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ABSTRACT
Many classical problems in theoretical computer science involve

norms, even if implicitly; for example, both XOS functions and

downward-closed sets are equivalent to some norms. The last

decade has seen a lot of interest in designing algorithms beyond

the standard ℓ𝑝 norms ∥ · ∥𝑝 . Despite notable advancements, many

existing methods remain tailored to specific problems, leaving a

broader applicability to general norms less understood. This pa-

per investigates the intrinsic properties of ℓ𝑝 norms that facilitate

their widespread use and seeks to abstract these qualities to a more

general setting.

We identify supermodularity—often reserved for combinatorial

set functions and characterized by monotone gradients—as a defin-

ing feature beneficial for ∥ · ∥𝑝𝑝 . We introduce the notion of 𝑝-

supermodularity for norms, asserting that a norm is𝑝-supermodular

if its 𝑝𝑡ℎ power function exhibits supermodularity. The association

of supermodularity with norms offers a new lens through which to

view and construct algorithms.

Our work demonstrates that for a large class of problems 𝑝-

supermodularity is a sufficient criterion for developing good algo-

rithms. This is either by reframing existing algorithms for problems

like Online Load-Balancing and Bandits with Knapsacks through a

supermodular lens, or by introducing novel analyses for problems

such as Online Covering, Online Packing, and Stochastic Probing.

Moreover, we prove that every symmetric norm can be approx-

imated by a 𝑝-supermodular norm. Together, these recover and

extend several existing results, and support 𝑝-supermodularity as a

unified theoretical framework for optimization challenges centered

around norm-related problems.
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1 INTRODUCTION
Many classical problems in theoretical computer science are framed

in terms of optimizing norm objectives. For instance, Load-Balancing

involves minimizing the maximummachine load, which is an ℓ∞ ob-

jective, while Set Cover aims at minimizing the ℓ1 objective, or the

number of selected sets. However, contemporary applications, such

as energy-efficient scheduling [2], network routing [24], paging

[39], and budget allocation [1], demand algorithms that are capable

of handling more complex objectives. Norms also underline other

seemingly unrelated concepts in computer science, such as XOS

functions from algorithmic game theory (both are max of linear

functions) and downward-closed constraints from combinatorial

optimization (the downward-closed set corresponds to the unit ball

of the norm); these connections are further discussed in Section 1.4.

Hence, ongoing efforts have focused on designing good algo-

rithms for general norm objectives. Notably, the last decade has

seen a lot of progress in this direction for the class of symmetric
norms—those invariant to coordinate permutations. Examples in-

clude ℓ𝑝 norms, Top-k norm, and Orlicz norms. They offer rich

possibilities, e.g., enabling the simultaneous capture of multiple

symmetric norm objectives, as their maximum is also a symmetric

norm. We have seen the fruit of this in algorithms for a range of

applications like Load-Balancing [17, 18], Stochastic Probing [45],

Bandits with Knapsacks [35], clustering [17, 18], nearest-neighbor

search [5, 6], and linear regression [4, 48].

Despite the above progress, our understanding of applying algo-

rithms beyond ℓ𝑝 norms remains incomplete. For instance, while

[9] (where 3 independent papers were merged) provide an algo-

rithm for Online Cover with ℓ𝑝 norms, which was extended to sum

of ℓ𝑝 norms in [44], the extension to general symmetric norms is

unresolved. Indeed, [44] posed as an open question whether good

Online Cover algorithms exist for more general norms. Other less

understood applications with norms include Online Packing [14]

and Stochastic Probing [28].

A notable limitation of current techniques extending beyond ℓ𝑝
norms is that they are often ad-hoc. Our aim is to create a unified

framework that provides a better understanding of norms in this

context, simplifies proofs, and enhances generalizability.

What properties of ℓ𝑝 norms make them amenable to
various applications? Can we reduce the problem of de-
signing good algorithms for general norms to ℓ𝑝 norms?

A common approach taken when working with ℓ𝑝 norms is to

instead work with the function ∥𝑥 ∥𝑝𝑝 =
∑
𝑖 𝑥

𝑝

𝑖
. This function has

several nice properties, e.g., it is separable and convex. We want

https://doi.org/10.1145/3618260.3649734
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to understand its fundamental properties that suffice for many

applications, hoping that this would allow us to define similar nice

functions beyond ℓ𝑝 norms.

We identify Supermodularity, characterized by monotone gradi-

ents, as a particularly valuable property of ∥𝑥 ∥𝑝𝑝 . This may sound

intriguing because Supermodularity is typically associated with

combinatorial set functions and not a priori norms. This is perhaps

because all norms, except for scalings of ℓ1, are not Supermodular.
We therefore propose that a norm ∥ · ∥ is 𝑝-Supermodular if ∥ · ∥𝑝
exhibits Supermodularity.

We show that for a large class of problems involving norms

or equivalent objects, 𝑝-Supermodularity suffices to design good

algorithms. This is either by reframing existing algorithms for prob-

lems like Online Load-Balancing [35] and Bandits with Knapsacks

[32, 36] through a Supermodular lens or by introducing novel anal-

yses for problems such as Online Covering [9], Online Packing [14],

and Stochastic Probing [28, 45].

Moreover, we demonstrate that 𝑝-Supermodular approximations

of norms are possible for large classes of norms, especially for all

symmetric norms. Our approach paves the path for a unified ap-

proach to algorithm design involving norms and for obtaining

guarantees that only depend polylogarithmically on the number of

dimensions 𝑛. In particular, it can bypass the limitations of ubiqui-

tous approaches like the use of “concentration + union bound” or

Multiplicative Weights Update, that typically cannot give bounds

depending only on the ambient dimension (they usually depend

on the number of linear inequalities/constraints that define the

norm/set); we expand on this a bit later.

1.1 𝑝-Supermodularity and a Quick Application
Throughout the paper, we only deal with non-negative vectors, i.e.,

𝑥 ∈ R𝑛+, and monotone norms, namely those where ∥𝑥 ∥ ≥ ∥𝑦∥ if
𝑥 ≥ 𝑦.

We now give the central definition, 𝑝-Supermodularity: a mono-

tone norm ∥ · ∥ is 𝑝-Supermodular if its 𝑝-th power ∥ · ∥𝑝 has

increasing marginal gains (a.k.a. supermodularity).

Definition 1.1 (𝑝-Supermodularity). A monotone norm ∥ · ∥ is
𝑝-Supermodular for 𝑝 ≥ 1 if for all 𝑢, 𝑣,𝑤 ∈ R𝑛+,

∥𝑢 + 𝑣 +𝑤 ∥𝑝 − ∥𝑢 + 𝑣 ∥𝑝 ≥ ∥𝑢 +𝑤 ∥𝑝 − ∥𝑢∥𝑝 .

As an example, ℓ𝑝 norms are 𝑝-Supermodular (follows from con-

vexity of 𝑥𝑝 ). It may not be immediately clear, but the larger the 𝑝 ,

the weaker this condition is and easier to satisfy (but the guarantees

of the algorithm also become weaker as 𝑝 grows). In Section 2.1

we present an in-depth discussion of 𝑝-Supermodularity, includ-
ing this and other properties, equivalent characterizations, how to

create new 𝑝-Supermodular norms from old ones, etc.

But to give a quick illustration of why 𝑝-Supermodularity is

useful, we consider the classic Online Load-Balancing problem [8,

10]. In this problem, there are 𝑇 jobs arriving one-by-one that are

to be scheduled on 𝑛 machines. On arrival, job 𝑡 ∈ [𝑇 ] reveals
how much size 𝑝𝑡𝑖 ∈ R+ it takes if executed on machine 𝑖 ∈ [𝑛].
Given an 𝑛-dimensional norm ∥ · ∥, the goal is to find an online

assignment to minimize the norm of the load vector, i.e., ∥Λ𝑇 ∥
where the 𝑖-th coordinate of Λ𝑇 is the sum of sizes of the jobs

assigned to the 𝑖-th machine. The following simple argument shows

why 𝑝-Supermodularity implies a good algorithm for Online Load-

Balancing.

Theorem 1.2. For Online Load-Balancing problem with a norm
objective that is 𝑝-Supermodular, there is an 𝑂 (𝑝)-competitive algo-
rithm.

Proof. The algorithm is simple: be greedy with respect to ∥ · ∥,
i.e., allocate job 𝑡 to a machine such that the increase in the norm

of load vector is the smallest, breaking ties arbitrarily.

For the analysis, let 𝑣𝑡 ∈ R𝑛+ be the load vector that the algorithm

incurs at time 𝑡 and Λ𝑡 := 𝑣1 + . . . + 𝑣𝑡 , and let 𝑣∗𝑡 and Λ∗
𝑡 be defined

analogously for the hindsight optimal solution. Then the cost of

the algorithm to the power of 𝑝 is

∥Λ𝑇 ∥𝑝 =
∑︁
𝑡

(
∥Λ𝑡 ∥𝑝 − ∥Λ𝑡−1∥𝑝

)
≤
∑︁
𝑡

(
∥Λ𝑡−1 + 𝑣∗𝑡 ∥𝑝 − ∥Λ𝑡−1∥𝑝

)
≤
∑︁
𝑡

(
∥Λ𝑇 + Λ∗

𝑡−1
+ 𝑣∗𝑡 ∥𝑝 − ∥Λ𝑇 + Λ∗

𝑡−1
∥𝑝
)

= ∥Λ𝑇 + Λ∗
𝑇 ∥

𝑝 − ∥Λ𝑇 ∥𝑝 ,
where the first inequality follows from the greedyness of the al-

gorithm and the second inequality from 𝑝-Supermodularity. Rear-
ranging and taking 𝑝-th root gives

2
1/𝑝 ∥Λ𝑇 ∥ ≤ ∥Λ𝑇 + Λ∗

𝑇 ∥ ≤ ∥Λ𝑇 ∥ + ∥Λ∗
𝑇 ∥.

Thus, ∥Λ𝑇 ∥ ≤ 1

2
1/𝑝−1

∥Λ∗
𝑇
∥ = 𝑂 (𝑝) · ∥Λ∗

𝑇
∥ as desired. □

Since ℓ𝑝 norms are 𝑝-Supermodular, we obtain𝑂 (𝑝)-competitive

algorithms for Online Load-Balancing with these norms, implying

the results of [8, 10].

