix

https://doc.rust-lang.org/error_codes/E0368.html

Avg Prompts /
Model #N #Commits #Errors Commit

GPT-3.5
1 55 / 182 414 / 925 11
5 65 / 182 509 / 925 12

GPT-4
1 99 / 182 796 / 925 10
5 134 / 182 846 /925 10

TABLE II: Evaluation on the top-100 Rust crates (cargo
fix fixes 1/182).

percentages are consistently lower. RUSTASSISTANT is able to
achieve a peak fix percentage of 74%. cargo fix shows a
more drastic drop in performance, it is able to fix only 1/50.
As the example from Section II shows, fixes can require the
introduction of new concepts and types (such as reference
counting via Arc) that are hard to automate in a pattern-based
manner from the compilation error message.

Across the micro-benchmarks and SO benchmarks, we
manually investigate the reasons for failure. In some cases, the
model suggests a correct partial fix but then does not follow
up with the additional fixes required. In other cases, it gets
stuck in a loop where it proposes a fix and undoes it in the
next iteration, causing RUSTASSISTANT to give up. In a few
cases, the model tries to import a package that it needs, but
RUSTASSISTANT is not prepared to edit the .toml project
file for actually doing the import. It is possible that further
refinement of the LLM prompt can fix such issues; we leave
it for future work.

For the successful benchmarks, with GPT-4, RUSTASSIS-
TANT required up to 6 iterations of the inner-loop (Algo-
rithm 1) to come up with a fix. In the case of SO benchmarks,
this number goes up to 15.

3) Top-100 crates benchmark: Table II presents results on
the top-100 crates benchmark. RUSTASSISTANT is able to
achieve an impressive peak accuracy of 91.46% in terms of
fixing errors, matching what is also observed in the micro-
benchmarks. When we consider the ability to fix all errors in
a commit, the fix rate is lower, but still impressive at 73.63%,
i.e., roughly three-fourths of the commits could have been
automatically fixed by RUSTASSISTANT.

As Table II shows, RUSTASSISTANT requires on-average 10
round-trip interactions with GPT-4 to fix an entire commit. For
the configuration with 5 completions, we further computed the
token costs. RUSTASSISTANT used, on average, 2751 input
tokens per prompt and 679 output tokens per prompt. With
current OpenAI pricing, this amounts to only USD 1.2 to fix
all errors in a commit.4 The price per commit with GPT-3.5
is much lower (USD 0.07) at the expense of lower fix quality.

In terms of running times, RUSTASSISTANT spends ma-
jority of the time either building the code or querying the
LLM. The latter is the dominant cost, especially because
our OpenAI endpoints were throttled, causing a majority of
our requests to timeout. For fair accounting, and because
RUSTASSISTANT runs sequentially, we remove requests that
timed out from consideration. Then RUSTASSISTANT spends

4See https://openai.com/pricing; prices can vary with time.

22 seconds on average per commit on building the code, and
249.9 seconds waiting on GPT-4. It should be possible to
improve this running time by parallelizing RUSTASSISTANT
(across different errors) but we leave this for future work.

B. Qualitative analysis of fixes generated by RUSTASSISTANT

We further analyzed the fixes generated by RUSTASSIS-
TANT to investigate its ability to fix non-trivial errors. We
concentrate on compilation errors related to ownership, life-
time, and traits, arguably the concepts that Rust programmers
struggle with most. We identify 23 Rust error codes that are
related, and refer to this set as S.5

Among micro-benchmarks, RUSTASSISTANT is able to fix
90/99 errors from S. In the SO dataset, there are 43/50
programs that have at least one compilation error from S;
RUSTASSISTANT is able to fix 31 of them. Finally, in the
top-100 crates benchmark, 60/182 commits have at least one
compilation error from S, out of which RUSTASSISTANT
fixes 58 in a runtime behavior preserving way (Section V-D
describes this criteria more precisely).

We now demonstrate, using examples, that the fixes do
not follow from the compiler error message and that they
require understanding the code that needs fixing. Consider the
following error from parking lot, one of the crates in our top-
100 dataset:

error[E0713]: borrow may still be in use when destructor runs
−−> src/mutex.rs:318:23

|
286 | impl<’a, T: ?Sized + ’a> MutexGuard<’a, T> {

| −− lifetime ‘’a‘ defined here
...
317 | / MutexGuard {
318 | | borrow: f(orig.borrow),

| | ˆˆˆˆˆˆˆˆˆˆˆ
319 | | raw: orig.raw,
320 | | marker: orig.marker,
321 | | }

| | − returning this value requires that ‘*orig.borrow‘
is borrowed for ‘’a‘

322 | }

Following is some context relevant to the error; the error
above is inside the map function.

pub struct MutexGuard<’a, T: ?Sized + ’a> { ... borrow: &’a mut
T, }

pub fn map<U: ?Sized, F>(orig: Self, f: F) −> MutexGuard<’a, U
> where F: FnOnce(&mut T) −> &mut U { ... }

The error occurs because the mutable borrow of orig.borrow
at line 318 (indicated in the error message) conflicts with the
destructor of orig invoked at the end of map. Since map takes
the ownership of the orig argument, the Rust compiler adds this
destructor call. RUSTASSISTANT suggests a fix that wraps orig
in std::mem::ManuallyDrop inside map to inhibit compiler from
calling its destructor, and adjusts the uses of orig to account
for it (the actual fix in the repository uses std::mem::forget
which achieves the same effect).

