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ABSTRACT
Kubernetes has emerged as a prominent open-source platform for

managing cloud applications, including stateful databases. These

monolithic applications rely on vertical scaling, adjusting CPU cores

based on load fluctuations. However, our analysis of Kubernetes-

basedDatabase-as-a-Service (DBaaS) offerings atMicrosoft revealed

that many customers consistently over-provision resources for peak

workloads, neglecting cost-saving opportunities through resource

scale-down. We found that there is a gap in the ability of existing

vertical autoscaling tools to minimize resource slack and respond

promptly to throttling, leading to increased costs and impacting

crucial metrics such as throughput and availability.

To address this challenge, we propose CaaSPER, a vertical au-

toscaling algorithm that blends reactive and proactive strategies. By

dynamically adjusting CPU resources, CaaSPERminimizes resource

slack, maintains optimal CPU utilization, and reduces throttling.

Importantly, customers have the flexibility to prioritize either cost

savings or high performance based on their preferences. Extensive

testing demonstrates that CaaSPER effectively reduces throttling

and keeps CPU utilization within target levels. CaaSPER is designed

to be application-agnostic and platform-agnostic, with potential for

extension to other applications requiring vertical autoscaling.

1 INTRODUCTION
Cloud computing [6, 27, 53] has transformed the landscape of ap-

plication development, deployment, and management by providing

organizations with access to on-demand resources and scalability.

However, during provisioning, users are often required to specify

the amount of resources they will initially require among a large

number of cloud offerings (e.g., VM configuration and size). It is

challenging to estimate resource requirements upfront, and the

initial settings can become irrelevant with the dynamic nature of

the workloads. One of the most common scaling approaches to

address some of these issues has been horizontal autoscaling, in
which additional service replicas are added and removed based on

utilization, thus adjusting overall system resource usage in fixed-

sized quantities. Although this has worked for some services [59],

this approach is not well suited for stateful monolithic systems
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(e.g., traditional RDBMS) that either have a fixed number of total

instances (e.g., single writable primary) or cannot quickly scale

horizontally due to size of data copy operations inherent to creat-

ing new replicas. In such cases, vertical scaling capabilities become

crucial, allowing expanding or contracting resources of existing

replicas. Additional benefits to vertical scaling include simplicity,

performance, and reliability [41].

Modern platforms such as Kubernetes (K8s) [45], which has

become a popular platform choice for implementing Database-as-

a-Service (DBaaS) and other stateful service offerings [20, 39, 54,

66], facilitate vertical resource scaling. K8s provides two essen-

tial mechanisms, requests and limits, to define guaranteed and

burstable CPU resource allocation for applications. At Microsoft

and elsewhere, applications needing predictable performance, such

as databases [24, 37], often set requests and limits to the same

value [13, 40, 48] to ensure that the application will be scheduled

on a node with enough resources to always provide the limits.1

Despite resizing support, we find that users in our database of-

ferings at Microsoft rarely scale their deployments and usually

over-provision for the worst-case. In fact, during a sampling of first-

party DBaaS deployments, we found cases of CPU over-provisioning
that exceeded peak load by a significant factor, up to 20x in cer-

tain workloads, resulting in under-utilized resources (i.e., increased

costs for idle resources), as well as instances of under-provisioning,
which leads to performance impacts due to “throttling” (i.e., when

an application lacks enough resources to meet its load demands).

To automate this process, the Vertical Pod Autoscaler (VPA) [33]

in K8s can dynamically adjust the requests and limits values ac-

cording to a pluggable algorithm. However, when tested, the default

VPA algorithm and other existing approaches proved inadequate

in our scenario for effectively addressing cases involving throttling

detection and scaling down when over-provisioned. Additionally,

these methods were oblivious of the billing model in use, leading

to suboptimal cost-performance tradeoffs during scaling decisions,

an important consideration for customers. Other recent works in

K8s [73] leverage machine learning to support predictive autoscale.

However, there is a significant drawback in purely relying on a

machine learning algorithm in predictive autoscaling especially

using time-series forecasting, as it lacks the ability to effectively

detect throttling and instead assumes that future usage will remain

consistent until retrained. Moreover, for throttled workloads, the

usage forecast does not align with the true amount of resources

required for the workload, leading to under-estimated limits (see

§3.3). When aiming for optimal performance, there is a strong need

to quickly identify and respond to throttling to meet SLA objectives.

1
Note that service level agreements (SLAs) provided by DBaaS further emphasize the

importance of predictability and may have penalties for violations [57, 58].

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


SIGMOD’24, June 2024, Santiago, Chile A. Pavlenko et al.

To overcome these limitations, we propose a hybrid autoscal-

ing algorithm called CaaSPER, focused on predictable performance

and enabling optimal scaling for our pay-as-you-go billing model.

CaaSPER adopts a clean-slate, history-independent reactive algo-

rithm and combines it with a predictive proactive approach based

on historical time-series data to make informed decisions regarding

CPU requirements. CaaSPER ensures smooth operation without

causing throttling while also minimizing excessive resource slack to

improve cost-efficiency. Additionally, CaaSPER offers customizable

parameters, allowing users to prioritize availability, cost-efficiency,

or performance based on their specific workload requirements. To

aid in understanding different trade-offs and fine-tuning CaaSPER’s

parameters, we have also developed an accompanying simulator.

We have conducted extensive testing of CaaSPER using a di-

verse range of real and synthetic data, focusing on two widely

used databases, Database A and Database B, and compared its per-

formance against existing approaches. Our results demonstrate

the effectiveness of CaaSPER, maintaining 90-100% of the original

throughput at a reduced cost of 49%-74% in our live traces. This

cost reduction is configurable based on preferences. In contrast,

the other evaluated schemes exhibited higher levels of throttling,

restricting throughput to as low as 27%. Moreover, as we show in

our results, CaaSPER can adapt to the unique characteristics of the

pay-as-you-go billing model employed by DBaaS providers by tun-

ing its parameters accordingly, ensuring cost-effectiveness for users.

While we evaluate CaaSPER specifically in the context of DBaaS, it

is worth noting that CaaSPER is designed to be application-agnostic,

meaning its benefits can be extrapolated to other applications with

similar characteristics that require vertical autoscaling.

Contributions. This paper makes the following core contributions:

• We develop a vertical scaling process aligned with service in-

variants such as a pay-as-you-go billing model and performance

constraints, with a focus on ensuring predictable performance

and support for stateful service sets with asymmetric workload

metrics (i.e., primary-secondary systems).

• We propose an algorithm that approximates the severity of throt-

tling by using the slope function and determines the optimal

capacity, significantly reducing throttling in a single step.

• We introduce an interpretable method for customers to consider

trade-offs between price and performance in decision-making,

enabling customization of the algorithm through configuration

parameter mapping.

• We develop a simulator aimed at accelerating the evaluation and

optimization of algorithms.

• We conduct experiments across real and synthetic workloads

across two DBaaS offerings at Microsoft.

2 BACKGROUND
In this section, we provide an overview of the key components

of K8s (§2.1), then we delve into the implementation of vertical

autoscaling within K8s (§2.2).

2.1 Kubernetes Resource Management
Containers are lightweight, executable packages that simplify the

deployment of applications. In K8s, containers are grouped into

pods, which serve as the fundamental unit for scheduling on K8s

Figure 1: Generic vertical autoscaling (end-to-end).

cluster nodes2. Additionally, pods can be part of a stateful set for
stateful applications that require persistent volumes for storage 3

.

This ensures that a specified number of identical pod instances,

referred to as replicas, are running at any given time. These replicas

can be distributed across multiple nodes to provide high-availability

(HA) [35]. To coordinate state transitions for replicas within a set,

an automated controller called an operator is used.
The K8s scheduler uses requests specifications on various di-

mensions (e.g., CPU core time and memory) to define minimum

guaranteed resource allocations for scheduling pods onto nodes.