1.2 𝑝-Supermodular Approximation and our
Technique via Orlicz Norms

One difficulty is that many norms (e.g., ℓ∞) are not 𝑝-Supermodular
for a reasonable 𝑝 (e.g., polylogarithmic in the number of dimen-

sions 𝑛). Indeed, the greedy algorithm for online load balancing

is known to be Ω(𝑛)-competitive for ℓ∞ [8]. However, in such

cases one would like to approximate the original norm by a 𝑝-

Supermodular norm before running the algorithm; e.g., approxi-

mate ℓ∞ by ℓ
log𝑛 .

One of our main contributions is showing that such an approx-

imation exists for large classes of norms. Formally, we say that a

norm |||·||| 𝛼-approximates another norm ∥ · ∥ if
∥𝑥 ∥ ≤ |||𝑥 ||| ≤ 𝛼 · ∥𝑥 ∥ for all 𝑥 ∈ R𝑛+ .

As our first main result (in Section 2), we show that all symmetric

norms can be approximated by an 𝑂 (log𝑛)-Supermodular norm.

Theorem 1.1. Every monotone symmetric norm ∥ · ∥ in 𝑛 dimen-
sions can be 𝑂 (log𝑛)-approximated by an 𝑂 (log𝑛)-Supermodular
norm.

Moreover, this approximation can be done efficiently given Ball-
Optimization oracle

1
access to the norm ∥ · ∥. This result plays

1
We use the definition in [17], whereby Ball-Optimization oracle allows us to compute

max𝑣:∥𝑣∥≤1
⟨𝑥, 𝑣⟩ for any vector 𝑥 ∈ R𝑛 with a single oracle call.
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a crucial role not only in allowing us to rederive many existing

results for symmetric norms in a unified way, but also to obtain

new results where previously general symmetric norms could not

be handled.

We now give a high-level idea of the different steps in the proof

of Theorem 1.1.

Reduction to Top-k norms. The reason why general norms are

often difficult to work with is that they cannot be easily described.

An approach that has been widely successful when dealing with

symmetric norms is to instead work with Top-k norms— sum of

the largest 𝑘 coordinates of a non-negative vector. Besides giving a

natural way to interpolate between ℓ1 and ℓ∞, they actually form

a “basis” for all symmetric norms. In particular, it is known that

any symmetric norm can be 𝑂 (log𝑛)-approximated by the max

of polynomially many (weighted) Top-k norms (see Lemma 2.15).

Leveraging this property, we reduce our problem in that of finding

𝑝-Supermodular approximations of Top-k norms.

Our Approach via Orlicz Norms. Even though Top-k norms

have a very simple structure, it is still not clear how to design 𝑝-

Supermodular approximations for them. Not only thinking about

𝑝-th power of functions in high dimensional setting is not easy,

but there is no constant or “wiggle room” in the definition of 𝑝-

Supermodularity to absorb errors. Our main idea to overcome this

is to instead work with Orlicz norms (defined in Section 2.2). These

norms are fundamental objects in functional analysis (e.g., see book

[29]) and have also found use in statistics and computer science;

see for example [4, 48] for their application in regression. Orlicz

functions are much easier to work with because they are defined

via a 1-dimensional function R+ → R+.
So our next step is showing that any Top-k norm can be 𝑂 (1)-

approximated by an Orlicz norm. This effectively reduce our task of

designing a 𝑝-Supermodular approximation from an 𝑛-dimensional

situation to a 1-dimensional situation.

Approximating Orlicz Norms. The last step is showing that every

Orlicz norm can be approximated by a 𝑝-Supermodular one.

Theorem 1.2. Every Orlicz norm ∥ · ∥𝐺 in 𝑛-dimensions can be
𝑂 (1)-approximated pointwise by a (twice differentiable) 𝑂 (log𝑛)-
Supermodular norm.

As an example, an immediate corollary of this result along with

Theorem 1.2 is an 𝑂 (log𝑛)-competitive algorithm for Online Load-

Balancing with an Orlicz norm objective.

Our key handle for approaching Theorem 1.2 is the proof of a

sufficient guarantee for an Orlicz norm to be 𝑝-Supermodular: the
1-dimensional function 𝐺 generating it should grow “at most like

a polynomial of power 𝑝” (Lemma 2.9). Then the construction of

the approximation in the theorem proceeds in three steps. First, we

simplify the structure of the Orlicz function 𝐺 by approximating

it with a sum of (increasing) “hinge” functions �̃� (𝑡) :=
∑
𝑖 𝑔𝑖 (𝑡).

These hinge function, by definition, have a sharp “kink”, hence

do not satisfy the requisite growth condition. Thus, the next step

is to approximate them by smoother functions 𝑓𝑖 (𝑡) that grow at

most like power 𝑝 . The standard smooth approximations of hinge

functions (e.g., Hubber loss) do not give the desired approximation

properties, so we design an approximation that depends on the

relation between the slope and the location of the kink of the hinge

function. Finally, we show that the Orlicz norm ∥ · ∥𝐹 , generated
by the the function 𝐹 (𝑡) = ∑

𝑖 𝑓𝑖 (𝑡), both approximates ∥ · ∥𝐺 and

is 𝑂 (log𝑛)-Supermodular.

Putting these ideas together, gives the desired approximation of

every symmetric norm by an 𝑂 (log𝑛)-Supermodular one.

1.3 Direct Applications of 𝑝-Supermodularity
Next, we detail a variety of applications for 𝑝-Supermodular func-
tions. Our discussion includes both reinterpretations of existing

algorithms through the lens of Supermodularity and the intro-

duction of novel techniques that leverage Supermodularity to ad-

dress previously intractable problems. In this section, we discuss

applications that immediately follow from prior works due to 𝑝-

Supermodularity.

1.3.1 Online Covering with a Norm Objective. The OnlineCover
problem is defined as follows: a norm 𝑓 : R𝑛 → R is given upfront,

and at each round 𝑟 a new constraint ⟨𝐴𝑟 , 𝑥⟩ ≥ 1 arrives (for some

non-negative vector 𝐴𝑟 ∈ R𝑛). The algorithm needs to maintain a

non-negative solution𝑥 ∈ R𝑛+ that satisfies the constraints ⟨𝐴1, 𝑦⟩ ≥
1, . . . , ⟨𝐴𝑟 , 𝑦⟩ ≥ 1 seen thus far, and is only allowed to increase the

values of the variables 𝑥 over the rounds. The goal is to minimize

the cost 𝑓 (𝑥) of the final solution 𝑥 .

When the cost function 𝑓 is linear (i.e., the ℓ1 norm), this cor-

responds to the classical problem of Online Covering LPs [3, 15],

where 𝑂 (log 𝑠)-competitive algorithms are known (𝑠 is the maxi-

mum row sparsity) [14, 26]. This was first extended to 𝑂 (𝑝 log 𝑠)-
competitive algorithms when 𝑓 is the ℓ𝑝 norm [9], and was later

extended to sums of ℓ𝑝 norms [44]. [44] posed as an open question

whether good online coverage algorithms exist outside of ℓ𝑝 -based

norms. The following result, which follows directly by applying the

algorithm of [9] to the 𝑝-Supermodular approximations of Orlicz

and symmetric norms provided by Theorem 1.2 and Theorem 1.1,

shows that this is indeed the case.

Corollary 1.3. In the OnlineCover problem, if the objective
can be 𝛼-approximated by a 𝑝-Supermodular norm then there exists
an 𝑂 (𝛼𝑝 log 𝑠)-competitive algorithm, where 𝑠 is the maximum row
sparsity. Hence, if the objective is an Orlicz norm then this yields
𝑂 (log𝑛 log 𝑠) competitive ratio, and if the objective is a symmetric
norm then this yields 𝑂 (log

2 𝑛 log 𝑠) competitive ratio.

Since ℓ𝑝 -norms are 𝑝-Supermodular, this extends the result of [9].

1.3.2 Applications via Gradient Stability: Bandits with Knapsacks or
Vector Costs . Recently, [35] introduced the notion of gradient stabil-
ity of norms and showed that it implies good algorithms for online

problems such as Online Load-Balancing, Bandits with Vector Costs,

and Bandits with Knapsacks. (Gradient stability, however, does not

suffice for other applications in this paper, like for Online Covering,

Online Packing, Stochastic Probing, and robust algorithms.) In the

full version, we show that gradient stability is (strictly) weaker than

𝑝-Supermodularity, and hence we can recover all of the results in

[35]. Due to Theorem 1.2 for Orlicz norms, this also improves the

approximation factors in all these applications from 𝑂 (log
2 𝑛) to

𝑂 (log𝑛) for Orlicz norms. See the full version for more details.
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1.3.3 Robust Algorithms. Supermodularity also has implications

for online problem in stochastic, and even better, robust input mod-

els. Concretely, consider the Online Load-Balancing problem from

Section 1.1, but in the Mixed model where the time steps are parti-

tioned (unbeknownst to the algorithm) into an adversarial part and
a stochastic part, where in the latter jobs are generated i.i.d. from

an unknown distribution. Such models that interpolate between

the pessimism and optimism of the pure worst-case and stochastic

models, respectively, have received significant attention in both

online algorithms [7, 12, 21, 33, 34, 37, 40–42] and online learning

(see [23] and references within).

Consider the (Generalized)
2
Online Load-Balancing in this model,

with processing times normalized to be in [0, 1]. For the ℓ𝑝 -norm ob-

jective, [43] designed an algorithmwith cost most𝑂 (1) ·OPT𝑆𝑡𝑜𝑐ℎ+
𝑂 (min{𝑝, log𝑛}) ·OPT𝐴𝑑𝑣+𝑂 (min{𝑝, log𝑚}𝑛1/𝑝 ), where OPT𝐴𝑑𝑣

and OPT𝑆𝑡𝑜𝑐ℎ are the hindsight optimal solutions for the items on

each part of the input. That is, the algorithm has strong perfor-

mance on the “easy” part of the instance, while being robust to

“unpredictable” jobs. We extend this result beyond ℓ𝑝 -norm ob-

jectives, by applying Theorem 1 of [43] and our 𝑝-Supermodular
approximation for Orlicz norms from Theorem 1.2.

Corollary 1.4. Consider the (Generalized) Online Load-Balancing
problem in the Mixed model with processing times in [0, 1]. If the ob-
jective function can be 𝛼-approximated by a 𝑝-Supermodular norm
∥ · ∥, then there is an algorithm with cost at most 𝑂 (𝛼) OPT𝑆𝑡𝑜𝑐ℎ +
𝑂 (𝛼𝑝2) OPT𝐴𝑑𝑣 +𝑂 (𝛼𝑝 ∥1∥). For Orlicz norm objective, this becomes
𝑂 (1) OPT𝑆𝑡𝑜𝑐ℎ +𝑂 (log

2 𝑛) OPT𝐴𝑑𝑣 +𝑂 (log𝑛 · ∥1∥).