5E0106, E0311, E0515, E0621, E0700, E0726, E0382, E0594, E0499,
E0502, E0505, E0507, E0521, E0596, E0597, E0716, E0119, E0223, E0271,
E0277, E0405, E0445, E0782

https://openai.com/pricing
https://doc.rust-lang.org/error_codes/E0106.html
https://doc.rust-lang.org/error_codes/E0311.html
https://doc.rust-lang.org/error_codes/E0515.html
https://doc.rust-lang.org/error_codes/E0621.html
https://doc.rust-lang.org/error_codes/E0700.html
https://doc.rust-lang.org/error_codes/E0726.html
https://doc.rust-lang.org/error_codes/E0382.html
https://doc.rust-lang.org/error_codes/E0594.html
https://doc.rust-lang.org/error_codes/E0499.html
https://doc.rust-lang.org/error_codes/E0502.html
https://doc.rust-lang.org/error_codes/E0505.html
https://doc.rust-lang.org/error_codes/E0507.html
https://doc.rust-lang.org/error_codes/E0521.html
https://doc.rust-lang.org/error_codes/E0596.html
https://doc.rust-lang.org/error_codes/E0597.html
https://doc.rust-lang.org/error_codes/E0716.html
https://doc.rust-lang.org/error_codes/E0119.html
https://doc.rust-lang.org/error_codes/E0223.html
https://doc.rust-lang.org/error_codes/E0271.html
https://doc.rust-lang.org/error_codes/E0277.html
https://doc.rust-lang.org/error_codes/E0405.html
https://doc.rust-lang.org/error_codes/E0445.html
https://doc.rust-lang.org/error_codes/E0782.html

This fix is non-trivial. The official documentation of this
error code (E0713) suggests taking the function argument by
reference. However, RUSTASSISTANT suggests an alternate fix
that is closer to the developer intent.

We also observe that RUSTASSISTANT is able to suggest
fixes that are code-dependent, i.e., different fixes for the
same compilation error code. For example, one of the SO
benchmarks has the following error (the for loop is the relevant
code):

for (i, m) in self.margins.iter mut().enumerate() {
m.y += 1.;
if m.y > 640. { self.margins.remove(i); }

}
error[E0499]: cannot borrow ‘self.margins‘ as mutable more than

once at a time
−−> src/example.rs:29:17

|
26 | for (i, m) in self.margins.iter mut().enumerate() {

| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| |
| first mutable borrow occurs here
| first borrow later used here

...
29 | self.margins.remove(i);

| ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ second mutable borrow occurs here

The error complains about two mutable borrows of self.
margins, a std::Vec. RUSTASSISTANT fixes the error by con-
verting the for loop into a while loop that uses an index variable
for iteration. With this fix, there is only one mutable borrow
of self.margins.

let mut i = 0;
while i < self.margins.len() {

self.margins[i].y += 1.;
if self.margins[i].y > 640. { self.margins.remove(i); }
else { i += 1; }

}

While for the same error code in another SO benchmark:

struct Pool { strings: Vec<String> }
impl Pool {

pub fn some f(&mut self) −> Vec<&str> {
let mut v = vec![];
for i in 1..10 {

let string = format!("{}", i);
let string ref = self.new string(string);
v.push(string ref);

}
v

}

fn new string(&mut self, string: String) −> &str { ... }
}
error[E0499]: cannot borrow ‘*self‘ as mutable more than once at

a time
−−> src/example.rs:19:30

|
14 | pub fn some f(&mut self) −> Vec<&str> {

| − let’s call the lifetime of this reference ‘1’
...
19 | let string ref = self.new string(string);

| ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ ‘*self’ was mutably borrowed
here in the previous iteration of the loop

...
23 | v

| − returning this value requires that ‘*self’ is borrowed for
‘1’

Model Prompt G #N #Commits #Errors

GPT-3.5 P0 ✓
1 18 / 182 298 / 925
5 16 / 182 382 / 925

GPT-3.5 P4 ✗
1 18 / 182 46 / 925
5 59 / 182 129 / 925

TABLE III: Ablations on the top-100 Rust packages.