In contrast, limits are employed to prevent a single pod from

monopolizing resources, thereby preserving the performance and

stability of other pods on the same node [34]. Both limits and

requests are specified at the container level within a pod, and

they are applied to all replicas in a stateful set. Once the containers

are running on the nodes, their specifications are enforced using

the Linux cgroups subsystem [1]. This ensures that containers are

allocated the specified minimum resources (requests) and do not

exceed the specified maximum resources (limits). For CPU re-

sources, which is the main focus of this work, allocation typically

refers to CPU time rather than specific cores [31].

2.2 Vertical Autoscaling in K8s
Since K8s configurations are declarative, users have the flexibil-

ity to modify the specifications of pod resources at any time. To

enable automatic vertical scaling of pod resources based on mon-

itored usage, K8s offers a built-in feature called the Vertical Pod

Autoscaler (VPA) [33]. VPA includes a default algorithm based on a

decayed histogram to determine future limits and requests for
both memory and CPU (explained in §3.3). However, it also allows

users to plug their own scaling algorithm policy if desired.

VPA end-to-end workflow. Figure 1 illustrates the end-to-end
flow of a vertical autoscaling system. In the top left corner, we

see the target application stateful set that requires vertical scal-

ing 0 . Although the figure shows two pod replicas, the number

of instances can vary, including a single instance. These instances

are managed by a controller 1 , which performs tasks such as load

balancing or HA management, if applicable. The controller also

2
K8s cluster nodes can be either bare metal or virtual machines.

3
While our focus is primarily on stateful sets due to their relevance to database services,
the techniques discussed in this paper are generally applicable to K8s replica sets for
stateless applications as well.
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Figure 2: Resizing the pods of a stateful set in a DB service.

publishes metrics, such as the current CPU usage and allocation

for the application, which are stored in a metrics server 2 . These

metrics can be accessed by the recommender algorithm 3 , which

publishes a decision 4 regarding the optimal resource allocation

based on the available metrics information. Finally, a scaler en-

tity 5 polls or subscribes to the decision information, performs

health and resource safety checks, and enacts the decision 6 by

instructing the controller to adjust the resource allocation of the

application. This adjustment is done by modifying the requests
and limits settings in the stateful set’s specification.

VPA scaling modes. After recognizing the required resource ad-

justments, the K8s scheduler is tasked with applying the new con-

figuration. Currently, this process involves adjusting one pod in

the stateful set at a time by deallocating the pod and rescheduling
it, which we refer to as rolling updates with restart4. Although the

scheduler may assign the pod to the same node, this method re-

sults in a process restart and may lead to service interruptions (e.g.,

dropped connections or transactions) or performance degradation

(e.g., due to replica re-synchronization). By performing a rolling

update in a stateful set, the operator is given the opportunity to

effectively manage connection failovers, replica re-synchronization,

and other control plane operations in a more orderly manner, mini-

mizing perceived service downtime for users.

3 MOTIVATION
In this section, we present our selected case study for vertical

autoscaling, which involves a real HA DBaaS architecture imple-

mented atMicrosoft using traditional RDBMSs deployed onK8s (§3.1).

We then outline the key requirements of our autoscaler (§3.2), which

are influenced by the characteristics of the service. Finally, we re-

view existing solutions and discuss their limitations in meeting the

aforementioned requirements (§3.3).

3.1 Case Study: High Availability DBaaS
In managed offerings of Database A and Database B at Microsoft,

the databases run in 𝑛 pods as part of a K8s stateful set. The stateful

set consists of a single writable primary instance that handles most

user requests and 𝑛 − 1 optional readable secondary replicas. Fig. 2

illustrates this configuration for a common scenario where 𝑛 = 3.

While this scheme is common for RDBMSs [28, 43, 47, 55], it differs

slightly from traditional horizontal scaling scenarios. We can add

replicas, but they cannot serve write-transaction load, as only the

primary instance can handle such traffic. Moreover, adding new

replicas often involves a “size of data copy” operation to seed the

new replica from existing ones. Both of these constraints motivate

the need for vertical scaling to accommodate additional load.

Vertical scaling. When adjusting the resource allocation for Data-

base A and Database B, K8s performs rolling updates with restarts,

4
We are currently evaluating the stability of a new scaling feature in K8s that does not

require restart [32], which we plan to explore further in future work.

as described in §2.2. During the scaling process, user connections

are interrupted when a pod instance restarts. Since most connec-

tions are assumed to be directed to the primary replica, the operator

policy prioritizes updating the initial primary replica last to avoid

additional client failovers if other replicas assuming the primary

role are restarted. However, deferring the update of the initial pri-

mary replica may result in a delay before users experience the new

resource allocations. Throughout our efforts, we have made several

improvements to the scaling process. Despite these enhancements,

the process can last around 10 minutes, depending on the number

of replicas and workload. This duration affects SLAs and influences

how frequently scaling algorithms should adjust resources.

Predictability. In our target DBaaS offerings, predictable perfor-

mance is a key consideration [18, 37]. Therefore, similar to other

deployments with comparable requirements on K8s [13, 40, 48],

limits are set equal to requests to ensure predictability. Setting

limits larger would allow burstability, but then the resources may

not be there when needed.

Resource-based pay-as-you-go model. The billing model for

users in the DBaaS is based on the peak CPU provisioned resources

within a certain time period
5
. This means that users are charged

according to the maximum value of core limits assigned during

that time period (ex: $𝑥 ∗𝑛𝑢𝑚𝑐𝑜𝑟𝑒𝑠). Memory usage, however, is not

billed. Additionally, the service rounds up the billing to whole cores.

From this billing model, most customers prefer to conservatively

allocate redundant resources to have a buffer in case of a burst in

workload, preferring high performance over cost. Other customers

prefer to err on the side of saving money and may under-provision.

3.2 Requirements
The goal of CaaSPER is to efficiently allocate the appropriate num-

ber of cores for the managed RDBMS offering at Microsoft, taking

into account users’ expected performance, cost, and availability.
The architecture and invariants play a crucial role in defining the

requirements of our vertical autoscaler, which we present next.

R1 : Alignment with the service invariants. Our algorithm should

be designed to alignwith the service’s requirement for predictability

and its pay-as-you-go billing model. To satisfy this, we enforce that

limits and requests (1) are equal, ensuring that the node has

sufficient resources to meet the defined limits, and (2) are integers,

conforming to the whole-core billing model.

R2 : Flexible behavior based on user preferences.Our design should
be flexible enough to accommodate various user preferences, such

as prioritizing cost-savings or prioritizing availability and perfor-
mance for mission-critical workloads. This requires mapping user

preferences into parameters that tailor the behavior of the autoscal-

ing algorithm. This also requires that we are able to quickly simulate

different scenarios based on those preferences.

R3 : Optimization based on target function.Once user preferences
and the associated SLA are defined, our objective is to minimize

costs and meet the required SLA by fine-tuning the CPU limits
to align resource allocation with workload demands. Three key

metrics are used: (1) average CPU slack (over-allocated CPU), which
represents the difference between the allocated resource limits

5
This time period may be minutely or hourly depending on configuration.
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and the actual usage and directly impacts cost efficiency, (2) the

percentage of observations and amount of throttling (insufficient

CPU), which affect performance metrics such as throughput and

latency, and (3) the frequency of scalings, which also impact the

throughput of the system. Note that maintaining a small slack

buffer in the system can help prevent outages and ensure that

bursty workloads meet their SLAs, and a system that swiftly reacts

to throttling ensures performant services.

R4 : Application-agnostic. K8s can be used with a wide range

of applications. Therefore, we aim for our solution to be applica-

ble to any application that requires and supports vertical scaling,

without being tied to a specific application such as RDBMSs. To

that end, it should rely on generic metrics such as CPU usage and

provide CPU settings as output. However, in certain types of appli-

cations, such as RDBMSs, service load metrics have been shown

to be more useful than system metrics for autoscaling [25]. The

integration of application-specific extensions into our algorithms

and a comparison with our current proposal are left for future work.