1.4 New Applications using 𝑝-Supermodularity
We discuss applications that require additional work but crucially

rely on 𝑝-Supermodularity. The details can be found in the full

version.

1.4.1 Online Covering with Composition of Norms. To illustrate

the general applicability of our ideas, in particular going beyond

symmetric norms, let us reconsider the OnlineCover problem but

now with “composition of norms” objective. This version of the

problem is surprisingly general: its offline version captures the frac-

tional setting of other fundamental problems such as Generalized

Load-Balancing [20] and Facility Location.

Formally, in OnlineCover with composition of norms, the ob-

jective function is defined by a monotone outer norm ∥ · ∥ in R𝑘 ,
monotone inner norms 𝑓1, . . . , 𝑓𝑘 in R𝑛 , and subsets of coordinates

𝑆1, . . . , 𝑆ℓ ⊆ [𝑛] to allow the inner norms to only depend on a

subset of the coordinates, i.e.,

∥ 𝑓1 (𝑦 |𝑆1
), . . . , 𝑓𝑘 (𝑦 |𝑆𝑘 )∥,

where𝑦 |𝑆ℓ ∈ R𝑆ℓ is the sub-vector of𝑦 with the coordinates indexed
by 𝑆ℓ . The objective function is given upfront, but the constraints

⟨𝐴1, 𝑦⟩ ≥ 1, ⟨𝐴2, 𝑦⟩ ≥ 1, . . . , ⟨𝐴𝑚, 𝑦⟩ ≥ 1 arrive in rounds, one-by-

one, where 𝐴𝑟 ∈ [0, 1]𝑛 is the 𝑟 th row of 𝐴. For each round 𝑟 , the

algorithm needs to maintain a non-negative solution 𝑦 ∈ R𝑛+ that

satisfies the constraints ⟨𝐴1, 𝑦⟩ ≥ 1, . . . , ⟨𝐴𝑟 , 𝑦⟩ ≥ 1 seen thus far,

2
This is the generalization where there are 𝑘 “options” for processing each job, and

each option incurs possible different loads on multiple machines.

and is only allowed to increase the values of the variables 𝑦 over

the rounds. The goal is to minimize the composed norm objective.

Our next theorem shows that good algorithms exist for On-

lineCover even with composition of 𝑝-Supermodular norms ob-

jectives. (Since this composed norm may not be 𝑝-Supermodular,
Corollary 1.3 does not apply.)

Theorem 1.3. If the outer norm ∥ · ∥ is 𝑝′-Supermodular and the
inner norms 𝑓ℓ ’s are𝑝-Supermodular, then there is an𝑂 (𝑝′ 𝑝 log

2 𝑑𝜌𝛾)-
competitive algorithm for OnlineCover, where 𝑑 is the maximum
between the sparsity of the constraints and the size of the coor-
dinate restrictions, namely 𝑑 = max{max𝑟 𝑠𝑢𝑝𝑝 (𝐴𝑟 ) , maxℓ |𝑆ℓ |},
𝜌 = max𝑟,𝑖:(𝐴𝑟 )𝑖≠0

1

(𝐴𝑟 )𝑖 , and 𝛾 = maxℓ
max𝑖∈𝑆ℓ 𝑓ℓ (𝑒𝑖 )
min𝑖∈𝑆ℓ 𝑓ℓ (𝑒𝑖 ) .

Unlike Corollary 1.3 that followed from 𝑝-Supermodularity im-

mediately, this result needs new ideas to analyze the algorithm.

We combine ideas from Fenchel duality used in [9] with breaking

up the evolution of the algorithm into phases where the gradients

the norm behaves almost 𝑝-Supermodular, inspired by [44] in the

ℓ𝑝 -case.

1.4.2 Online Packing. The OnlinePacking problem has the form:

max ⟨𝑐, 𝑥⟩ s.t. 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0, (1)

where 𝑐 ∈ R𝑇 , 𝐴 ∈ R# constraints×𝑇 , and 𝑏 ∈ R# constraints have
all non-negative entries. At the 𝑡-th step, we see the value 𝑐𝑡 of

the item and its vector size (𝑎1,𝑡 , . . . , 𝑎# constraints,𝑡 )), and have to

immediately set 𝑥𝑡 (which cannot be changed later). The classic

online primal-dual algorithms were designed to address such prob-

lems [14, 15], and we know 𝑂 (log(𝜌 · # constraints))-competitive

algorithms, where 𝜌 = max𝑖
max𝑡 𝑎𝑖,𝑡 /𝑐𝑡

min𝑡 :𝑎𝑖,𝑡 >0 𝑎𝑖,𝑡 /𝑐𝑖 is the “width” of the

instance.

For many packing problems, however, the # constraints is expo-

nential in number of items𝑇 , e.g., matroids are given by {∑𝑡 ∈𝑆 𝑥𝑡 ≤
𝑟 (𝑆), ∀𝑆 ⊆ [𝑇 ]} where 𝑟 is the rank function. In such situations, a

competitive ratio that depends logarithmically on the number of

constraints is not interesting, and we are interested in obtaining

competitive ratios that only depend on the intrinsic dimension of

the problem.

More formally, we consider the generalOnlinePacking problem

of the form:

max ⟨𝑐, 𝑥⟩ s.t. 𝐴𝑥 ∈ 𝑃 and 𝑥 ≥ 0, (2)

where 𝑃 is an 𝑛-dimensional downward closed set. Again, 𝑇 items

come one-by-one (along with 𝑐𝑡 and (𝑎1,𝑡 , . . . , 𝑎𝑚,𝑡 )) and we need

to immediately set 𝑥𝑡 . Can we obtain polylog(𝑛,𝑇 , 𝜌)-competitive

online algorithms? In the stochastic setting of this problem, where

items come in a random order (secretary model) or from known

distributions (prophet model), Rubinstein [47] obtained 𝑂 (log
2𝑇 )-

competitive algorithms (see also [1]). But in the adversarial online

model, despite being a very basic problem, we do not know of good

online algorithms beyond very simple 𝑃 .

We propose the use of 𝑝-Supermodularity as a way of tackling

this problem. The connection with norms is because there is a 1-1

equivalence between downward closed sets 𝑃 and monotone norms,

given by the gauge function ∥𝑥 ∥𝑃 := inf{𝛼 > 0 :
𝑥
𝛼 ∈ 𝑃}, where

𝑥 ∈ 𝑃 ⇔ ∥𝑥 ∥𝑃 ≤ 1. Thus, the packing constraint 𝐴𝑥 ∈ 𝑃 in (2) is



Supermodular Approximation of Norms and Applications STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

equivalent to ∥𝐴𝑥 ∥𝑃 ≤ 1. Our next result illustrates the potential

of this approach.

Theorem 1.4. Consider an instance of the problem OnlinePack-
ing where the norm associated with the feasible set 𝑃 admits an
𝛼-approximation by a differentiable 𝑝-Supermodular norm.

• If a 𝛽-approximation OPT ≤ ÕPT ≤ 𝛽OPT of OPT is known,
then there is an algorithm whose expected value is 𝑂 (𝛼) ·
max{𝑝, log𝛼𝛽}-competitive.

• If no approximation of OPT is known, then there is an algo-
rithmwhose expected value is𝑂 (𝛼)·max{𝑝, log𝑛𝜌}-competitive,
where 𝜌 is an upper bound on the width max𝑖,𝑡 (𝑎𝑖,𝑡 ·𝛼 ∥𝑒𝑖 ∥𝑃 /𝑐𝑡 )

min𝑖,𝑡 :𝑎𝑖,𝑡 >0 (𝑎𝑖,𝑡 · ∥𝑒𝑖 ∥𝑃 /𝑐𝑡 ) .

When 𝑃 = {𝑥 ∈ R𝑛 : 0 ≤ 𝑥 ≤ 𝑏} in (2), the norm ∥ · ∥𝑃 is just

ℓ∞ with rescaled coordinates. Hence, Theorem 1.4 together with

𝑂 (log𝑛)-Supermodular approximation of ℓ∞ gives an 𝑂 (log(𝑛𝜌))-
competitive algorithm for the setting of (1), which essentially is

the same classical guarantee of [14], albeit with a slightly differ-

ent notion of width 𝜌 . Moreover, if our Conjecture 1.6 about 𝑝-

Supermodularity of general monotone norms is true then this gives

the desired polylog(𝑛𝜌)-approx for every downward closed 𝑃 . As a

side comment, this result/technique highlights a fact that we were

unaware of, even for the classical problem (1), that if an estimate

of OPT within poly(𝑛) factors is available, then one can avoid the

dependence on any width parameter 𝜌 .

1.4.3 Adaptivity Gaps and Decoupling Inequalities. We show that 𝑝-

Supermodularity is related to another fundamental concept, namely

the power of adaptivity when making decisions under stochastic

uncertainty. To illustrate that, we consider the problem of Stochastic

Probing (StochProbing), which was introduced as a generalization

of stochastic matching [11, 19] and has been greatly studied in the

last decade [13, 25, 27, 28, 45].

In this problem, there are 𝑛 items with unknown non-negative

values 𝑋1, . . . , 𝑋𝑛 that were drawn independently from known dis-

tributions. Items need to be probed for their values to be revealed.

There is a downward-closed family F ⊆ [𝑛] indicating the feasible

sets of probes (e.g., if the items correspond to edges in a graph, F
can say that at most 𝑘 edges incident on a node can be queried).

Finally, there is a monotone function 𝑓 : R𝑛+ → R+, and the goal is

to probe a set 𝑆 ∈ F of elements so as to maximize E𝑓 (𝑋𝑆 ), where
𝑋𝑆 has coordinate 𝑖 equal to 𝑋𝑖 if 𝑖 ∈ 𝑆 and 0 otherwise (continuing

the graph example, 𝑓 (𝑥) can be the maximum matching with edge

values given by 𝑥 ).

The optimal probing strategy is generally adaptive, i.e., it probes
elements one at a time and may change its decisions based on the

observed values. Since adaptive strategies are complicated (can be

an exponential-sized decision tree, and probes cannot be performed

in parallel), one often resorts to non-adaptive strategies that select
the probe set 𝑆 upfront only based on the value distributions. The

fundamental question is how much do we lose by making deci-

sions non-adaptively, i.e., if Adapt(𝑋, F , 𝑓 ) denotes the value of
the optimal adaptive strategy and NonAdapt(𝑋, F , 𝑓 ) denotes the
value of the optimal non-adaptive one, then what is the maximum

possible adaptivity gap Adapt(𝑋,F,𝑓 )
NonAdapt(𝑋,F,𝑓 ) for a class of instances.

