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ABSTRACT
Mobile task automation is an attractive technique that aims
to enable voice-based hands-free user interaction with smart-
phones. However, existing approaches suffer from poor scala-
bility due to the limited language understanding ability and
the non-trivial manual efforts required from developers or end-
users. The recent advance of large language models (LLMs)
in language understanding and reasoning inspires us to re-
think the problem from a model-centric perspective, where
task preparation, comprehension, and execution are handled
by a unified language model. In this work, we introduce Au-
toDroid, a mobile task automation system capable of han-
dling arbitrary tasks on any Android application without man-
ual efforts. The key insight is to combine the commonsense
knowledge of LLMs and domain-specific knowledge of apps
through automated dynamic analysis. The main components
include a functionality-aware UI representation method that
bridges the UI with the LLM, exploration-based memory
injection techniques that augment the app-specific domain
knowledge of LLM, and a multi-granularity query optimiza-
tion module that reduces the cost of model inference. We
integrate AutoDroid with off-the-shelf LLMs including on-
line GPT-4/GPT-3.5 and on-device Vicuna, and evaluate its
performance on a new benchmark for memory-augmented
Android task automation with 158 common tasks. The results
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demonstrated that AutoDroid is able to precisely generate
actions with an accuracy of 90.9%, and complete tasks with
a success rate of 71.3%, outperforming the GPT-4-powered
baselines by 36.4% and 39.7%.
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1 INTRODUCTION
Smartphone is one of the most sophisticated devices for indi-
viduals. With millions of mobile applications (apps for short)
that have access to various embedded sensors and rich per-
sonal data, smartphones can be used for a lot of daily tasks
such as ordering food, managing social networks, sensing and
tracking health conditions, etc. Therefore, how to intelligently
automate tasks on smartphones has become an attractive topic
for mobile developers and researchers, due to its potential
to significantly improve user experience and enable helpful
virtual personal assistants.

The major approaches to mobile task automation can be
classified as developer-based, demonstration-based, and learning-
based techniques. Most existing commercial products (e.g. Siri,
Google Assistant, Cortana, etc.) take a developer-based ap-
proach, which requires significant development efforts to
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LLM

Task: Remind me to do laundry on August 17

Step 1: Click  
‘New event’

Step 2: Input 
‘laundry’ into 
the ‘Title’ field

Step 3: Click 
‘Save’

Step 4: Task is 
completed

Domain 
Knowledge

Figure 1: An illustration of LLM-powered mobile task
automation. The agent interacts with the smartphone GUI
to complete an arbitrary task, with the guidance of LLM
and app domain knowledge.

support a new task. For example, to enable an automated task
with Google Assistant, app developers need to identify the
functionality which they want to trigger, configure and imple-
ment the corresponding intent, and register the intent with the
assistant. When executing a task, the assistant uses natural
language understanding (NLU) modules to map the user com-
mand to the intent, extract the intent parameters, and invoke
the corresponding developer-defined function. Researchers
have explored various methods to ease the development ef-
forts. However, these methods still suffer from poor scalabil-
ity, since they either require ad-hoc and/or large-scale human
demonstrations of tasks (e.g. programming-by-demonstration
approaches [2, 14, 15] and supervised learning approaches
[3, 16, 35]) or require defining a clear reward for task com-
pletion (e.g. reinforcement learning approaches [10, 19, 39]).
Due to the lack of scalability, there are few automated tasks
supported today, even in the most popular apps.

Recently, the emergence of large language models (LLMs)
like ChatGPT [28] and Claude [1] shows the promise in solv-
ing the scalability issue of task automation. Compared to
traditional models, LLMs demonstrate unique abilities such
as instruction following [36], step-by-step reasoning [44], and
zero-shot generalization [11]. Such abilities are enabled by
self-supervised learning on a huge corpus (more than 1.4
trillion tokens [38]) followed by tuning with human feed-
back. With these capabilities, researchers have managed to let
LLMs invoke tools automatically, such as search engines [27],
code interpreters [4], and third-party APIs [25, 30]. Similarly,
using LLMs can potentially avoid the cumbersome manual
efforts in mobile task automation. Meanwhile, connecting
LLMs to smartphones can further unleash the power of LLMs
in personal domains.

The goal of LLM-powered mobile task automation is to
build an autonomous agent that can complete user-specified
tasks by interacting with the smartphone. Although existing
research [42] attempts to enable LLMs to understand mobile

UIs, it simply relies on prompt engineering and does not uti-
lize app-specific domain knowledge. AutoDroid combines the
capabilities of LLM and the app-specific knowledge through
dynamic app analysis, which enables it to handle arbitrary
unseen tasks without manual efforts (illustrated in Figure 1).
We identify three key problems to achieve this goal.

(1) GUI Representation. The input and output of task
automators are graphical user interface (GUI) states and
actions, unlike the natural language sentences LLMs
can handle. To help LLMs better understand the GUI
information and make precise interaction decisions, the
GUI states and actions must be converted to text format
while incorporating rich structured information.

(2) Knowledge Integration. Solving tasks with LLMs re-
quires domain-specific knowledge about the applica-
tions. Unlike other tools studied in prior work (e.g. APIs)
that LLMs can be easily configured to use, a smart-
phone app is usually a more complicated automata.
LLMs need to navigate between different states to fig-
ure out how to complete the tasks.

(3) Cost Optimization. Querying LLMs is costly and compute-
intensive, while completing a task with LLMs may in-
volve many lengthy queries due to complexity of tasks
and smartphone apps. Thus, it is desirable to optimize
the efficiency of LLM queries to facilitate responsive
task automation experience.

We introduce a mobile task automation framework, Auto-
Droid, to address the above problems. Overall, AutoDroid
executes tasks by prompting the LLMs with an HTML-style
text representation of GUI and querying for action guidance.
To augment the LLMs with app knowledge, AutoDroid ran-
domly explores the target apps and extracts UI transition
graphs from them. By analyzing the UI states and transitions
with LLMs, AutoDroid can convert the raw information to
task completion knowledge, which is then integrated into the
task automator by injecting foreseen functionalities into the
prompts, matching relevant UI traces, or tuning the LLM pa-
rameters. The cost of querying LLMs is reduced by reducing
and simplifying the queries based on app knowledge.

To systematically study the performance and challenges of
LLM-powered task automation on Android, we build a bench-
mark with 158 manually labeled tasks from 13 open-source
common mobile apps (Calendar, Messenger, Contacts, etc.).
The source code and executable environments of the apps are
provided for obtaining auxiliary information and reproducing
task executions. The tasks include frequently asked how-to
questions from the PixelHelp [16] dataset and common func-
tionalities in the apps. For each task, we manually labeled
the steps to complete the tasks, where each step is associated
with both the GUI state and the GUI action. Our benchmark
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evaluates the performance of LLM-powered task automation
in terms of accuracy and cost.

We evaluate the effectiveness of our AutoDroid approach
on the benchmark with different types of LLMs, including
state-of-the-art online LLM services (GPT-3.5 and GPT-4)
and open-source on-device LLMs (Vicuna). The results have
demonstrated that AutoDroid can complete unseen tasks with
a success rate of 71.3% with GPT-4, in which each action is
selected with an accuracy of 90.9%. As compared with the
baselines powered by off-the-shelf LLMs, the task completion
rates are improved by 36.4% to 39.7%, and the average cost
of querying LLMs is reduced by 51.7%.

Our work makes the following technical contributions:

(1) To the best of our knowledge, this is the first work on
enhancing mobile task automation by combining LLMs
and app-specific knowledge. We build a benchmark for
this problem.