R5 : Support for diverse workloads. Our solution should be de-

signed to effectively scale resources regardless of the specific work-

load. Concretely, we identify two key scenarios that our solution

needs to address. (1) Low predictability: In this scenario, there may

be insufficient CPU history data available (e.g., for new workloads)

or the data may exhibit unpredictable patterns, rendering accurate

ML prediction impossible. (2) Predictable workloads: Certain work-

loads exhibit some predictable patterns, allowing us to leverage the

metrics history to more accurately forecast future resource require-

ments. Examples include cyclical patterns during work-days/weeks,

periodic spikes in usage for quarterly reporting, etc.

R6 : Interpretable. When using ML to help customers select opti-

mal configurations, it is important that the model is interpretable

so that they understand trade-offs and can make an informed deci-

sion [15]. To achieve this, our solution should leverage transparent

models that clearly highlight performance options.

3.3 Limitations of Existing Solutions
In our investigation of automatic vertical scaling solutions, we

examined off-the-shelf options such as the built-in algorithm for

VPA [33] and OpenShift’s VPA solution [2]. Our goal was to assess

how effectively these algorithms fulfilled our specific requirements.

To evaluate them, we set up K8s clusters running three instances

of Database A, with limits initially set to a maximum of 14 cores.

To avoid disruption to the deployment, we implemented logic to

prevent autoscaling below 2 cores. Additionally, we modified the

existing algorithms to target the primary instance only since its

metrics patterns differentiate from secondary replicas
6
. In Fig-

ure 3a, we present a control experiment that approximates a real

over-provisioned customer scenario. The CPU limits are fixed at

14 cores (indicated in red on the right y-axis), while the current

CPU usage is depicted in blue on the left y-axis. The experiment

covers a 62-hour trace period with 8 hours of usage at approxi-

mately ∼2-3 cores, followed by 8 hours at ∼7 cores, and another 8

hours at ∼2-3 cores, repeating throughout the period. As shown, the
6
This adjustment was necessary because the evaluated VPA algorithms are designed

for stateless K8s replica sets, where each replica receives a roughly equal workload

distribution (https://github.com/kubernetes/autoscaler/issues/3015).

(a) Control
Fixed limits, high slack

(b) K8s VPA
No scale-down, high slack

(c) OpenShift’s VPA
Throttled

(d) CaaSPER
Reduced slack/throttling

Figure 3: A comparison of existing VPA Recommenders.

fixed CPU limits provide a buffer of nearly double the maximum

observed resource usage for this workload, resulting in excessive

slack (idle resources).

Default VPA algorithm. This algorithm uses a decaying histogram

of weighted CPU samples collected at one-minute intervals to de-

termine the new requests target based on the 90th percentile (P90)

of observed usage within the configured history length. limits are
usually increased proportionally to requests, but not explicitly
used in calculations. This means that scaling up is only enabled

when the limits are strictly greater than the requests. However,
this conflicts with our original requirement of having limits equal
to requests, as specified in R1. To address this discrepancy, we

maintained the invariant limits:=requests+1 so that limits is
greater than requests (to allow VPA to detect the need for scaling)

yet as close as possible and aligned with our billing model (R1(2)).
Figure 3b shows that the algorithm scales up to 8 cores after

traffic increases around the 8th hour. However, during the period

of low utilization, it does not scale back down since the P90 usage

values within the available history window remain high. Adjusting

the safety margin (slack) and history duration in VPA’s configura-

tion can encourage more aggressive scaling down, but this comes

at the expense of decreased scale-up accuracy. Overall, the default

VPA algorithm focuses on scheduling and responding to resource

usage to meet SLAs rather than providing predictable performance,

accounting for future usage, or optimizing costs.

OpenShift’s VPA. OpenShift’s VPA uses the pluggable nature of

the default VPA recommender component to use a different, predic-

tive algorithm. Figure 3c shows the results of evaluating OpenShift’s

VPA for the same workload. Initially, the recommender component

predicts low CPU utilization, resulting in the scaler component set-

ting low limits. Consequently, container throttling occurs when
setting the limits according to the prediction. Moreover, due to

the ongoing low CPU metrics resulting from the previous limits

4
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setting, the recommender continues to forecast low CPU usage in

the future, exacerbating the throttling issue. As a result, the usage

is severely capped (compared with Figure 3a where sufficient re-

sources were provisioned), leading to a 73% reduction in throughput,

while the limits oscillate between 2 and 3 cores (where 2 is our

minimum guardrail). In addition to the throttling issue, we found

its current implementation, where multiple competing models were

retrained at prediction time based on the outcome of a decision tree

evaluation, was costly and led to high recommendation latency for

our production workloads. Similar to the default VPA algorithm,

OpenShift’s algorithm focuses on scheduling and optimizing re-

sources based on requests and the heuristic of setting limits was

not sufficient. Although we believe the algorithm could be modified

to consider our emphasis on CPU limits, it is currently unsuitable

for our workloads or billing model.

Summary. In conclusion, while both solutions are application ag-

nostic (R4), they provide limited support for parameterizing the

slack (R3) and do not consider throttling, as they focus primarily on

requests rather than limits. OpenShift’s VPA was particularly

ineffective when dealing with existing throttling, leading to inaccu-

rate predictions (R5). Furthermore, neither solution offers support

for optimizing customer cost-performance preferences (R2), and
they do not adequately meet the service invariants or interpretabil-

ity requirements (R1, R6).

4 THE CAASPER ALGORITHM
In this section, we present the CaaSPER algorithm and how it

addresses the previously mentioned requirements. We start by pro-

viding background information on Doppler and price-performance

curves in §4.1, which is crucial to understand our proposal. Follow-

ing that, we introduce the reactive and proactive approaches that
together constitute CaaSPER in §4.2 and §4.3, respectively.

4.1 Background on Doppler
In the context of Doppler [11], price-performance curves (PvP-
curves) are used to aid customers migrating their on-premises

databases to the cloud. These curves visually display the monthly

prices for various relevant SKUs (Stock Keeping Units, e.g., VMs

with specific core counts, memory, IOPS, etc.) available for migra-

tion, along with the corresponding expected performance for each

customer’s workload. Typically, these curves show diminishing

returns on performance as costs increase. During migration, cus-

tomers can use the PvP-curves to evaluate the potential decrease

in performance they may experience in exchange for increased

monthly savings, and vice versa.

In order to create these personalized PvP-curves, Doppler intro-
duces a proxy for estimating performance, called the probability
of resource throttling. This metric provides a sufficient approxima-

tion
7
of the true throttling, the extent of lower throughput, higher

latency, and increased performance bottlenecks. This probability is

used to approximate how well each SKU meets customer workload

performance requirements. The following equation outlines how

7
In Doppler, workload replay helped to confirm how well this proxy metric approxi-

mates performance. Specific customers provided full workloads (e.g. queries and data),

and the migration team was able to replay each workload on a wide range of SKUs to

examine subsequent performance bottlenecks.

(a) CPU usage (b) PvP-curve

Figure 4: CaaSPER appropriately scales up based on the slope
inflection point (highlighted by the x and the associated slope
at that core count) of the price-performance curve (right)
estimated based on traces highlighted on the left in gray.