For submodular set functions, the adaptivity gap is known to be

2 [13, 28]. For XOS set functions of width𝑤 , [28] showed the adap-

tivity gap is at most 𝑂 (log𝑤), where a width-𝑤 XOS set function

𝑓 : 2
[𝑛] → 𝑅+ is a max over 𝑤 linear set functions. The authors

conjectured that the adaptivity gap for all XOS set functions should

be poly-logarithmic in 𝑛, independent of their width. Since a mono-

tone norm is nothing but a max over linear functions (given by

the dual-norm unit ball), they form an extension of XOS set func-

tions from the hypercube to all non-negative real vectors. Thus, the

generalized conjecture of [28] is the following:

Conjecture 1.5. The adaptivity gap for stochastic probing with
monotone norms is polylog𝑛.

We prove this conjecture for Supermodular norms.

Theorem 1.5. For every 𝑝-Supermodular objective function 𝑓 ,
StochProbing has adaptivity gap at most 𝑂 (𝑝).

This simultaneously recovers the 𝑂 (log𝑤) adaptivity gap result

of [28] (via Lemma 2.4) and the result of [45] for all monotone sym-

metric norms (within polylog(𝑛)). Moreover, if our Conjecture 1.6

about Supermodularity of general monotone norms is true, this

would settle the full Conjecture 1.5. Importantly, neither the tech-

niques from [28] nor [45] seem able to prove Conjecture 1.5: the

former uses a “concentration + union bound” over the linear func-

tions composing 𝑓 (leading to the expected 𝑂 (log𝑤) loss), and the

latter showed an Ω(
√
𝑛) lower bound for non-symmetric functions

with their approach.

The proof of Theorem 1.5 is similar to the Load-Balancing ap-

plication of Section 1.1: we replace one-by-one the actions of the

optimal adaptive strategy Adapt by those of the “hallucination-

based” non-adaptive strategy that runs Adapt on “hallucinated

samples” 𝑋𝑖 ’s (but receives value according to the true item values

𝑋𝑖 ’s). However, additional probabilistic arguments are required; in

particular, we need to prove a result of the type “E∥𝑉1+ . . .+𝑉𝑛 ∥𝑝 ≲
E∥𝑉1 + . . . +𝑉𝑛 ∥𝑝 implies E∥𝑉1 + . . . +𝑉𝑛 ∥ ≲ 𝑝 · E∥𝑉1 + . . . +𝑉𝑛 ∥”,
where𝑉𝑖 ’s and𝑉𝑖 ’s will correspond to Adapt and the hallucinating

strategy, respectively. We do this via an interpolation idea inspired

by Burkholder [16].

In fact, we prove a more general result than Theorem 1.5 that

show the connections with probability and geometry of Banach

spaces: a decoupling inequality for tangent sequences of random
variables (see the full version); these have applications from con-

centration inequalities [46] to Online Learning [22, 49]. Two se-

quences of random variables 𝑉1,𝑉2, . . . ,𝑉𝑛 and 𝑉1,𝑉2, . . . ,𝑉𝑛 are

called tangent if conditioned up to time 𝑡 − 1, 𝑉𝑡 and 𝑉𝑡 have the

same distribution. We show that for such tangent sequences in

R𝑑+, for a 𝑝-Supermodular norm ∥ · ∥ we have E∥𝑉1 + . . . +𝑉𝑛 ∥ ≤
𝑂 (𝑝) · E∥𝑉1 + . . . +𝑉𝑛 ∥, independent of the number of dimensions.

This complements the (stronger) results known for the so-called

UMD Banach spaces [31].
3

3
We remark that R𝑑 equipped with the ℓ1 norm is not a UMD space, while it is a

1-Supermodular norm, making our assumptions, and conclusions, distinct from this

literature.
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1.5 Our Conjecture and Future Directions
In this work we demonstrate that 𝑝-Supermodularity is widely

applicable to many problems involving norm objectives (from on-

line to stochastic and from maximization to minimization prob-

lems). Our Theorem 1.1 shows that all symmetric norms have an

𝑂 (log𝑛)-Supermodular approximation. We conjecture that such

an approximation should exist for all norms.

Conjecture 1.6. Any monotone norm in 𝑛 dimensions can be
polylog𝑛-approximated in the positive orthant by a norm that is
polylog𝑛-Supermodular.

If true, this conjecture will significantly push the boundary of

what’s known. It is akin to the phenomenon of going “beyond the

trivial union bound” that appears in multiple settings. For instance,

it will positively resolve the adaptivity gap conjecture of [28] for

XOS functions where the current best results depend on the num-

ber of linear functions, and it will give online packing/covering

algorithms that do not depend on the number of constraints but

only on the ambient dimension.

Another interesting future direction is to obtain integral solu-

tions for the OnlineCover problem. Similar to the work of [44],

our Corollary 1.3 and Theorem 1.3 can only handle the fractional

OnlineCover problem. Unlike the classic online set cover (ℓ1 ob-

jective), where randomized rounding suffices to obtain integral

solutions, it is easy to show that we cannot round w.r.t. the natural

fractional relaxation of the problem since there is a large integrality

gap. Hence, a new idea will be required to capture integrality in

the objective.

𝑝-Supermodularity is also related to the classic Online Linear
Optimization (e.g., see book [30]). For the maximization version of

the problem, in the full version we show how to obtain total value

at least (1 − 𝜀)OPT − 𝑝 ·𝐷
𝜀 when a norm associated to the problem

is 𝑝-Supermodular, where 𝐷 is “diameter” parameter. In the case

of prediction with experts, this recovers the standard (1 − 𝜀)OPT −
𝑂 ( log𝑑

𝜀 ) bound (𝑑 being the number of experts), and generalizes

the result of [42] when the player chooses actions on the ℓ𝑝 ball.

This gives an intriguing alternative to the standard methods like

Online Mirror Descent and Follow the Perturbed Leader. It would

be interesting to find further implications of this result, and more

broadly 𝑝-Supermodularity, in the future.

In the next section we discuss properties of 𝑝-Supermodularity
and defer the proofs of the applications to the full version.

2 SUPERMODULAR APPROXIMATION OF
NORMS

In this section we discuss 𝑝-Supermodularity and how many gen-

eral norms can be approximated by 𝑝-Supermodular norms.

2.1 𝑝-Supermodularity and its Basic Properties
𝑝-Supermodularity can be understood in a natural and more work-

able manner through the first and second derivatives of the norms;

this is the approach we use in most of our results. While norms

may not be differentiable, using standard smoothing techniques, ev-

ery 𝑝-Supermodular norm can be (1 + 𝜀)-approximated by another

𝑝-Supermodular norm that is infinitely differentiable everywhere

except at the origin; see the full version.

We give equivalent characterizations of 𝑝-Supermodular norms

via their gradients and Hessians.

Lemma 2.1 (Eqivalent characterizations). For a differen-
tiable norm ∥ · ∥, the following are equivalent:

• (𝑝-Supermodularity): ∥ · ∥ is 𝑝-Supermodular.
• (Gradient property): ∥ · ∥𝑝 has monotone gradients over the
non-negative orthant, i.e., for all 𝑢, 𝑣 ∈ R𝑛+ and ∀𝑖 ∈ [𝑛],

∇𝑖
(
∥𝑢 + 𝑣 ∥𝑝

)
≥ ∇𝑖

(
∥𝑢∥𝑝

)
⇐⇒ ∇𝑖 ∥𝑢 + 𝑣 ∥

∇𝑖 ∥𝑢∥
≥

( ∥𝑢∥
∥𝑢 + 𝑣 ∥

)𝑝−1

.

• (Hessian property): If ∥ · ∥ is twice differentiable, then these
are equivalent to: For all 𝑢 ∈ R𝑛+ and ∀𝑖, 𝑗 ∈ [𝑛],

∇2

𝑖, 𝑗

(
∥𝑢∥𝑝

)
≥ 0 ⇐⇒ ∇2

𝑖, 𝑗 ∥𝑢∥ ≥ −(𝑝 − 1) 1

∥𝑢∥ ∇𝑖 ∥𝑢∥ · ∇𝑗 ∥𝑢∥.

Proof. The first part of the Gradient property follows when we

take ∥𝑤 ∥ → 0. For the second part, use ∇∥𝑢∥𝑝 = 𝑝 · ∥𝑢∥𝑝−1 · ∇∥𝑢∥.
The first part of the Hessian property follows from monotonicity

of gradients. For the second part, use

1

𝑝
∇2

𝑖, 𝑗

(
∥𝑢∥𝑝

)
= ∥𝑢∥𝑝−2 ·

(
(𝑝−1) ·∇𝑖 ∥𝑢∥ ·∇𝑗 ∥𝑢∥+∥𝑢∥ ·∇2

𝑖, 𝑗 ∥𝑢∥
)
. □

Two immediate implications of the above equivalence are the

following:

Corollary 2.2. A differentiable 𝑝-Supermodular norm ∥ · ∥ is
also 𝑝′-Supermodular for 𝑝′ ≥ 𝑝 .

Corollary 2.3. If ∥ · ∥ : R𝑛 → R is 𝑝-Supermodular and 𝐴 ∈
R𝑛×𝑚≥0

then the norm |||𝑥 ||| := ∥𝐴𝑥 ∥ is 𝑝-Supermodular.

As mentioned in the introduction, for every 𝑝 ≥ 1 the ℓ𝑝 norm

is 𝑝-Supermodular. This follows, e.g., from the gradient property

of 𝑝-Supermodular norms. For 𝑝 ≥ log𝑛, the ℓ𝑝 norm is 𝑂 (1)-
approximated by ℓ

log𝑛 . So in particular, ℓ∞ can be𝑂 (1)-approximated

by (log𝑛)-Supermodular norm. We first generalize this fact (ℓ∞ is

max of 𝑛 inequalities that are each 1-Supermodular).

Lemma 2.4. If 𝑓1, 𝑓2, . . . , 𝑓𝑤 are differentiable 𝑝-Supermodular
norms, then the norm 𝑥 ↦→ max𝑖 𝑓𝑖 (𝑥) can be 2-approximated by a
max{𝑝, log𝑤}-Supermodular norm.

