
Towards Energy Ecient 5G vRAN Servers

Anuj Kalia Nikita Lazarev† Leyang Xue‡ Xenofon Foukas Bozidar Radunovic Francis Y. Yan★

Microsoft †MIT ‡University of Edinburgh ★Microsoft and UIUC

Abstract
We study the problem of improving energy eciency in

virtualized radio access network (vRAN) servers, focusing on
CPUs. Two distinct characteristics of vRAN software—strict
real-time sub-millisecond deadlines and its proprietary black-
box nature—preclude the use of existing general-purpose
CPU energy management techniques. This paper presents
RENC, a system that saves energy by adjusting CPU fre-
quency in response to sub-second variations in cellular work-
loads, using the following techniques. First, despite large
uctuations in vRAN CPU load at sub-ms timescales, RENC
establishes safe low-load intervals, e.g., by couplingMedia Ac-
cess Control (MAC) layer rate limiting with CPU frequency
changes. This prevents high trac during low-power opera-
tion, which would otherwise cause deadline misses. Second,
we design techniques to compute CPU frequencies that are
safe for these low-load intervals, achieved by measuring the
slack in vRAN threads’ deadlines using Linux eBPF hooks,
or minor binary rewriting of the vRAN software. Third, we
demonstrate the need to handle CPU load spikes triggered
by control operations, such as new users attaching to the
network. Our evaluation in a state-of-the-art vRAN testbed
shows that our techniques reduces a vRAN server’s CPU
power consumption by up to 45% (29% server-wide).

1 Introduction
Virtualized RANs, which run the cellular radio stack on com-
modity servers instead of specialized hardware, are gaining
adoption in modern cellular networks (e.g., 5G), owing to
advantages such as a multi-vendor ecosystem, easier main-
tenance, and faster feature upgrades. This paper targets the
energy eciency of vRANs, focusing on the “Distributed
Unit” (vDU) servers that perform real-time base station func-
tions. Base stations are a major energy consumer: For in-
stance, a recent report from China Mobile [49] estimates the
deployment of 2.1 million 5G base stations (roughly three
sectors/cells per base station) in China alone. Given today’s
240-watt vRAN servers (§3.2), even a modest 1% reduction in
server energy usage can translate to ∼44 million kWh/year.

Two unique attributes of vRAN software—stringent real-
time deadlines and black-box nature—preclude the use of
standard CPU energy saving techniques. The lower vRAN
layers running in the DU have hard deadlines on the order
of the sub-ms Transmission Time Interval (TTI) of the wire-
less protocol, which must be met for functional correctness.
Conventional energy-saving techniques, e.g., OS-controlled
CPU frequency scaling or deep CPU sleep states, operate at
tens of milliseconds and fail to meet these deadlines, with
consequences as extreme as crashes or malfunctioning of
the vRAN software. As a result, today’s vRAN deployments
disable these optimizations and instead maintain the CPU at
a consistently high frequency regardless of the trac [45].

This paper presents RENC, an energy-saving system that
dynamically adjusts the DU’s CPU frequency in response
to sub-second changes in cellular workloads. Our design is
based on the observation that cellular networks experience
low utilization during most of their operational time. This
leads to signicant intervals of low CPU load where there is
slack in the deadlines, i.e., a large deadline fraction remains
unused, and there is room to reduce CPU frequency.
The central challenge for CPU energy saving in vRANs

is the high variability in CPU load at sub-ms timescales. A
sequence of TTIs that need few CPU cycles may be followed
by a TTI with the maximum load, e.g., due to a trac burst
or a control plane operation. If the system is in low-power
mode at this time, the DU can miss its deadlines with severe
consequences (Section 2.1). The central idea in RENC is to
establish “low-load” intervals for energy saving. We dene
“low-load” in terms of cellular trac, as periods with data
trac below a small threshold (e.g., 10% or 1%), and with no
expensive control plane operations. RENC needs to (1) sepa-
rate these intervals from the opposite “high-load” intervals,
and (2) determine safe low CPU frequencies for the low-load
intervals. In high-load intervals, RENC keeps the CPU at a
high frequency to ensure that deadlines are met.
For separation, RENC uses both proactive and reactive

techniques, as well as careful timing. For example, we use
the MAC scheduler for proactive rate limiting to prevent

vDU server

OS kernel

vDU

vCU

CPU cores

RENC

PHY (signal processing)
MAC (scheduling)
RLC (retransmission)

CPU uncore

Figure 1: Overview of a vRAN deployment with RENC.

trac bursts until RENC switches to high-load mode. RENC
carefully orchestrates the timing of changes in MAC rate
limits and CPU frequency, e.g., by ensuring that the increased
CPU frequency is eective before lifting the rate limit. In
addition to tackling user trac-related CPU load, we also
recognize control plane operations, such as user equipment
(UE) attachments, as a cause of CPU load spikes. These can
be handled in a reactive manner due to the longer control-
plane latencies. RENC detects control plane messages using
a small amount of telemetry from the vRAN and temporarily
boosts CPU frequency to handle them.

The next challenge is to determine safe low CPU frequen-
cies for the low-load intervals. This requires rst measur-
ing the “deadline slack” for each core, dened as the min-
imum unused fraction of the deadline. This is challenging
because vRAN software is typically proprietary and closed-
source, delivered to cellular operators by specialized ven-
dors as a black-box binary. It is dicult for operators to
directly add slack measurement code, especially since this
must be done separately for each vendor. Instead, RENC aims
to measure slack transparently to the extent possible: For
interrupt-driven threads, we use eBPF [32] programmability
in the Linux kernel scheduler, with no source code knowl-
edge. For polling-based threads that do not yield to the OS,
we use binary rewriting for a few DU functions. When the
slack measured during low-load intervals remains high (e.g.,
above 10%) over a large number of samples, RENC chooses
an iteratively lower CPU frequency for these intervals.
Inter-operability of RAN applications (such as energy-

savings [6, Sec. 4.21]) across vRAN implementations is a key
tenet of RAN virtualization and the “O-RAN” standards [4],
which most vRAN vendors are adopting. The principle is to
rely on interfaces exposed by vRAN components instead of
internal details, to make wide deployment feasible. For this
reason, we design RENC to run outside the vRAN software,
and interact with it via well-dened interfaces.
Our evaluation in a commercial-grade 5G vRAN testbed,

with two 5G 100MHz 4x4 cells and nine commercial 5G UEs,
shows that during periods of low trac, RENC reduces the
power consumption of vRAN CPUs and servers by up to 45%
and 29%, respectively.

2 Background
Figure 1 shows a high-level overview of a vRAN deployment
with RENC, focusing on the DU server that our work targets.

It consists of one or more (typically three, corresponding to
a three-sectored cell site) radio units (RUs) that connect to
the DU via an Ethernet fronthaul link. For sub-ms latency,
the DU server is close to the cell site, in a cabinet or a small
nearby datacenter. Multiple (e.g., 100s) DU servers connect
to a “centralized unit” (CU) server, which handles the non-
realtime, less compute-intensive layers of the vRAN stack.

The DU runs the lower layers of the vRAN stack: the Phys-
ical (PHY) layer that does wireless signal processing convert-
ing signal samples to bits and vice-versa, the Media Access
Control (MAC) layer that schedules wireless resources, and
the Radio Link Control (RLC) layer that handles reliable in-
order delivery etc. RENC runs externally to the DU as a
userspace agent, with an in-kernel eBPF component.
Sources of energy consumption Cellular networks con-
sume a huge amount of energy, of which the RAN consumes
a majority (e.g., GSMA estimates 73% [40]). Within the RAN,
the RU and the DU consume the most energy. The energy
split between the two is variable, ranging from near-equal for
small radios, to 9:1 for largemassiveMIMO radios [31,49]. For
example, our DU server consumes around 236W, whereas
each of our 4x4 indoor radios (one server can theoretically
handle six such radios) consumes around 45W when active.
This works focuses on the DU server,whose energy eciency
is a topic of wide industry interest [37, 39, 42, 43, 54, 59, 63].
RU energy is complementary to our work, which we plan to
tackle in the future. RUs require dierent types of optimiza-
tions, e.g., achieving large savings requires turning o analog
components (e.g., via MIMO- and cell-sleep [24]), which are
controlled at longer timescales (hours) than the sub-second
variations that our work targets.

2.1 Distinct characteristics of the vRAN DU

Real-time deadlines. Unlike typical applications—which
are the focus of most prior work on energy eciency (cf.
survey [50])—where work can be queued-up if CPU power
is insucient, the vRAN DU has strict real-time deadlines.
The deadline for most threads is the TTI, which is 500 µs
in 5G deployments in sub-6GHz bands, which are vRAN’s
focus today; it is even lower (125 µs) in mmWave deploy-
ments. The computation needed per TTI is highly variable,
and can change from near-zero to maximum in consecu-
tive TTIs. The consequences of violating deadlines range
from alarming (e.g., dropped calls), to catastrophic (e.g., a
cell going oine due to the vRAN software crashing). This
requires that energy management be done without aecting
the vRAN’s real-time performance.
Black-box nature. Although energy eciency for real-time
systems is well-studied [21, 58], the vRAN software’s propri-
etary and closed-source nature makes it dicult to simply
apply existing techniques. The basic method from this litera-
ture is to measure, at a given CPU speed, the task’s deadline
slack, i.e., the minimum unused fraction of the realtime dead-

line. The CPU speed can be reduced while the slack stays
above a threshold. For example, if tasks use only 100 µs of a
500 µs deadline in the worst case (i.e., 80% slack), CPU speed
can be safely reduced by a small amount, and the slack re-
evaluated. While the high-level method is simple, applying
it to vRANs presents several challenges (§4.1).

2.2 Techniques in traditional base stations
In traditional base stations (e.g., using in-house DSPs [13]),
energy eciency has been extensively studied for over a
decade (cf. surveys [64,65]). The problem is less explored for
vRANs, which are a recent advancement. Non-virtualized
base stations save energy by opportunistically turning o
dierent hardware components. Debavilli et al. [29] provide
a power model for dierent base station sleep modes, char-
acterized by the time to enter and exit the mode, ranging
from sub-100 µs to one second, and the power consumption
in the mode. Base stations based on specialized hardware
may have proprietary and tightly hardware-integrated sleep
mode implementations that are co-designed for RAN pro-
cessing [22,24]. In contrast CPUs have only general-purpose
sleep modes, which are not easily applicable to vRANs (§3.2).