Doppler estimates performance, defined in this case as the throttling
probability: 𝑃𝑛 (·) of each SKU𝑖 , where 𝑖 = 1, . . . ,𝑚 represents some

SKU among𝑚 possible SKUs:

𝑃𝑛 (SKU𝑖 ) = 𝑃 (𝑟
CPU𝑛

> 𝑅
CPU𝑖

∪𝑟
RAM𝑛

> 𝑅
RAM𝑖

∪ . . .∪𝑟
IOPS𝑛

> 𝑅
IOPS𝑖

) . (1)

where 𝑟 {CPU𝑛,RAM𝑛,...,IOPS𝑛 } denotes the vector of random vari-

ables corresponding to the resource usage for customer 𝑛, and

𝑅{CPU𝑖 ,RAM𝑖 ,...,IOPS𝑖 } denotes the maximum capacity for each per-

formance dimension as fixed by a specific SKU𝑖 .
8
The advantage of

this mathematical formulation is that it can be easily extended to

handle any combination of performance dimensions.

Figure 4b provides an example of the PvP-curves. Customers are

presented with a wide array of SKUs, each with varying monthly

prices and the corresponding probability of resource throttling.

Ideally, a customer aims to avoid any performance bottlenecks en-

tirely, i.e., a 1-Prob(Throttling) value of 1; however, they might

be reluctant to pay the high monthly price for such assurance.

These PvP-curves thus serve as a valuable and personalized tool in

assisting customers in selecting the optimal database SKU, show-

casing the balance between choosing higher-performing and more

cost-effective options.

4.2 Reactive Scaling with CaaSPER
In the absence of historical data (e.g. beginning of workload), it is

difficult to rely on existing predictive autoscaling tools. Therefore,

our focus is on first developing responsive reactive approaches to

handle workloads without history data (R5). This section outlines

our approach, which integrates a hybrid strategy utilizing the previ-

ously discussed PvP-curves and protective guardrails. This approach
provides customers with flexibility in adjusting their cluster’s size

based on the trade-offs between cost and performance (R2).
Autoscaling Based on Price-Performance Curves. Considering
the limited interpretability of the baseline VPA algorithm and com-

peting techniques (e.g., Holt-Winters and LSTM [73]), our approach

builds upon PvP-curves to ensure that autoscaling (data-driven)

decisions are interpretable, in accordance with R6. In practice, we

refurbish the PvP-curves introduced in Doppler to guide our au-

toscaling decisions by examining the PvP-curves’ slopes.

8
There are certain performance dimensions that require small transformations; for

example, IO latency is taken as the inverse of the actual IO latency in order to calculate

the effect of this performance dimension.
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(d) Workload B: PvP-curve

Figure 5: CPU usage (blue line) and price-performance curves
for two workload samples of Database A (throttled and not).
CPU limits aremarkedwith dashed orange lines. A throttled
workload is usually associated with a steep slope (lower left).

Applying Price-Performance Curves in CaaSPER.While the

original algorithm in [11] depended on multiple performance di-

mensions (e.g., IOPs, latency, memory, CPU, etc) to select an ap-

propriate SKU, when scaling applications on top of platforms like

K8s, each resource can be scaled independently and we can treat

each resource scaling problem separately. Thus, we refactored the

original algorithm to only require CPU utilization as input and

output the new number of cores as the scaling decision
9
:

𝑎(𝑡) = AUTOSCALE (CoreCountcur, {𝑋𝑡 }) (2)

where CoreCountcur is the current number of CPUs allocated, 𝑋𝑡
is the observed CPU usage pattern for some available time period

𝑡 = {0, 1, ...𝑇 − 1}, and 𝑎 is the subsequent autoscaling action at

time 𝑇 . This generic input satisfies R4.
By examining the position of the current chosen number of cores in

the PvP-curve, a clear signal can be captured indicating if the current
choice is under- or over-provisioned. Figure 5 shows two examples

of CPU traces from Database A customers where the limits is

marked by an orange dashed line. For a workload that runs close to

the limit of 8 cores (Figure 5a), the associated PvP-curve in Figure 5c

has a relatively steep slope at the point of the selected CPU limits.
This makes sense considering Equation 1: Given that the majority

of the CPU time series (𝑟CPU𝑛
) in Figure 5a reaches the limits,

opting for fewer than 8 cores would significantly raise the throttling

probability. A steep slope on the PvP-curves thus signals a customer

might be throttled and should consider increasing the number of

cores tomeet their performance needs. Figure 5b is representative of

a customer that is using an appropriate CPU limits value since the
slope of their PvP-curve (Figure 5d) at their CoreCountcur allocation
(i.e., 32 cores) is neither excessively steep nor too flat.

9
As noted in §2.2, we leave for future work the extension of our autoscaling algorithm

to consume other performance input, like memory and IOPs, given appropriate scaling

mechanisms exist for these resource dimensions. Our focus on CPU is also driven by

the fact that product billing is only dependent on the number of cores.

Figure 6: Example shape of scaling-factor function 𝑆𝐹 (𝑠) of
PvP-curve slope 𝑠. Scale-ups happen more aggressively for
large 𝑠 (more throttling), than small 𝑠 (less throttling).

Moreover, the slopes give a good measurement of the severity of
throttling and can be used to determine the number of cores to scale
up by. To leverage the slopes of PvP-curves for autoscaling deci-

sions in CaaSPER and respond to potential throttling, we examined

the evolving behavior of PvP-curves over time for a set of sophis-

ticated customers that actively optimize the number of cores for

their Database A on a daily basis. This gives us a baseline to un-

derstand how to correlate slope values to the number of cores by

which customers should increase (or decrease) their CoreCountcur

allocation by, which effectively addresses R3. By capturing static

snapshots of personalized PvP-curves just before a customer makes

an autoscaling decision, assessing the slopes at their current core

allocation, and monitoring the subsequent increase (or decrease)

in cores resulting from the decision, we can precisely determine

the extent to which a customer should scale up (or down) by based

on the slope of their respective PvP-curves. Our analysis revealed
that a simple logarithmic decay function suffices for automatically

determining the scaling factor (SF), representing the appropriate

number of cores to scale up (or down) by. Specifically we define:

SF(𝑠, skew) = log (skew × 𝑠 + 𝑐𝑚𝑖𝑛) (3)

where 𝑠 represents the slope at the customer’s CoreCountcur alloca-

tion of their PvP-curve (estimated from the usage data {𝑋𝑡 }), skew
captures the asymmetry of the distribution of existing slopes of the

PvP-curve, and 𝑐𝑚𝑖𝑛 is a guardrail for the minimum number of cores

required to operate the pod since we want to prevent nonsensical

autoscaling decisions that could lead to a service outage. When the

distribution has a higher skew, indicating concentration towards

lower/higher end of the usage, we scale up/down more aggressively.

By letting the SF multiplicative factor in our logarithmic function

be driven by the skew estimate, we are able to dynamically capture

the desired number of cores we want to scale by. We also have

additional adjustable guardrails in place to prevent system failure

(ex: minimums based on machine size). Figure 6 shows an example

of the logarithmic decay function for a range of slope values.

By using this logarithmic function, the scaling-up decisions tend

to be associated with a high number of cores when the derived

slope 𝑠 is high. This is ideal, as high 𝑠 values are typically associated

with a customer getting highly throttled (e.g., their CoreCountcur

allocation lands them at an inflection point of their curve as in

Figure 4). Alternatively, when the derived 𝑠 values are small (e.g.,

between 0-2), the associated scaling factor is correspondingly small,

leading to better micro-adjustments in the price vs. performance

trade-off. Our full autoscaling strategy is depicted in Algorithm 1.

Effectiveness of CaaSPER. Figure 4 presents an instance where

a customer’s utilization was limited to 3 cores before 06ℎ. Upon

6
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Algorithm 1 CaaSPER autoscaling decision algorithm.