(2) We introduce a novel UI representation method that con-
nects smartphones with LLMs, a task synthesis method
for augmenting LLMs with app knowledge, and various
LLM query optimization techniques to reduce the cost
of task automation.

(3) Through a comprehensive evaluation, we demonstrate
the effectiveness of our approach and the potential to
advance the field of mobile task automation.

2 BACKGROUND AND MOTIVATION
2.1 Mobile Task Automation
The goal of mobile task automation is to automatically com-
plete different kinds of tasks given by users. Its input is an
arbitrary task described with natural language and a mobile
app to execute the task. The output is a sequence of UI actions
that can be executed on a smartphone.

A task is a multi-step functionality request from the user
intended for completion on a smartphone, often lacking ex-
plicit instructions. A UI state, visible to users on their mobile
device, is an arrangement of controls depicted through im-
ages and text, typically organized as a GUI tree. A UI action,
performable by the user or an agent on the device’s screen, is
defined by a tuple (target element, action type, value). Target
element refers to a control in the UI state, such as a button,
text box, input field, or slider. Action type represents how
the target element is manipulated. We consider three main
types of smartphone interactions, including “click”, “input”,
and “swipe”. The value field is the text content of the “input”
action, which is empty for other action types.

In contrast to existing methods that utilize LLMs to sum-
marize or respond to queries about individual mobile UIs
[41, 42], automating mobile tasks demands the capability to
plan task solutions and an in-depth understanding of which
UIs are essential for task completion. AutoDroid aims to

achieve multi-step task automation by leveraging app-specific
knowledge. Furthermore, unlike most existing approaches
that require significant developer/user efforts [2] to enable
automated tasks, we aim to achieve unsupervised task au-
tomation, i.e. support the automation of arbitrary tasks on
black-box apps (whose internal mechanisms are unknown)
without human effort. However, we assume that the apps
are available for automated analyses, e.g. exploring the states,
crawling the content, and analyzing the code. Such an assump-
tion is reasonable because the app packages are all available
for download and static/dynamic app analysis techniques have
been extensively studied before [21–24].

2.2 Large Language Models
Large language models (LLMs for short) mainly refer to the
Transformer-based [40] language models that contain billions
of parameters and are trained on massive amounts of text data,
such as ChatGPT [28], GPT-4 [29], PaLM [6], LLaMA [38],
etc. These models exhibit capabilities that are not present in
smaller models, including mathematical reasoning [7], pro-
gram synthesis [4], and multi-step reasoning [44]. Specifi-
cally, LLM can perform the tasks better than the benchmark
models trained on dedicated datasets. The input of an LLM
is a prompt, which is an instruction to guide its generation
of responses. The prompt is tokenized into tokens (words or
subwords) before being fed into the LLM.

Researchers are actively exploring methods to enhance
the problem-solving capabilities of LLMs by incorporating
reasoning skills [44] and tool utilization [25, 30, 49]. These
efforts aim to enable LLMs to use tools by teaching them to
call APIs or to synthesize codes. However, task automation
in smartphone apps is more complex since it is often related
to the environment without documented interfaces.

2.3 LLM meets Mobile Task Automation
We believe that incorporating LLMs into mobile task automa-
tion brings unique advantages and strengths to both fields.

First, LLMs have the potential to significantly advance
the applications of mobile task automation. The voice-
controlled intelligent personal assistants (IPA) are typical ap-
plications of mobile task automation, aiming to provide intelli-
gent, efficient, hands-free user experience on mobile devices.
Such applications are not only useful in smartphones, but
also in many other scenarios, including automotive in-vehicle
infotainment (IVI) systems [31], wearable fitness trackers
[34, 46], and VR/AR devices [12]. To support IPA services,
developers usually have to manually configure the task work-
flows, which is a cumbersome process even for experienced
developers. Researchers have also attempted to build agents
that can directly manipulate GUI elements like human users
[15, 16, 35, 42]. However, they usually require a lot of human
demonstrations, step-by-step instructions, or clearly-designed
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Step1: tap on “more options”

Step2: tap on “settings”

Step3: tap on “Delete all events”

GUI 1

GUI 2

GUI 3

Figure 2: An example task of “Remove all the events in the
Calendar”. The agent needs to tap on "more options" and
"settings" on the first and second GUI, which do not have
a direct semantic association with the ultimate goal. This
association can be grasped more easily with app analysis.

task-specific reward functions for task completion [10, 19].
LLM-based agents can be better at GUI task automation with
their strong language comprehension and reasoning abilities.

Second, equipping LLMs with smartphones can sig-
nificantly augment their abilities. LLMs are trained with
large-scale public data that contains rich commonsense and
world knowledge, while they have limited knowledge about
individual users and limited abilities to provide personalized
services. Smartphones have been an important part of daily
life by helping people connect with others, stay organized
with calendars, navigate and get directions, control smart-
home devices, and so on. If LLMs learn to use smartphone
apps and access data siloed in them, they could become much
better personal assistants with access to the rich sensors and
personal data in mobile apps.

Yet, applying LLMs to mobile task automation involves
several challenges, including GUI representation, knowledge
integration, and cost optimization. First, LLMs are only capa-
ble of processing plain text data and cannot directly handle
GUI or interact with it. Although the GUI state in Android can
be represented as text using the UI Hierarchy Viewer or Ac-
cessibility Services, it is usually lengthy (about 40k tokens on
average for each UI state) and difficult for LLMs to interpret.
Second, LLMs lack knowledge and experience about certain
applications, which may lead to incorrect execution of instruc-
tions. Figure 2 shows an example where a deep understanding
of the app is needed to complete the task. It is difficult to de-
termine solely based on semantics and prior knowledge that
clicking on ‘more options’ and then ’settings’ on the first two
screens will lead to the screen containing the option to ‘delete
all events’. Therefore, relying solely on prompt engineering
for LLMs to produce common-sense solutions can result in
mistakes. A better approach might be to let LLMs investigate
and learn from mobile apps, gaining practical experience prior

to undertaking tasks for users. Third, using LLMs for task
completion may be costly. The price of querying ChatGPT
API [28] is $1.5 / 1000K tokens. Even if we can deploy a
private LLM service, the computational cost is still high. For
example, inferring a single token with LLaMA-7B [38] takes
6.7 billion FLOPs, and the whole process of task completion
may use over 2000 tokens.

3 OUR APPROACH: AUTODROID
We introduce AutoDroid, an LLM-powered end-to-end mo-
bile task automation system to solve the aforementioned chal-
lenges. In the offline stage, AutoDroid obtains app-specific
knowledge by exploring UI relations and synthesizing sim-
ulated tasks. In the online stage, AutoDroid continuously
queries the memory-augmented LLMs to obtain guidance
on the next action. The task is completed by following the
LLM-suggested actions. AutoDroid adopts several techniques
to improve the task completion rate and optimize the query
cost. Figure 3 illustrates the workflow.

We explain the functioning of AutoDroid using the exam-
ple of automating tasks in a calendar app: During the offline
stage, AutoDroid explores the app by randomly clicking but-
tons on the screen and records the result in a UI Transition
Graph (UTG) memory (Step 1). Next, it traverses all the UI
elements in the UTG and summarizes the tasks they can ac-
complish (Step 2). During online operation, when the user
issues a command such as “delete all the events in the cal-
endar”, the Prompt Generator generates a prompt based on
the task, the UI state description, and relevant information
stored in the App Memory. This information includes instruc-
tions on how to navigate to the GUI page that contains the
“delete events” option. Subsequently, the Privacy Filter re-
places any sensitive information in the prompt to safeguard
privacy. The filtered prompt is then sent to the LLM. Once
the LLM provides an answer, the Task Executor parses the
action that can be executed on the smartphone and verifies
its security before performing it. If the executor deems the
action to be potentially risky, such as “delete all the events”
in this particular task, it will seek confirmation from the user
before proceeding. We will explain how AutoDroid does all
of these in the rest of this section.