RUSTASSISTANT fixes it by changing the return type of
some f to Vec<String> and updating the new string function
to return a String instead of a reference. This example illus-
trates the diversity of potential fixes for the same error codes.

C. RQ2: How effective are different prompting strategies and
algorithmic variations?

We perform an ablation study by permuting between differ-
ent prompting and algorithmic variations, in order to identify
the most effective features of RUSTASSISTANT. We consider
five prompt variants, which differ in the way RUSTASSISTANT
asks LLMs to output the fixes, i.e. the output formatting
instructions.

1) P0 (Basic): This variant serves as the baseline. It does
not have the changelog section; it instead asks for the
complete revised snippets.

2) P1 (ChangeLog-basic): This uses the changelog, but
only the FixedCode section, without the line number
prefixes.

3) P2 (Line-prefixes): In addition to P1, we require line
number prefixes in front of code snippets.

4) P3 (Localization): In addition to P2, we require the
original code section.

5) P4 (Description-first): This is the full prompt of Fig-
ure 4, i.e., P3 with the FixDescription section.

For algorithmic ablations, we vary the number of com-
pletions (#N) to either 1 or 5 (already reported for RQ1),
and we turn off error grouping. Without error grouping, the
RUSTASSISTANT algorithm has a single loop that attempts to
fix one error at a time from the current bag of errors.

Table III shows the results on the top-100 crates benchmark.
We see that P0 results in very poor performance (compare its
first two rows with those of Table II). We found that the model,
when returning the fixed code snippet would get tempted in
making code changes that were unrelated to the task of fixing
the compiler error. This justifies the need for investing in
changelog format to keep the model focused on the fix.

Table III also shows that turning off grouping significantly
drops the error fix rate (compare the last two rows of Table
III with the first two rows of Table II). Without grouping,
RUSTASSISTANT would fix errors in a random order, which
increased the chances of it getting stuck with an error that it
could not fix, leading to an ever-increasing blow-up of code
changes and resulting errors. Error grouping helps in detecting
such cases, allowing RUSTASSISTANT to gracefully give up
on them, and then move on to the other errors in the project.
This justifies the importance of error grouping.

https://doc.rust-lang.org/error_codes/E0713.html

#Failures

Prompt Variant #Fixed Format Build Test
P1 ChangeLog-basic 139 / 270 120 3 8
P2 Line-prefixes 196 / 270 61 3 10
P3 Localization 247 / 270 0 6 17
P4 Description-first 252 / 270 0 4 14

TABLE IV: Evaluating variants of the RUSTASSISTANT
prompt template on micro-benchmarks with GPT-4.

Commits
Unambiguous 55
Matching 41
Non-matching, same runtime behaviour 29
Different runtime behavior 9

TABLE V: Analysis of fixed commits in top-100 benchmark

Table IV presents the results for prompt ablations with GPT-
4. It demonstrates that the addition of each new feature to the
changelog format raises accuracy by a significant margin. The
basic format (P1) only provides roughly 51% accuracy. We
saw that P1 response would trip most on the formatting of its
output, an important requirement in order to handle large code
bases. The number of formatting errors reduce significantly as
the changelog format is improved. It is interesting that the
simple act of describing the fix (going from P3 to P4) helps
the model accuracy.

D. RQ3: How accurate are the fixes generated by RUSTAS-
SISTANT for real-world repositories?

To answer RQ3, we qualitatively examine the fixes gen-
erated by RUSTASSISTANT on all the 134 fixed commits
from the top-100 crates benchmark. As shown in Table V,
we categorize the commits into 4 categories. The categories
are defined in term of individual error fixes, and a commit is
classified into a category if all its fixes belong to the category
or to the categories above it.6 For example, a commit is
classified as Non-matching, same runtime behavior if all its
fixes are either Unambiguous, or Matching, or Non-matching,
same runtime behavior.

Unambiguous fixes classify fixes for errors like syntax errors
(e.g., missing ; or braces), missing instantiations for generics
type parameters, type-incorrect format string specifiers, etc.
Since there is mostly a unique way to fix these errors, and the
RUSTASSISTANT fix passes the Rust typechecker, we consider
it good.

Matching fixes classify the fixes where the fix matches the
developer fix in the repository—we checked this by comparing
the patched code from RUSTASSISTANT with the correspond-
ing code from the latest commit in the main branch of the
repository. This category contains non-trivial examples that
provide some evidence that the LLMs have learnt common
Rust idioms. For example, a common pattern to destruct a
pointer in Rust is to wrap it using Box::from raw(ptr), and
let the Box destructor call the destructor for the pointer. In

6Note that a commit can have multiple errors and hence multiple fixes.

a few instances in our benchmark, void returning functions
had Box::from raw(ptr) as the last statement, which the Rust
compiler complains about as unused value. RUSTASSISTANT
fixes these errors by rewriting it as drop(Box::from raw(ptr)),
which matches the actual fix in the repository.