2.3 CPU and OS features

CPU energy management consists of mainly dynamic
frequency scaling (P-states), and CPU sleep states (C-
states). Today’s vRANs typically disable these features (e.g.,
FlexRAN [45]), consuming high power at all times [27]. RENC
uses P-states and shallow sleep states (§3.2).
eBPF in the kernel. RENC uses eBPF to transparently mea-
sure deadline slack for some vRAN threads. eBPF [32] is
a modern framework for running user-provided programs
called codelets at predened code points (called hooks) in
unmodied binaries. eBPF codelets are written in a restricted
C-like language, and are compiled to a bytecode that is veri-
ed for safety and then JIT-compiled to native code for high
performance. The typical use case for eBPF is to augment the
Linux kernel with new functionality. The recent Janus sys-
tem [36] uses vendor-provided eBPF hooks in vRAN binaries
to add custom functionality to the vRAN.

3 Motivating observations

3.1 Low utilization in cellular networks
Cell sites have low utilization, as a natural consequence of
the physical cell tower infrastructure being dimensioned for
peak trac separately in each area. Today’s vRAN servers
also run at a CPU capacity sucient to handle the maximum
trac at all times, frequently wasting energy.

Although large-scale traces of cell site trac at sub-second
granularity are not publicly available today, several studies
provide evidence for this. For example, an Ericsson report
on RAN energy eciency for LTE concludes that “even a
future network, where hotspot peak-hour trac might be 1,000

Figure 2: CDF of cumulative transport block size (TBS) measured
every 50 ms, for two LTE cells. Vertical lines show 1% of peak trac.

C1 C1E C6 P-states

Residency time 1 µs 4 µs 600 µs N/A
Wakeup time 1 µs 4 µs 170 µs N/A
Applicable to vRANs X X ? X

Table 1: Comparison of C-/P-states for our Ice Lake CPUs

times greater than today, will still feature low trac loads most
of the time and in most locations.” [57]. Another report from
Ericsson mentions that “Half of the sites have long periods of
just idling and waiting for users to make use of the capacity
available.” [24]. In fact, a study of RU energy eciency by
SK Telecom and NTT Docomo evaluates the power draw of
only idle RUs, since that is the common case [31].
To illustrate this, we collected TTI-level traces from two

commercial LTE cells, using the Falcon LTE snier [34]. Since
RENC waits for 50ms to transition to low-load (§4), we plot
the CDF of the total trac measured every 50ms in Fig-
ure 2. The left gure shows a 9:30–9:47pm trace for cell #1,
located in a major university; the right for 10:11pm–0:11am
in cell #2, located in a residential area close to a dierent uni-
versity. These are busy locations, and we expect that these
evening/night measurements approximate typical cells dur-
ing day hours. In cell #1, over 50% of the 50ms intervals have
less than 1% of the peak trac; such periods reach 60–80% in
cell #2. These intervals represent opportunities for RENC to
save energy. We currently target durations with <1% trac,
but relaxing this to 10% is possible in our system (§9.1).

3.2 CPU power management

Choosing between P- and C-states. RENC uses P-states
and shallow C-states, but not the deep sleep states. Modern
Intel server processors support C1,C1E, and C6 states. C1 and
C1E are shallow and save far less energy than C6, but their
sub-5 µs latencies make them easily applicable to vRANs.

Can RENC use the deep C6 state? Table 1 shows why this
is dicult. A C-state’s “residency time” is dened as the mini-
mum time that the core must stay in that state to save energy,
to break-even from the sleep and wakeup overheads. For our
Ice Lake CPUs, C6’s high 600 µs residency time—required to
ush the large L2 cache—plus its 170 µswakeup time, exceeds
the sub-500 µs TTI used in 5G networks. Most vRAN threads
must run in every TTI—this pattern is followed by all six

 0

 1000

 2000

 3000

 0 100 200 300 400 500

Core frequency
Uncore frequencyF

re
q
.
(M
H
z
)

Active microseconds per 500 us TTI

Figure 3: HWP-picked frequency for varying TTI activity levels

Component Power

CPU (Xeon 6338N) 129W
DIMMs (8x 32GB) 14W
Miscelaneous 93W

Total 236W

(a) Server power breakdown.

(b) Eect of core & uncore frequency
Figure 4: Components of vRAN server and CPU power

DUs that we have studied, including open-source [9, 15, 30],
and proprietary [16,33,46]—so the CPU cores cannot remain
inactive in C6 for long enough to save energy. We therefore
focus on P-states instead, which allow the CPU to be active
at all times and ne-grained frequency control. Recent ad-
vances reduce the impact of CPU frequency changes on core
blocking time [28], and jitter on other cores [44]. C6 may be
feasible for some DU threads with multi-TTI deadlines; we
discuss this and its limitations in Appendix A.
CPU rmware controlled P-states. Can we simply let the
CPU scale its own frequency? This does not work because
the CPU’s general-purpose P-state control loop is (1) too
slow, and (2) not vRAN-aware. In modern CPUs, rmware-
based frequency control (e.g., Intel’s Hardware P-states [3],
or HWP), is preferred over the older OS-based control. The
rmware’s simple 10ms+ control loops are eective for gen-
eral workloads, but vRANs require control at 1ms timescales.
For core P-states,wemeasured that HWP takes 60 ms to react
after a sudden spike in CPU utilization; Schone et al. show
that the uncore’s reaction time is ∼10 ms [60].

Figure 3 shows the CPU core and uncore frequency chosen
by our server’s HWP, (§ 8) in an experiment where one CPU
core is active for varying fractions of a 500 µs TTI, and is
asleep for the rest. We nd that with only HWP picks the
maximum core and uncore frequency with just 27 µs and
42 µs of activity, respectively. In contrast, RENC can recog-
nize this thread as having high slack (over 90% of the TTI is
unused), and choose a lower frequency.
CPU power breakdown. RENC focuses on CPU power
since it is the largest component of DU server power. Fig-
ure 4a shows a wattage breakdown of our commercial-grade
vRAN server (used in real vRAN deployments), when run-
ning two cells with no trac and no energy management

RENC

CPU frequency

DU

#MAC RBs
Traffic estimates

Deadline slack

Control plane msgs
Attach attempts

Deadline slack

OS

sysfs

eBPF

dyninst

pcap

E2

E2

dyninst

CPU frequency
tuning (Sec. 5)

Rate limiting
(Sec. 6)

Control plane
spikes (Sec. 7)

Figure 5: Overview of RENC’s operation

features enabled (details in §8). The CPU consumes the
largest share of the power, eclipsing the power consump-
tion of typically power-hungry components like DRAM. Our
server’s Baseboard Management Controller (BMC) not pro-
vide a breakdown of the “Miscellaneous” component, which
divides among the motherboard, devices (NIC, PHY accel-
erator, NVMe SSDs), cooling fans, and conduction loss [17].
This remains fairly constant in our experiments regardless
of user trac, so we ignore it.
Uncore frequency. In addition to CPU cores, the CPU’s
“uncore”—the L3 cache, memory controller, PCIe controller,
etc—is a major power consumer, since it represents a large
fraction of the CPU’s die area (e.g., over 50% [26]). Figure 4b
shows the CPU’s power draw at dierent core and uncore
frequencies. Both are signicant, so RENC tunes both.

4 Design overview
We target three design goals for RENC.
G-1. Minimize energy during low-load periods. Since
most cell sites have low utilization most of the time (Sec-
tion 3.1) RENC targets saving energy during these periods.
We leave energy saving during high load to future work.
G-2. Transparency to vRAN software and platform.
Since vRAN software is often proprietary and multi-vendor,
and provided by a dierent vendor than the hardware/OS
vendor, we design RENC following O-RAN [4] principles of
clear interfaces that require only minimal information from
the vRAN and platform. Specically, we need only (1) names
and deadlines of realtimeDU threads, (2) the signatures of key
functions in poll-mode vRAN threads, and (2) low-latency
access to standard MAC layer metrics and control knobs.
G-3. Low resource overhead. RENC must consume few
CPU resources, else it will negate some energy savings. In
particular, RENC must not require a dedicated CPU core,
which would reduce cores available for the DU.

4.1 Overview and challenges

C-1. Finding slack. When measured simply across all time,
there may be no slack in some DU threads. Here we explain
this intuitively, and show it experimentally in §9. Figure 6
shows three TTIs (#1, #2, and #n) for a DU thread with a
one-TTI deadline. TTIs #1 and #2 belong to RENC-controlled

TTI 0 TTI nTTI 1

User

Kernel
a b c d e f g h

RENC

Lo
w

-lo
ad

eBPF

RENC

H
ig

h-
lo

ad

eBPF

Low-load interval High-load interval

TTI duration for relaxed slack

Figure 6: In this timeline for an interrupt-driven DU
thread, RENC’s eBPF program updates the relaxed
slack for low-load intervals (blue) by summing over
the dotted TTI-duration window at time 𝑓 , i.e., TTI−
((𝑓 −𝑒) + (𝑑−𝑐)). The userspace RENC agent tells the
eBPF program the current low/high load type, so the
latter ignores TTI n with zero slack.

low-load intervals, by their low trac rate and no expensive
control plane operations. For these TTIs, the DU nishes
work well before the deadline. In contrast, processing in the
high-load TTI #n takes almost the entire deadline duration.