3.1 Task-oriented UI Prompting
UI prompting refers to the process of representing underlying
UI information in text and injecting it into the prompt to query
the LLM. The goal of UI prompting is to clearly present the
UI textual and structural content to the LLM and restrict
the output of the LLM to predict only valid UI interactions.
Figure 4 showcases an example of AutoDroid converting a
GUI interface into a prompt while completing the task.
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User

UI Transition Graph

Smartphone

Task 
Executor

Task
Action Request Prompt:
• Overall guidance
• Task representation
• Action history
• Optimized UI description
• Output requirements

Offline

Online

Privacy 
Filter

Memory 
Generator

App Memory

<simulated task, 
actions> pairs

Action Guidance

LLM 
(Cloud/Local)

Prompt 
Generator

Knowledge 
Augmenter

Action

App

Random
Explorer

UI

Action

UI Record

Protector

1. UI relationship exploration 2. Simulated task synthesis

Figure 3: The workflow of AutoDroid.

You are a smartphone assistant to help users complete tasks by interacting 
with mobile apps. Given a task, the previous UI actions, and the content of 
current UI state, your job is to decide whether the task is already finished by 
the previous actions, and if not, decide which UI element in current UI state 
should be interacted.

Which action should you choose next? Fill in 
the blanks about the next one interaction:- 
id=<id number> - action=<tap/input> - 
input text=<text or N/A>. (if you think the 
task has been completed, the id should be -1)

Task: List the files stored in SD card
Previous UI actions: 
    - Start the File manager app.
Current UI state: 
    <input id=0>Search</input>
    <button id=1 label='Sort by'></button>
    <button id=2 label='Add to 

favorites'></button>
    <button id=3 label='More 

options'></button>
    <button id=4>Internal</button>
    <button id=5>Alarms<br>0 items</button>
    <button id=6>Android<br>2 items</button>
    ··· ···

Figure 4: An illustration of the prompt used by AutoDroid.
The content in red, blue, and green boxes are the overall
guidance, the task representation, and the output require-
ments respectively. The ‘current UI State’ in the prompt
refers to the UI displayed within the black box.

3.1.1 Converting GUI to Simplified HTML Represen-
tation. We develop a GUI parsing module to convert GUI to
a simplified HTML representation that can be processed by
LLMs. Researchers have found that LLMs are better at under-
standing HTML than natural-language-described UIs due to
the large amount of HTML code in the training data of LLMs
[42]. Therefore, we represent the GUI in HTML style, which
can preserve the attribute information of UI elements. We
use five types of HTML tags, namely <button>, <checkbox>,
<scroller>, <input>, and <p>, which represent elements that
can be clicked, checked, swiped, edited, and any other views

Table 1: The classes and properties of GUI elements
Class Properties Available action

<button> ID, label, onclick (§3.2.2), text click
<checkbox> ID, checked, label, onclick (§3.2.2), text check/uncheck
<scroller> ID, scroll direction, label, text scroll <direction>
<input> ID, label, text, value input <text>
<p> ID, label, text N/A

respectively. The properties included for each element are:
ID (the order in which the element appears in the GUI tree),
label (the content description that describes the function of
the element), onclick (hints about the UI states that will be
accessed upon clicking this button or checking/unchecking
this checkbox, which will be introduced in §3.2.2), text (the
text on the element), direction (scrolling direction, includ-
ing up/down/left/right), checked (whether the checkbox is
checked or not), value (the text that has been input to the text
box). The classes and properties of GUI elements are shown
in Table 1. We further simplify the DOM tree by pruning invis-
ible elements and merging functionally equivalent elements,
which will be introduced in §3.3. The texts of two merged
UI elements are separated by “<br>”, which represents a line
break in HTML.

In our experiments, we observe that the agent generally
does not proactively scroll on interfaces that can be scrolled
vertically (shown in §6.2). However, having information about
the scrolled interface is crucial for decision-making, espe-
cially when the target button is located on a scrolled portion
of the interface that is not yet visible. Therefore, to provide
the agent with comprehensive information, we need to include
the components from the scrolled portion of the interface in
the current UI state. To achieve this, for a given interface,
AutoDroid first automatically scrolls through all scrollable
components and records the information of the visible UI
elements, and then provides this information to the LLM
for decision-making. This approach offers two advantages.
Firstly, it prevents LLMs from making blind selections when
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they cannot see all the information on the interface. Secondly,
it eliminates the need for LLMs to provide explicit instruc-
tions for scrolling, reducing the frequency of calling the LLM
and lowering the associated computational overhead.

3.1.2 Restricting the Action Space with Selections. A
key characteristic of UI task automation is that all agent ac-
tions need to be confined to the constraints of the underlying
app i.e., the agent can only perform actions of a supported
action type on one of the existing UI elements. Thus, a chal-
lenge is to adapt LLMs, which are generative in nature, to
such a discrete choice task. Hence, we impose the necessity
for LLMs to produce results in a predetermined structure by
completing the following requirement: “- id=<id number> -
action=<tap/input> input text=<text or N/A> (in the event of
task completion, id=-1)”. LLMs must refrain from generating
id or input in an arbitrary format.

3.2 Exploration-based Memory Injection
Exploration-based memory injection aims to provide app-
related information to LLMs, enabling them to gain insights
into apps, understand app utilization methods, and make ef-
fective decisions. However, there are challenges in utiliz-
ing automated app-related knowledge to assist LLMs in task
automation, including: (i) The UI Transition Graph (UTG)
obtained through random exploration cannot be directly pro-
cessed by the LLM. (ii) Memory acquired solely through UI
automation tools contains only UI and action data, without
the essential information needed to directly enable task au-
tomation. This includes details about the specific UI elements
and actions necessary to accomplish a particular task. (iii) An
app may have numerous UI screens and UI elements (buttons,
text boxes, etc.), exceeding the token length limit of LLMs
if all of them are included in a prompt. To overcome these
challenges, AutoDroid synthesizes simulated tasks based on
the randomly explored UI graph. These simulated tasks serve
as a guide for LLMs on how to accomplish a user task.

3.2.1 Simulated Task Generation. AutoDroid generates
simulated tasks by analyzing the UI Transition Graph (UTG)
as depicted in Figure 5. The UTG generated by the UI automa-
tor contains crucial information about the application, such as
the connections between UIs and the presence of different UI
elements on each screen. By summarizing the functionalities
of all UI elements, we can gain a thorough understanding of
the tasks that can be performed within the app and determine
the corresponding UI elements required to execute them. As a
result, AutoDroid parses all UI states and UI elements present
in the UTG and extracts their functions by querying LLMs.

Specifically, UTG can be regarded as a directed graph,
where the nodes and edges are all UI states and actions

recorded by the random Explorer, denoted as U and A respec-
tively. For each UI state U𝑖 , the memory generator queries
LLM to summarize the functionalities of all the UI elements
{𝑒 𝑗

𝑖
} |𝑈𝑖 |
𝑗=1 , where |𝑈𝑖 | denotes the number of elements in 𝑈𝑖 .