Similarly, there are examples where the Rust compiler
complains about a function modifying an argument through
an immutable reference. RUSTASSISTANT fixed such cases
by changing the signature of the function to demand &mut

references. Another class of errors in this category are
deprecation warnings/errors, e.g.:

error: use of deprecated associated function
‘core::sync::atomic::AtomicPtr::<T>::compare and swap‘:
Use ‘compare exchange‘ or ‘compare exchange weak‘ instead

The fix produced by RUSTASSISTANT follows the sugges-
tion in the error, and comes up with the following patch:

- atom.compare and swap(ptr as , shared as , Ordering::
AcqRel);

+ atom.compare exchange(ptr as , shared as , Ordering::
AcqRel, Ordering::Acquire).unwrap or else(|x| x);

The third category, non-matching but same runtime be-
havior, classifies the fixes where the fix produced by RUS-
TASSISTANT does not match the fix in the repository, but to
the best-of-our estimation, the fix does not alter the runtime
behavior of the program (recall that the fix passes the Rust
typechecker). This is an interesting category where the LLM
produces reasonable fixes that do not match the programmer
intent. One example in this category is the following error:

error[E0015]: cannot call non−const fn ‘ArrayString::<CAP>::
capacity’ in constant functions

The error is in a function defined as const:

pub const fn remaining capacity(&self) → usize

The compiler complains that the function calls another
function capacity, passing it the self argument, but capacity

is a non-const function. LLM chose to fix this error by
removing the const qualifier from remaining capacity, whereas
the programmer fixed it by adding const qualifier to capacity.
We found similar instances related to other qualifiers such as
mut and public.

Another example in the category is the error in the following
trait definition:

pub trait MendSlice { fn mend(Self, Self) → Result<Self,(Self,Self)
>; }

Rust compiler complains that it needs to statically know the
size of Self, and suggests bounding Self with the Sized trait:

error[E0277]: the size for values of type ‘Self‘ cannot be known at
compilation time

|
151 | fn mend(Self, Self) → Result<Self, (Self, Self)>;

| ˆˆˆˆˆˆˆˆˆˆˆˆ doesn’t have a size known at compile−time
|
= note: only the last element of a tuple may have a

dynamically sized type
help: consider further restricting ‘Self‘

Clippy RUSTASSISTANT

Category Fix% #Fixed Fix% #Fixed
Complexity 50.00% 17 / 34 91.18% 31 / 34

Pedantic 26.12% 76 / 291 71.48% 208 / 291
Style 76.19% 16 / 21 95.24% 20 / 21

Total 31.50% 109 / 346 74.86% 259 / 346

TABLE VI: Evaluating RUSTASSISTANT (GPT-4) against
Clippy’s auto-fix on the top-10 Rust packages.

|
151 | fn mend(Self, Self) → Result<Self, (Self, Self)> where Self:

Sized;

The RUSTASSISTANT fix in this case was to bound the Self
argument at the level of MendSlice definition

pub trait MendSlice: {Sized} { fn mend(Self, Self) → Result<Self,(
Self,Self)>; }

whereas in the repository, the fix is what the error message
suggested. This is an interesting case since the LLM chose to
ignore the suggestion in the error message.

The final category is for the fixes where the changes intro-
duced by the LLM, again to the best of our estimation, alter
the runtime behavior of the program. In a few of these cases,
the LLM patch was blatantly wrong, e.g., it removed some
code, introduced alternate implementations of some unrelated
functions, etc. However, in some cases it was understandable
that the LLM patch did not match the developer. An example
is as follows. Rust supports enumerated types and a match

construct to inspect the variant of the enum and execute
different code based on the variant. If the match is not
exhaustive, i.e. it doesn’t mention all the variant cases, the
compiler raises an error. In a few cases of these errors in
our benchmark, LLM got it right (e.g., a match that is just
converting enum variant name to a string), but when the error
occurred in the context of more involved match, we found that
LLMs came up with a fix different from the developer.

E. RQ4: Can RUSTASSISTANT generalize to fix errors re-
ported by a Rust static analyzer?

Clippy comes with an auto-fix option that is based on
pattern-matching and we use it as a baseline for comparison
against RUSTASSISTANT. Table VI present the results, where
RUSTASSISTANT is able to fix 2.4x more errors than Clippy
auto-fix, achieving a peak accuracy of nearly 75%.