The key observation is that if we compute slack across all
TTIs #1–#n, we will nd no slack, i.e., the minimum unused
deadline fraction is near-zero because of TTI #n. Without
slack, RENC cannot reduce CPU frequency without risking
deadlines, especially uncore frequency which aects all cores.
However, if we carefully separate the low- and high-load in-
tervals, we may nd signicant slack in the former. RENC
introduces new techniques to (1) establish low-load inter-
vals, (2) measure slack for precisely these intervals, and (3)
limit energy saving to them. For low-load intervals, RENC
iteratively computes the lowest safe frequency for each CPU
core and the uncore. For high-load intervals, RENC runs the
CPU at the highest congured frequency.
C-2. Separating low and high CPU load intervals. How
can RENC ensure that the DU does not admit more load than
the CPU can handle at low frequency? Prior work partially
tackles this problem, e.g., PR3 [25], vrAIn [20] and CRT [55]
use MAC-layer rate limiting to adjust trac to match CPU
frequency. However, these are best-eort, with no deadline
guarantees that are crucial in commercial vRANs. For ex-
ample, unlike less-performant open-source vRANs used in
prior work [9,15], our PHY (Intel’s FlexRAN) is optimized to
keep intermediate computation buers sucient for only the
deadline period, minimizing its cache footprint for eciency.
Upon missing a deadline, there is no option but to crash the
program. There are recent proposals that aim to alleviate
this problem [38], but these require re-designing the DU.
Our solution is to couple MAC rate limiting with CPU

frequency changes, by strictly ordering them. Before reduc-
ing frequency, RENC rst applies a MAC layer rate limit
to disallow sudden trac bursts (§6). Similarly, RENC lifts
the rate limit only after fully applying a CPU frequency in-
crease. RENC also transitions to the high CPU load state on
detecting CPU-intensive control-plane messages (§7).
C-3. Mostly-transparent slack measurement. Cellular
operators typically receive the DU as a binary from a ven-
dor, making it challenging to measure slack. We aim to infer
slack externally as much as possible, for the two reasons.
First, external measurement works generally for all DU im-
plementations, increasing RENC’s applicability to the diverse
vRAN ecosystem. Second, some cores may run multiple re-

altime DU threads and have interference from unavoidable
OS threads, in which case slack is best measured externally.
We have created two new techniques to measure slack,

which rely on minimal information from the vendor that
is easily available. First, we observe that the OS provides
a vantage point to observe the activity of DU threads that
yield to OS in every deadline interval. In the DU that we use
(Section 8), ve out of the seven types of realtime DU threads
follow this pattern. For these threads, RENC measures slack
with no code information from the vendor except thread
names and deadline durations. Our insight is to use eBPF
hooks in the Linux scheduler for this, since standard OS
mechanisms are too coarse (§5).

For DU threads that do not yield to the OS, we require the
function names and signatures of the realtime DU functions.
Usually there is one top-level function that encapsulates
the DU’s computation in a deadline interval. RENC then
uses binary rewriting to capture the start and end of these
functions to measure the per-thread slack.

5 Measuring deadline slack
This section describes how RENC measures the slack for
low-load intervals at runtime, while excluding high CPU
load intervals whose slack can be zero; the next two sec-
tions describe how RENC keeps low-load intervals free from
high load. RENC then uses slack measurements to iteratively
reduce uncore and CPU cores’ frequency until slack drops
below a threshold (default 10% in our implementation) (§5.4).
In contrast to static measurement in prior work, RENC

measures slack and tunes CPU frequency at runtime. For
example, CRT [55] requires manual experiments to compute
safe frequencies for dierent trac loads by noting the CPU
frequency at visible errors occur, e.g., UE disconnections and
errors in the vRAN code. RENC provides an automated and
principled solution to this problem. The heterogeneity of
vRANs further complicates static approaches: vRAN sites
may run dierent RAN congurations (e.g., dierent number
of cells or wireless conguration parameters) with dierent
server hardware, which change the CPU requirements.

5.1 Types of vRAN threads
RENC requires some basic information about the DU soft-
ware from the RAN vendor, including whether the thread
is interrupt-driven or busy-polling, and the thread’s dead-
line. Table 5 shows our DU’ threads, their types, and their

deadlines. For busy-polling threads, RENC also requires the
names and signatures of the task functions (typically one
per thread) executed by the thread. In our DU, we use three
functions corresponding to three PHY layer thread types: a
function called at the start and end of each TTI; a function
that handles fronthaul Ethernet packets; and a function for
processing accelerator and shared-memory queues.

We develop two dierent approaches to measure slack.
Interrupt-driven threads are woken up by the OS at the
start of each TTI, e.g., via a timer interrupt, or a semaphore
from another thread. The thread performs its tasks for the
TTI (e.g., MAC scheduling) and then yields. All MAC- and
RLC-layer in our DU fall in this category. RENC uses eBPF
hooks in the OS scheduler to measure their slack (§5.2).
Busy-polling threads run completely in userspace, i.e., they
do not yield to the OS scheduler and instead constantly poll
for work. In our DU, the PHY layer threads fall in this cate-
gory, likely because of the PHY’s high compute and eciency
requirements. We use binary rewriting for a few functions
to measure the slack for these threads (§5.3).

5.2 Handling interrupt-driven threads
Can we simply use standard OS mechanisms to measure
slack for these threads? This is not possible today, since the
OS-exposed time measurements are too coarse, using “jies”
(10 ms) as the unit of time. Our insight here is that eBPF
provides the required ne-grained kernel programmability.
To our knowledge, RENC is the rst system to use eBPF to
track thread execution time for energy saving, andwe believe
that it is a promising direction for non-vRAN systems as well.

In-kernel eBPF programs consist of simple, provably-safe
code that is JIT-compiled to native machine code. The pro-
gram has access to in-memory maps to store data, data struc-
tures, and high-resolution timers. RENC uses the eBPF hook
at the Linux scheduler’s sched_switch function, which is
called whenever the thread running on a CPU core changes.
Using the example in Figure 6 (see the caption for a detailed
explanation), sched_switch can capture all user-kernel tran-
sitions, indicated by the arrows labeled with timestamps 𝑎–ℎ.
The correct low-load slack for the case shown is TTI− ((𝑓 −
𝑒) + (𝑑−𝑐)), since (1) the activity during TTI 2 exceeds TTI 1’s
activity (= 𝑏 −𝑎), and (2) the higher activity during TTI n
(= ℎ−𝑔) must be ignored because it is in a high-load interval.
Note that in practice we can have tens of active intervals per
TTI, e.g., caused by the vRAN software’s structure, as well as
unavoidable kernel tasks such as IRQ and read-copy-update
(RCU) pre-empting the DU threads.
5.2.1 Dividing between eBPF and userspace

What part of the slack measurement should run in eBPF
within the OS, and what part in userspace? In RENC, we
chose to implement slack measurement fully in eBPF, with-
out any userspace involvement. The userspace RENC agent
periodically (once every ve seconds by default) retrieves the

slack measurements from the eBPF program, and uses them
to tune CPU frequency. This section describes the rationale
behind this design, and how our implementation works.

An intuitive approach that we implemented rst is to use
a minimal eBPF program that simply passes all scheduling
events to the RENC agent in userspace. This was conve-
nient because all logic stays in userspace, easing develop-
ment and debugging. However, we abandoned this approach
because we found that sending messages to userspace for
every scheduling event is fraught with issues. The compute
overhead is a clear one: For example, with 10 thread switches
per TTI (500 µs) across 10 DU cores, there are 200K kernel-
user messages per second. This required dedicating a CPU
core for the RENC agent to constantly poll an eBPF ring
buer for new messages, else messages are dropped.

We noticed more insidious issues, too. The high amount of
kernel processing for message handling can get deferred be-
hind the high-priority DU threads, causing subsequent bursts
of kernel activity that cause the DU threads to miss their
deadlines. Sending messages to userspace from a scheduler
hook can also cause an innite loop of messages leading to
a kernel hang, since the act of sending a message can cause
further scheduling events to handle the message.

5.2.2 In-kernel slack measurement

To avoid the issues with heavy scheduler-to-userspace mes-
saging, we instead measure slack in the kernel. Surprisingly,
we found that today there is no easy way for eBPF programs
to know when a TTI starts and ends: At the time of writ-
ing, Linux’s eBPF does not support the system wall-clock
(CLOCK_REALTIME), supporting only monotonic clocks (e.g.,
CLOCK_MONOTONIC). The wall clock is the DU’s heartbeat: it
is synchronized with the RUs via the Precision Time Pro-
tocol (PTP), and is used to time TTIs. A patch to add wall
clocks to Linux eBPF was submitted in 2020, but abandoned
in part due to concerns about the likelihood of programmers’
incorrect use of a non-monotonic clock [53].
Relaxed slack. Due to eBPF’s lack of a TTI-synchronized
clock, we use a conservative estimate of slack that does not
rely on TTI boundaries, dened as follows (assuming a one-
TTI deadline). We measure the maximum fraction in any
TTI-length interval that the core is active in; the relaxed slack
is one minus this fraction. The chosen interval may overlap
TTIs (see Figure 6), making the relaxed slack a conservative
estimate. This works well in practice because DU tasks run at
the beginning of each TTI. For low-load intervals, the latter
portion of TTIs is idle, so the selected interval will align with
a TTI unless utilization is very high, in which case RENC
does not attempt to save energy for this core.
To keep our implementation within the eBPF verier’s

limits, we use a xed-size array of intervals for each CPU
core. Each interval is a pair of timestamps for when any
thread was active, i.e., the kernel’s idle task was not run-
ning. We deliberately chose to include all threads and not

just DU threads, to include OS thread overheads which can
be signicant in real systems, e.g., following a NIC driver
update that causes interrupts to land on DU cores. When a
thread switch occurs at time 𝑡 , the eBPF program sums all
intervals overlapping with (𝑡 − TTI, 𝑡). If the sum exceeds
the current maximum, the program updates the maximum
deadline utilization and the minimum slack.
The userspace RENC agent reads the per-core slack val-

ues from the kernel only when tuning frequency, i.e., once
every ve seconds by default. The user-kernel message over-
head is now negligible, a signicant reduction from the per-
scheduling-event rate. Wemanually ensure that the in-kernel
eBPF codelet has few instructions, and measure its overhead
as <5% of the context switch cost (§9).
Handling load type changes.Our eBPF programmaintains
two arrays of intervals per core, one for each load type. When
the userspace RENC agent decides to change the load type
(§6), it indicates this to the eBPF program using a syscall to
update a BPF map entry. The vertical “low-load” and “high-
load” arrows between RENC and eBPF in Figure 6 show
these updates. On every sched_switch invocation, our eBPF
program sums up the intervals in the array corresponding
to the current load type, keeping the two separate. While
measurements for high-load intervals are not necessary for
RENC, we still keep them to aid debugging.

