
40

Tail Recursion Modulo Context: An Equational Approach
DAAN LEIJEN,Microsoft Research, USA

ANTON LORENZEN, University of Edinburgh, UK

The tail-recursion modulo cons transformation can rewrite functions that are not quite tail-recursive into a

tail-recursive form that can be executed efficiently. In this article we generalize tail recursion modulo cons
(TRMc) to modulo contexts (TRMC), and calculate a general TRMC algorithm from its specification. We can

instantiate our general algorithm by providing an implementation of application and composition on abstract

contexts, and showing that our context laws hold. We provide some known instantiations of TRMC, namely

modulo evaluation contexts (CPS), and associative operations, and further instantiations not so commonly

associated with TRMC, such as defunctionalized evaluation contexts, monoids, semirings, exponents, and cons
products. We study the modulo cons instantiation in particular and prove that an instantiation using Minamide’s

hole calculus is sound. We also calculate a second instantiation in terms of the Perceus heap semantics to

precisely reason about the soundness of in-place update. While all previous approaches to TRMc fail in the

presence of non-linear control (for example induced by call/cc, shift/reset or algebraic effect handlers), we can

elegantly extend the heap semantics to a hybrid approach which dynamically adapts to non-linear control

flow. We have a full implementation of hybrid TRMc in the Koka language and our benchmark shows the

TRMc transformed functions are always as fast or faster than using manual alternatives.

CCS Concepts: • Software and its engineering→ Control structures; Recursion; • Theory of computa-
tion→ Operational semantics.

Additional Key Words and Phrases: Tail Recursion Modulo Cons, Equational Reasoning, Non-Linear Control

ACM Reference Format:
Daan Leijen and Anton Lorenzen. 2023. Tail Recursion Modulo Context: An Equational Approach. Proc. ACM
Program. Lang. 7, POPL, Article 40 (January 2023), 30 pages. https://doi.org/10.1145/3571233

1 INTRODUCTION
The tail-recursion modulo cons (TRMc) transformation can rewrite functions that are not quite

tail-recursive into a tail-recursive form that can be executed efficiently. This transformation was

described already in the early 70’s by Risch [1973] and Friedman andWise [1975], and more recently

studied by Bour, Clément, and Scherer [2021] in the context of OCaml. A prototypical example of a

function that can be transformed this way is map, which applies a function to every element of a list:

fun map(xs : list<a>, f : a -> b) : list
match xs

Cons(x,xx) -> Cons(f(x), map(xx,f))
Nil -> Nil

We can see that the recursive call to map is behind a constructor, and thus map as written is not

tail-recursive and uses stack space linear in the length of the list. Of course, it is well known that

we can rewrite map by hand into a tail-recursive form by using an extra accumulating argument,

but this comes at the cost of losing the simplicity of the original definition.

Authors’ addresses: Daan Leijen, Microsoft Research, Redmond, WA, USA, daan@microsoft.com; Anton Lorenzen, University

of Edinburgh, School of Informatics, Edinburgh, UK, anton.lorenzen@ed.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART40

https://doi.org/10.1145/3571233

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

https://doi.org/10.1145/3571233
https://doi.org/10.1145/3571233

40:2 Daan Leijen and Anton Lorenzen

The TRMc transformation can automatically transform a function like map to a tail-recursive

variant, but also improves on the efficiency of the manual version by using in-place updates on the

accumulation argument. In previous work [Bour et al. 2021; Friedman and Wise 1975; Risch 1973],

TRMc algorithms are given but all fall short of showing why these are correct, or provide particular

insight in what other transformations may be possible. In this article we generalize tail recursion

modulo cons (TRMc) to modulo contexts (TRMC), and try to bring the general principles out of the

shadows of particular implementations and into the light of equational reasoning.

• Inspired by the elegance of program calculation as pioneered by Bird [1984], Gibbons [2022], Hut-

ton [2021], Meertens [1986], and many others, we take an equational approach where we calculate
a general tail-recursion modulo context transformation from its specification and two general

context laws. The resulting generic algorithm is concise and independent of any particular instan-

tiation of the abstract contexts as long as their operations satisfy the context laws (Section 3).