Note that AutoDroid only extracts the functionality of an
element on the UI state that is closest to the initial UI if it
appears on multiple UI states. After traversing all UI elements
in the UTG, we obtain the simulated task table in the app
memory containing 𝑛 entries, where 𝑛 represents the total
number of UI elements on the UTG. Each entry in the table
corresponds to a UI element 𝑒 𝑗

𝑖
and is divided into three parts:

<Simulated task, UI states, UI elements>. “Simulated task”
represents the functionality of 𝑒 𝑗

𝑖
that has been summarized by

LLM, which can be perceived as a simulated task that can be
completed by clicking this element. “UI elements” includes
all the elements that were clicked, starting from the initial UI
of the app and leading up to the attainment of 𝑈𝑖 . “UI states”
represents the sequence of UI states that were traversed from
the initial UI state to 𝑈𝑖 . This table provides the agent with
information about the required operations to achieve each
functionality, aiding the agent in planning how to complete
a given task efficiently. Apart from the simulated task table,
there is an additional table called the UI function table in
the app memory. It provides a summary of the functionality
associated with each UI state in the UTG. This information is
obtained by querying the LLM to summarize the function of
each UI state.

3.2.2 Augmenting Prompts with App Memory. The most
straightforward approach to leveraging app-specific knowl-
edge is to incorporate the app memory directly into the prompt,
which can provide guidance to the LLM. However, this may
exceed the maximum token limit of the LLM such as 4097 to-
kens for GPT-3.5 [28]. In many cases, only a few UI elements
are necessary to complete a user’s task. Hence, we selectively
incorporate the most relevant UI information into the prompt.

AutoDroid determines the importance of a UI element in
the app memory based on the similarity between its simulated
task and the current user task. We use an embedding model
(Instructor-XL [33]) that maps natural language sentences
to a fixed-dimension embedding, where the embeddings of
sentences with similar meanings are closer. The cosine sim-
ilarity between the embeddings of the simulated task 𝑆 and
the current task 𝑇 is denoted as 𝑠𝑖𝑚(𝐸 (𝑆), 𝐸 (𝑇 )). Then, we
can find k most similar simulated tasks in the app memory,
denoted as {𝑆1, 𝑆2, ..., 𝑆𝑘 }. For each 𝑆𝑖 , we can retrieve the
corresponding UI states and the UI elements from the “simu-
lated task table” in the app memory. In the online stage, if the
current UI matches one of the UI states associated with 𝑆𝑖 ,
we give hints about the UI elements that the random explorer
interacted with in this UI state. This helps LLMs understand
the outcome of interacting with the elements. Specifically,
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(a) UTG

①

②

④

③

GUI 1

GUI 2

GUI 3

(b) Memory Generation (c) App Memory

Simulated task UI states UI elements
<Function of  
Element A>

GUI 1 → 
GUI 2 ...

① → ... → 
<Element A>

<Function of 
Element B>

GUI 1 → 
GUI 2 → 
GUI 3...

① → ③ → ... 
→ <Element 
B>

... ... ... ... ... ...

Given an HTML representation of the current screen, previous 
UI actions, and the next element to interact with, summarize 
the task these steps are trying to accomplish.

Current UI State: <GUI 1/2/3>
Previous UI actions: <previous actions>
Next element to be interacted with: <Element A/B/C/D...>

Your answer should be no more than 15 words, do not include 
any previous step information in the summary. <an example>

- Memory Generator:

- LLM:
<Function of Element A/B/C/D...>

- LLM:
<Function of GUI 1/2/3>

- Memory Generator:
Given the HTML statement of a GUI screen, you should 
summarize its function in a few phrases. GUI: <GUI 1/2/3>

(i) Simulated task table

UI states Functions
GUI 1 <Function of GUI 1>
GUI 2 <Function of GUI 2>
... ... ... ...

(ii) UI function table

Figure 5: Workflow of offline simulated task synthesis. Given the UI Transition Graph (UTG), Memory Generator
synthesizes a simulated task for each UI element with LLMs, then records the task-states-elements in the App Memory.

the prompt generator of AutoDroid will add a new property
“onclick” to the HTML UI statement in the prompt (shown
in Table1). In HTML, “onclick” is used to describe the event
that will occur when users click a button, link, or image.
In our prompt, the content of the “onclick” property refers
to the functionality of the UI states that will be accessed
after clicking this element, which is most relevant to complet-
ing the 𝑆𝑖 . Algorithm 1 shows how to augment prompt with
{𝑆1, 𝑆2, ..., 𝑆𝑘 } and app memory 𝑀 .

Algorithm 1 Prompt Augmentation
Input: Current user task𝑇 , k most similar simulated tasks in the app mem-

ory S = {𝑆1, 𝑆2 ...𝑆𝑘 }, App Memory 𝑀

Output: Final GUI state after completing the task𝑇
1: function ONLINE-MAIN:
2: 𝐺𝑢𝑖𝑑𝑒 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐺𝑢𝑖𝑑𝑒 (𝑀, S)
3: while𝑇 not completed do
4: 𝑈 𝐼 ← Current GUI of SmartPhone
5: if 𝑈 𝐼 ∈ 𝐺𝑢𝑖𝑑𝑒.𝑈 𝐼𝑠 then
6: 𝑈 𝐼 .𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.ℎ𝑖𝑛𝑡 ← 𝐺𝑢𝑖𝑑𝑒.𝑈 𝐼 .𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

7: end if
8: 𝑃𝑟𝑜𝑚𝑝𝑡 ← 𝑃𝑟𝑜𝑚𝑝𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑇,𝑈 𝐼,𝐻𝑖𝑠𝑡𝑜𝑟𝑦)
9: 𝐴𝑐𝑡𝑖𝑜𝑛 ← 𝐿𝐿𝑀 (𝑃𝑟𝑜𝑚𝑝𝑡 )

10: 𝑇𝑎𝑠𝑘𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 .𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝐴𝑐𝑡𝑖𝑜𝑛)
11: 𝐻𝑖𝑠𝑡𝑜𝑟𝑦.𝑖𝑛𝑠𝑒𝑟𝑡 (𝐴𝑐𝑡𝑖𝑜𝑛)
12: end while
13: return 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐺𝑈 𝐼

14: end function
15:
16: function GENERATEGUIDE(𝑀, S):
17: for each 𝑆𝑖 of S do
18: for each 𝑈 𝐼

𝑗

𝑖
of 𝑀.𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑇𝑎𝑠𝑘_𝑇𝑎𝑏𝑙𝑒 {𝑆𝑖 } do

19: 𝐺𝑢𝑖𝑑𝑒.𝑈 𝐼
𝑗

𝑖
.𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑗

𝑖
.ℎ𝑖𝑛𝑡 ← 𝑀.𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛{𝑈 𝐼

𝑗+1, 𝑗+2...
𝑖

}
20: end for
21: end for
22: return 𝐺𝑢𝑖𝑑𝑒

23: end function

Take the task shown in Figure 2 as an example. Given the
task “Remove all the events in the calendar”, AutoDroid
can retrieve in the app memory and find the simulated task
of the “delete all events” button in GUI 3 to be a relevant
task. Additionally, AutoDroid can find that clicking “more
options” and “settings” in GUI 1 and GUI 2 can lead to
the target button. Therefore, if the current UI screen is GUI
1, the HTML description of “more options” in GUI 1 will
change from “<button label=‘More options’></button>”, to
“<button label=‘More options’ onclick=‘navigate to GUIs that
can: 1.add contact holidays and anniversaries, import and
export events, manage settings, 2.Delete all events in the app,
manage event reminders, etc.’></button>”.