These accuracy numbers, however, are based on whether the
generated fix makes the clippy error go away. We manually
conduct further assessment to check if the fix preserves
runtime behavior of the program. Clippy checks are mostly
simple, and the generated fixes are usually small, making this
exercise feasible. We find that the RUSTASSISTANT fix in
229/259 (88%) cases preserves the runtime behavior of the
program, to the best of our judgment. In the remaining cases,
we were uncertain if that is the case or not.

We illustrate some of the fixes through examples. Following
is a pedantic lint error about a function argument passed as
value not being consumed inside the function body:

error: this argument is passed by value, but not consumed in the
function body −−> src/lit.rs:832:32

|
832 | fn parse negative lit(neg: Punct, cursor: Cursor) −>

Option<(Lit, Cursor)> {
| ˆˆˆˆˆ help: consider taking a

reference instead: ‘&Punct‘

Clippy autofix is unable to fix the error. RUSTASSISTANT,
on the other hand, changes the type of the neg parameter
to &Punct and also modifies the callers of parse negative lit
accordingly. In general, we find that clippy autofix refuses

non-local fixes.
For the following error, where a cast is performed on the

same type, both Clippy autofix and RUSTASSISTANT are able
to fix it as suggested.

error: casting to the same type is unnecessary (‘usize‘ −> ‘usize‘)
|

5003 | let next = cmsg as usize + DARWIN ALIGN32(
cmsg len as usize);
| ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ help: try: ‘cmsg len‘

In cases where more intricate code transformations are
required, particularly involving memory access or logical
adjustments, Clippy’s autofix option falls short. For example in
the below code, Clippy complains of using offset with a usize
casted to an isize, RUSTASSISTANT successfully replaces the
offset method with add for pointer arithmetic.

error: use of ‘offset‘ with a ‘usize‘ casted to an ‘isize‘
|

5014 | / (cmsg as *mut ::c uchar)
5015 | | .offset(DARWIN ALIGN32(::mem::size of::<::

cmsghdr>()) as isize)
| | ˆ help: try: ‘(cmsg as mut ::c uchar).

add(DARWIN ALIGN32(::mem::size of::<::cmsghdr>()))‘

We conclude that RUSTASSISTANT’s capabilities generalize
to fixing clippy warnings as well. RUSTASSISTANT performs
better than clippy autofix, which is not as effective when the
lint error involves code restructuring.

Summary: From our evaluation, we conclude that the pre-
trained LLMs seem to have internalized the knowledge of Rust
syntax and commonly used Rust idioms. They also follow the
errors and come up with the relevant and intended fixes in most
cases. They do, however, require careful prompt construction,
and the iteration with a compiler was necessary especially for
propagating changes across different parts of the code.

VI. THREATS TO VALIDITY

a) Internal Threats: One internal threat is implicit bias in
the manual steps that were taken by the authors for evaluating
RUSTASSISTANT. We took the following steps to mitigate this
bias. First, the dataset curation was done before RUSTASSIS-
TANT was built; the implementation of RUSTASSISTANT was
not changed in response to its performance on the dataset.
Second, the qualitative examination of the fixes generated by
RUSTASSISTANT to assess their semantic correctness (RQ3,
Section V) was done via a structured consensus-based manual
evaluation involving multiple evaluators, ensuring more reli-
able and consistent assessments.

Another potential internal threat is data contamination,
where it might be possible that fixes to the compilation issues
that we mined from open source might have already been
included in the training data of the LLMs that we used.
There is no ideal way to completely remove contamination
without sacrificing real-world scenarios, given the scope of
training data that is consumed for these models today. How-
ever, the fixes, especially for the top-100 benchmarks were
never presented online in the form of a fix or alongside the
corresponding compiler error, to the best of our knowledge.
Only the fixed version of the code might appear in a later
version of the repository. Furthermore, we also present vanilla
LLM performance and demonstrate the delta improvement
that RUSTASSISTANT provides when using the same LLM.
Table IV, for instance, shows an increase from 139 (51%) to
252 (93%) solved micro-benchmarks.

b) External Threats: While the our evaluation of RUS-
TASSISTANT encompasses Rust errors from multiple sources,
we acknowledge that the generalizability of our findings to
different datasets may vary. Furthermore, the nature of API
access from OpenAI implies that the LLM performance can
vary over time as the models may get updated without any
prior intimation, which can impact RUSTASSISTANT’s fix
accuracy. LLMs are also non-deterministic, thus impacting the
repeatability of our results, even when the model remains the
same. We partially mitigate the non-determinism by sampling
multiple completions (N = 5) from the model to make the
experiments statistically more robust.

VII. RELATED WORK

Our work can be considered as an instance of the general
problem of Automated Program Repair (APR) [32], [33] that
is concerned with fixing “buggy” code, given some correctness
specification. We only focus on learning-based APR tech-
niques in this section.