5.3 Handling busy-polling threads
We use the popular dyninst framework to instrument the
call and return instructions of the main datapath functions
of busy-polling DU threads. Additionally, we use an internal
tool that allows inserting userspace eBPF programs at the
instrumented code points. Since these programs can access
the wall clock, slack measurement is straightforward.
In our DU, we use this approach for the busy-polling

PHY layer threads, specically (1) the PHY signal processing
threads’ top-level function called at the start and end of TTI
processing (ebbu_pool_event_set_state() in FlexRAN),
and (2) the fronthaul packet I/O threads’ top-level per-symbol
callback function (sym_ota_cb() in FlexRAN). For the PHY
signal processing thread, we also need the description for the
enum values of its argument, e.g., specifying whether TTI
processing is starting or ending. We chose to not instrument
one PHY thread type (“PHY SHM rings” in Table 5) because it
splits its work across four functions, making it cumbersome
to instrument all of them though this can be done if needed.
This thread’s processing is largely independent of the trac
load, so we manually conrm that it can safely run at the
lowest frequency.

5.4 Iterative CPU frequency tuning

Collecting slack samples. At each CPU frequency con-
guration, RENC collects slack measurement samples for
low-load intervals, ltering out high-load intervals. We con-
tinue collecting samples until the cumulative duration spent

in low-load intervals exceeds a large value𝑉 , to try capturing
the full range of CPU activity possible in low-load intervals.
We expect𝑉 to be several hours in real deployments, but use
a shorter 5-second interval for testing to speed convergence.
Prioritizing uncore frequency. After RENC has sucient
slack samples, it tries to reduce CPU frequency. We set our
slack threshold to 10%, leaving some headroom for cases not
covered by the observation period. We prioritize the uncore,
since it has a large impact on power draw (§9.4) and aects
all cores. If all cores have >10% slack, and uncore frequency
is not at the minimum, RENC reduces it by the supported
quantum (100MHz). Otherwise, sys starts reducing CPU core
frequencies for cores with >10% slack. Then RENC starts a
new observation period.

6 Coupled CPU frequency and MAC control
This section describes how RENC coordinates changes in
CPU frequency and MAC rate limits to separate low- and
high-load intervals. Neither take eect immediately, so RENC
must control their order and timing.

6.1 Forecasting DU trac
RENC uses DU-exposed telemetry for uplink and downlink
trac to measure the current trac demand, and determine
when to transition to low or high load. Among the several
metrics that can be used to measure trac, we use the one
that provides the earliest indication of trac demand. This
allows quickly removing the rate limit when there is a surge
in trac, minimizing the impact on RAN performance.
RENC requires low-latency access to DU telemetry and

control interfaces that DU vendors typically already imple-
ment, e.g., for the O-RAN E2 interface [18]. Our DU vendor
provides access to these via a local UDP port.
Uplink trac estimation.We use the per-UE Buer Status
Reports (BSRs) to estimate the uplink load. UEs send BSRs to
the DU to indicate buered data size. These are sent before
the UEs send the actual data, and hence provide an early
indication of the uplink trac demand.
Downlink trac estimation. For downlink trac, we use
the throughput at the DU’s interface with the CU. While this
is not as early an indication as the BSRs, it is the earliest
indication of downlink trac that is available to the DU.

6.2 Low/high-load classication
Our current implementation simply uses recent trac sam-
ples as indicators of future load, though more sophisticated
techniques (e.g., time-series analysis) may be applied. We
dene 𝑅dir,𝑡 as the trac sample received at time 𝑡 , summed
over all UEs and cells, for uplink or downlink direction dir.
We also dene𝑀dir as the statically-measured maximum traf-
c sample for each direction; in our DU, this is 150 kB for the
cumulative BSR, and 450Mbps for the downlink throughput.
RENC transitions to low-load if all samples in the last 𝑛

milliseconds are below 1% of𝑀dir; 𝑛 = 50 in our implemen-

tation, i.e., we transition to low-load if there is little trac
for roughly three RTTs on our network (Figure 2). RENC
transitions to high-load when the latest trac sample ex-
ceeds 1% of𝑀dir. By not waiting for multiple >1% samples,
RENC minimizes its impact on user-visible performance, at
the cost of possibly reduced energy savings, e.g., when the
high trac sample is a transient spike. Note that some impact
is acceptable, e.g., Ericsson uses a “Low Energy Scheduler”
(LESS) that packs data in the frequency domain to make it
sparse in the time domain [23].

6.3 Rate-limiting
RENC controls the number of wireless resource blocks (RBs,
each RB corresponds to a small piece of spectrum) allocat-
able by the MAC for rate limiting, achieved via 3GPP’s slice
control interface [11]; this resembles the “ECO-Mode” opti-
mization in some radios, which can power-down ampliers
for some RBs during times of low trac [23]. This basic ap-
proach can be improved by using more information such
as signal-to-noise (SNR) ratio, which aects the number of
bits per RB. RENC allows a small percentage of RBs (10%
by default in our implementation) to be used during low-
load intervals. This is larger than the 1% threshold for trac
metrics, to account for the variable bits per RB.

6.4 Ordering and timing of changes
The process of changing CPU core/uncore frequency, or ap-
plying a MAC rate limit, is not instantaneous; RENC must
ensure that these changes are applied in the correct order.

1. CPU frequency and MAC rate limiting: RENC must
prevent high trac while the CPU is at a low frequency.

2. OS eBPF andMAC rate limiting. RENC’s kernel eBPF
program must not pollute low-load slack measurements
with those of high-load intervals (§5.2.2).

We next discuss how we apply these changes, and their
maximum latencies measured when the system is running
at RENC’s low CPU frequency (§8.1). We use Linux’s sysfs
and MSR (Model-Specic Register) interfaces to control CPU
core and uncore frequencies, respectively. We measure the
maximum delays for these as 1100 µs and 2300 µs, respec-
tively, which match prior work [60]. We dene the time to
change CPU frequency as the higher of the two, i.e., 𝑑cpu =
2300 µs. Our DU applies RB changes in the TTI after it re-
ceives the request; The RB change latency equals RENC’s
maximum’s latency to the DU’s control UDP port (600 µs),
plus one TTI (i.e., 𝑑rb = 1100 µs). We use a syscall to update
the load type in a BPF map in the eBPF program. This is a
blocking call that takes at most 15 µs (= 𝑑ebpf).
Figure 7 shows how RENC orders these changes. When

transitioning from low to high load, it rst increases CPU
frequency and sets the eBPF load type to high-load. It waits
for max(𝑑cpu,𝑑ebpf) for both changes to take eect, then lifts

HIGH

Increase

LOW LOW

RENC

MAC scheduler

CPU frequency

Increase

OS eBPF

max(dcpu, debpf)

Decrease

Decrease

drb

Figure 7: Ordering & timing of RENC’s load-type transitions

Time Event

34.448 s Random access attempt from PHY (trigger)
34.469 s CPU load spike; sudden slack decrease to 0%

48.515 s UE Context Release Request from CU (trigger)
49.167 s CPU load spike; sudden slack decrease to 68%
Table 2: Example of high load due to control messages

the MAC rate limit. Note that this sequence allows our kernel
eBPF program to account slack for low-load TTIs to the high-
load type, which is safe since it does not pollute the low-load
slack measurements that RENC cares about. To transition to
low load, RENC rst applies the MAC rate limit, and waits for
𝑑rb for this to take eect. It then reduces the CPU frequency
and sets the eBPF load type to low-load.

7 Control operation CPU spikes
The discussion until now has focused on handling variations
in the DU threads’ slack caused by changes in the trac load.
However, this alone may not ensure that the DU meets its
deadlines: In addition to the user trac, the DU’s control
plane processing (e.g., UE attachments) can also be a source
of sudden bursts of compute load. The key challenge here
is detecting these spikes and reacting to them in a timely
manner, with few modications to the vRAN software for
transparency and ease of deployment.

7.1 Discovering spike-causing events
The following insight helps to systematically and transpar-
ently determine the causes of compute spikes related to con-
trol messages. DU control messages are carried on formally-
specied interfaces, i.e., the Functional API (FAPI) between
the MAC and PHY [1], and the F1AP interface between the
CU and DU [12]. Control messages can therefore be observed
by simply interposing on the interface, ignoring the internal
complex details of the vRAN implementation. The messages
can be captured along with sudden dips in the DU threads’
slack (corresponding to a compute spike), and correlated to
identify the causing message.
Table 2 shows example timeline for two sudden dips in

a DU thread’s slack when running a cell initially with no
UEs attached, whose slack is initially 84%. These are caused
by a (1) UE attaching and (2) detaching in our testbed (§8).
The rst dip is caused by a PHY-to-MAC Random Access

DU Server HPE DL110 Gen10 “telco” server
Xeon 6338N CPU (32c), 8 ×32GB DDR4 DIMMs
1 TB NVMe SSD, Intel E810 NIC, ACC100 card [10]

Software Realime Linux v6.1; Intel FlexRAN PHY [46]
CapGemini DU and CU, commercial 5G core

5G cells FoxConn 4×4 RUs at 3.5GHz, 100MHz bandwidth
30 KHz subcarrier spacing, TDD (DDDSU)

Lab #1 Two cells in building, nine (4 + 5) Raspberry Pi UEs
13 realtime DU CPU cores, FlexRAN version 22.11

Lab #2 One cell, one OnePlus 5G phone and Pi UE
11 realtime DU CPU cores, FlexRAN version 22.03

Table 3: Evaluation testbeds’ hardware and software

Channel (RACH) Indication message, sent when a UE tries to
attach. When this happens, the DU must initialize UE state,
which causes the compute spike. The second spike is simi-
larly caused by a F1AP UE Context Release Request message,
which is sent by the CU to the DU when a UE detaches. Cur-
rently, we correlate events to spikes manually, but this can
be automated using time series correlation methods. We ex-
pect that other events, such as UE handovers will also cause
spikes, and leave this for future work.