3.2.3 Tuning Local LLM with App-specific Data. Auto-
Droid can also utilize smaller local LLMs (e.g. Vicuna-7B
[5]) to make decisions, as a cost-effective alternative to larger
on-cloud LLMs (e.g. GPT-3.5 [28]). However, the reason-
ing ability of these smaller LLMs is weaker than on-cloud
LLMs, leading to a noticeable decrease in accuracy. It is ob-
served that local LLMs still exhibit suboptimal performance
even with the prompt augmentation methods introduced in
§3.2.2. Researchers have found that fine-tuning using domain-
specific data is an effective way to improve small LLM’s
abilities [5, 36]. Therefore, we can augment smaller LLMs
by fine-tuning using app-specific data.

A key challenge in our scenario is how to generate high-
quality (question, answer) pairs to fine-tune the LLM. A naive
way is to directly synthesize these data pairs from the sim-
ulated task table of the app memory. For a simulated task
𝑆 , the memory generator records a sequence of UI states
{𝑈1,𝑈2, ...,𝑈𝑘 } and the UI elements {𝑒1, 𝑒2, ..., 𝑒𝑘 } to complete
it. We can directly generate k data pairs (𝑞𝑖 , 𝑎𝑖 )𝑘𝑖=1 based on
this record. Specifically, 𝑞𝑖 is a prompt generated based on the
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task 𝑆 , previous UI actions {𝐴1, 𝐴2, ..., 𝐴𝑘 } (where the target
elements are {𝑒1, 𝑒2, ..., 𝑒𝑘 } and the action type is click), and
the current UI state 𝑈𝑖 . Then, the description of the action
𝐴𝑖 can be the answer 𝑎𝑖 . The rationale behind this approach
is that: Based on the generation process of the app memory,
we already know that when transitioning from interface 𝑈𝑖 to
complete task 𝑆 , action 𝐴𝑖 needs to be performed. Therefore,
the correct answer of which action to choose given the state
𝑈𝑖 should be 𝐴𝑖 .

However, the answers generated in this way only include
<target element, action type, value>, lacking detailed infor-
mation or context. Thus, it is difficult for the local LLM to
learn how to choose the correct action based on the prompt.
If we include the reasons for choosing the target action in the
answers, it will enhance the local LLM’s understanding and
enable it to learn how to reason based on the current task and
UI [9]. Thus, we can ask larger LLMs (such as GPT-4 [29])
to answer the reason why 𝐴𝑖 is chosen to complete task 𝑆 , and
prompt it to reason in a step-by-step manner like a Zero-shot
Chain-of-Thought (0-shot CoT) [11]. The prompt sent to the
larger LLM is mainly the same as Figure 4. Additionally, we
provide the correct action to choose 𝐴𝑖 , and prompt the LLM
to reason about the correct action by changing the “output
requirements” part to the following format:

Your answer should always use the following format: 1.
Completing this task on a smartphone usually involves these
steps: <?>. 2. Analyses of the relations between the task and
the previous UI actions and current UI state: 3. Based on the
previous actions, is the task already finished? <Y/N>. The
next step should be <?/None>. 4. Can the task be proceeded
with the current UI state? <Y/N>. Fill in the blanks about the
next one interaction: - id=<id number> - action=<tap/input>
- input text=<text or N/A>.

The answer to the above questions can be used as the an-
swer in the (question, answer) pair for fine-tuning the local
LLM. The thinking and reasoning data generated by these
larger LLMs contains rich information and knowledge. Us-
ing it as answers to fine-tune smaller LLMs can enable it to
mimic the emergent reasoning abilities of the large model.
Besides leveraging the knowledge from larger LLMs, fine-
tuning LLMs with app-specific data also has the bellow two
advantages: (i) Learning from the UTG and incorporating the
insights gained from it. (ii) Let smaller LLMs generate an-
swers that adhere to the desired format instead of unrestricted
formatting in the answers.

3.3 Multi-granularity Query Optimization
We observe that the primary source of overhead in AutoDroid
arises from querying LLMs. Consequently, reducing the fre-
quency of LM queries for each task will result in a reduction
of AutoDroid’s overhead. Additionally, as a more granular

approach, pruning unnecessary tokens in the prompt, we can
effectively decrease the computational cost of LLM.

3.3.1 Pruning Tokens by Merging Functionally Equiv-
alent Elements. The HTML statement of UI described in
§3.1 contains a lot of redundant information, which will in-
crease the number of tokens and cause the LLM to overlook
the most useful information. Therefore, We adopt two tech-
niques to reduce the length of the text: First, we prune the
elements without any visual or textual information (such as
background or container items). Second, we merge function-
ally equivalent UI elements into one element and separate the
originally different elements with a “<br>” delimiter, which
means a line-break-like spacing in HTML. We merge UI el-
ements based on two rules: (i) Based on UTG: If operating
on these two UI elements leads to the same interface, we
combine them into a single component. Specifically, if the
starting and ending points of two edges representing actions
in the UTG are the same, we merge the components they
operate on. (ii) Based on UI tree analysis: We merge the non-
interactive (plain text or image) UI leaf nodes sharing the
same interactive ancestor (button, checkbox, text field, etc.)
in the UI tree. For example, in the GUI screenshot shown in
Figure 4, “Alarms” and “0 items” are two single plain-text
nodes in the GUI tree that have a common clickable ancestor.
Thus, we can merge them into an HTML statement: “<button
id=5>Alarms<br>0 items</button>” instead of two single
statements “<button id=5>Alarms</button>” and “<button
id=6>0 items</button>”.

3.3.2 Reducing Query Times by Shortcuts and GUI
Merging. GUI merging is to include several GUI states into
one prompt if LLMs need them all to make decisions. The
automatic scrolling introduced in §3.1.1 can accomplish this
by skipping the intermediate steps like “scroll down”. With-
out automatic scrolling, AutoDroid has to query LLMs at
least twice to touch an element within the GUI after swip-
ing, involving both scrolling and clicking. After merging the
scrolled UIs into one prompt, we only need to call LLMs once
and get the action “Scroll down to Button A and touch it”.

The shortcut is to execute simple actions directly with
the help of the app memory. Although some steps are cru-
cial and require a large model to make decisions, others are
straightforward and do not require it. So if we can iden-
tify steps that are simple enough so that a local embedding
model [33] can make decisions, we can reduce the number
of queries. Specifically, let 𝑇 , 𝐸, and {𝑆1, 𝑆2, ...} denote the
user task, the embedding model, and the simulated tasks
respectively. If we find 𝑠𝑖𝑚(𝐸 (𝑆𝑘 ), 𝐸 (𝑇 )) > 𝛾 where 𝑆𝑘 =

argmax𝑆𝑖 ∈S 𝑠𝑖𝑚(𝐸 (𝑆𝑖 ), 𝐸 (𝑇 )), then 𝑆𝑘 is very similar to 𝑇 ,
and accomplishing 𝑆𝑘 is straightforward because we have a
series of actions {𝐴1

𝑘
, 𝐴2

𝑘
, ...} in the app memory that navigate

from the initial UI state to 𝑆𝑘 . Thus we can perform 𝑆𝑘 by the
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task executor without calling LLM. 𝛾 is a hyper-parameter,
the larger the value of 𝛾 , the stricter our criteria for selecting
similar simulated tasks become. We observe that even if the
shortcut navigates to UI states unrelated to the task, LLM is
still able to identify issues and quickly navigate to the correct
UI states.