• We can instantiate the algorithm by providing an implementation of application and composition

on abstract contexts, and show that these satisfy the context laws. In Section 4 we provide

known instantiations of TRMC, namely modulo evaluation contexts (CPS), and modulo asso-
ciative operations, and show that those instances satisfy the context laws. We then proceed to

show various instantiations not so commonly associated with TRMC that arise naturally in our

generic approach, namely modulo defunctionalized evaluation contexts, modulomonoids, modulo

semirings, and modulo exponents (and also modulo cons products in Section 7.1).

• In Section 5 we turn to the most important instance in practice, modulo cons. We show how we

can instantiate our operations to the hole calculus of Minamide [1998], and that this satisfies

the context laws and the imposed linear typing discipline. This gives us an elegant and sound

in-place updating characterization of TRMc where the in-place update is hidden behind a purely

functional (linear) interface.

• This is still somewhat unsatisfying as it does not provide insight in the actual in-place mutation

as such implementation is only alluded to in prose [Minamide 1998]. We proceed by giving a

second instantiation of modulo cons where we target the heap semantics of Reinking, Xie et

al. [2021] to be able to reason explicitly about the heap and in-place mutation. Just like we could

calculate the generic TRMC translation from its specification, we again calculate the efficient

in-place updating versions for context application and composition from the abstract context

laws. These calculated reductions are exactly the implementation as used in our Koka compiler.

• Awell-known problemwith the modulo cons transformation is that the efficient in-place mutating

implementation fails if the semantics is extended with non-local control operations, like call/cc,

shift/reset [Danvy and Filinski 1990; Shan 2007; Sitaram and Felleisen 1990], or general algebraic

effect handlers [Plotkin and Power 2003; Plotkin and Pretnar 2009], where one can resume more

than once. This is in particular troublesome for a language like Koka which relies foundationally

on algebraic effect handlers [Leijen 2017; Xie and Leijen 2021]. In Section 6 we show two novel

solutions to this: The general approach generates two versions for each TRMc translation and

chooses at runtime the appropriate version depending on whether non-linear control is possible.

This duplicates code though, and may be too pessimistic where the slow version is used even if

no non-linear control actually occurs. Suggested by our heap semantics, we can do better though

– in the hybrid approach we rely on the precise reference counts [Reinking, Xie et al. 2021],

together with runtime support for context paths. This way we can efficiently detect at runtime if

a context is unique, and fall back to copying only if required due to non-linear control.

• We have fully implemented the hybrid TRMc approach in the Koka compiler, and our benchmarks

show that this approach can be very efficient. We measure various variants of modulo cons
recursive functions and for linear control the TRMc transformed version is always faster than

alternative approaches (Section 8).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:3

2 AN OVERVIEW OF TAIL RECURSION MODULO CONS
As shown in the introduction, the prototypical example of a function that can be transformed by

TRMc is the map function. One way to rewrite the map function manually to become tail-recursive is

to use continuation passing style (CPS) where we add a continuation parameter k:
fun mapk(xs : list<a>, f : a -> e b, k : list -> e list) : e list

match xs
Cons(x,xx) -> val y = f(x) in mapk(xx, f, compose(k, fn(ys) Cons(y, ys)))
Nil -> apply(k,Nil)

fun map(xs : list<a>, f : a -> e b) : e list
mapk(xs, f, id)

where we have to evaluate f(x) before allocating the closure fn(ys) Cons(y,ys) since f may have

an observable (side) effect. The function id is the identity function, and apply and compose regular

function application and composition:

fun compose(f : b -> e c, g : a -> e b) : (a -> e c) = fn(x) f(g(x))
fun apply(f : a -> e b, x : a) : e b = f(x)
fun id(x : a) : a = x

All our examples use the Koka language [Leijen 2021] since it has a full implementation of TRMc

using the design in this paper, including support for non-linear control (which cannot be handled

by previous TRMc techniques). Note that every function arrow in Koka has three arguments where

the type a -> e b denotes a function from type a to b with potential (side) effects e. The type of map

signifies that the polymorphic effect e of the map function itself is the same as the effect e of the

passed in function f.