Proof. Let 𝑝′ = max{𝑝, log𝑤} and consider the norm |||𝑥 ||| :=

(∑𝑖 𝑓𝑖 (𝑥)𝑝
′ )1/𝑝′

. As max𝑖 𝑓𝑖 (𝑥)𝑝
′ ≤ ∑

𝑖 𝑓𝑖 (𝑥)𝑝
′ ≤ 𝑤 · max𝑖 𝑓𝑖 (𝑥)𝑝

′
,

we have

max

𝑖
𝑓𝑖 (𝑥) = (max

𝑖
𝑓𝑖 (𝑥)𝑝

′
)1/𝑝′

≤ |||𝑥 |||

≤ (𝑤 · max

𝑖
𝑓𝑖 (𝑥)𝑝

′
)1/𝑝′

= 𝑤1/𝑝′
max

𝑖
𝑓𝑖 (𝑥)

≤ 2 max

𝑖
𝑓𝑖 (𝑥).

Furthermore, for all 𝑢, 𝑣 ∈ R𝑛+, we have

∇|||𝑢 + 𝑣 |||𝑝
′
=
∑︁
𝑖

𝑓𝑖 (𝑢 + 𝑣)𝑝
′
≥
∑︁
𝑖

∇𝑓𝑖 (𝑢)𝑝
′
= ∇|||𝑢 |||𝑝

′
,

since each 𝑓𝑖 is 𝑝
′
-Supermodular. □
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An implication of this is that any norm in 𝑛 dimensions can be

𝑂 (1)-approximated by an 𝑛-Supermodular norm. This is because

we can find a
1

4
-netN ⊆ A of the unit ball of the dual norm of size

2
𝑂 (𝑛)

. Since, |||𝑥 ||| := max𝑎∈N ⟨𝑎, |𝑥 |⟩ is an 𝑂 (1) approximation of

∥𝑥 ∥ and ⟨𝑎, |𝑥 |⟩ is a re-weighted ℓ1 norm, Lemma 2.4 implies that

|||𝑥 ||| is 𝑛-Supermodular norm.

Corollary 2.5. Anymonotone norm in𝑛-dimensions can be𝑂 (1)-
approximated by an 𝑛-Supermodular norm.

Although 𝑝-Supermodular norms have several nice properties,

they also exhibit some strange properties. For instance, sum of two

𝑝-Supermodular norms can be very far from being 𝑝-Supermodular.

Lemma 2.6. The norm ∥𝑥 ∥ = ∥𝑥 ∥1 + ∥𝑥 ∥2 is not 𝑝-Supermodular
for any 𝑝 = 𝑜 (

√
𝑛).

Proof. Consider some 𝑖 ≠ 𝑗 ∈ [𝑛]. By Hessian property in

Lemma 2.1, for ∥𝑥 ∥1 + ∥𝑥 ∥2 to be 𝑝-Supermodular, we must have

−
∇𝑖 ∥𝑥 ∥2 · ∇𝑗 ∥𝑥 ∥2

∥𝑥 ∥2

= ∇2

𝑖, 𝑗 ∥𝑥 ∥

≥ −(𝑝 − 1)
∇𝑖 ∥𝑥 ∥ · ∇𝑗 ∥𝑥 ∥

∥𝑥 ∥

= −(𝑝 − 1)
(
1 + ∇𝑖 ∥𝑥 ∥2

)
·
(
1 + ∇𝑗 ∥𝑥 ∥2

)
∥𝑥 ∥1 + ∥𝑥 ∥2

.

Since ∇𝑖 ∥𝑥 ∥2 =
𝑥𝑖
∥𝑥 ∥2

, we can simplify to get

𝑥𝑖 · 𝑥 𝑗
∥𝑥 ∥3

2

≤ (𝑝 − 1) ·
(
∥𝑥 ∥2 + 𝑥𝑖

)
·
(
∥𝑥 ∥2 + 𝑥 𝑗

)(
∥𝑥 ∥1 + ∥𝑥 ∥2

)
· ∥𝑥 ∥2

2

.

Now consider the vector 𝑥 = (
√
𝑛,
√
𝑛, 1, 1, . . . , 1), i.e., a vector hav-

ing the first two coordinates

√
𝑛 and every other coordinate 1. Note

that ∥𝑥 ∥1 = Θ(𝑛) and ∥𝑥 ∥2 = Θ(
√
𝑛). For 𝑖 = 1 and 𝑗 = 2, the last

inequality gives

𝑛

Θ(𝑛3/2)
≤ (𝑝 − 1) · Θ(

√
𝑛) · Θ(

√
𝑛)

Θ(𝑛) · Θ(
√
𝑛)2

=
𝑝 − 1

Θ(𝑛) ,

which is only possible for 𝑝 = Ω(
√
𝑛). □

2.2 Orlicz Norms and a Sufficient Condition for
𝑝-Supermodularity

The following class of Orlicz functions and Orlicz norms will play

a crucial role in all our norm approximations.

Definition 2.7 (Orlicz Function). A continuous function𝐺 : R+ →
R+ is called anOrlicz function if it is convex, increasing, and satisfies
𝐺 (0) = 0 and lim𝑡→∞𝐺 (𝑡) → ∞.

Definition 2.8 (Orlicz Norm). Given an Orlicz function 𝐺 , the

associated Orlicz norm is defined by

∥𝑥 ∥𝐺 := inf

{
𝛼 > 0 :

∑︁
𝑖

𝐺

(
|𝑥𝑖 |
𝛼

)
≤ 1

}
.

Sincewe only focus on non-negative vectors, wewill ignore through-

out the absolute value |𝑥𝑖 |.

For example, any ℓ𝑝 is an Orlicz norm when we select𝐺 (𝑡) = 𝑡𝑝 .

Orlicz norms are fundamental in functional analysis [38], but have

also found versatile applications in TCS. For instance, in regression

the choice between ℓ1 and ℓ2 norms depends on outliers and stability,

so an Orlicz norm based on the popular Huber convex loss function

is better suited [4, 48]. Later we will show that Orlicz norms can be

used to approximate any symmetric norm.

The following lemma is our main tool for working with Orlicz

norms. It states that for such a norm to be 𝑝-Supermodular, it
suffices that its generating function 𝐺 grows “at most like power

𝑝”. The key is that this reduces the analysis of the 𝑛-dimensional

norms ∥ · ∥𝐺 to the analysis of 1-dimensional functions, which is

significantly easier.

Lemma 2.9. Consider a twice differentiable convex function 𝐺 :

R+ → R+. If 𝐺 satisfies

𝐺 ′′ (𝑡) · 𝑡 ≤ (𝑝 − 1) ·𝐺 ′ (𝑡) ∀𝑡 ≥ 0,

then the Orlicz norm ∥𝑥 ∥𝐺 is (2𝑝 − 1)-Supermodular.

Notice that the function 𝐺 (𝑡) = 𝑡𝑝 satisfies this condition, at

equality. While in this special case the norm ∥ · ∥𝐺 = ℓ𝑝 is 𝑝-

Supermodular, in general we obtain the slightly weaker conclusion

of (2𝑝 − 1)-Supermodularity.
The rest of the subsection proves this lemma. The proof will

rely on the Hessian property of 𝑝-Supermodular norms. First, we

observe the following formula for the gradient of the Orlicz norm

∥ · ∥𝐺 ; this can be found on page 24 of [38], but we repeat the proof

for completeness.

Claim 2.1. If𝐺 is differentiable, then the gradient of the Orlicz norm
∥ · ∥𝐺 is given by

∇𝑖 ∥𝑥 ∥𝐺 =
𝐺 ′ ( 𝑥𝑖

∥𝑥 ∥𝐺 )∑
ℓ

𝑥ℓ
∥𝑥 ∥𝐺 ·𝐺 ′ ( 𝑥ℓ

∥𝑥 ∥𝐺 )
.

Proof. Consider 𝐻 (𝑥, 𝑐) :=
∑
ℓ 𝐺 ( 𝑥ℓ𝑐 ). Since 𝐻 (𝑥, ∥𝑥 ∥𝐺 ) = 1 is

constant, we get

0 =
𝜕

𝜕𝑥𝑖
𝐻 (𝑥, ∥𝑥 ∥𝐺 )

=
1

∥𝑥 ∥𝐺
𝐺 ′ ( 𝑥𝑖

∥𝑥 ∥𝐺 ) −
∑︁
ℓ

(
𝐺 ′ ( 𝑥ℓ

∥𝑥 ∥𝐺 ) · 𝑥ℓ

∥𝑥 ∥2

𝐺

)
· ∇𝑖 ∥𝑥 ∥𝐺 . □

To simplify notation, we define the following.

Definition 2.10. Let

𝑥ℓ :=
𝑥ℓ

∥𝑥 ∥ and 𝛾 (𝑥) :=
∑︁
ℓ

𝑥ℓ
∥𝑥 ∥ ·𝐺 ′ ( 𝑥ℓ

∥𝑥 ∥ ) .

Hence, ∇𝑖 ∥𝑥 ∥𝐺 =
𝐺 ′ (�̃�𝑖 )
𝛾 (𝑥 ) .

Differentiating the expression for the gradient ∇𝑖 ∥𝑥 ∥𝐺 gives a

close-form formula for the Hessian of the Orlicz norm. (To be careful

with the chain rules, we use brackets; for example ∇𝑗 (𝑔(ℎ(𝑥))) to
denote the gradient of the composed function 𝑔 ◦ ℎ, not of just 𝑔.)