Require: 𝑥𝑐 : CoreCountcur
Require: {𝑋𝑡 }: Vector of workload CPU usage indexed by time (observed

and/or predicted)

Require: 𝑅: System inputs (e.g., resource limit such as max CPU, price per

core, granularity per core)

Require: 𝑠ℎ : High slope threshold

Require: 𝑠𝑙 : Low slope threshold

Require: 𝑚ℎ : High slack threshold as percentage of capacity

Require: 𝑚𝑙 : Low slack threshold as percentage of capacity

Require: SFℎ : Maximum single step scale-up amount

Require: SF𝑙 : Maximum single step scale-down amount

Require: c𝑚𝑖𝑛 : Minimum resource requirements (scale-down lower

bound)

1: function autoscale(𝑥𝑐 , {𝑋𝑡 })
2: normalized cpu← Preprocess CPU({𝑋𝑡 })
3: PvP curve← SKU Recommendation Tool(normalizedCPU, 𝑅)
4: PvP slopes← Calculate Slopes(PvP curve)
5: skew← Calculate Skew(PvP slopes)
6: 𝑠 ← Get Current Slope(PvP slopes, 𝑥𝑐 )
7: SF← Calculate Scaling Factor, SF(𝑠, skew)
8: if 𝑠 ≥ 𝑠ℎ or Quantile({𝑋𝑡 }) ≥ (1 −𝑚ℎ ) ∗ 𝑥𝑐 then
9: SF← min (SF, SFℎ )
10: else if 𝑠 ≤ 𝑠𝑙 or Quantile({𝑋𝑡 }) ≤ 𝑚𝑙 ∗ 𝑥𝑐 then
11: SF← max (−SF, −SF𝑙 )
12: else if 𝑠 == 0 and 𝑥𝑐 at top of PvP curve then
13: SF← Update Scaling Factor(PvP curve, 𝑥𝑐 )
14: SF← Apply Guardrails(SF, SFℎ, SF𝑙 , c𝑚𝑖𝑛, 𝑅)
15: return SF

detecting throttling, CaaSPER generated the corresponding PvP-
curve on the right. Considering the skewness of the slopes in this

specific PvP-curve and the current slope of 1.38 at the customer’s

existing allocation of 3 cores, our mathematical model recommends

scaling up by 3.73 cores. However, since our system is not yet built

to scale by a fractional number of cores, the result is rounded down

(configurable) to comply with R1. (Although our system could be

adapted for sub-core usage in the future.) Continuing the analysis

of the customers’ CPU utilization post-decision, as indicated by the

blue line on the right of Figure 4a, we observe that the algorithm

appropriately right-sized the customer pod to 6 cores.

Our autoscaling methodology is highly sensitive to the shape of

the PvP-curve. As shown in Figure 7a, following our previous design
discussion, we would only make relevant autoscale-up decisions

when the customer’s CoreCountcur allocation places them on their

respective PvP-curve such that the derived slope 𝑠 is positive. How-

ever, we encounter instances where customers land on the far right

of the curve, as indicated by the red line snippet in Figure 7b. In this

situation, the customer’s CoreCountcur falls within a consistently

flat portion of the curve to the right, resulting in a derived slope 𝑠

of 0 that indicates significant over-provisioning. To address such

cases, we introduce the mechanism to scale down as shown in line

12 of Algorithm 1. This approach prevents situations where the

customer is paying for significantly more compute than their work-

load requires. Here, we walk down the curve (to the left) to identify

the cheapest CoreCountnext that can meet the workload require-

ments at 100% utilization. For scenarios like Figure 7b where the

customer is highly over-provisioned, our algorithm recommends

scaling down by almost 8 cores, leading to substantial cost savings.

(a) Typical PvP-curve
(underprovisioned)

(b) Flat PvP-curve
(overprovisioned)

Figure 7: Two instances of PvP-curves. The blue 𝑋 indicates
CoreCountcur and the red dashed line the derived slope 𝑠.

Given the mechanisms described, the algorithm provides a rela-

tively small slack buffer by selecting the CoreCountnext that most

closely aligns with the present workload requirements. However,

since reactive scaling mechanisms may require time for resizing

(§3.1), many of our customers express the need for additional head-

room as guardrails to mitigate potential throttling when workloads’

CPU utilization unexpectedly increases. This is addressed in Al-

gorithm 1 with the inclusion of𝑚ℎ and𝑚𝑙 parameters, allowing

us to set a desired buffer amount. In general, our algorithm pro-

vides flexibility for trade-offs between price and performance to

cater to various customer preferences. As we show in §6.2, our au-

toscaling algorithm not only adeptly responds to workload changes

but also effectively introduces adequate buffer to meet customer

requirements, even without prior performance history.

4.3 Proactive Scaling with CaaSPER
The reactive component of CaaSPER adeptly adjusts to workload

changes, yet manyworkload patterns are recurrent. Next we discuss

the integration of established techniques related to time series and

machine learning algorithms to proactively address scaling needs.

The main idea underpinning the integration of forecasting in

CaaSPER is to preprocess input data for Algorithm 1 by combining

actual resource utilization data {𝑋𝑡 } with predictions (refer to Fig-

ure 8). On the first day (period1), the algorithm operates reactively

due to insufficient historical data. A complete seasonality period
(depicted by the green region in Figure 8) is awaited before transi-

tioning to proactive mode. Starting from period2, there is enough
history in the forecasting window, with length 𝑜 𝑓 , to generate a

valuable prediction for this cyclical workload. We then combine the

original window (e.g., the last 40 minutes of CPU usage typically

processed by our reactive autoscaling algorithm) with the predicted

data (forecasting horizon) to form the combined new window,
with length 𝑜𝑛 , serving as the input for Algorithm 1.

By combining the current data (e.g., CPU usage) with the pre-

dicted future data, Equation 2 becomes:

𝑎(𝑡) = AUTOSCALE(CoreCountcur, {𝑋𝑡=𝑇−(𝑜𝑛−𝑜 𝑓 ),...,𝑇−1},

{𝑋𝑡=𝑇,𝑇+1,...,𝑇+𝑜 𝑓 −1})
(4)

where 𝑋𝑡 is the predicted usage for CPU. We can tail the new

combined window to give less weight to historical data and rely

more on predictions (new window length is a tunable parameter).

The predictive component is pluggable, allowing us to choose

different ML algorithms as needed. We experimented with various

7
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Figure 8: Input data preprocessing for Algorithm 1 for proac-
tive CaaSPER.

algorithms, including those in OpenShift’s VPA [2], as well as the

naïve and ARIMA forecasters from sktime [3], and Prophet [70].

Although we tested them on a limited number of simple workloads,

we found the naïve algorithm to be the most lightweight and ex-

plainable (details in §6). Exploring additional forecasting algorithms

(e.g. LSTM) and the trade-offs between cost of training (which con-

tributes to CPU load) and model accuracy, is beyond the scope

of this paper and planned for future work. Currently, our system

does not consider the confidence values of model predictions, but

we plan to incorporate them as a prefilter in future iterations to

improve the balance between predictive and reactive components.

4.4 Discussion
Returning to the example introduced in §3.3, Figure 3d illustrates

the scaling behavior of CaaSPER, showing how it (1) utilizes PvP-
curves and slack to address resource exhaustion when it occurs, and

(2) predicts future CPU spikes to enable early scaling up and avoid

throttling. The VPA algorithm reduced slack by 61% compared to

the control run with 14 cores, while CaaSPER was able to reduce

it by 78.3%. Also note that in Figure 3d, at ∼8h, there is a small

amount of throttling, that is avoided on the subsequent two periods

(32h, 56h) shown by a small white vertical gap.

According to Algorithm 1, when dealing with a severely throttled

workload that is bottlenecked, our policy identifies the insufficient

slack and applies the logarithmic decay function (Eq. 3) to scale

the capacity up to the maximum allowed SFℎ . By incorporating the

forecasted CPU usage in the input for generating the PvP-curves
(Eq. 4), CaaSPER can proactively scale up or down since the curves

project the utilization levels a configurable number of minutes

ahead of time. This combined approach allows CaaSPER to set the

CPU limits at an appropriate level to accommodate the workload

while also minimizing costs during periods of low demand.