We would like to stress though that the described techniques are not restricted to Koka as such,

and apply generally to any strict programming language (and particular instances can already

be found in various compilers, including GCC, see Section 4.6). Some techniques, like the hybrid

approach in Section 6.1 may require particular runtime support (like precise reference counts) but

this is again independent of the particular language.

2.1 Continuation Style TRMc
Our new tail-recursive version of map may not consume any extra stack space, but it achieves this

at the cost of allocating many intermediate closures in the heap, that each allocate a Cons node for

the final result list. The TRMc translation is based on the insight that for many contexts around a

tail-recursive call we can often use more efficient implementations than function composition.

In this paper, we are going to abstract over particular constructor contexts and instead represent

abstract program contexts as ctx<a>with three operations. First, the ctx body expression creates such

contexts which can contain a single hole denoted as □; for example ctx Cons(1,Cons(2,□)) : ctx<list

<int>>. We can see here that the context type ctx<a> is parameterized by the type of the hole a,

which for our purposes must match the result type as well. Furthermore, we can compose and

apply these abstract contexts as:

fun comp(k1 : ctx<a>, k2 : ctx<a>) : ctx<a>
fun app(k : ctx<a>, x : a) : a

Our general TRMC translation can convert a function like map automatically to a tail-recursive

version by recognizing that each recursive invocation to map is under a constant constructor context

(Section 5), leading to:

fun mapk(xs : list<a>, f : a -> e b, k : ctx<list>) : e list
match xs

Cons(x,xx) -> val y = f(x) in mapk(xx, f, comp(k, ctx Cons(y,□)))
Nil -> app(k, Nil)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:4 Daan Leijen and Anton Lorenzen

fun map(xs : list<a>, f : a -> e b) : e list
mapk(xs, f, ctx □)

This is essentially equivalent to our manually translated CPS-style map function where we replaced

function application and composition with context application and context composition, and the

identity function with ctx □.

Thus, an obvious way to give semantics to our abstract contexts ctx<a> is to represent them as

functions a -> a, where a context expression is interpreted as a function with a single parameter for

the hole, e.g. ctx Cons(1,Cons(2,□)) = fn(x) Cons(1,Cons(2,x)) (and therefore ctx □ = fn(x) x = id).

Context application and composition then map directly onto function application and composition:

alias ctx<a> = a -> a
fun comp(k1 : ctx<a>, k2 : ctx<a>) : ctx<a> = compose(k1,k2)
fun app(k : ctx<a>, x : a) : a = apply(k,x)

Of course, using such semantics is equivalent to our original manual implementation and does not

improve efficiency.

2.2 Linear Continuation Style
The insight of Risch [1973] and Friedman and Wise [1975] that leads to increased efficiency is

to observe that the transformation always uses the abstract context k in a linear way, and we

can implement the composition and application by updating the context holes in-place. Following
the implementation strategy of Minamide [1998] for their hole-calculus, we can represent our

abstract contexts as a Minamide tuple with a res field pointing to the final result object, and a hole

field which points directly at the field containing the hole inside the result object. Assuming an

assignment primitive (:=), we can then implement composition and application efficiently as:

value type ctx<a>
Id
Ctx(res : a, hole : ptr<a>)

fun comp(k1 : ctx<a>, k2 : ctx<a>) : ctx<a>
Ctx(app(k1,k2.res), k2.hole)

fun app(k : ctx<a>, x : a) : a
match k

Id -> x
Ctx(res,hole) -> { hole := x; res }

where the empty ctx □ is represented as Id (since we do not yet have an address for the Ctx.hole

field). If we inline these definitions in the mapk function, we can see that we end up with a very

efficient implementation where each new Cons cell is directly appended to the partially build final

result list. In our actual implementation we optimize a bit more by defining the ctx type as a value

type with only the Ctx constructor where we represent the Id case with a hole field containing a

null pointer. Such a tuple is passed at runtime in two registers and leads to efficient code where the

match in the app function for example just zero-compares a register (see App. E in the supplement).

Section 8 shows detailed performance figures that show that the TRMc transformation always

outperforms alternative implementations (for linear control flow).