7.2 Reacting to control messages at runtime
Control messages being delay-tolerant can be handled reac-
tively, i.e., a proactive approach such as RENC’s rate limiting
of data trac is not necessary. For example, in Table 2, the
attachment-related spike happens 21ms after the random
access control message. The detachment related dip happens
435ms after the corresponding control message.

On detecting a spike trigger, RENC transitions to the high-
load state, and stays there for the maximum time between
the trigger and the corresponding spike. To leave sucient
error margins, currently RENC stays in the high-load state
for 200ms after the attachment trigger, and for 1 second for
the detachment trigger. This is a conservative choice that can
be optimized. In our DU, UE detachments force high-load for
a long time which is undesirable, but these are rare since UEs
typically detach infrequently to minimize signaling, staying
in an idle/inactive state [41] during periods of inactivity.
To detect FAPI RACH messages, we intercept the PHY’s

top-level call to its FAPI interface to the MAC, which uses a
publicly-available shared library (“Wireless Service Library”,
or WLS [5]). This library has a public, well-dened inter-
face for compatibility with dierent MAC layer vendors [2],
allowing us to de-parse the messages list to detect RACH
Indications. To detect spike-causing F1AP messages, we use
Linux’s packet capture (pcap) interface and decode them to
nd the target message types.

8 Evaluation

8.1 Experiment setup
We implemented RENC in 2500 source lines of code in C++
and C, and 100 lines of eBPF (libbpf) code. Table 3 summa-

rizes our testbeds, which use state-of-the-art commercial-
grade vRAN hardware and software that closely resembles
real-world deployments [7]. To focus on the DU server, we
run the CU and a commercial 5G core network on other
servers. We use two labs, with dierent DU versions to test
our design’s generality. Lab #1 has two 5G cells on dierent
building oors, with nine total Raspberry Pi UEs (four or ve
per oor) with Quectel RM500Q modems. We use the smaller
lab #2 for experiments that need higher throughput, since it
has better signal quality and modem. The small size of our
testbeds is a limitation of our work, though lab #2’s size is
close to real deployments, which often have 10–20 active
users per cell [56, Fig. 10]; Our cells can achieve 30Mbps
uplink and 500Mbps downlink TCP throughput, matching
commercial 5G sub-6GHz networks [52, Fig. 6,7].
DUCPU core conguration. Our DU uses 13 realtime CPU
cores for the two-cell conguration, and 11 for the one-cell
conguration. Table 5 shows the latter; the two-cell con-
guration doubles the MAC layer cores. We did not design
these congurations for RENC, but rather used the default
stable congurations created over months with the vendors’
help. The functional purpose of each thread is not important
for RENC, but we include it for completeness. We minimize
the energy eect of the unused DU server cores by setting
them to the lowest 800MHz frequency. Our default stable
conguration disables Hyper Threading (HT), but RENC can
be extended to support it by using the minimum of the two
HT siblings’ slack to tune the core’s frequency.
Energy measurement. Our vRAN server’s management in-
terface (HPE iLO) provides full-server power measurements
at coarse 10-second intervals. For ne-grained CPU power
measurements, we use the CPU’s RAPL (Running Average
Power Limit) counters, which are accurate [48].
CPU frequencies. Our default server conguration before
RENC used 3400MHz for CPU cores, and 2400MHz for the
uncore, which we use as the baseline. RENC successfully
separates-out low-load intervals that can run at theminimum
CPU frequency that we allowed: 1000MHz for all DU cores,
and 800MHz for the uncore. (Going further to 800MHz for
the CPU cores saves very little energy but costs 20% CPU
performance.) We report per-core slack measurements, and
the marginal impact of core and uncore frequencies in §9.

8.2 Idle-mode power consumption
We start by measuring RENC’s idle-mode power (§3.1) sav-
ings, which is a key energy metric for RAN equipment [31].
We attach all nine UEs in lab #1, to the two cells, which
then remain idle. We use three baselines: (1) the default
conguration with no energy optimizations, (2) enabling C1
states, and (3) CPU’s hardware-based automatic frequency
scaling (HWP, §3.2). When using HWP, we set its “energy-
performance bias” policy in the BIOS to favor energy. We
ignore C1E states since they save negligible energy (< 1%) in

 0

 50

 100

 150

 200

 250

 300

CPU power Server power

Default
C1

C1 + HWP
C1 + RENC

131

242

119

225

123

229

66

160

P
o
w
e
r
(W
a
tt
s
)

Figure 8: Idle-mode CPU and server-wide power consumption,
with dierent energy saving congurations.

DL Mbps UL Mbps Ping ms

Without RENC 486–520 29.6–29.7 27.1 (3.3)
With RENC 499–520 29.7–29.7 27.9 (3.4)

Table 4: Basic Internet performance without and with RENC

our experiments. Figure 8 shows that that enabling C1 states
reduces CPU power from 131W to 119W, and server power
from 242W to 225W. Enabling RENC on top of C1 further
reduces CPU power by 45% to 66W, and server power by
29% to 160W, respectively.
Comparison with HWP. CPU power draw with HWP
enabled (123W) is 1.8x higher than with RENC. Counter-
intuitively, HWP does not save power even when cells are
idle, for two reasons: First, a vRAN being a realtime system
creates a non-negligible amount of CPU activity even when
idle. Our vRAN’s realtime threads run every TTI, and do a
small amount of computation which is nevertheless large
enough to cause HWP to pick high core and uncore frequen-
cies (Figure 3). Specically,HWP runs all PHY cores andmost
MAC and RLC cores at too-high frequencies (2.5–2.7GHz).
Similarly, it picks a too-high uncore frequency (2200MHz);
articially forcing the uncore (permitted via Model Status
Registers even when HWP is active) to 800MHz brings down
CPU power to 83W, which is still higher than RENC’s 66W
by 26%. Second, enablingHWP increases power draw,because
HWP (a) prevents us from xing unused cores to 800MHz,
and (b) chooses slightly higher frequencies for these.

8.3 Energy savings with data trac

Eect on network performance. RENC aims to save en-
ergy without signicantly aecting network performance.
Here we study high-levelmetrics, and runmicro-benchmarks
in §9. Since performance with multiple UEs is noisy due to
spectrum sharing and interaction with TCP, we use lab #2 in
this experiment. We use SpeedTest [8], and ensure that all
tests use the same SpeedTest server. We run three tests both
with and without RENC, and report the maximum and mini-
mum values. Since SpeedTest’s ping latency varies widely,
we use a dierent ping application to measure the average
and standard deviation of latency to cloudare.com. Table 4
shows the results. The throughputs and latency of the two
congurations are similar, which meets our goal.

 0

 40

 80

 120

 0 1 2 3 4 5 6 7 8
 0

 40

 80

 120

 160
CPU watts Mbps

P
o
w
e
r
(W
a
tt
s
)

T
h
ro
u
g
h
p
u
t
(M
b
p
s
)

Seconds

Figure 9: One UE repeatedly downloading a 1MB le.

 0

 40

 80

 120

 0 50 100 150 200

Nine UEs video-streaming

C
P
U

p
o
w
e
r
(W

)

Seconds

Figure 10: Energy saving with nine video-streaming UEs.

We next evaluate RENC in the larger lab #1 with real trac.

File downloads. In this experiment, one Pi UE repeatedly
downloads a 1MB le from a lab server at 1 s intervals. Fig-
ure 9 shows the DU CPU’s power draw measured at 10ms
intervals, along with downlink bandwidth. RENC success-
fully reacts to the load spikes by increasing CPU frequency,
and reduces it when the load drops.

Video streaming.We use video streaming as an example
application to show how RENC can save energy even during
active user sessions. Here we use all nine Pi UEs, which
stream a 720p video from a popular Internet site, using a
headless mpv player [51]. The UEs start at roughly the same
time. Figure 10 that, in the beginning, RENC keeps the DU
server primarily in high-loadmode as the UEs fetch the initial
parts of the video. After the UEs buer the video, there are
gaps between video chunk downloads, during which RENC
successfully saves energy. The average power draw with
RENC is 83W, compared to 121W without (not shown).

Trac mix. We use the nine UEs to create a trac mix
representative of a real-world workload: we run three video
streams, two 1MB le downloads and two 256 kB uploads at
1s intervals, two long-lived 1Mbps iperf3 download streams,
and one 1Mbps iperf3 upload stream. Figure 11 shows how
RENC saves energy during the trac gaps, reducing average
CPU power from 121W to 109W.

 0

 40

 80

 120

 0 20 40 60 80 100

Nine UEs with traffic mix

C
P
U

p
o
w
e
r
(W

)

Seconds

Figure 11: Energy saving with nine UEs running a trac mix.

 0

 200

 400

 600

1 MB download 256 KB upload 1 KB upload

1940 (0.4)
100% RBs
10% RBs

RENC

T
im
e

(m
s
)

Figure 12: File transfer time with MAC rate limiting.

9 Microbenchmarks
We next evaluate some aspects of RENC’s design in isolation.

9.1 Eect of MAC rate limiting
To quantify how RENC’s MAC rate limiting aects network
performance, we measure the time for small le transfers
that stress RENC’s reactiveness; our SpeedTest experiment
showed RENC’s negligible impact on long transfers. Since
RENC dynamically scales the allowed RBs between 10% and
100%, we show the download time with static 100% and 10%
RB limits for reference. The experiment uses a simple Python
HTTP client and server. Since downlink speed is higher than
uplink, we use a larger 1MB for downloads than uploads
(256 kB). These are smaller than average mobile web page
sizes today (e.g.,2MB in one study [14]). Figure 12 shows that
transfer time with RENC is close to the static 100% allocation
(<2% higher), and better than the static 10% allocation. For
small 1 kB uploads, common in IoT devices [62], all three
perform similarly since the DU always stays under 10% RBs.
Sensitivity analysis.We have focused on a 1% threshold for
trac metrics, but this is tunable. Increasing it to 10% allows
RENC to save more energy, but may aect user performance
unless the algorithms in §6 are improved. For example, us-
ing a 10% BSR threshold in the 256 kB upload experiment
increases the mean transfer time from 200ms to 231ms, due
to the DU’s slower reaction to the uplink trac burst.
RU power. RENC’s rate limiting may slightly increase the
amount of time that the RU is active, increasing its power
draw. We currently lack the precise RU power measurements
needed to quantify this, but we expect it to be small since
RENC lifts its rate limit in milliseconds in response to trac.