4 IMPLEMENTATION
We implement AutoDroid using Python and Java. The local
LLM Vicuna [5] is fine-tuned using PyTorch.

Identifying Risky Actions. Some actions may potentially
alter local or server data, or cannot be undone once performed.
These actions are considered risky and require user confirma-
tion before being executed by the agent. For example, before
calling a contact, AutoDroid needs to first prompt the user
to verify the correctness of the action. If the user notices any
errors in the number about to be dialed, they can manually
make the necessary modifications. AutoDroid accomplishes
this by prompting the LLM to identify risky actions, i.e. ap-
pending the sentence “If this action potentially leads to a
change of user data or server state that requires user confir-
mation, please answer requires_confirmation=Yes)” to the
prompt. In addition, AutoDroid also utilizes key phrases on
the UI, such as “warning”, to further identify potentially risky
actions.

Eliding Private Information. We add a privacy filter that
can mask the private information in the query. During on-
line processing, it runs a Personal Identifiable Information
(PII) scanner [26] that can detect sensitive information in
the prompt, including name, phone number, email address,
etc. This personal information is replaced with non-private
words (e.g. “<name>”→“Alice”) before sending the prompt
to the cloud. After receiving the response from LLMs, Auto-
Droid maps the special words back to the original ones before
parsing actions.

5 BENCHMARK
We introduce DroidTask, an Android Task Automation bench-
mark suite designed to evaluate the performance of end-to-end
mobile task automation systems. DroidTask consists of 158
high-level tasks extracted from 13 popular apps. What sets
our benchmark apart is that it not only provides tasks and cor-
responding GUI action traces but also offers the exploration
memory and environment for the underlying apps. Agents can
actively interact with the environment during the offline stage,
gathering information about the apps and recording UTGs.
All 13 apps used to collect the tasks are installed, granted
necessary permissions, and can reproduce the GUI action
traces in our environment. We will release the environment
in the form of an Android Virtual Machine Snapshot, allow-
ing researchers to restore the exact environment in which we
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Figure 6: The distribution of tasks in DroidTask across
different numbers of steps (a) and different apps (b).

collected our data. While previous benchmarks [3, 16, 35]
also provide tasks and corresponding actions, they lack a
reproducible environment. However, with the emergence of
LLM-powered task automation methods [30, 47], which of-
ten require dynamic information about the environment for
decision-making, our benchmark offers greater convenience
for evaluating the performance of autonomous agents on mo-
bile phones.

We develop a system for collecting datasets that can inter-
act with Android smartphones. The selected apps primarily
consist of common mobile tools (such as contacts, dialer, cam-
era, calendar, etc.) from F-Droid, a free and open-source app
platform. For each app, we ask annotators to provide a list of
5-15 tasks described in natural language. To complete each
task, annotators interact with the smartphone through a desk-
top computer in an iterative manner. During each iteration,
the system displays the smartphone’s user interface (UI) in
its current state to the annotator, along with a list of available
actions. Annotators can also directly observe the actual state
of the smartphone. They can choose an action from the fol-
lowing options: 1. Touch <Button ID>, 2. Input <input text>
to <EditBox ID>, 3. Swipe <Scroller ID> <direction> in the
terminal. The distribution of tasks is shown in Figure 6.

6 EVALUATION
We conduct experiments to examine the accuracy and cost of
AutoDroid in mobile task automation.

6.1 Experimental Setup
Dataset. We mainly evaluate AutoDroid on DroidTask (men-
tioned in §5). We also utilize MoTiF [3] dataset to train the
baseline methods and fine-tune the LLMs. MoTiF [3] is a
large-scale mobile app task dataset with more than 4.7k tasks
(excluding tasks without valid demonstrations). It also pro-
vides the screenshot and the tree-based representation of the
GUI screens that annotators interacted with when completing
these tasks, but lacks the exploration environment of the apps.

Hardware. We evaluate the end-to-end performance of Au-
toDroid on a OnePlus ACE 2 Pro with 8 3.2 GHz ARM-based
cores (Snapdragon 8 Gen2 CPU) and Adreno™ 740 GPU.
The local LLM Vicuna-7B [5] is deployed on the smartphone
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based on Machine Learning Compilation for LLM (MLC
LLM) [37]. Additionally, it is deployed on an edge server
equipped with 1 NVIDIA 3090 24G GPU to assess inference
latency in an edge computing context. The Vicuna-7B model
is fine-tuned on an 8× A100 80GB server for about 4 GPU
hours.

Baselines. We choose META-GUI [35] and an existing
LLM-based design for UI task automation [42] (referred to as
LLM-framework) as our main baselines. META-GUI [35] is
a training-based conversational agent on mobile GUI that can
accomplish various tasks. We train it on the MoTiF [3] dataset.
LLM-framework [42] is an LLM-based framework that en-
ables diverse language-based interactions with mobile UIs.
We also implement two relatively simple baselines, random
performer (randomly selecting one UI element within each
UI screen) and similarity-based (selecting the UI element that
is semantically closest to the task using a SOTA embedding
model [33]) performer.

Metrics. Given a sequence of UIs {𝑈1,𝑈2, ...,𝑈𝑛} in which
human annotators performed actions A = {𝐴1, 𝐴2, ..., 𝐴𝑛} to
complete a task 𝑇 , if one agent can make a sequence of deci-
sions Â = {𝐴1, 𝐴2, ..., 𝐴𝑛} on {𝑈1,𝑈2, ...,𝑈𝑛}, we use below
two metrics to measure its performance:

(i) Action Accuracy: The ratio of the action 𝐴𝑖 matching
the ground-truth actions 𝐴𝑖 , namely 𝑃 (𝐴𝑖 = 𝐴𝑖 ). One action
is right only if the target UI element and input text (“null” if
there is no need to input) are both right. This metric reflects
the ability of the agent to make correct decisions based on the
available information.

(ii) Completion Rate: The probability of completing all
the actions in one sequence correctly, namely 𝑃 (Â = A).
This metric reflects the probability of the agent being able to
consistently and successfully complete a task.

6.2 Action Accuracy
We first evaluate the action accuracy of AutoDroid. The open-
sourced LLM Vicuna-7B [5] is fine-tuned using the generated
app-specific data, as mentioned in §3.2.3. For the closed-
source LLM such as GPT-3.5 [28] and GPT-4 [29], which
can not be fine-tuned directly, we augment them with auto-
matically generated app memory, as mentioned in §3.2.2. The
temperature of the LLMs is set to a lower value of 0.25 to
encourage creativity while preventing it from being overly
random. The action accuracy of AutoDroid and baselines is
listed in Table 2. AutoDroid outperforms baselines on every
action type, resulting in an overall accuracy improvement of
37.6%. Among all the actions, clicking is the simplest, only
requiring the decision of the element ID. On the other hand,
scrolling and inputting necessitate specifying the direction or
value of the UI element, and determining completion entails
considering all previous actions.It is also observed that with

the LLM going larger, LLM-based methods outperform the
model trained from scratch [35]. This is because the model
has only been exposed to apps and tasks from specific datasets
[3]. Thus, it will not perform well on new apps and tasks in
the DroidTask. However, by accumulating sufficient prior
knowledge and incorporating our memory integration, LLMs
can engage in rational reasoning on how to solve problems
on new apps. For scrollable UIs, AutoDroid will first browse
and traverse all the components on the screen, eliminating
the need for the “scroll” action. From the scroll accuracy of
the baseline, it is observed that the probability of the agent
actively selecting this action is very low. Thus, browsing and
traversing first can improve the overall accuracy of the agent.

The reason AutoDroid outperforms baselines is: (i) Au-
toDroid prunes and merges UI elements, which reduces the
action space (from 36.4 to 13.2 choices per GUI state on
average). (ii) The exploration-based memory can enhance
the LLM with domain-specific knowledge about the apps,
which will be detailed in §6.4. (iii) The output format of the
fine-tuned model is aligned more closely with the format re-
quirements specified in the output requirements. If the output
is not standardized, the task executor would be unable to
extract or recognize the element ID and action.