In the following sections we formalize our calculus and calculate a general tail-recursion modulo

contexts algorithm (Section 3) that we then instantiate to various use cases (Section 4), and in

particular we study the efficient modulo cons instantiation (Section 5), its extension to non-linear

control (Section 6), further improvements to the constructor contexts (Section 7), and finally

conclude with benchmarks (Section 8) and related work. Proofs and further benchmarks can be

found in the supplementary technical report [Leijen and Lorenzen 2022].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:5

3 CALCULATING TAIL-RECURSION-MODULO-CONTEXT
In order to reason precisely about our transformation, we define a small calculus in Figure 1. The

calculus is mostly standard with expressions e consisting of values v, application e1 e2, let-bindings,
and pattern matches. We assume well-typed programs that cannot go wrong, and where pattern

matches are always complete and cannot get stuck. Since we reason in particular over recursive

definitions, we add a special environment F of named recursive functions f . We could have encoded

this using a fix combinator but using explicitly named definitions is more convenient for our

purposes.

Following the approach of Wright and Felleisen [1994], we define applicative order evaluation

contexts E. Generally, contexts are expressions with one subexpression denoted as a hole □. We

write E[v] for the substitution E[□ := v] (which binds tighter than function application). The

definition of E ensures a single reduction order where we never evaluate under a lambda. The

operational semantics can now be given using small step reduction rules of the form e1 −→ e2
together with the (step) rule to reduce in any evaluation context E[e1] ↦−→ E[e2] (and in essence,

an E context is an abstraction of the program stack and registers). We write ↦−→∗ for the reflexive
and transitive closure of the ↦−→ reduction relation. The small step operational rules are standard,

except for the (fun) rule that assumes a global F environment of recursive function definitions.

When e ↦−→∗ v, we call e terminating (also called valuable [Harper 2012]). When an evaluation

does not terminate, we write e ⇑ . We write e1 � e2 if e1 and e2 are extensionally equivalent: either
e1 ↦−→∗ v and e2 ↦−→∗ v, or both e1 ⇑ and e2 ⇑ . During reasoning, we often use the rule that when

e2 is terminating, then (𝜆x . e1) e2 � e1 [x:=e2].

3.1 Abstract Contexts
Before we start calculating our general TRMC transformation, we first define abstract contexts as an
abstract type ctx 𝜏 in our calculus. There are three context operations: creation (as ctx), application

(as app), and composition (as (•)). These are not available to the user but instead are only generated
as the target calculus of our TRMC translation. We extend the calculus as follows:

v ::= . . . | ctx E | _ • _ | app
where we assume that the abstract context operations are always terminating. In order to reason

about contexts as an abstract type, we assume two context laws. The first one relates the application

with the construction of a context:

(appctx) app (ctx E) e = E[e]
The second law states that composition of contexts is equivalent to a composition of applications:

(appcomp) app (k1 • k2) e = app k1 (app k2 e)
When we instantiate to a particular implementation context, we need to show the context laws are

satisfied. In such case, we only need to show this for terminating expressions e, since if e ⇑ , the
laws hold by definition. In particular, for (appctx) it follows directly that app k e ⇑ and E[e] ⇑ . Of
particular note is that the latter only holds for E contexts and that is one reason why evaluation

contexts are the maximum context possible for our TRMC translation. Similarly, for (appcomp) it
follows directly that (app (k1 • k2) e) ⇑ and app k1 (app k2 e) ⇑ .

3.2 Calculating a General Tail-Recursion-Modulo-Contexts Algorithm
In this section we are going to calculate a general TRMC translation algorithm from its specification.