9.2 Slack measurement
We conduct the following experiment to test RENC’s es-
tablishment of low-load intervals that are safe for CPU fre-
quency scaling. Since this experiment requires stressing the
DU’s compute resources, we use lab #2 to generate high
trac. We run two tests: without RENC, and with RENC,
shown in the rightmost two columns of Table 5. In each
test, we attach the phone, run two SpeedTest sessions, and
then detach the phone. In the rst case, the DU runs without
RENC at a constant low frequency of 1000MHz for all cores
and 800MHz for the uncore; this conguration frequently

 0

 40

 80

 120

 12 14 16 18 20 22 24 26 28 30

Attach DetachC
P
U

 p
o
w
e
r
(W

)

Seconds

Figure 13: Handling of control message spikes.

crashes the DU due to deadline violations, but we run it for
this experiment. In the second case, RENC is enabled.

Wemake three observations (Table 5). First,without RENC,
several DU threads have zero slack. The MAC scheduler
thread has 8% slack, but that leaves insucient safety mar-
gins. This conrms that this DU cannot run at this low fre-
quencywithout RENC, since slackmeasured simply across all
time is zero. Second, RENC successfully establishes low-load
intervals with sucient slack for frequency scaling. Third,
some threads (e.g., the PHY threads and the RLC timer thread)
have signicant slack even without RENC,making it possible
to statically congure them to run at a low frequency. (“PHY
timer” has lower slack with RENC because its processing
time depends more on CPU frequency than user trac.)

Importantly, note that knowing whether a CPU frequency
conguration is safe, or which threads have high slack, is
dicult without our new slack measurement techniques. For
example, simply running coarse-grained tool like top always
shows <9% and<27% or theMAC-to-PHY andMAC scheduler
threads, respectively, but their actual TTI deadline utilization
without RENC reaches 100% and 92%, respectively.

9.3 Control message handling
Figure 13 shows the DU’s CPU power draw when a Rasp-
berry Pi UE attaches and detaches in lab #2. There are two
high-load intervals during attachment because of a failed
attempt followed by a successful one,which is common in cel-
lular networks. The detachment event has one long high-load
interval, and multiple three short ones caused by spurious
attachment attempts that our UE makes when we turn on
ight mode to detach it. This experiment shows how RENC
successfully handles CPU load spikes from control process-
ing, and handles unexpected behaviors of UEs. RENC also
handles the more challenging case with nine UEs simultane-
ously attaching and then detaching.

9.4 Breakdown of energy savings
Table 6 shows that both uncore and CPU core frequency
scaling contribute signicantly to energy savings. Reducing
the uncore frequency alone from 2400MHz to 800MHz re-
duces CPU power by 32% from 117W to 80W. Adding core
frequency scaling reduces CPU power by a further 16% from
80W to 67W. A takeaway from our work is that uncore fre-
quency scaling provides a convenient and eective knob for
reducing CPU power. Since it is just one value, an operator

Thread name Description Running mode Deadline Slack Low-load slack
w/o RENC with RENC

F1 worker Communication with CU Interrupt-driven 1×TTI 0% 64%

RLC timer RLC timekeeping Interrupt-driven 1×TTI 62% 75%
RLC worker RLC processing Interrupt-driven 1×TTI 0% 76%

MAC scheduler Wireless scheduler Interrupt-driven 1×TTI 8% 79%
MAC-to-PHY MAC-PHY messaging; Interrupt-driven 1×TTI 0% 72%

UE context management

PHY BBU pool (4x) Wireless signal processing Busy-polling 3×TTI 20% 28%
PHY timer Symbol timing; callbacks Busy-polling Symbol (TTI14) 72% 56%
PHY SHM rings Network/accelerator I/O Busy-polling 1×TTI N/A (§5.3) N/A (§5.3)

Table 5: Threads with realtime priority running at the DU: low CPU frequency vs RENC.

CPU cores freq Uncore freq CPU power

3400MHz 2400MHz 117watts
3400MHz 800MHz 80watts

1000MHz 2400MHz 105watts
1000MHz 800MHz 67watts

Table 6: Eect of CPU core (12x) and uncore frequency scaling

can adopt RENC by gradually reducing uncore frequency
while monitoring low-load slack.

9.5 Overhead of RENC

Userspace agent. We measure the CPU cost of RENC’s
userspace agent as 20% of a CPU core,when running the CPU
at low frequency. RENC does not require a dedicated CPU
core nor does it busy-poll. It runs on shared cores used for
other tasks such as the DU’s management/logging threads.
Kernel eBPF. We measure the execution time of RENC’s
eBPF program as 70 ns per invocation at 1GHz, using Linux’s
BPF stats functionality via the bpftool command. This is
tiny when compared to the total cost of context-switching
between threads, which is around 3 µs on our system even
when running at 3.4GHz. The eBPF program is called twice
per context switch, costing <4.6% of a context-switch.

10 Related work
Section 2.2 covered energy saving techniques in traditional
base stations. We present related work in other areas below.
Approaches that target vRANs. CRT [55] statically pre-
computes CPU core frequencies for dierent MAC modu-
lation and coding schemes (MCS); this is done in an adhoc
way, e.g., by checking if errors appear in code execution.
Compared to CRT, RENC adds (1) principled deadline slack
measurement which is done at runtime, (2) coupling of MAC
scheduling and CPU frequency changes for safety, (3) han-
dling of CPU spikes from control messages, and (4) eval-
uation in a real testbed. Ayala-Romero et al. [19] develop
Bayesian algorithms to jointly optimize vRAN power con-
sumption and performance. However, the system does not
account for realtime deadlines. While these systems target
open-source RAN implementations (OpenAirInterface and

srsRAN), RENC tackles the additional challenges that arise
in closed-source, binary-only setups, as well as in the com-
paratively higher complexity of commercial vRAN sofware.
Multi-server approaches. China Mobile has published de-
tails of a large RAN energy eciency eort in China, which
uses machine learning to pick cells to power-o [49]. A large
body of theoretical work studies the bin-packing of RUs to
the fewest DU servers, aiming to save energy during low
load periods [61]. Cellular operators also optimize energy
consumption at longer time horizons to match the diurnal
trac patterns [49], e.g., MIMO-level sleep, and cell-level
sleep [22, 24]. RENC’s single-server and sub-second opti-
mization is complementary to these approaches.
Single-server approaches. Recent techniques for sharing
the DU’s realtime CPU cores with non-realtime workloads
may be adapted for DU energy saving: Concordia [35]’s pre-
diction of PHY task execution time can be used to place PHY
cores in a deep C6 sleep state to save energy, although it
will need to overcome C6’s high residency time (Table 1,
Appendix A). Nuberu [38] re-designs the PHY layer to better
co-exist with interference from other workloads. If a DU
implements a Nuberu-like technique, it can simplify RENC
design by allowing rare deadline violations.

11 Conclusion
RENC takes the rst step towards building a complete en-
ergy saving system for servers running commercial vRAN
software. The diculty lies in the closely-guarded nature of
the software code that makes it a black box for operators,
coupled with sub-ms real-time deadlines that must be met for
functional correctness, as well as a highly bursty CPU load.
We solve this challenge by carefully establishing intervals
of low load that are safe for energy saving, and using new
systems techniques such as our eBPF program to measure
the available slack for CPU frequency reduction. An evalu-
ation in a state-of-the-art vRAN testbed shows promising
results, with up to 45% reduction in CPU energy compared
to default settings.

A Appendix
Applicability of C6 sleep state to vDUs
C6 may work for some DU threads with multi-TTI deadlines.
In our DU, these are only FlexRAN’s PHY signal process-
ing threads (which run on four of 11 cores in our DU, Sec-
tion 8), whose deadline is three TTIs. Although FlexRAN
provides a partial implementation for C6 [43], it is incom-
plete at the time of writing; FlexRAN’s public C6 description
suggests that it puts threads to sleep one TTI at a time with
usleep(500) [43], which will not save energy on our CPUs,
and may have been designed for older processors e.g., Cas-
cade Lake, with 276 µs [47] C6 residency time.

On our Ice Lake CPUs, we found that a CPU core goes into
C6when an application requests a sleep of at least 650 µs (e.g.,
via usleep(650)). The call to usleep(650) returns after up
to 820 µs, due to the 170 µs wakeup latency of the C6 state.

References
[1] 5G FAPI: PHY API specication. https://www.smallcel

lforum.org/reports/5g-fapi-phy-api-specication.

[2] FlexRAN 5G New Radio Reference Solution L1-L2 API
Specication. https://docs.o-ran-sc.org/projects/o-ran
-sc-o-du-phy/en/latest/fapi_5g_tm_overview.html#r
eference-documents.

[3] Intel CPU frequency scaling drivers. https://wiki.archl
inux.org/title/CPU_frequency_scaling.

[4] O-RAN Alliance: Operator Dened Open and Intelli-
gent Radio Access Networks. https://www.o-ran.org/.

[5] O-RAN Software Community: Wireless Service Library.
https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-phy
/en/latest/wls-lib.html.

[6] O-RAN Use Cases Detailed Specication 11.0. https:
//www.o-ran.org/specifications.

[7] Rakuten Symphony Symware Phase Two Begins with
Plans to Commercially Deploy 30,000 Units in Japan.
https://symphony.rakuten.com/newsroom/rakuten-
symphony-symware-phase-two-begins.

[8] Speedtest by ookla - the global broadband speed test.
https://www.speedtest.net/. Accessed: yyyy-mm-dd.

[9] SRS: Software Radio Systems. https://www.srs.io/.

[10] v4l2-loopback device. https://github.com/umlaeute/v4
l2loopback.

[11] 5G Network Resource Model (NRM) (3GPP TS 28.541
version 16.6.0 Release 16). https://www.etsi.org/deliver
/etsi_ts/128500_128599/128541/16.06.00_60/ts_12854
1v160600p.pdf, November 2020.