Traditional learning-based approaches [34], [35], [36], [37],
[38], [39], [40], [41], [42], [43], [44] have required supervised
training data (pairs of buggy and patched code) to train
custom models. This can be time-consuming and expensive.
RUSTASSISTANT, on the other hand, uses pre-trained founda-
tional models, relying on their ability to follow instructions
[45]; thus, we skip the data collection requirement altogether.

The potential of LLMs as powerful APR agents has been
acknowledged in previous studies [4], [5], [6], [7], [8], [9],
[10], [46]. For instance, Xia et al. [46], [9] have evaluated
multiple LLMs (GPT-3 series, CodeT5, etc.) to show superior
performance than prior APR techniques, with larger models
achieving better performance. LLMs have been used to fix
incorrect solutions in LeetCode contests [10], [47] as well as
fix buggy algorithm implementations [8]. These techniques
require the presence of test cases, which we do not. This
allows RUSTASSISTANT to be used in any scenario where the
developer is ready to build their code.

In terms of fixing statically-detected errors, RING [4] con-
siders retrieval-augmented few-shot prompting to fix syntactic

errors in multiple languages. InferFix [5] uses an LLM (fine-
tuned Codex) to fix errors reported by a static analysis tool
(CodeQL). Pearce et al. [6] explore repairing of cybersecurity
bugs. Our work differs from these in multiple dimensions.
First, they rely exclusive on the model to produce the patch,
whereas we use a pipeline that iterates with the compiler
to arrive at the fix. Second, our focus on Rust is unique.
There is relatively much lesser code in Rust compared to
Java and Python that the above work had used. It is not
immediately evident if LLM-based techniques will carry over
to Rust without impacting their accuracy, justifying the need to
study Rust errors. Third, we focus on compiler errors, allowing
us to leverage the specific nature of compiler-generated error
messages for crafting the prompt and improving accuracy.
Our work also does not rely on fine-tuning. We do, how-
ever, believe that RUSTASSISTANT can benefit from few-shot
prompting, but leave this for future work.

Recent work on a tool called RustGen [48], done concur-
rently with our work, consider generation of Rust code from
a natural language description, and then making sure that the
resulting code compiles correctly. Their solution also utilizes
an iterative fixing loop with the Rust compiler. However,
their problem domain is one of code generation, not fixing
compiler errors in existing (large) codebases. Our prompt
construction, especially with the changelog format, is novel.
RustGen requires construction of Rust ASTs, which we do
not. Furthermore, RustGen evaluation is restricted to only ten
fixed programming tasks. Our evaluation is significantly more
complete with respect to Rust compilation errors, both in real-
world code as well as developer-posed questions on Stack
Overflow.

GitHub Copilot: GitHub recently announced an extension
to its Copilot [1] for fixing code errors. This feature can,
in particular, can also be applied to compilation errors from
within the IDE itself (such as vscode). This IDE integration
offers an efficient and convenient way for users to invoke the
tool, compared to RUSTASSISTANT that requires invoking a
separate build on the command line. However, Copilot does
not attempt iterative fixes (i.e., fixing subsequent errors that
arise from one patch), neither does it apply a search strategy
to potential multiple completions. These choices are left to the
user, making it difficult to conduct a direct comparison with
RUSTASSISTANT.

VIII. CONCLUSIONS

This paper presents RUSTASSISTANT as a tool for auto-
matically generating patches for compilation errors in Rust.
It demonstrates that the latest advancements in LLMs, in
combination with symbolic tools such as a compiler, leads
to a very effective solution for fixing code errors.

LLMs are sensitive to the prompts that they are supplied. We
demonstrate the features that were needed to help the model
communicate code changes and bring accuracy up from a mere
10% to nearly 74%. This evidence should add encouragement
to the wave of building LLM-powered tools for software
engineering.

REFERENCES

[1] GitHub, “Github copilot,” https://github.com/features/copilot, 2022.
[2] ——, “Github copilot-x,” https://github.com/features/preview/copilot-x,

2023.
[3] Emery Berger, “Chatdbg,” https://github.com/plasma-umass/ChatDBG,

2023.
[4] H. Joshi, J. P. C. Sánchez, S. Gulwani, V. Le, I. Radicek, and

G. Verbruggen, “Repair is nearly generation: Multilingual program
repair with llms,” CoRR, vol. abs/2208.11640, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2208.11640

[5] M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan,
and A. Svyatkovskiy, “Inferfix: End-to-end program repair with
llms,” CoRR, vol. abs/2303.07263, 2023. [Online]. Available: https:
//doi.org/10.48550/arXiv.2303.07263

[6] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt,
“Examining zero-shot vulnerability repair with large language models,”
in 44th IEEE Symposium on Security and Privacy, SP 2023, San
Francisco, CA, USA, May 21-25, 2023. IEEE, 2023, pp. 2339–2356.
[Online]. Available: https://doi.org/10.1109/SP46215.2023.10179420