For clarity we use single parameter functions for proofs and derivations (but of course the results

extend straightforwardly to multiple parameter functions).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:6 Daan Leijen and Anton Lorenzen

Expressions:

e ::= v (value) v ::= x, y (variables)

| e e (application) | f (recursive functions)

| let x = e in e (let binding) | 𝜆x . e (functions)

| match e { pi ↦→ ei } (matching, i ⩾ 1) | Ck v1 . . . vn (constructor of arity k,
with k ⩾ 0 and n ⩽ k)

p ::= Ck x1 . . . xk (pattern) F ::= { fi = 𝜆x . ei } (recursive definitions)

Syntax:

f x1 . . . xn = e � f = 𝜆x1 . . . xn . e
𝜆x1 . . . xn . e � 𝜆x1 𝜆xn . e

Evaluation Contexts:

E ::= □ | E e | v E | let x = E in e | match E { pi ↦→ ei } (strict, left-to-right)

Operational Semantics:

(let) let x = v in e −→ e[x:=v]
(beta) (𝜆x . e) v −→ e[x:=v]
(fun) f v −→ e[x:=v] with f = 𝜆x . e ∈ F
(match) match (Ck v1 . . . vk) { pi ↦→ ei } −→ ei [x1:=v1, . . ., xk :=vk] with pi = Ck x1 . . . xk

e1 −→ e2
E[e1] ↦−→ E[e2]

[step]

Fig. 1. Syntax and operational semantics.

Consider a function f x = ef with its TRMC transformed version denoted as f ′:

f ′ x k = Jef Kf ,k (k ̸∈ fv(ef))
Our goal is to calculate the static TRMC transformation algorithm J_Kf ,k from its specification. The

first question is then how we should even specify the intended behaviour of such function?

We can follow the standard approach for reasoning about continuation passing style (CPS) here.

For example, Gibbons [2022] calculates the CPS version of the factorial function, called fact ′, from
its specification as: k (fact n) � fact ′ n k, and similarly, Hutton [2021] calculates the CPS version

of an evaluator from its specification as: exec k (eval e) � eval′ e k. Following that approach, we

use app k (f e) � f ′ e k (a) as our initial specification. This seems a good start since it implies:

f e
= □[f e] { context }
= app (ctx □) (f e) { (appctx) }
� f ′ e (ctx □) { specification (a) }
and we can thus replace any applications of f e in the program with applications to the TRMC

translated f ′ instead as f ′ e (ctx □).
Unfortunately, the specification is not yet general enough as it does not include the translation

function J_Kf ,k itself which limits what we can derive. Can we change this? Let’s start by deriving

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:7

how we can satisfy our initial specification (a):

app k (f e)
� app k ef [x:=e] { (fun), e is terminating }
= (app k ef) [x:=e] { x ̸∈ fv(k) }
= Jef Kf ,k [x:=e] { define specification (b) below }
� f ′ e k { (fun) }
(and if e ⇑ , then app k (f e) ⇑ and f ′ e k ⇑ follow directly).

This suggests a more general specification as app k e � JeKf ,k (b) (for any e) which both implies

our original specification, but also includes the translation function now. The new specification

directly gives us a trivial solution for the translation as:

(base) JeKf ,k = app k e

That is not quite what we need for general TRMC though since this does not translate any tail calls

modulo a context. However, we can be more specific by matching on the shape of e. In particular,

we can match on general tail-modulo-context calls as e = E[f e1]. We can then calculate:

app k E[f e1]
= app k (app (ctx E) (f e1)) { (appctx) }
= app (k • ctx E) (f e1) { (appcomp) }
� f ′ e1 (k • ctx E) { specification (a) }
= JE[f e1]Kf ,k { define }
which leads to the following set of equations:

(tail) JE[f e]Kf ,k = f ′ e (k • ctx E) iff (★)
(base) JeKf ,k = app k e otherwise

Note that the equations overlap – for a particular instance of the algorithm we generally constrain

the (tail) rule to only apply for certain contexts E constrained by some particular (★) condition (for

example, constructor contexts), falling back to (base) otherwise. Similarly, the (tail) case allows
a choice in where to apply the tail call for expressions like f (f e) for example and a particular

instantiation of (★) should disambiguate for an actual algorithm. By default, we assume that any

instantiation matches on the innermost application of f (for reasons discussed in Section 4.2).