Claim 2.2. If 𝐺 is twice differentiable, then the Hessian of the norm

∇2

𝑖 𝑗 ∥𝑥 ∥ =
1

𝛾 (𝑥 ) · ∇𝑗 (𝐺 ′ (�̃�𝑖 ) ) − ∇𝑖 ∥𝑥 ∥
𝛾 (𝑥 ) ·

∑︁
ℓ

(
�̃�ℓ · ∇𝑗 (𝐺 ′ (�̃�ℓ ) )

)
. (3)

Before proving the claim (which is mostly algebra), we complete

the proof of the lemma.
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Proof of Lemma 2.9. When ℓ ≠ 𝑗 we have ∇𝑗𝑥ℓ = ∇𝑗 ( 𝑥ℓ
∥𝑥 ∥𝐺 ) =

−𝑥ℓ ·∇𝑗 ∥𝑥 ∥𝐺
∥𝑥 ∥2

𝐺

= −𝑥ℓ ·
∇𝑗 ∥𝑥 ∥𝐺
∥𝑥 ∥𝐺 , and when ℓ = 𝑗 we get an extra + 1

∥𝑥 ∥𝐺
from the product rule. Letting 1(ℓ = 𝑗) denote the indicator that
ℓ = 𝑗 , this implies

∇𝑗𝑥ℓ = −
𝑥ℓ · ∇𝑗 ∥𝑥 ∥

∥𝑥 ∥2
+ 1(ℓ = 𝑗) · 1

∥𝑥 ∥ . (4)

Applying this to (3) and using ∇𝑗 (𝐺 ′ (𝑥ℓ )) = 𝐺 ′′ (𝑥ℓ ) · ∇𝑗𝑥ℓ , we get

∇2

𝑖 𝑗 ∥𝑥 ∥ = −
𝐺 ′′ (𝑥𝑖 ) · 𝑥𝑖 · ∇𝑗 ∥𝑥 ∥

𝛾 (𝑥) · ∥𝑥 ∥2
+ 1(𝑖 = 𝑗) · 𝐺 ′′ (𝑥𝑖 )

𝛾 (𝑥) · ∥𝑥 ∥

− ∇𝑖 ∥𝑥 ∥
𝛾 (𝑥) ·

[
−
∑︁
ℓ

(
𝑥ℓ ·𝐺 ′′ (𝑥ℓ ) ·

𝑥ℓ · ∇𝑗 ∥𝑥 ∥
∥𝑥 ∥2

)
+

𝑥 𝑗 ·𝐺 ′′ (𝑥 𝑗 )
∥𝑥 ∥

]
≥ − 1

∥𝑥 ∥

[
∇𝑖 ∥𝑥 ∥ ·

𝑥 𝑗 ·𝐺 ′′ (𝑥 𝑗 )
𝛾 (𝑥) + ∇𝑗 ∥𝑥 ∥ ·

𝑥𝑖 ·𝐺 ′′ (𝑥𝑖 )
𝛾 (𝑥)

]
, (5)

where the inequality uses that the missing terms are non-negative

for 𝑥 ≥ 0.

Moreover, the assumption on 𝐺 implies that

𝑥 𝑗 ·𝐺 ′′ (𝑥 𝑗 )
𝛾 (𝑥) ≤ (𝑝 − 1)

𝐺 ′ (𝑥 𝑗 )
𝛾 (𝑥) = (𝑝 − 1)∇𝑗 ∥𝑥 ∥.

Similarly, we get for 𝑖 that
�̃�𝑖 ·𝐺 ′′ (�̃�𝑖 )

𝛾 (𝑥 ) ≤ (𝑝 − 1)∇𝑖 ∥𝑥 ∥. Plugging
these bounds into (5) gives

∇2

𝑖 𝑗 ∥𝑥 ∥ ≥ −(2𝑝 − 2) 1

∥𝑥 ∥ ∇𝑖 ∥𝑥 ∥ · ∇𝑗 ∥𝑥 ∥,

which proves Lemma 2.9 by Lemma 2.1. □

Finally, we prove the missing claim.

Proof of Claim 2.2. Differentiatingw.r.t.𝑥 𝑗 gradient∇𝑖 ∥𝑥 ∥𝐺 =
𝐺 ′ (�̃�𝑖 )
𝛾 (𝑥 ) from Lemma 2.1 gives

∇2

𝑖 𝑗 ∥𝑥 ∥𝐺 =
1

𝛾 (𝑥) · ∇𝑗 (𝐺 ′ (𝑥𝑖 )) − 𝐺 ′ (𝑥𝑖 ) ·
1

𝛾 (𝑥)2
· ∇𝑗𝛾 (𝑥)

=
1

𝛾 (𝑥) · ∇𝑗 (𝐺 ′ (𝑥𝑖 )) − ∇𝑖 ∥𝑥 ∥𝐺
𝛾 (𝑥) · ∇𝑗𝛾 (𝑥). (6)

We expand the gradient ∇𝑗𝛾 (𝑥) of the second term:

∇𝑗𝛾 (𝑥) =
∑︁
ℓ

∇𝑗

(
𝑥ℓ𝐺

′ (𝑥ℓ )
)
=
∑︁
ℓ

(
∇𝑗𝑥ℓ𝐺

′ (𝑥ℓ ) + 𝑥ℓ∇𝑗 (𝐺 ′ (𝑥ℓ ))
)
.

By (4), we have∑︁
ℓ

∇𝑗𝑥ℓ ·𝐺 ′ (𝑥ℓ ) = −
∑︁
ℓ

𝑥ℓ ·
∇𝑗 ∥𝑥 ∥𝐺
∥𝑥 ∥𝐺

·𝐺 ′ (𝑥ℓ ) +
1

∥𝑥 ∥𝐺
·𝐺 ′ (𝑥 𝑗 )

= −
∇𝑗 ∥𝑥 ∥𝐺
∥𝑥 ∥𝐺

· 𝛾 (𝑥) +
𝐺 ′ (𝑥 𝑗 )
∥𝑥 ∥𝐺

= 0.

This implies

∇𝑗𝛾 (𝑥) =
∑︁
ℓ

𝑥ℓ · ∇𝑗 (𝐺 ′ (𝑥ℓ )),

which proves the claim by substitution in (6). □

2.3 Approximation of Orlicz Norms
This section shows that every Orlicz norm can be approximated by

an 𝑂 (log𝑛)-Supermodular norm.

Theorem 1.2. Every Orlicz norm ∥ · ∥𝐺 in 𝑛-dimensions can be
𝑂 (1)-approximated pointwise by a (twice differentiable) 𝑂 (log𝑛)-
Supermodular norm.

Before giving an overview of the proof of the theorem, it will

help the discussion to have the following lemma that shows that to

approximate an Orlicz norm ∥ · ∥𝐺 , it suffices to approximate the

corresponding Orlicz function 𝐺 .

Lemma 2.11. Suppose �̃� is an Orlicz function satisfying for all 𝑡
with 𝐺 (𝑡) ≤ 1 :

(1) 𝐺 (𝑡) ≤ �̃� (𝑡).
(2) �̃� (𝑡/𝛾) ≤ 𝛼 𝐺 (𝑡) + 1

𝑛 for some universal constants 𝛼 ≥ 0 and
𝛾 ≥ 1.

Then, ∥𝑥 ∥𝐺 ≤ ∥𝑥 ∥
�̃�

≤ 𝛾 (𝛼 + 1)∥𝑥 ∥𝐺 .

Proof. The first inequality 𝐺 (𝑡) ≤ �̃� (𝑡) implies that ∥𝑥 ∥𝐺 ≤
∥𝑥 ∥

�̃�
. Moreover, by convexity and 𝛼 ≥ 0, we have �̃� ( 𝑡

𝛾 (𝛼+1) ) ≤
(1 − 1

𝛼+1
)�̃� (0) + 1

𝛼+1
�̃� (𝑡/𝛾) = 1

𝛼+1
�̃� (𝑡/𝛾) since �̃� is an Orlicz

function. So,∑︁
𝑖

�̃�

(
𝑥𝑖

𝛾 (𝛼 + 1)∥𝑥 ∥𝐺

)
≤ 1

𝛼 + 1

∑︁
𝑖

�̃�

(
𝑥𝑖

𝛾 ∥𝑥 ∥𝐺

)
≤ 1

𝛼 + 1

∑︁
𝑖

[
𝛼 ·𝐺

(
𝑥𝑖

∥𝑥 ∥𝐺

)
+ 1

𝑛

]
= 1,

where the last inequality uses 𝛾 ≥ 1. By definition of Orlicz norm,

this implies ∥𝑥 ∥
�̃�

≤ 𝛾 (𝛼 + 1)∥𝑥 ∥𝐺 . □

Observe that we do not care how the Orlicz function �̃� behaves

after 𝐺 (𝑡) > 1, since these values do not matter for Orlicz norm

∥ · ∥𝐺 .

Proof Overview of Theorem 1.2. Given the sufficient condition for

𝑝-Supermodularity via the growth rate of the Orlicz function from

Lemma 2.9 and Lemma 2.11 above, the proof of Theorem 1.2 involves

three steps. First, we simplify the structure of the Orlicz function

𝐺 by approximating it with a sum of (increasing) “hinge” functions

�̃� (𝑡) :=
∑
𝑖 𝑔𝑖 (𝑡) in the interval where 𝐺 (𝑡) ≤ 1. These hinge func-

tion by definition have a sharp “kink”, hence do not satisfy the

requisite growth condition. Thus, the next step is to approximate

them by smoother functions 𝑓𝑖 (𝑡) that grow at most like power 𝑝 .

However, the standard smooth approximations of hinge functions

(e.g. Hubber loss) do not give the desired properties, so we use a sub-

tler approximation that depends on the relation between the slope

and the location of the kink of the hinge function (this is because

the approximation condition required by Lemma 2.11 is mostly mul-

tiplicative, while standard approximations focus on additive error).

Finally, we show that the Orlicz norm ∥ · ∥𝐹 , where 𝐹 (𝑡) =
∑
𝑖 𝑓𝑖 (𝑡),

both approximates ∥ · ∥𝐺 and is 𝑂 (log𝑛)-Supermodular.

Proof of Theorem 1.2. This first claim gives the desired ap-

proximation of 𝐺 by piecewise linear functions with 𝑛 slopes.
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Claim 2.3. There are 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛 ≥ 0 such that �̃� : R+ →
R+ defined by �̃� (𝑡) = ∑𝑛

𝑖=1
max{0, 𝑎𝑖𝑡 − 𝑏𝑖 } fulfills

∥𝑥 ∥𝐺 ≤ ∥𝑥 ∥
�̃�

≤ 2∥𝑥 ∥𝐺 , ∀𝑥 ∈ R𝑛+ .

Proof. Since 𝐺 is an Orlicz function, it is continuous and sat-

isfies 𝐺 (0) = 0 with lim𝑡→∞𝐺 (𝑡) = ∞. Hence, there are points

𝑡0 = 0, 𝑡1, 𝑡2, . . . , 𝑡𝑛 ∈ R+ such that 𝐺 (𝑡𝑖 ) = 𝑖
𝑛 . Choose 𝑎𝑖 and 𝑏𝑖

such that 𝑎𝑖𝑡𝑖−1 − 𝑏𝑖 = 0 and 𝑎𝑖𝑡𝑖 − 𝑏𝑖 =
1

𝑛 −∑
𝑗<𝑖 𝑎 𝑗 (𝑡𝑖 − 𝑡𝑖−1). By

this definition �̃� (𝑡𝑖 ) =
∑𝑛
𝑖=1

max{0, 𝑎𝑖𝑡 − 𝑏𝑖 } = 𝐺 (𝑡𝑖 ) = 𝑖
𝑛 for all

𝑖 = 0, 1, . . . , 𝑛.