We further analyze why and how AutoDroid fails on some
steps. We randomly sample 20 failure cases by AutoDroid
(using GPT-4 [29] as the LLM), and categorize 3 typical fail-
ure causes, as explained below: 1. Multiple Correct Choices.
In certain cases, there can be multiple valid ways to complete
a task. Annotators may not be able to exhaustively list all the
possible ways to complete a task, and if the agent attempts a
different approach than what the annotators specified, it may
be deemed incorrect. 2. Unable to accurately determine if the
task has been completed. Sometimes AutoDroid mistakenly
considers a task completed when it detects the presence of
a specific UI element. 3. Lack of understanding of the GUI.
AutoDroid occasionally overlooks important information or
hints in the UI and makes decisions based on its prior experi-
ence. For example, in the task “open the camera and record a
short video, name it ‘test.mp3’ ”, the agent only needs to input
‘test’ into the “name” box. This is because the GUI indicates
that the file extension ‘.mp3’ is already displayed in the “file
type” box. However, AutoDroid still selects ‘test.mp3’ as the
input to the “name” box.

6.3 Task Completion Rate
The Task Completion Rate of AutoDroid and LLM-framework
[42] is shown in Figure 7 (a). Note that we do not include
the completion determination step for clear comparison. Au-
toDroid outperforms baseline by 40.5%, 26.4%, and 39.7%
for Vicuna-7B, GPT-3.5, and GPT-4 respectively. We also
show the completion rate of AutoDroid with and without
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Table 2: Action accuracy of AutoDroid and baselines on DroidTask. Rand: Randomly selecting actions, Sim: Similarity-
based action prediction, LLM-F: LLM-framework [42], Complete: Determining completion.

Vicuna-7B GPT-3.5 GPT-4

Action Rand Sim MG LLM-F AutoDroid LLM-F AutoDroid LLM-F AutoDroid

Click 2.3% 35.1% 25.3% 15.2% 74.5% 58.1% 72.1% 65.4% 91.2%
Input 0 0 0 0 40.0% 5.0% 62.5% 27.5% 82.5%
Scroll 2.5% 0 0 8.2% N/A 0 N/A 0.6% N/A

Complete 2.5% 0 N/A 4.4% 5.7% 0 41.8% 0 93.7%

Overall 2.3% 20.8% 22.4% 11.3% 57.7% 34.7% 65.1% 54.5% 90.9%
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Figure 7: Task completion rate of AutoDroid with differ-
ent LLMs and with varying numbers of steps. Vi: Vicuna-
7B, 3.5: GPT-3.5, 4: GPT-4.

memory augmentation in Figure 7 (b). As the number of
steps increases, the overall completion rate decreases. This
is because (i) the probability of each step being executed
correctly decreases. (ii) Tasks that involve multiple steps of-
ten have multiple approaches to completion (e.g., creating a
new contact by entering either the name or the phone num-
ber first). However, human annotators typically only annotate
one approach, which can lead to the model’s solution being
mistakenly judged as incorrect. The actual completion rate in
the real-system can be higher than the reported results, but
we do not include real-system results since determining task
completion can be ambiguous.

6.4 Ablation Study
6.4.1 Memory Injection. The action accuracy and task
completion Rate of AutoDroid with and without memory is
shown in Figure 8. We can observe that the improvement in
overall completion rate is much higher than the improvement
in single-step accuracy. This is because the introduction of
memory allows LLMs to make crucial single-step decisions
(such as the example in Figure 2). Although these critical steps
account for a small proportion of all the action steps, they are
essential for successfully completing certain tasks. Moreover,
it can be observed that smaller models benefit more from the
inclusion of memory in terms of task completion rate. This
is because smaller models possess less prior knowledge, thus
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Figure 8: Action accuracy and task completion rate of
AutoDroid, with and without memory augmentation.

Table 3: Action accuracy and completion rate of Auto-
Droid based on Vicuna-7B with different fine-tuning tech-
niques. Original: Vicuna-7B without fine-tuning. CoT:
Fine-tuning with zero-shot chain-of-thought. Mo: Incorpo-
rating a small portion of MoTiF [3] dataset for fine-tuning.

Metric Original AutoDroid No Mo No CoT No Mo&CoT
Action 11.3% 57.7% 51.9% 20.6% 51.9%

Completion 0.6% 41.1% 29.8% 0.6% 31.6%

requiring more guidance from application-specific knowledge.
However, even for larger models, the incorporation of memory
remains meaningful. Limited model capacity cannot store
the vast and ever-growing knowledge present in the world,
making it difficult to stay updated on the evolving usage
patterns of new applications. Therefore, automatic exploration
and recording of their usage patterns play a crucial role in
enabling LLMs to effectively use applications.

6.4.2 Zero-shot Chain of Thought Fine-tuning. The ac-
tion accuracy and task completion rate of AutoDroid based on
Vicuna-7B [5] fine-tuned with and without Zero-shot Chain-
of-Thought (0-shot CoT) [11] is shown in Table 3. Since
the app memory automatically generated by AutoDroid only
contains clicking and checking actions, the LLM fine-tuned
merely on the app memory is poor on inputting and adjusting
whether the task has been completed. Hence, we incorporate
a small portion of manually annotated data for fine-tuning.
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Specifically, we add only the input and completion judgment
data from MoTiF dataset [3] into the app memory dataset.
Note that the app and task in the MoTiF dataset [3] are unre-
lated to our dataset. Thus, adding this portion of data will not
result in any test data leakage. It simply enables the model to
learn to input and to determine the task’s completion.

Vicuna-7B [5] fine-tuned with Zero-shot Chain-of-Thought
data generated by app memory mixed with a small portion of
MoTiF [3] (AutoDroid) can achieve 57.7% action accuracy
and 41.1% completion rate on DroidTask, with an input ac-
curacy of 40.0%. Without MoTiF [3] data (“No Mo”), the
fine-tuned model can achieve 51.9% action accuracy, and
the inputting accuracy is 0%. We observe that when there
are no CoT and no MoTiF data (“No Mo&CoT”), the fine-
tuned LLM can achieve a high accuracy rate with simple click
actions, and it can generally handle tasks that involve only
clicking. However, once the MoTiF dataset is introduced (“No
CoT”) to teach the LLM additional types of actions (such as
input and task completion judgments), the LLM is heavily
misled by the completion of judgment tasks. As a result, it
outputs a significant number of “task completed” instead of
selecting actions correctly. Consequently, the action accuracy
drops from 51.9% to 20.6%.

6.5 Cost Analysis
Runtime Cost. AutoDroid reduces runtime overhead by ad-
dressing two aspects: reducing the number of tokens per query
and minimizing the frequency of query. In Figure 9 (a), we
show the count for each prompt length. Our baseline [42] in-
cludes only visible leaf nodes in the UI tree, and contains
625.3 tokens within each prompt on average. AutoDroid
merges functionally equivalent nodes in the UI tree and fur-
ther simplifies the expression of properties, reducing the token
count by nearly half (339.0 on average). There are two main
benefits: (i) Reducing token length can significantly decrease
the model’s inference latency. (ii) For calling on-cloud LLM
API, it can reduce costs. For example, for GPT-3.5 and GPT-4,
the cost can be reduced from $0.938 and $18.76 to $0.509
and $10.17 every 1000 queries respectively on average.