[12] F1 Application Protocol (F1AP) (3GPP TS 38.473 version
15.8.0 Release 15). https://www.etsi.org/deliver/etsi_ts/
138400_138499/138473/15.08.00_60/ts_138473v150800
p.pdf, January 2020.

[13] The case for integrated high-performance RAN process-
ing. Ericsson Blog, 2020.

[14] The Growth of Web Page Size. https://www.keycdn.c
om/support/the-growth-of-web-page-size, Nov 2022.

[15] OpenAirInterface. https://gitlab.eurecom.fr/oai/openai
rinterface5g, March 2023.

[16] Radisys 5G NR Software Suite. https://www.radisys.co
m/connect/connectran/5g, n.d.

[17] Kazi Main Uddin Ahmed, Math HJ Bollen, and Manuel
Alvarez. A review of data centers energy consumption
and reliability modeling. IEEE Access, 9:152536–152563,
2021.

[18] ORAN Alliance. E2 service model (e2sm). O-RAN Fron-
thaul Working Group, O-RAN.WG3.E2SM-R003-v03.00,
2023.

[19] Jose A Ayala-Romero, Andres Garcia-Saavedra, Xavier
Costa-Perez, and George Iosidis. Orchestrating
energy-ecient vRANs: Bayesian learning and experi-
mental results. IEEE Transactions on Mobile Computing,
2021.

[20] Jose A. Ayala-Romero, Andres Garcia-Saavedra, Marco
Gramaglia, Xavier Costa-Perez, Albert Banchs, and
Juan J. Alcaraz. VrAIn: A Deep Learning Approach
Tailoring Computing and Radio Resources in Virtual-
ized RANs. In The 25th Annual International Conference
on Mobile Computing and Networking, MobiCom ’19,
New York, NY, USA, 2019. Association for Computing
Machinery.

[21] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and
Giorgio Buttazzo. Energy-aware scheduling for real-
time systems: A survey. ACMTransactions on Embedded
Computing Systems (TECS), 15(1):1–34, 2016.

[22] Thomas Berglund and Helen Huynh. Energy Eciency
of Radio Units and its Impact on RAN Energy Consump-
tion. 2017. Masters Thesis in Electrical Engineering,
Ericsson AB, Lund University, Faculty of Engineering.

[23] Olof Bjering and Lakshmi Prasad. An energy ecient
radio base station. 2018. Faculty of Engineering, Lund
University.

[24] Blomgren, Anton and Ornstein Mecklenburg, Kasper.
Energy Optimization of Radio NGR Micro G1, 2016.
Student Paper.

https://www.smallcellforum.org/reports/5g-fapi-phy-api-specification
https://www.smallcellforum.org/reports/5g-fapi-phy-api-specification
https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-phy/en/latest/fapi_5g_tm_overview.html#reference-documents
https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-phy/en/latest/fapi_5g_tm_overview.html#reference-documents
https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-phy/en/latest/fapi_5g_tm_overview.html#reference-documents
https://wiki.archlinux.org/title/CPU_frequency_scaling
https://wiki.archlinux.org/title/CPU_frequency_scaling
https://www.o-ran.org/
https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-phy/en/latest/wls-lib.html
https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-phy/en/latest/wls-lib.html
https://www.o-ran.org/specifications
https://www.o-ran.org/specifications
https://symphony.rakuten.com/newsroom/rakuten-symphony-symware-phase-two-begins
https://symphony.rakuten.com/newsroom/rakuten-symphony-symware-phase-two-begins
https://www.speedtest.net/
https://www.srs.io/
https://github.com/umlaeute/v4l2loopback
https://github.com/umlaeute/v4l2loopback
https://www.etsi.org/deliver/etsi_ts/128500_128599/128541/16.06.00_60/ts_128541v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128541/16.06.00_60/ts_128541v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128541/16.06.00_60/ts_128541v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138473/15.08.00_60/ts_138473v150800p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138473/15.08.00_60/ts_138473v150800p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138473/15.08.00_60/ts_138473v150800p.pdf
https://www.keycdn.com/support/the-growth-of-web-page-size
https://www.keycdn.com/support/the-growth-of-web-page-size
https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/oai/openairinterface5g
https://www.radisys.com/connect/connectran/5g
https://www.radisys.com/connect/connectran/5g

[25] Nishant Budhdev, Mun Choon Chan, and Tulika Mitra.
PR3: Power Ecient and Low Latency Baseband Pro-
cessing for LTE Femtocells. In IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, pages
2357–2365, 2018.

[26] Hsiang-Yun Cheng, Jia Zhan, Jishen Zhao, Yuan Xie,
Jack Sampson, and Mary Jane Irwin. Core vs. uncore:
The heart of darkness. In Proceedings of the 52nd Annual
Design Automation Conference, pages 1–6, 2015.

[27] Private communication with a major vRAN vendor,
2024.

[28] Intel Corporation. Enhanced Power Management for
Low-Latency Workloads. https://networkbuilders.intel.
com/docs/networkbuilders/power-management-enha
nced-power-management-for-low-latency-workload
s-technology-guide-1617438252.pdf, 2023.

[29] Bjorn Debaillie, Claude Desset, and Filip Louagie. A
Flexible and Future-Proof Power Model for Cellular
Base Stations. In 2015 IEEE 81st Vehicular Technology
Conference (VTC Spring), pages 1–7, 2015.

[30] Jian Ding, Rahman Doost-Mohammady,Anuj Kalia, and
Lin Zhong. Agora: Real-Time Massive MIMO Baseband
Processing in Software, page 232–244. Association for
Computing Machinery, New York, NY, USA, 2020.

[31] NTTDOCOMO. GreenMobile Network: Energy Saving
Eorts by SK Telecom and NTT DOCOMO. https:
//www.docomo.ne.jp/english/binary/pdf/corporate/te
chnology/rd/docomo6g/GreenMobileNetworksWhit
ePaper_22February2023.pdf, Feb 2023.

[32] eBPF.io. eBPF. https://ebpf.io/, March 2023.

[33] CapGemini Engineering. CapGemini 5G gNodeB. https:
//capgemini-engineering.com/nl/en/services/next-co
re/wireless-frameworks/, March 2023.

[34] Robert Falkenberg and Christian Wietfeld. FALCON:
An accurate real-time monitor for client-based mobile
network data analytics. In 2019 IEEE Global Commu-
nications Conference (GLOBECOM), pages 1–7. IEEE,
2019.

[35] Xenofon Foukas and Bozidar Radunovic. Concordia:
teaching the 5G vRAN to share compute. In Fernando A.
Kuipers and Matthew C. Caesar, editors, ACM SIG-
COMM 2021 Conference, Virtual Event, USA, August 23-
27, 2021, pages 580–596. ACM, 2021.

[36] Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill,
and Zhihua Lai. Taking 5G RAN Analytics and Con-
trol to a New Level. In Proceedings of the 29th Annual

International Conference on Mobile Computing and Net-
working, page to appear. Association for Computing
Machinery, 2023.

[37] Fujitsu. Fujitsu launches sustainable 5G vRAN to de-
liver potential reductions in CO2 emissions of over 50
percent. https://www.fujitsu.com/global/about/resourc
es/news/press-releases/2022/0224-01.html, 2022.

[38] Gines Garcia-Aviles, Andres Garcia-Saavedra, Marco
Gramaglia, Xavier Costa-Perez, Pablo Serrano, and Al-
bert Banchs. Nuberu: Reliable RAN virtualization in
shared platforms. In Proceedings of the 27th Annual
International Conference on Mobile Computing and Net-
working, MobiCom ’21, page 749–761, New York, NY,
USA, 2021. Association for Computing Machinery.

[39] Srihari Das Sunkada Gopinath, Sandeep Burugupally,
and Ajeet Singh Nathawat. An adaptive power man-
agement method for radio access network data plane
systems. In 2022 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1129–1134. IEEE,
2022.

[40] GSMA Intelligence. Going Green: Benchmarking the
Energy Eciency of Mobile, 2021.

[41] Sofonias Hailu, Mikko Saily, and Olav Tirkkonen. RRC
state handling for 5G. IEEE Communications Magazine,
57(1):106–113, 2018.

[42] Red Hat. Red Hat and Arm Collaborate to Deliver More
Energy-Ecient 5G and vRAN Solutions. https://ww
w.redhat.com/en/blog/red-hat-and-arm-collaborate-d
eliver-more-energy-ecient-5g-and-vran-solutions,
2023.

[43] Intel. Intel Network Builder Insights Series: The Full
vRAN Experience. https://networkbuilders.intel.com/
university/webcasts/the-full-vran-experience, Sep 14,
2022 2022. Slides: https://www.brighttalk.com/resourc
e/core/408572/the-full-vran-experience---deck_87345
8.pdf.

[44] Intel. Dynamic Frequency Scaling for Mixed Criticality
Real-Time Scenarios on 11th Generation Intel® Core™
Processors. https://www.intel.com/content/www/us/e
n/content-details/723446/dynamic-frequency-scaling
-for-mixed-criticality-real-time-scenarios-on-11th-g
eneration-intel-core-processors.html, 2023.

[45] Intel. FlexRAN README. https://github.com/intel/Fle
xRAN/blob/08ddafedce6a1b5690221f881738bddaa709
3588/README.md, Aug 2023.