[7] ——, “Can openai codex and other large language models help us fix
security bugs?” CoRR, vol. abs/2112.02125, 2021. [Online]. Available:
https://arxiv.org/abs/2112.02125

[8] J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs?:
An evaluation on quixbugs,” in 3rd IEEE/ACM International Workshop
on Automated Program Repair, APR@ICSE 2022, Pittsburgh, PA,
USA, May 19, 2022. IEEE, 2022, pp. 69–75. [Online]. Available:
https://doi.org/10.1145/3524459.3527351

[9] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the era
of large pre-trained language models,” in 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023. IEEE, 2023, pp. 1482–1494. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00129

[10] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan,
“Automated repair of programs from large language models,” in
45th IEEE/ACM International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 2023,
pp. 1469–1481. [Online]. Available: https://doi.org/10.1109/ICSE48619.
2023.00128

[11] OpenAI, “GPT-3.5,” https://platform.openai.com/docs/models/gpt-3-5,
2023.

[12] ——, “GPT-4 technical report,” https://doi.org/10.48550/arXiv.2303.
08774, 2023.

[13] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux,
T. Lacroix, and et al., “Llama: Open and efficient foundation language
models,” CoRR, vol. abs/2302.13971, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2302.13971

[14] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, and et al., “Llama 2: Open foundation and fine-tuned
chat models,” CoRR, vol. abs/2307.09288, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2307.09288

[15] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, and
et al., “Palm 2 technical report,” CoRR, vol. abs/2305.10403, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2305.10403

[16] A. Saparov and H. He, “Language models are greedy reasoners: A
systematic formal analysis of chain-of-thought,” 2023.

[17] N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt
selection for code-related few-shot learning,” in 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023. IEEE, 2023, pp. 2450–2462.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00205

[18] Rust Team, “Rust,” https://www.rust-lang.org/, 2023.
[19] Linux kernel development community, “Rust in linux kernel,” https:

//docs.kernel.org/next/rust/index.html, 2020.
[20] Stack Overflow, “Stack overflow survey,” https://insights.stackoverflow.

com/survey/2021, 2021.
[21] Mark Russinovich, “Rust in the windows kernel,” https://twitter.com/

markrussinovich/status/1656416376125538304?lang=en, 2023.
[22] AWS, “Sustainability with rust,” https://aws.amazon.com/blogs/

opensource/sustainability-with-rust/, 2022.
[23] MSRC Team, “A proactive approach to more se-

cure code,” https://msrc.microsoft.com/blog/2019/07/
a-proactive-approach-to-more-secure-code/, 2023.

[24] Rust Analyzer Team, “Rust analyzer,” https://github.com/rust-lang/
rust-analyzer, 2020.

[25] Rust Team, “Rust survey,” https://blog.rust-lang.org/2022/02/15/
Rust-Survey-2021.html, 2023.

[26] jeromefroe, “Question about a Rust compilation error on Stack Over-
flow,” https://stackoverflow.com/questions/40299671, 2016.

[27] Rust Team, “Rust error codes index,” https://doc.rust-lang.org/error
codes/error-index.html, 2023.

[28] ——, “Rust clippy static analysis,” https://doc.rust-lang.org/clippy,
2023.

[29] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” in Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 24 824–24 837.

[30] Rust Team, “The rust community’s crate registry,” https://crates.io, 2023.
[31] rust-lang, “rustfix: Automatically apply the suggestions made by rustc,”

https://github.com/rust-lang/rustfix, 2023.
[32] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program

repair,” Commun. ACM, vol. 62, no. 12, pp. 56–65, 2019. [Online].
Available: https://doi.org/10.1145/3318162

[33] M. Monperrus, “Automatic software repair: A bibliography,” ACM
Comput. Surv., vol. 51, no. 1, pp. 17:1–17:24, 2018. [Online].
Available: https://doi.org/10.1145/3105906

[34] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, D. Lo,
S. Apel, and S. Khurshid, Eds. ACM, 2016, pp. 87–98. [Online].
Available: https://doi.org/10.1145/2970276.2970326

[35] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade, “Deepfix: Fixing
common C language errors by deep learning,” in Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, S. Singh and S. Markovitch,
Eds. AAAI Press, 2017, pp. 1345–1351. [Online]. Available:
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603

[36] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: context-based code
transformation learning for automated program repair,” in ICSE
’20: 42nd International Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020, G. Rothermel and
D. Bae, Eds. ACM, 2020, pp. 602–614. [Online]. Available:
https://doi.org/10.1145/3377811.3380345

[37] Q. Zhu, Z. Sun, Y. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang,
“A syntax-guided edit decoder for neural program repair,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021, D. Spinellis, G. Gousios, M. Chechik,
and M. D. Penta, Eds. ACM, 2021, pp. 341–353. [Online]. Available:
https://doi.org/10.1145/3468264.3468544