Summary: Requirements met. CaaSPER effectively fulfills the

requirements outlined in §3.2. It satisfies the invariants set by our

motivating case study (R1). CaaSPER offers customers interpretable

price-performance curves (R6) that are tailored to their specific

needs, enabling them to make decisions considering the trade-offs

between cost and performance (R2). CaaSPER achieves application

agnosticism (R4) by focusing solely on CPU utilization as input and

outputting the core count as the scaling decision. To handle diverse

workloads (R5), it adopts a combined reactive-proactive approach

that leverages the slopes of price-performance curves to make

autoscaling decisions based on slack and potential throttling (R3).

5 SIMULATOR AND PARAMETER TUNING
As it is evident from the previous section, the development of a

comprehensive autoscaling algorithm with adequate flexibility is a

complex and time-consuming task. To enhance the explainability

of our system and expedite the development process, we created a

simulator that allows us to evaluate various autoscaling algorithm

policies for CaaSPER using only a CPU trace. The simulator repli-

cates key components outlined in Figure 1, specifically targeting

the tuning and testing of pluggable recommender algorithms. This

simulator enables us to achieve the following objectives: (1) Simu-

late autoscaling in scenarios where the live workload (e.g., a user’s

queries and data) is inaccessible. (2) Evaluate our system’s per-

formance against standard workload traces such as the Alibaba

dataset [5]. (3) Conduct rapid parameter tuning of our algorithm

using existing workload history (R3). (4) Adjust parameter combina-

tions based on desired slack, throttling, and scaling frequency (R2).
By leveraging the simulator, we enable users to easily choose the

parameter settings that align with their desired cost-performance

preferences. Specifically, for each experimental run with a specific

parameter combination, we capture three metrics:

• 𝐾 (·): Sum of all slack values, representing the total unused capac-

ity necessary to prevent resource shortage for bursty workloads.

• 𝐶 (·): Sum of insufficient CPU occurrences, reflecting the total

throttling that can result in performance degradation.

• 𝑁 (·): Total number of scalings, considering that not all systems

can scale without downtime; frequent scaling is penalized to

prevent performance degradation.

Our tuning primarily focuses on the reactive parameters indi-

cated as Required inputs to Algorithm 1 (from 𝑠ℎ to c𝑚𝑖𝑛) as well

as the forecasting window sizes shown in Figure 8. For example,

for workloads demanding higher performance, a larger single-step

core scale-up count (SFℎ) allows the system to scale more rapidly,

while a lower minimum core count (c𝑚𝑖𝑛) reduces the likelihood of

throttling during bursts. The opposite holds true for a cost-oriented

tuning approach. Furthermore, larger window sizes make CaaSPER

less responsive to minor bursts, potentially saving costs, and reduce

scaling frequency, thereby improving availability.

In order to identify the Pareto frontier [75] based on the observa-

tions in Figure 12, where both slack and throttling are minimized,

we introduce the following objective function 𝐺 :

G(𝛼, 𝑝) = 𝛼 · 𝐾 (𝑝) +𝐶 (𝑝) (5)

where 𝛼 is a scalar coefficient that represents the penalty of having

slack (which can be tailored based on preferences of having higher

slack versus throttling), 𝑝 represents the parameter combination,

and 𝐾 (𝑝)/𝐶 (𝑝) denotes the observed (simulated) total slack and

insufficient CPU, respectively. This function computes an objective

value by combining the two observed metrics, assigning a weight

of 𝛼 to the slack (and the weight of throttling is 1).

The optimal parameter combination set (based on preferences)

can be estimated by iterating over all possible values of 𝛼 :

𝑝 = {argmin

𝑝
𝐺 (𝛼, 𝑝) |∀𝛼 ∈ 𝐷}

(6)

8



Vertically Autoscaling Monolithic Applications with CaaSPER: SIGMOD’24, June 2024, Santiago, Chile

where we sample random numbers from a log-uniform (reciprocal)

distribution with ln(𝐷) ∼ U(−100, 100) to encompass a broad

range of values. These parameters can be continually updated as

data is accumulated, and the newly tuned parameters can be fed

back into CaaSPER at a configurable interval. This flexibility allows

users to modify their preferences over time, such as prioritizing

higher performance over cost savings during known busy seasons.

Simulator Correctness. To verify that the decisions generated by

the simulator are statistically similar to those from actual runs, we

use the pairwise t-test [4]. In multiple iterations of our simulator,

we observe that the decision value distributions have equal vari-

ances. Based on this assumption, we consistently obtain the same

conclusion from pairwise t-tests: the decision values produced by

the simulator and the real runs (at each time point) are statistically

equivalent on average. We maintain an alpha value of 0.05 for statis-

tical significance across all scenarios considered. The consistency in

our findings across all tested workloads gives us confidence that the

simulator accurately replicates the autoscaling decisions we would

obtain when running the same workload on actual deployments.

6 EXPERIMENTS
In this section, we present the performance of CaaSPER in di-

verse scenarios. We begin by explaining the constraints and sce-

nario (§6.1).We demonstrate the autoscaling capabilities of CaaSPER

on both Database A and Database B for both synthetic data and real

workloads (§6.2). Additionally, for situations where live execution

is not feasible, such as when working with static CPU traces, we

reproduce the scaling outcomes using our simulator (§6.3).

6.1 Scenario
In our experiments, we aimed to align with the billing model and

system constraints. To ensure consistency, we followed a set of

rules: (1) Our target system bills based on peak limits at integer
granularity rounded up (R1). (2) Since existing VPA implementa-

tions require limits and requests to be unequal, we cannot use
an exact comparison and rely on an approximation (§3.3). (3) We

selected the “control” limits to be approximately equal to the to-

tal number of utilized cores in the expected peak workload. This

mimics an ideal oracle where no throttling or scaling occurs. (4) For

Database A, which had 3 replicas, resizing operations are subject

to a 5-15 minute window due to the rolling update and HA con-

straints. For Database B, we set it up read-only across the 2 replicas;

therefore resizing takes approximately 3-5 minutes to complete.

6.2 Live System Evaluation
In this section, we demonstrate the scaling capabilities of CaaSPER

on managed K8s clusters in the public cloud at Microsoft using two

different-sized clusters and various workloads. The “small cluster”

has 6 VMs each with 8 CPUs and 32GB and the “large cluster” has

6 VMs each with 16 CPUs and 56GB RAM. For the resizing, we

use the rolling update and failover system outlined in §3.1. For the

workloads, we generate load using a selection of queries across the

TPC-H, TPC-C, and YCSB benchmarks, using BenchBase [19] to

drive the client’s workload across many terminals.

Right-sizing without history. In §4.2, we described CaaSPER’s abil-
ity to scale without prior history. To demonstrate this, we started

(a) Workday - Control. (b) Workday - CaaSPER

Figure 9: Synthetic workload on Database A.

Non-Cyclical on Database A

(12 hrs, 1.2M txns)

Cyclical on Database B

(3 days, 3M txns)

Ctrl

(No Resize)

CaaSP.

(React. Only)

Ctrl

(No Resize)

CaaSP.

(React. Only)

CaaSP.

(+Proact.)

Avg Lat (ms) 141±4 138±4 22±1 22±1 22±1
Med Lat (ms) 62±2 61±2 87±2 87±2 86±2
Price ($) 𝑥 .85𝑥 𝑦 .57𝑦 .56𝑦

Table 1: CaaSPER has a large improvement on price with
negligible latency impact.

with a 12-hour workload that we ran on Database A in the small

cluster. The first 3 and last 3 hours are a mix of read and write trans-

actions with a CPU usage of ∼1-3.3 cores, and the middle 6 hours

are batches of read-only queries requiring ∼5.5 cores. Figure 9a

shows a control run fixed at 6 cores shown on the right y-axis in

red. Figure 9b shows the workload autoscaled with CaaSPER. As

mentioned, we do not use prediction, only the reactive mode, due

to lack of historical data. At ∼3h, the workload shifts to the heavier
portion. Although there is some throttling initially (due to the 10-15

minute scale-up period required by Database A while the secon-

daries are updated before updating the primary), CaaSPER is able

to reactively scale up to adequately accommodate the workload.