We claim that 𝐺 (𝑡) ≤ �̃� (𝑡) ≤ 𝐺 (𝑡) + 1

𝑛 for all 𝑡 with 𝐺 (𝑡) ∈
[0, 1]. The first inequality follows from the convexity of 𝐺 , and

the second inequality follows because for all 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] we have
�̃� (𝑡) ≤ �̃� (𝑡𝑖+1) = 𝑖+1

𝑛 ≤ 𝐺 (𝑡) + 1

𝑛 . Hence, Lemma 2.11 concludes

the proof of the claim. □

Next, wewill approximate piecewise linear functionsmax{0, 𝑎𝑖𝑡−
𝑏𝑖 }withOrlicz functions. This approximationwill depend onwhether

𝑏𝑖 ≥ 1 or not.

Definition 2.12. Let 𝐻 be the set of indices 𝑖 ∈ [𝑛] such that

𝑏𝑖 ≥ 1 and 𝐿 = [𝑛] \ 𝐻 be the other indices. For 𝑝 ≥ 2(ln𝑛) + 1,

define

𝐹 (𝑡) :=

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑡) ,where 𝑓𝑖 (𝑡) =
{

2 · ( 2𝑎𝑖
𝑏𝑖+1

)𝑝 · 𝑡𝑝 , if 𝑖 ∈ 𝐻

(𝑏𝑝
𝑖
+ (𝑎𝑖𝑡)𝑝 )1/𝑝 − 𝑏𝑖 , if 𝑖 ∈ 𝐿

.

The idea behind this construction is the following: first write

𝑔𝑖 (𝑡) := max{0, 𝑎𝑖𝑡 −𝑏𝑖 } = max{𝑏𝑖 , 𝑎𝑖𝑡} −𝑏𝑖 and notice that �̃� (𝑡) =∑𝑛
𝑖=1

𝑔𝑖 (𝑡). When 𝑏𝑖 ≥ 1, then the points 𝑡 where 𝑔𝑖 (𝑡) equals 0
and 1 (respectively,

𝑏𝑖
𝑎𝑖

and
𝑏𝑖+1

𝑎𝑖
) are within a factor of 2, namely

𝑔𝑖 fairly sharply jumps from 0 to 1; in this case, we replace it by

the sharply increasing function 𝑓𝑖 (𝑡) = ( 2𝑎𝑖
𝑏𝑖+1

)𝑝 · 𝑡𝑝 . Otherwise, the
function 𝑔𝑖 does not increase so sharply and we just replace the

maximum in 𝑔𝑖 (𝑡) = max{𝑏𝑖 , 𝑎𝑖𝑡} − 𝑏𝑖 by the ℓ𝑝 norm to obtain 𝑓𝑖 .

Then to obtain 𝐹 , we take the sum of the functions 𝑓𝑖 .

We first prove that 𝑓𝑖 (𝑡) approximates 𝑔𝑖 (𝑡) in a suitable way.

We will also show that 𝑓𝑖 grows at most like power 𝑝 . (In the fol-

lowing claim, the intuition behind the truncation min{·, 2} is that
in definition of the Orlicz norm, the places where the generating

function 𝐺 is bigger than 1 are not important; instead of 2, one can

use any value strictly bigger than 1.)

Claim 2.4. Consider 𝑝 ≥ 2(ln𝑛) + 1. For all 𝑖 ∈ [𝑛], we have
(1) 𝑓𝑖 (𝑡) ≥ min{𝑔𝑖 (𝑡), 2} for all 𝑡 ≥ 0.
(2) 𝑓𝑖 ( 𝑡

4
) ≤ 2𝑔𝑖 (𝑡) + 1

𝑛2
for all 𝑡 with 𝑔𝑖 (𝑡) ≤ 1.

(3) 𝑓 ′′
𝑖
(𝑡) · 𝑡 ≤ (𝑝 − 1) · 𝑓 ′

𝑖
(𝑡) for all 𝑡 ≥ 0.

Proof. We prove these properties separately for the cases𝑏𝑖 ≥ 1

and 𝑏𝑖 ∈ [0, 1).
Case 1: 𝑏𝑖 ≥ 1, so 𝑓𝑖 (𝑡) = 2 ( 2𝑎𝑖

𝑏𝑖+1
)𝑝 · 𝑡𝑝 .

For Item 1, notice that for 𝑡 ∈ [0, 𝑏𝑖𝑎𝑖 ] we have min{𝑔(𝑡), 2} = 0

and for 𝑡 >
𝑏𝑖
𝑎𝑖

we have min{𝑔(𝑡), 2} ≤ 2, by definition. Since

𝑓𝑖 (𝑡) ≥ 0 for 𝑡 ∈ [0, 𝑏𝑖𝑎𝑖 ], and for 𝑡 ≥ 𝑏𝑖
𝑎𝑖

𝑓𝑖 (𝑡) ≥ 2

(
2𝑏𝑖

𝑏𝑖 + 1

)𝑝
≥ 2,

where the last inequality uses 𝑏𝑖 ≥ 1. Thus, we have 𝑓𝑖 (𝑡) ≥
min{𝑔𝑖 (𝑡), 2} for all 𝑡 ≥ 0.

For Item 2, for all 𝑡 ∈ [0, 𝑔−1

𝑖
(1)] (this interval is the same as

[0, 𝑏𝑖+1

𝑎𝑖
]) we have

𝑓𝑖 (𝑡/4) ≤ 2 ·
(

2𝑎𝑖

𝑏𝑖 + 1

)𝑝
·
(
𝑏𝑖 + 1

4𝑎𝑖

)𝑝
=

1

2
𝑝−1

≤ 2𝑔(𝑡) + 1

𝑛2
.

Item 3 holdswith equality. Namely, by taking the second-derivative

of 𝑓𝑖 (𝑡), we get

𝑓 ′′𝑖 (𝑡) · 𝑡 = 𝑝 · (𝑝 − 1) · 2 ·
(

2𝑎𝑖

𝑏𝑖 + 1

)𝑝
· 𝑡𝑝−1 = (𝑝 − 1) · 𝑓 ′𝑖 (𝑡) .

Case 2: 𝑏𝑖 ∈ [0, 1), so 𝑓𝑖 (𝑡) = (𝑏𝑝
𝑖
+ (𝑎𝑖𝑡)𝑝 )1/𝑝 − 𝑏𝑖 .

For Item 1, observe that 𝑓𝑖 (𝑡) = (𝑏𝑝
𝑖
+(𝑎𝑖𝑡)𝑝 )1/𝑝−𝑏𝑖 ≥ max{𝑏𝑖 , 𝑎𝑖𝑡}−

𝑏𝑖 = 𝑔(𝑡).
For Item 2, for all 𝑡 ∈ [0, 2𝑏𝑖

𝑎𝑖
), we have

𝑓𝑖 (𝑡/4) ≤
(
(𝑏𝑖 )𝑝 + (𝑏𝑖/2)𝑝

)
1/𝑝

− 𝑏𝑖 = 𝑏𝑖

(
1 + 1

2
𝑝

)
1/𝑝

− 𝑏𝑖

≤ 𝑏𝑖

(
1 + 1

𝑝2
𝑝

)
− 𝑏𝑖

≤ 𝑔𝑖 (𝑡) +
1

𝑛2
,

where the last inequality uses the fact that we are in a case 𝑏𝑖 ≤ 1.

On the other hand, when 𝑡 ≥ 2𝑏𝑖
𝑎𝑖

, then 𝑏𝑖 ≤ 𝑎𝑖𝑡
2

and so 𝑔𝑖 (𝑡) =

max{0, 𝑎𝑖𝑡 − 𝑏𝑖 } ≥ 𝑎𝑖𝑡
2
; at the same time,

𝑓𝑖 (𝑡/4) ≤
(
(𝑎𝑖𝑡/2)𝑝 + (𝑎𝑖𝑡/4)𝑝

)
1/𝑝

= ((1/2)𝑝 + (1/4)𝑝 )1/𝑝 · 𝑎𝑖𝑡
≤ 𝑎𝑖𝑡 .

Putting these observations together, gives 𝑓𝑖 (𝑡/4) ≤ 2𝑔𝑖 (𝑡), proving
Item 2.

For Item 3, compute the derivatives to get

𝑓 ′𝑖 (𝑡) =
𝑎
𝑝

𝑖
𝑡𝑝−1

(𝑏𝑝
𝑖
+ (𝑎𝑖𝑡)𝑝 )1− 1

𝑝

and

𝑓 ′′𝑖 (𝑡) =
(𝑝 − 1)𝑎𝑝

𝑖
𝑡𝑝−2

(𝑏𝑝
𝑖
+ (𝑎𝑖𝑡)𝑝 )1− 1

𝑝

− (𝑝 − 1)
𝑎

2𝑝

𝑖
𝑡2(𝑝−1)

(𝑏𝑝
𝑖
+ (𝑎𝑖𝑡)𝑝 )2− 1

𝑝

.

The last term in 𝑓 ′′
𝑖
(𝑡) is non-positive, and so it follows that 𝑓 ′′

𝑖
(𝑡) ·

𝑡 ≤ (𝑝 − 1) · 𝑓 ′
𝑖
(𝑡). □

Now we use the last claim to prove that ∥ · ∥𝐹 approximates

∥ · ∥
�̃�
.

Claim 2.5. If 𝑝 ≥ log𝑛 + 1, then for every 𝑥 ∈ R𝑛+ we have ∥𝑥 ∥
�̃�

≤
∥𝑥 ∥𝐹 ≤ 12∥𝑥 ∥

�̃�
.

Proof. First, from Claim 2.4 we get

𝐹 (𝑡) =
𝑛∑︁
𝑖=1

𝑓𝑖 (𝑡)
𝐶𝑙𝑎𝑖𝑚 2.4

≥
𝑛∑︁
𝑖=1

min{2, 𝑔𝑖 (𝑡)}

≥ min

{
2,

𝑛∑︁
𝑖=1

𝑔𝑖 (𝑡)
}
= min{2, �̃� (𝑡)}.
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Moreover, for any 𝑡 with 1 ≥ �̃� (𝑡) ≥ 𝑔𝑖 (𝑡), we have from Claim 2.4

that

𝐹 (𝑡/4) =
𝑛∑︁
𝑖=1

𝑓𝑖 (𝑡/4)
𝐶𝑙𝑎𝑖𝑚 2.4

≤
𝑛∑︁
𝑖=1

(
2𝑔𝑖 (𝑡) +

1

𝑛2

)
= 2�̃� (𝑡) + 1

𝑛
.