[46] Intel. FlexRAN Reference Architecture for Wireless
Access. https://www.intel.com/content/www/us/en/de
veloper/topic-technology/edge-5g/tools/flexran.html,
March 2023.

https://networkbuilders.intel.com/docs/networkbuilders/power-management-enhanced-power-management-for-low-latency-workloads-technology-guide-1617438252.pdf
https://networkbuilders.intel.com/docs/networkbuilders/power-management-enhanced-power-management-for-low-latency-workloads-technology-guide-1617438252.pdf
https://networkbuilders.intel.com/docs/networkbuilders/power-management-enhanced-power-management-for-low-latency-workloads-technology-guide-1617438252.pdf
https://networkbuilders.intel.com/docs/networkbuilders/power-management-enhanced-power-management-for-low-latency-workloads-technology-guide-1617438252.pdf
https://www.docomo.ne.jp/english/binary/pdf/corporate/technology/rd/docomo6g/GreenMobileNetworksWhitePaper_22February2023.pdf
https://www.docomo.ne.jp/english/binary/pdf/corporate/technology/rd/docomo6g/GreenMobileNetworksWhitePaper_22February2023.pdf
https://www.docomo.ne.jp/english/binary/pdf/corporate/technology/rd/docomo6g/GreenMobileNetworksWhitePaper_22February2023.pdf
https://www.docomo.ne.jp/english/binary/pdf/corporate/technology/rd/docomo6g/GreenMobileNetworksWhitePaper_22February2023.pdf
https://ebpf.io/
https://capgemini-engineering.com/nl/en/services/next-core/wireless-frameworks/
https://capgemini-engineering.com/nl/en/services/next-core/wireless-frameworks/
https://capgemini-engineering.com/nl/en/services/next-core/wireless-frameworks/
https://www.fujitsu.com/global/about/resources/news/press-releases/2022/0224-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2022/0224-01.html
https://www.redhat.com/en/blog/red-hat-and-arm-collaborate-deliver-more-energy-efficient-5g-and-vran-solutions
https://www.redhat.com/en/blog/red-hat-and-arm-collaborate-deliver-more-energy-efficient-5g-and-vran-solutions
https://www.redhat.com/en/blog/red-hat-and-arm-collaborate-deliver-more-energy-efficient-5g-and-vran-solutions
https://networkbuilders.intel.com/university/webcasts/the-full-vran-experience
https://networkbuilders.intel.com/university/webcasts/the-full-vran-experience
https://www.brighttalk.com/resource/core/408572/the-full-vran-experience---deck_873458.pdf
https://www.brighttalk.com/resource/core/408572/the-full-vran-experience---deck_873458.pdf
https://www.brighttalk.com/resource/core/408572/the-full-vran-experience---deck_873458.pdf
https://www.intel.com/content/www/us/en/content-details/723446/dynamic-frequency-scaling-for-mixed-criticality-real-time-scenarios-on-11th-generation-intel-core-processors.html
https://www.intel.com/content/www/us/en/content-details/723446/dynamic-frequency-scaling-for-mixed-criticality-real-time-scenarios-on-11th-generation-intel-core-processors.html
https://www.intel.com/content/www/us/en/content-details/723446/dynamic-frequency-scaling-for-mixed-criticality-real-time-scenarios-on-11th-generation-intel-core-processors.html
https://www.intel.com/content/www/us/en/content-details/723446/dynamic-frequency-scaling-for-mixed-criticality-real-time-scenarios-on-11th-generation-intel-core-processors.html
https://github.com/intel/FlexRAN/blob/08ddafedce6a1b5690221f881738bddaa7093588/README.md
https://github.com/intel/FlexRAN/blob/08ddafedce6a1b5690221f881738bddaa7093588/README.md
https://github.com/intel/FlexRAN/blob/08ddafedce6a1b5690221f881738bddaa7093588/README.md
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html

[47] Intel. Native hardware idle loop for modern Intel pro-
cessors. https://github.com/torvalds/linux/blob/maste
r/drivers/idle/intel_idle.c, n.d.

[48] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K
Nurminen, and Zhonghong Ou. RAPL in Action: Expe-
riences in Using RAPL for Power Measurements. ACM
Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS), 3(2):1–26, 2018.

[49] Tong Li, Li Yu, Yibo Ma, Tong Duan, Wenzhen Huang,
Yan Zhou, Depeng Jin, Yong Li, and Tao Jiang. Carbon
emissions and sustainability of launching 5g mobile
networks in china, 2023.

[50] Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona
Brandic, Jean-Marc Pierson, and Athanasios V. Vasi-
lakos. Cloud Computing: Survey on Energy Eciency.
2014.

[51] mpv.io. mpv: a free, open source, and cross-platform
media player. https://mpv.io/, May 2024.

[52] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ah-
mad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang,
Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao,
et al. A variegated look at 5G in the wild: performance,
power, and QoE implications. In Proceedings of the 2021
ACM SIGCOMM Conference, pages 610–625, 2021.

[53] Ashkan Nikravesh and Bimmy Pujari. spinics.net patch:
bpf: Add realtime clock to BPF. https://www.spinics.ne
t/lists/bpf/msg23699.html, July 2020.

[54] NTT. NTT Succeeded in Low Power Consumption
of 5G Virtualized Radio Base Station (vRAN). https:
//group.ntt/en/newsrelease/2023/05/24/230524b.html,
2023.

[55] Ujjwal Pawar, Bheemarjuna Reddy Tamma, and
Franklin A Antony. Trac-Aware Compute Resource
Tuning for Energy Ecient Cloud RANs. In 2021
IEEE Global Communications Conference (GLOBECOM),
pages 01–06, 2021.

[56] Pablo Fernández Pérez, Claudio Fiandrino, and Joerg
Widmer. Characterizing and Modeling Mobile Net-
works User Trac at Millisecond Level. In Proceedings
of the 17th ACMWorkshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization,WiNTECH
’23, page 64–71, New York, NY, USA, 2023. Association
for Computing Machinery.

[57] Ericsson Technology Review. Radio network energy
performance: shifting focus from power to precision.
https://www.ericsson.com/en/reports-and-papers/eri
csson-technology-review/articles/radio-network-ene
rgy-performance-shifting-focus-from-power-to-pre
cision, 2014.

[58] Sonal Saha and Binoy Ravindran. An experimental
evaluation of real-time DVFS scheduling algorithms.
In Proceedings of the 5th Annual International Systems
and Storage Conference, pages 1–12, 2012.

[59] Samsung. Samsung Announces the Next Phase of Its
5G vRAN. https://news.samsung.com/global/samsung-
announces-the-next-phase-of-its-5g-vran, 2023.

[60] Robert Schöne, Thomas Ilsche, Mario Bielert, Andreas
Gocht, and Daniel Hackenberg. Energy Eciency Fea-
tures of the Intel Skylake-SP Processor andTheir Impact
on Performance. In 2019 International Conference on
High Performance Computing and Simulation (HPCS),
pages 399–406, 2019.

[61] Tshiamo Sigwele, Atm S Alam, Prashant Pillai, and
Yim F Hu. Energy-ecient cloud radio access networks
by cloud based workload consolidation for 5G. Journal
of Network and Computer Applications, 78:1–8, 2017.

[62] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco
Loi, Adam Radford, Chamith Wijenayake, Arun Vish-
wanath, andVijay Sivaraman. Classifying IoT devices in
smart environments using network trac characteris-
tics. IEEE Transactions onMobile Computing, 18(8):1745–
1759, 2018.

[63] Vodafone. Vodafone, Wind River, Intel, Keysight Tech-
nologies and Radisys test green Open RAN. https:
//www.vodafone.com/news/technology/vodafone-wi
nd-river-intel-keysight-technologies-radisys-test-gr
een-open-ran, 2022.

[64] Jingjin Wu, Yujing Zhang, Moshe Zukerman, and Ed-
ward Kai-Ning Yung. Energy-ecient base-stations
sleep-mode techniques in green cellular networks: A
survey. IEEE communications surveys & tutorials,
17(2):803–826, 2015.

[65] Yi Zhang, Łukasz Budzisz, Michela Meo, Alberto Conte,
Ivaylo Haratcherev, George Koutitas, Leandros Tassi-
ulas, Marco Ajmone Marsan, and Soe Lambert. An
overview of energy-ecient base station management
techniques. In 2013 24th Tyrrhenian International Work-
shop on Digital Communications-Green ICT (TIWDC),
pages 1–6. IEEE, 2013.

https://github.com/torvalds/linux/blob/master/drivers/idle/intel_idle.c
https://github.com/torvalds/linux/blob/master/drivers/idle/intel_idle.c
https://mpv.io/
https://www.spinics.net/lists/bpf/msg23699.html
https://www.spinics.net/lists/bpf/msg23699.html
https://group.ntt/en/newsrelease/2023/05/24/230524b.html
https://group.ntt/en/newsrelease/2023/05/24/230524b.html
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/radio-network-energy-performance-shifting-focus-from-power-to-precision
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/radio-network-energy-performance-shifting-focus-from-power-to-precision
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/radio-network-energy-performance-shifting-focus-from-power-to-precision
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/radio-network-energy-performance-shifting-focus-from-power-to-precision
https://news.samsung.com/global/samsung-announces-the-next-phase-of-its-5g-vran
https://news.samsung.com/global/samsung-announces-the-next-phase-of-its-5g-vran
https://www.vodafone.com/news/technology/vodafone-wind-river-intel-keysight-technologies-radisys-test-green-open-ran
https://www.vodafone.com/news/technology/vodafone-wind-river-intel-keysight-technologies-radisys-test-green-open-ran
https://www.vodafone.com/news/technology/vodafone-wind-river-intel-keysight-technologies-radisys-test-green-open-ran
https://www.vodafone.com/news/technology/vodafone-wind-river-intel-keysight-technologies-radisys-test-green-open-ran

	Introduction
	Background
	Distinct characteristics of the vRAN DU
	Techniques in traditional base stations
	CPU and OS features

	Motivating observations
	Low utilization in cellular networks
	CPU power management

	Design overview
	Overview and challenges

	Measuring deadline slack
	Types of vRAN threads
	Handling interrupt-driven threads
	Dividing between eBPF and userspace
	In-kernel slack measurement

	Handling busy-polling threads
	Iterative CPU frequency tuning

	Coupled CPU frequency and MAC control
	Forecasting DU traffic
	Low/high-load classification
	Rate-limiting
	Ordering and timing of changes

	Control operation CPU spikes
	Discovering spike-causing events
	Reacting to control messages at runtime

	Evaluation
	Experiment setup
	Idle-mode power consumption
	Energy savings with data traffic

	Microbenchmarks
	Effect of MAC rate limiting
	Slack measurement
	Control message handling
	Breakdown of energy savings
	Overhead of RENC

	Related work
	Conclusion
	Appendix