During each of the 3 resizings (∼0h, ∼3h, ∼9h), one transaction is

dropped and retried.
10

The second and third columns of Table 1

show the throughput, latency, and price per transaction for the con-

trol and the CaaSPER-scaled workloads for Figure 9. With CaaSPER,

total slack was reduced by 39.6%, the cost is 85% of the original cost,

and the impact to latency and throughput is within the margin of

error, measured by multiple runs in the same cluster.

Cyclical workloads. Next we show the impact of adding prior

history, the proactive portion of CaaSPER. First, in Figure 10a, we

show a 3-day, synthetic cyclical load with 3 million transactions

on Database B that is purely reactive with some over-corrections

(dashed ovals) and throttling (yellow circles). Then we show that

same workload with the addition of forecasting as described in § 4.3

in Figure 10b. Both graphs of Figure 10 show that Day 1 is nearly

identical in terms of the number of cores that CaaSPER chooses.

On Day 2, CaaSPER is able to correctly scale up to 6 cores in the

proactive system rather than overshooting to 8 cores like in the

reactive only. Then, during the large 12-core spike on Day 2, in

Figure 10b there is no throttling as the limits jump to 14 cores, as

shown by the green circle and the small (configurable) gap between

the red (top) and blue (lower) lines. For this experiment, we set the

10
In our initial tests with the new in-place resize feature for K8s (§3.1), neither the

scale-up lag nor failed transactions occur.

9
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(a) Reactive only. (b) With Proactive.

Figure 10: Reactive and Proactive scaling onDatabase B.With
Proactive, CaaSPER is able to preemptively scale up avoiding
the mistakes in the dashed circles, and not throttle (like in
yellow circles) on Days 2 and 3 (as seen in the green circles).

(a) Prefer high-performance. (b) Prefer low-cost.

Figure 11: Autoscaling a recreated customer workload on
Database A for two different tuning preferences. (Note that
Database A has a mandatory 2-core minimum to run.)

Total Thrpt (#Txns) Avg Lat (ms) Med Lat (ms) ¢/Txn Total $

Control 300K ∼60 ∼35 𝑥 𝑦

CaaSPER:

Prefer Perf

300K ∼70 ∼35 .74𝑥 .74𝑦

CaaSPER:

Prefer Savings

270K ∼100 ∼35 .54𝑥 .49𝑦

Table 2: Using CaaSPER to balance customer preferences.
Saving half the cost shows only a 10% throughput impact.

scale-ahead window gap to 1 hour to display on the graph more

clearly; but in practice we set this smaller to increase savings. To

the far right of Figure 10b, CaaSPER proactively scales up for the

beginning of the fourth day. If the traffic does not arrive as predicted,

CaaSPER would scale back down as the reactive component takes

over. Table 1 shows the performance impact to throughput and

latency for this cyclical experiment. In the control run, the core

count is held at 14 cores for the duration. For the 3M transactions,

the average and median latency are within the margin of error

across all experiments. For the price per transaction, we see that

the proactive version is lowest overall because it is able to quickly

scale from 14 to 2 cores rather than slowly scaling back down over

the course of an hour. Additionally, total slack was reduced by 66.5%

in 10a and 68.2% in 10b compared to the control run.

Customer CPU Trace.We also evaluated CaaSPER using a sample

of a real Database A workload CPU trace, synthesized to mimic

real customer workload traces. To do this, we used Stitcher [72], an

open-source tool published by Microsoft which recreates customer

CPU and I/O traces using a mix of public benchmarks to mimic

the real workload (matching the same resource utilization charac-

teristics) rather than proprietary data and queries. The customer

used Database A, which takes 5-15 minutes to scale up due to strict

HA policies. For this experiment, we used the small K8s cluster

which had other customer-required services running, bounding the

limits to a max of 6 cores, and Database Amandates a minimum of

2 cores. To understand the impact of throttling for this experiment,

we did not retry throttled transactions after a timeout window.
11

We started with a control run with limits fixed at 6 cores (not

pictured), which completed 300k transactions as shown in the first

row of Table 2. We followed with two customer scenarios tuned

based on preferences as described in §5: one preferring high per-

formance (Figure 11a), and one preferring cost savings (Figure 11b).

In particular, the cost-saving scenario was tuned to allow a mini-

mum of only 2 cores (c𝑚𝑖𝑛), where the high-performance scenario

required 4 cores minimum. Table 2 shows that the performance-

preferred run with CaaSPER completes the same number of transac-

tions as the control for only 74% of the original price. The savings-

focused run completed 10% fewer total transactions, but only cost

approximately half of the original price. The impact to average

latency in the two CaaSPER runs is due to Database A taking 10-15

minutes to scale up during throttling scenarios; as mentioned in

§2.2, future improvements can reduce this number further.

6.3 Simulated System Evaluation
Evaluation using the live system can be time-consuming, espe-

cially for workloads that run over many days. To better evaluate

CaaSPER’s performance, we built and leverage a simulator to mimic

the system behavior as described in Section 5. In this section, we

present results for (1) parameter tuning using the simulator to pick

the optimal sets of configurations that are both high-performance

and cost-efficient; and (2) evaluation of CaaSPER using the work-

load trace from Figure 10 and Alibaba’s workload traces [5].

Parameter tuning. To find the best parameter setting for autoscal-

ing, we did a random search over the parameters described in §5,

with a total of 5000 combinations per CPU trace. Achieving an

optimal balance among availability, performance, and cost often in-

volves trade-offs between the different dimensions, creating a Pareto

frontier of potential solutions. A good combination of parameters

should minimize the slack𝐾 to be cost-efficient, total throttling𝐶 to

be performant, and total scalings 𝑁 to avoid impacting availability,

forming the Pareto frontier obtained by Equation (5).

Figure 12 shows a scatter plot for the workload in Figure 10 with

slack vs. throttling
12

where each dot corresponds to one run of the

experiment with one parameter combination. In the figure, blue dots

are the combinations that included the proactive approach, while

green shows those only using the reactive algorithm. Different

Pareto optimal points (red ×) on the frontier in Figure 12 represent

different combinations and balance between throttling and slack.

We can see a clear trade-off between the two metrics—higher slack

reduces the likelihood of throttling, and vice versa. The results also

show that predictive runs have higher slack, as expected, as they

allow for upfront scaling and lower throttling values. A drill-down

11
In practice, customer applications would typically retry transactions.

12
Total scalings (availability) dimension omitted for visualization purposes.
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Figure 12: Total slack vs throttling.12 Green areas are reactive
runs, blue - predictive. Red × are Pareto frontier points.
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Figure 13: Sampling of 𝛼 values (weight of slack vs throttling)
for Figures 10 and 12.

sampling of runs for different 𝛼 values (weight of slack parameter)

is in Figure 13. As 𝛼 increases, slack diminishes, and throttling rises.

Alibaba cluster trace tests. We selected 9 representative runs

from the Alibaba data set [5] using k-means clustering [10] (4043,

29759, 23544, 24173, 26742, 48113, 29247, 12104, 29345) and chose an

additional 2 runs (1, 10235) from [73].We tuned the parameters with

the simulator as described above. Every workload was resampled

to have regular data points for every minute (so each workload has

around 11k data points to simulate). Because the number of cores

in the traces was often millicores and our prototype is designed

for full cores, we scaled the number of cores in the trace to integer

values in range of our instance max sizes instead of millicores.