[38] N. Jiang, T. Lutellier, and L. Tan, “CURE: code-aware neural
machine translation for automatic program repair,” in 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. IEEE, 2021, pp. 1161–1173. [Online].
Available: https://doi.org/10.1109/ICSE43902.2021.00107

[39] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair
with execution-based backpropagation,” in 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 1506–1518.
[Online]. Available: https://doi.org/10.1145/3510003.3510222

[40] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019. [Online]. Available:
https://doi.org/10.1145/3340544

[41] M. Sintaha, N. Nashid, and A. Mesbah, “Katana: Dual slicing
based context for learning bug fixes,” ACM Trans. Softw. Eng.
Methodol., vol. 32, no. 4, may 2023. [Online]. Available: https:
//doi.org/10.1145/3579640

[42] A. Connor, A. Harris, N. Cooper, and D. Poshyvanyk, “Can we automat-
ically fix bugs by learning edit operations?” in 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering
(SANER), 2022, pp. 782–792.

https://github.com/features/copilot
https://github.com/features/preview/copilot-x
https://github.com/plasma-umass/ChatDBG
https://doi.org/10.48550/arXiv.2208.11640
https://doi.org/10.48550/arXiv.2303.07263
https://doi.org/10.48550/arXiv.2303.07263
https://doi.org/10.1109/SP46215.2023.10179420
https://arxiv.org/abs/2112.02125
https://doi.org/10.1145/3524459.3527351
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://platform.openai.com/docs/models/gpt-3-5
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.1109/ICSE48619.2023.00205
https://www.rust-lang.org/
https://docs.kernel.org/next/rust/index.html
https://docs.kernel.org/next/rust/index.html
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://twitter.com/markrussinovich/status/1656416376125538304?lang=en
https://twitter.com/markrussinovich/status/1656416376125538304?lang=en
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://github.com/rust-lang/rust-analyzer
https://github.com/rust-lang/rust-analyzer
https://blog.rust-lang.org/2022/02/15/Rust-Survey-2021.html
https://blog.rust-lang.org/2022/02/15/Rust-Survey-2021.html
https://stackoverflow.com/questions/40299671
https://doc.rust-lang.org/error_codes/error-index.html
https://doc.rust-lang.org/error_codes/error-index.html
https://doc.rust-lang.org/clippy
https://crates.io
https://github.com/rust-lang/rustfix
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3105906
https://doi.org/10.1145/2970276.2970326
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1145/3510003.3510222
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3579640
https://doi.org/10.1145/3579640

[43] N. Jiang, T. Lutellier, Y. Lou, L. Tan, D. Goldwasser, and X. Zhang,
“Knod: Domain knowledge distilled tree decoder for automated program
repair,” 2023.

[44] T. Ahmed, N. R. Ledesma, and P. Devanbu, “Synshine: Improved fixing
of syntax errors,” IEEE Transactions on Software Engineering, vol. 49,
no. 4, pp. 2169–2181, 2023.

[45] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright,
P. Mishkin, and et al., “Training language models to
follow instructions with human feedback,” in NeurIPS, 2022.
[Online]. Available: http://papers.nips.cc/paper files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html

[46] C. S. Xia, Y. Wei, and L. Zhang, “Practical program repair in the era
of large pre-trained language models,” 2022.

[47] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan,
“Automated repair of programs from large language models,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE), 2023, pp. 1469–1481.

[48] X. Wu, N. Cheriere, C. Zhang, and D. Narayanan, “Rustgen:
An augmentation approach for generating compilable rust code
with large language models,” in ICML Workshop on Deployment
Challenges for Generative AI, 2023. [Online]. Available: https:
//openreview.net/forum?id=y9A0vJ5vuM#all

http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://openreview.net/forum?id=y9A0vJ5vuM#all
https://openreview.net/forum?id=y9A0vJ5vuM#all

	Introduction
	Overview
	RustAssistant Implementation
	Rust Error Dataset
	Micro-benchmarks
	Stack Overflow (SO) code snippets
	Top-100 crates
	Linting errors

	Evaluation
	RQ1: To what extent is RustAssistant successful in fixing Rust compilation errors?
	Micro-benchmarks
	Stack Overflow (SO) benchmarks
	Top-100 crates benchmark

	Qualitative analysis of fixes generated by RustAssistant
	RQ2: How effective are different prompting strategies and algorithmic variations?
	RQ3: How accurate are the fixes generated by RustAssistant for real-world repositories?
	RQ4: Can RustAssistant generalize to fix errors reported by a Rust static analyzer?

	Threats to Validity
	Related Work
	Conclusions
	References