Now, applying Lemma 2.11 for 𝛼 = 2 and 𝛾 = 4 implies ∥𝑥 ∥𝐺 ≤
∥𝑥 ∥

�̃�
≤ 4(2 + 1)∥𝑥 ∥𝐺 . □

Finally, we show that the norm ∥ · ∥𝐹 is (2𝑝 − 1)-Supermodular.

Claim 2.6. The norm ∥ · ∥𝐹 is (2𝑝 − 1)-Supermodular.

Proof. Due to Lemma 2.9, it suffices to show that 𝐹 ′′ (𝑡) · 𝑡 ≤
(𝑝 − 1) · 𝐹 ′ (𝑡) for all 𝑡 ≥ 0. We have

𝐹 ′′ (𝑡) · 𝑡 =

𝑛∑︁
𝑖=1

𝑓 ′′𝑖 (𝑡)𝑡 ≤
𝑛∑︁
𝑖=1

(𝑝 − 1) 𝑓 ′𝑖 (𝑡) = (𝑝 − 1) · 𝐹 ′ (𝑡) . □

Claims 2.3, 2.5, and 2.6 together give the desired approximation

to the Orlicz norm ∥ · ∥𝐺 , proving Theorem 1.2. □

2.4 Approximation of Top-k and Symmetric
Norms

In this section we will give 𝑝-Supermodular norm approximations

of Top-k and Symmetric Norms. The strategy is to first construct

such an approximation for Top-k norms; general symmetric norms

are then handled by writing them as a composition of Top-k norms

and applying the 𝑝-Supermodular approximation to each term.

Approximation of Top-k norms. Even though the Top-k norms

have a simple structure, it is not clear how to approximate them by

a 𝑝-Supermodular norm directly. Instead, we resort to an interme-

diate step of expressing a Top-k norm (approximately) as an Orlicz

norm.

Theorem 2.7. For every 𝑘 ∈ [𝑛], the Top-k norm ∥ · ∥Top-k in
𝑛-dimensions can be 2-approximated by an Orlicz norm.

Together with Theorem 1.2 from the previous section, this im-

plies the following.

Corollary 2.13. For every 𝑘 ≥ 1, the Top-k norm ∥ · ∥Top-k in
𝑛-dimensions can be 2-approximated by an 𝑂 (log𝑛)-Supermodular
norm.

The construction in the proof of Theorem 2.7 is inspired by

the embedding of Top-k norms into ℓ∞ by Andoni et al. [6]. They

considered the “Orlicz function” 𝐺 (𝑡) that is 0 until 𝑡 = 1

𝑘
and

behaves as the identity afterwards, i.e., 𝐺 (𝑡) := 𝑡 · 1(𝑡 ≥ 1

𝑘
). The

rough intuition of why the associated “Orlicz norm” approximately

captures the Top-k norm of a vector 𝑢 is because
𝑢

∥𝑢 ∥Top-k has ≈ 𝑘

coordinates with value above
1

𝑘
(the top ≈ 𝑘 coordinates), which are

picked up by 𝐺 and give

∑
𝑖 𝐺 ( 𝑢𝑖

∥𝑢 ∥Top-k ) ≈
∑
𝑖 in top 𝑘

𝑢𝑖
∥𝑢 ∥Top-k ≈ 1;

thus, by definition of Orlicz norm, ∥𝑢∥𝐺 ≈ ∥𝑢∥
Top-k

. However, this

function 𝐺 is not convex due to a jump at 𝑡 = 1/𝑘 , so it does not

actually give a norm. Convexitfying this function also does not

work: the convexified version of 𝐺 is the identity, which yields the

ℓ1 norm, does not approximate Top-k. Interestingly, a modification

of this convexification actually works.

Proof of Theorem 2.7. We define the Orlicz function 𝐺 (𝑡) :=

max{0, 𝑡 − 1

𝑘
}. We show that the norm ∥ · ∥𝐺 generated by this

function is a 2-approximation to the Top-k norm.

Upper bound ∥𝑥 ∥𝐺 ≤ ∥𝑥 ∥Top-k. By the definition of Orlicz norm,

it suffices to show that

∑
𝑖 𝐺 ( 𝑥𝑖

∥𝑥 ∥Top-k ) ≤ 1. For that, since there are

at most 𝑘 coordinates having 𝑥𝑖 ≥
∥𝑥 ∥Top-k

𝑘
, we get∑︁

𝑖

𝐺

(
𝑥𝑖

∥𝑥 ∥
Top-k

)
=

∑︁
𝑖: 𝑥𝑖 ≥ ∥𝑥 ∥Top-k/𝑘

(
𝑥𝑖

∥𝑥 ∥
Top-k

− 1

𝑘

)
≤

∥𝑥 ∥
Top-k

∥𝑥 ∥
Top-k

− 1 < 1.

Lower bound ∥𝑥 ∥𝐺 ≥ ∥𝑥 ∥Top-k
2

. By the definition of Orlicz norm,

it suffices to show that for any 𝛼 < 1

2
, we have

∑
𝑖 𝐺 ( 𝑥𝑖

𝛼 ∥𝑥 ∥Top-k ) > 1.

Let 𝑇𝑘 denote the set of the 𝑘 largest coordinates of 𝑥 . Then,∑︁
𝑖

𝐺

(
𝑥𝑖

𝛼 ∥𝑥 ∥
Top-k

)
≥

∑︁
𝑖∈𝑇𝑘

𝐺

(
𝑥𝑖

𝛼 ∥𝑥 ∥
Top-k

)
≥

∑︁
𝑖∈𝑇𝑘

(
𝑥𝑖

𝛼 ∥𝑥 ∥
Top-k

− 1

𝑘

)
=

1

𝛼
− 1,

which is > 1 whenever 𝛼 < 1

2
. This concludes the proof of Theo-

rem 2.7. □

Given Theorem 2.7, one might wonder whether all symmetric

norms can be approximated within a constant factor by Orlicz

norms. The following lemma shows that this is impossible.

Lemma 2.14. There exist symmetric norms that cannot be approx-
imated to within a 𝑂 (log𝑛)1−𝜖 factor by an Orlicz norm for any
constant 𝜖 > 0.

We defer the proof of this observation to the full version.

Approximation of symmetric norms. Although Lemma 2.14 rules

out the possibility of approximating any symmetric norm by an

Orlicz norm within a constant factor, we show that every sym-

metric norm can be 𝑂 (log𝑛)-approximated by an an 𝑂 (log𝑛)-
Supermodular norm.

Theorem 1.1. Every monotone symmetric norm ∥ · ∥ in 𝑛 dimen-
sions can be 𝑂 (log𝑛)-approximated by an 𝑂 (log𝑛)-Supermodular
norm.

As mentioned before, the idea is write a general symmetric norm

as composition of Top-k norms and applying the 𝑝-Supermodular
approximation to each term. More precisely, the following lemma,

proved in [35] (and a similar property in [6, 17]), shows that the any

monotone symmetric norm can be approximated by Top-k norms.

Lemma 2.15 ([35, Lemma 2.5]). For any monotone symmetric norm
∥ · ∥ in R𝑑 , there are log𝑛 non-negative scalars 𝑐1, 𝑐2 . . . , 𝑐log𝑛 such
that the norm

|||𝑥 ||| :=

(𝑐1∥𝑥 ∥Top-21 , . . . , 𝑐
log𝑛 ∥𝑥 ∥Top-2log𝑛

)
∞

(7)

satisfies ∥𝑥 ∥ ≤ |||𝑥 ||| ≤ 2 log𝑛 · ∥𝑥 ∥.
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With the decomposition of monotone symmetric norms into

Top-k norms in Lemma 2.15 and the 𝑝-Supermodular approxima-

tion to the latter in Corollary 2.13, we can now prove that every

symmetric norm can be 𝑂 (log𝑛)-approximated by an 𝑂 (log𝑛)-
Supermodular norm.

Proof of Theorem 1.1. Consider a monotone symmetric norm

and its approximation |||𝑥 ||| given by Lemma 2.15. Let 𝑓𝑘 be the

𝑝-Supermodular 2-approximation of the Top-k norm as given by

Corollary 2.13, where 𝑝 = Θ(log𝑛). We replace in |||𝑥 ||| the Top-k
norms by these approximations, and the outer ℓ∞-norm by the

ℓ𝑝 -norm to obtain the norm

𝑔(𝑥) :=

( log𝑛∑︁
𝑖=1

𝑐
𝑝

𝑖
·
(
𝑓
2
𝑖 (𝑥)

)𝑝 )1/𝑝
.

By the standard ℓ𝑝 to ℓ∞ comparison, we that 𝑔(𝑥) is a constant ap-
proximation to |||𝑥 ||| since 𝑝 = Θ(log𝑛). Hence, 𝑔(𝑥) is an𝑂 (log𝑛)-
approximation to the original norm ∥𝑥 ∥.

Moreover, to see that 𝑔 is 𝑝-Supermodular, consider the gradient
of 𝑔𝑝 , which is given by

∇(𝑔(𝑥)𝑝 ) =
log𝑛∑︁
𝑖=1

𝑐
𝑝

𝑖
· ∇

(
𝑓
2
𝑖 (𝑥)𝑝

)
.

Since each norm 𝑓𝑗 is 𝑝-Supermodular and the multipliers 𝑐𝑖 are

non-negative, ∇(𝑔(𝑥)𝑝 ) is non-decreasing. By the Gradient prop-

erty in Lemma 2.1, this implies 𝑝-Supermodularity. □

We remark that given a Ball-Optimization oracle, we can evalu-

ate at a given point the value and gradient of the approximating

norm constructed in Theorem 1.1, up to error 𝜀, in time poly(log
1

𝜀 , 𝑛).
This is because the decomposition into Top-k norms fromLemma 2.15

can be found in polytime given this oracle (e.g., see [17, 35]), the

Orlicz function of the Orlicz norm approximation of each Top-k

can be constructed explicitly, and the value and gradient of this

Orlicz norm can be evaluated by binary search on the scaling 𝛼 in

the definition of the Orlicz norm (and Claim 2.1).
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