(Ex: for a range of 0.000-3.000 cores in a trace, we scaled to 0-

30 cores by multiplying the millicores by 10 and rounding to the

nearest integer.) To visualize, we converted the values back to the

original. Based on desired slack and throttling we chose parameters

that resulted in the scaling decisions in Figure 14 and metrics in

Table 3. Note that compared with works like [73], we focus on

setting limits instead of just requests. Therefore, we would have
to set their limits to a scalar factor 𝑁 of requests to account

Workload Average Slack Num Scalings Average Insuff. CPU Throttling Obvsns. %

c_1 1.54 259 0.002 0.90

c_4043 0.15 163 0.000 0.16

c_10235 0.70 173 0.000 0

c_12104 3.94 110 0.005 0.49

c_23544 0.80 115 0.001 0.49

c_24173 0.44 373 0.000 0.52

c_26742 1.14 443 0.004 1.21

c_29247 2.8 155 0.005 0.27

c_29345 2.81 382 0.001 0.17

c_29759 0.64 218 0.000 0.04

c_48113 2.85 38 0.000 0

Table 3: Performance summary for Alibaba workload traces.
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Figure 14: Alibaba Workloads: CPU and CaaSPER decisions.

for the “insufficient CPU” (relative to requests that the system

actually used in their case) before computing average slack and

“insufficient CPU” (throttling experienced in our case). As that data

is not available, a direct comparison is not possible.

The c_29247 trace (Figure 14e) has a significant CPU spike on

Day 3 that is not consistent with the other days. The lower accuracy

of the naïve forecasting for this workload caused by the huge outlier

spike is then projected onto future days and a higher CPU slack

relative to actual CPU usage can be seen on Days 4-6. Choosing the

right forecasting model or using its confidence intervals to filter

predictions fed to our algorithm is future work and out of scope for

this paper. Even so, the reactive portion of the model is quick to

adjust and reduce unnecessary slack while still avoiding throttling.
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7 RELATEDWORK
Researchers have extensively studied various aspects of resource

management in prior works [7, 29, 30, 42, 46, 50, 52]. Due to space

limitations, we focus primarily on works closely related to our own.

Database-Tailored Vertical Autoscaling. [17] aligns closely with
CaaSPER’s objectives as it aims to automate the scaling of resource

container sizes based on signals derived from database engine

telemetry. In contrast, CaaSPER follows a more generic approach

that is suitable for a broader range of applications, while still being

applicable to database systems. Nonetheless, we recognize the po-

tential value in incorporating application-specific telemetry into

CaaSPER to improve decision-making, especially as we extend the

system to support other resource types like memory. Additionally,

research in workload prediction [38, 51], resource usage estima-

tion [49, 56, 68], and proactive scaling [64, 65] could be leveraged to

propose alternative prediction algorithms for CaaSPER.While these

approaches present interesting directions, they lack the generality

of CaaSPER, making them complementary to our proposal.

Other prior works [16, 21] have also addressed scenarios inwhich

servers exhibit significant underutilization. They proposed consoli-

dation strategies to reduce the number of physical servers needed

for database infrastructure. Our work represents an important step

in this direction, as the optimization of pod instance sizes is critical

in enabling K8s to make adequate decisions about pod placement.

General-Purpose Vertical Autoscaling. There are several pub-
lished works related to vertical autoscaling in cloud workloads.

In [73], the authors show that the default VPA is not sufficient,

and apply the Long Short-Term Memory (LSTM) and Holt-Winters

algorithms to set the requests (minimal) bounds for scheduling

and scaling. As per §4.3, we utilize a lightweight naïve time series

forecasting algorithm in our approach (keeping it simple is shown

to work well[14]), while enabling pluggability for more advanced

algorithms like LSTM as future work. This work also differs from

our setup because we focus on limits (maximal) bounds for billing

and scaling, and we combine the predictive approach with a novel

reactive approach. In [76], the authors show how the VPA default

algorithm is not suitable for serverless short-running jobs and pro-

pose lightweight rightsizing and autoscaling mechanisms, such as

simple and exponential moving averages. In Autopilot [67], they

use vertical scaling to reduce slack and prevent throttling in their

workloads. We also focus on reducing slack, but our approach to

throttling is a bit more cautious because we set these limits from a

customer-facing perspective. In this work, they focus on optimizing

multi-tenant scheduling rather than applying customer preferences.

Additional Scaling Approaches. There is a broad body of work

focused on scaling VMs or on scaling K8s pods horizontally [59–61],

which has commonality with our vertical pod autoscaling. In [26],

the authors present an approach for predictive scaling focusing on

optimizing resource estimation for elastic VMs. However, their pre-

diction approaches work for repetitive workloads with consistent

patterns that can be readily detected through stationary Markov

transition probabilities or Fourier transformation, which might

not be universally applicable. Additionally, many history-based

approaches break down when the workload history contains throt-

tling (§4.3), as the predicted limits may still throttle the workload.

Database Workloads on K8s. Several studies [13, 20, 66] have
investigated the effective deployment of database workloads in K8s.

[12] evaluates the performance of SQL scalable systems on K8s

using the TPC-H benchmark, with an emphasis on helping tenants

to reason about monetary budget and query latency.

Workload Simulation for Autoscaling. There are several K8s
load-based simulators and generators adopted in industry [69, 71]

that focus on helping customers an under how autoscaling behaves

during different types of loads. These simulators currently only deal

with reactive autoscalers, whereas ours is also predictive. Works

like [62, 63] take a look at predictive autoscaling as well as the

different levels of autoscaling (e.g., K8s cluster nodes as well as

Pods), but do not address availability or cost. Additionally, many

autoscaling cloud simulators assists with load forecasting, plan-

ning [8], or resource optimization [9]. Our CPU simulator focuses

on optimizing limitswith respect to performance vs cost, allowing

for customization and adjustments based on customer preference.

Performance-Cost Trade-offs in Cloud Systems. Relying on

more transparent, explainable methodologies to drive autoscalers

is not new. [23] is one example that deploys an adaptive search

metaheuristic to identify the best autoscaling outcome based on

an objective that balances performance and cost trade-offs. A simi-

lar suite of techniques exists that leverage sophisticated machine

learning, like Q-learning [74], rule-based [22], and queuing [36]

algorithms, to optimize cost and performance requirements in mak-

ing autoscaling decisions. [44] highlights the need for explainable

strategies in autoscaling, however their approach is even more

customized, requiring the need to conduct extensive interviews to

define metrics outside of the traditional scope of performance.

8 CONCLUSION
In this paper, we introduced CaaSPER, a novel reactive-proactive

algorithm that allows users to vertically scale their DBaaS work-

loads according to their preferences and performance requirements.

Our approach, leveraging price-performance curves and a slope

function, efficiently identifies and responds to throttling, ensur-

ing excellent performance. Our results demonstrate that CaaSPER

effectively minimizes throttling across diverse workloads while

reducing the required amount of slack buffer.

For future research, we plan to integrate CaaSPER with other

VM and cloud fabrics within Microsoft to expand its applicability.

As we continue to analyze customer workloads, we plan to explore

alternative ML prediction algorithms beyond the initial approach

presented in this paper. By incorporatingML predictors that provide

confidence intervals rather than point estimators, we can guide scal-

ing actions with greater precision and adjust our decision-making

to be more conservative or aggressive based on prediction quality.

Further, we aim to investigate automatic scaling of other resource

types, e.g., memory, disk. The integration of application-specific

metrics, such as buffer pool utilization in RDBMSs, could further

enhance performance. Lastly, we plan to integrate the in-place up-
date without restart [32] feature of K8s with CaaSPER, eliminating

potential downtime or disconnections during resizing operations,

ensuring seamless transitions and uninterrupted service. These

steps will contribute to CaaSPER’s continuous evolution, providing

users with an effective solution for automatic vertical autoscaling.
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