In Table 4, we randomly select five baseline prompts and
find the corresponding prompts optimized by AutoDroid. We
measure their real latency on the Vicuna-7B [5] deployed on
the smartphone as well as on the edge server. Our optimized
prompt reduces inference latency by 21.3% on average. Note
that the inference latency of LLMs on the smartphone and the
edge server primarily depends on the number of output tokens.
Therefore, when deploying the LLM on a mobile device, we
do not require the LLM to output the Chain-of-Thought but
rather output in the original manner shown in Figure 4. In the
case of 𝑃5, due to the excessive length of the baseline, it was
truncated after outputting only one word, resulting in minimal
inference latency.
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Figure 9: Overhead of AutoDroid and LLM-framework
[42]. Left: The number of prompts with different token
counts. Right: The component of per-step latency of Auto-
Droid based on 3 LLMs respectively. Vicuna-E: Vicuna-
7B deployed on the edge server. Vicuna-S: Vicuna-7B de-
ployed on the smartphone.

Table 4: Per-step inference cost of AutoDroid with
Vicuna-7B deployed on the OnePlus ACE 2 Pro smart-
phone. LLM-F: LLM-framework [42]. 𝑃1∼5: Five random
prompts from LLM-framework.

Prompt length / Inference latency 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5

LLM-F input length (token) 252 401 460 559 719
AutoDroid input length (token) 299 280 233 177 233

On device LLM-F latency (s) 40.6 50.2 63.9 64.9 36.0
On device AutoDroid latency (s) 39.7 30.8 33.9 39.7 22.7

On cloud LLM-F latency (s) 4.4 5.5 6.4 16.1 6.5
On cloud AutoDroid latency (s) 4.2 8.8 4.9 5.3 5.6

Figure 9 (b) shows the component of per-step latency of Au-
toDroid. The Vicuna-7B model is deployed on the smartphone
and on the edge server. On-cloud GPT-3.5 and GPT-4 models
are accessed by making API calls. The embedding model [33]
is deployed on an edge 1080 Ti GPU with 11 GB memory.
Note that the latency in calling GPT-3.5 and GPT-4 is sig-
nificantly influenced by network conditions, server load, and
so on. Therefore, we make 10 measurements to calculate the
average latency, but there still remains a considerable degree
of instability. Calling LLMs (“LLM”) accounts for the major-
ity of the latency, with 42.1%, 51.9%, 77.6%, and 87.1% of
the latency based on GPT-3.5, Vicuna-7B (on-server), GPT-4,
and Vicuna-7B (on-device) respectively. Therefore, reducing
LLM calls can largely reduce the end-to-end overhead. Be-
sides, Embedding the task and searching the most similar UI
element (“Embed”) account for only 1.7% of the overhead,
and only needs to be executed once for every task. Therefore,
the overheads of finding the shortcuts and memory injection
are acceptable.

We also conducted experiments on saving the number of
calls based on merging GUI and shortcuts. On average, Au-
toDroid reduces LLM calls by 1.2 per task resulting in an
overall decrease of 13.7% in the total number of calls using
the GUI merging technique. Our shortcuts correctly guide

554



AutoDroid: LLM-powered Task Automation in Android ACM MobiCom ’24, September 30–October 4, 2024, Washington D.C., DC, USA

Table 5: Action accuracy and completion rate of Auto-
Droid based on GPT-4 with privacy information replace-
ment and security confirmation on 5 apps in DroidTask.
Priv: Privacy information replacement, Sec: Security con-
firmation.

Metric Original +Priv +Sec +Priv&Sec

Acc 92.9% 89.9% 89.9% 89.9%
Completion 75.4% 69.9% 68.5% 69.9%

LLMs in 75% of cases. Considering only the correct short-
cuts, we save 38.02% of the number of steps, with an average
savings of 1.73 steps per task.

Offline Preparation Cost. For every app, it takes about
0.5-1 hour to generate the UI Transition Graph (UTG), which
is then analyzed to synthesize simulated tasks based on LLMs,
taking about 5-10 minutes. Finally, the simulated tasks are
mapped into high-dimensional vectors by an embedding model
[33] for runtime lookup, which typically takes about 10 sec-
onds on a desktop computer. The offline preparation is a
one-time process and does not need to be performed again at
runtime.

6.6 Influence of Security/Privacy Filtering
We ask the annotators of DroidTask to also determine whether
each action could potentially change the state of the user or
the app. If so, we consider the action to be risky and prompt
the user to confirm whether to proceed with the action. We
evaluate AutoDroid’s accuracy in detecting risky actions in
five apps that may contain risky actions (contacts, dialer, SMS
messenger, clock, and calendar). We consider risky actions
as positive examples and AutoDroid achieved a precision of
75.0% and a recall of 80.5%. We further show the influence
of adding privacy information replacing and security confir-
mation into the prompt in Table 5. When privacy replacement
and security confirmation are added, a decrease in accuracy
and completion rate can be observed, which is acceptable.

7 RELATED WORK
UI Understanding and Automation. There has been grow-
ing interest in using machine learning techniques to com-
prehend and summarize user interfaces, enabling use cases
such as accessibility and task-oriented bots. Key areas of re-
search include: 1) Semantic analysis of GUIs to summarize
functions [13, 18], interpret UI elements’ purposes [17, 48],
and address user questions related to the GUI [42, 43]. It is
crucial for various interaction tasks such as UI automation
and accessibility. 2) Mapping user instructions to UI elements
[15, 16, 35]. These methods aim to to select the most relevant
GUI elements for given tasks. 3) Mobile UI task automation
[45, 49]. These methods build agents to complete tasks for
users by performing actions on the GUI. AutoDroid, on the

other hand, leverages the UI transition memory to complete
complex, multi-step tasks on smartphones. The memory can
help agents to understand richly informative UIs and the usage
of apps, and augment the LLMs in reasoning and planning.
After the first release of AutoDroid, there were various LLM-
based UI agents proposed, which had been comprehensively
summarized in a recent survey [20].

Augmented LLM. Although LLMs excel in tasks like
question answering and text generation, they are still con-
strained by the information they can store in their fixed set of
weights and context length. Therefore, researchers are aug-
menting LLMs with different tools, such as web browser
[8, 27], APIs [25, 30], and other DNN models [32]. Unlike
existing approaches that often depend on public APIs, our
method does not require custom APIs, which are uncommon
in mobile applications.

8 DISCUSSION
Randomness of LLMs. We can set the ‘temperature’ hyperpa-
rameter to 0 for consistent responses. But setting temperature
too small will inhibit innovative answers, thereby potentially
reducing the performance of our system. In our experiments,
we set the temperature to 0.25. And we observe a 2.1% accu-
racy reduction when we set the ‘temperature’ of GPT-3.5 to 0.
Conversely, increasing the temperature to 0.7 boosted action
accuracy by 3.8%.

Increased latency limits the practical use of AutoDroid.
Our work could be extended by a collaborative approach
between LLMs and smaller models. We could call LLMs
only once for each task to create a guideline based on the fil-
tered domain-specific knowledge about the app. Subsequently,
smaller models could be employed to associate these guide-
lines with UI elements [16, 35]. Introducing an instruction
cache could further reduce latency by storing and reusing
common commands, minimizing the need for repeated LLM
invocations.

9 CONCLUSION
We present an LLM-powered mobile task automation sys-
tem that can support arbitrary tasks without manual efforts.
Experiment results have shown that our method can achieve
effective task automation, outperforming existing training-
based and LLM-based baselines. We believe that the synergy
between the commonsense knowledge of LLMs and domain-
specific knowledge in mobile apps can potentially bring truly
intelligent and helpful personal assistants into reality.
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