This is still a bit constrained, as these equations do not consider any evaluation contexts E where

the recursive call is under a let or match expression. We can again match on these specific forms

of e. For example let x = e0 in e1 where e0 ≠ E[f e′] (so it does not overlap with E contexts):

app k (let x = e0 in e1)
� app k e1 [x:=e0] { (let), e0 is terminating }
= (app k e1) [x:=e0] { x ̸∈ fv(k) }
� let x = e0 in app k e1 { e0 is terminating }
� let x = e0 in Je1Kf ,k { specification }
= Jlet x = e0 in e1Kf ,k { define }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:8 Daan Leijen and Anton Lorenzen

(tlet) Jlet x = e0 in eKf ,k = let x = e0 in JeKf ,k
(tmatch) Jmatch e0 { pi → ei }Kf ,k = match e0 { pi → JeiKf ,k }
(tail) JE[f e1 . . . en]Kf ,k = f ′ e1 . . . en (k • (ctx E)) iff (★)
(base) JeKf ,k = app k e otherwise

where e0 ≠ E[f e1 . . . en].

Fig. 2. Calculated algorithm for general selective tail recursion modulo context transformation. It is parame-

terized by the (★) condition, and the composition (•) and application (app) operations

(and if e0 ⇑ , then also app k (let x = e0 in e1) ⇑ and Jlet x = e0 in e1Kf ,k ⇑). We can do the same

for matches, where e0 ≠ E[f e′]:
app k (match e0 { pi → ei })

� app k ei [x1:=v1, . . ., xn:=vn] { pi = Ci x1 . . . xn, e0 � Ci v1 . . . vn, 1 }
= (app k ei) [x1:=v1, . . ., xn:=vn] { xj ̸∈ fv(k) }
� JeiKf ,k [x1:=v1, . . ., xn:=vn] { specification }
� match e0 { pi → JeiKf ,k } { (1) }
= Jmatch e0 { pi → ei }Kf ,k { define }
(and if e0 ⇑ , then also app k (match e0 { . . . }) ⇑ and Jmatch e0 { . . . }K ⇑).

Figure 2 shows all four of the calculated equations for our generic tail recursion modulo contexts

transformation (extended to multiple parameters). We can instantiate this algorithm by defining the

context type ctx 𝛼 , the context construction (ctx), composition (•), and application (app) operations,
and finally the (★) condition constrains the allowed context E to fit the particular context type.

4 INSTANTIATIONS OF THE GENERAL TRMC TRANSFORMATION
With the general TRMC transformation in hand, we discuss various instantiations in this section.

In the next section we look at the update-in-place modulo cons (TRMc) instantiation in detail.

4.1 Modulo Evaluation Contexts
If we use true for the (★) condition, we can translate any recursive tail modulo evaluation context

functions. Representing our abstract context directly as an E context is usually not possible though

as E contexts generally contain code. The usual way to represent an arbitrary evaluation context E

is simply as a (continuation) function 𝜆x . E[x] with a context type ctx 𝛼 = 𝛼 → 𝛼 :

(ectx) ctx E = 𝜆x . E[x] (x ̸∈ fv(E))
(ecomp) k1 • k2 = k1 ◦ k2
(eapp) app k e = k e
This is an intuitive definition where ctx □ corresponds to the identity function and context compo-

sition to function composition. If we apply the TRMC translation we are essentially performing a

selective CPS translation where the context E is represented as the continuation function. We can

verify that the context laws hold for this instantiation (where we can assume e is terminating):

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:9

Composition:

app (k1 • k2) e
= app (k1 ◦ k2) e { (ecomp) }
= app (𝜆x . k1 (k2 x)) e { def ◦ }
= (𝜆x . k1 (k2 x)) e { (eapp) }
� k1 (k2 e) { e term., (beta) }
= k1 (app k2 e) { (eapp) }
= app k1 (app k2 e) { (eapp) }

and application:

app (ctx E) e
= app (𝜆x . E[x]) e { (ecomp) }
= (𝜆x . E[x]) e { (eapp) }
� (E[x]) [x:=e] { e term., (beta) }
= E[e] { x ̸∈ fv(E) }

As a concrete example, let’s apply the modulo evaluation context to the map function:

map xs f = match xs { Nil→ Nil
Cons x xx → let y = f x in Cons y (map xx f) }

which translates to:

map′ xs f k = match xs { Nil→ app k Nil
Cons x xx → let y = f x in map′ xx f (k • (ctx (Cons y □))) }

and which the compiler can further simplify into:

map′ xs f k = match xs { Nil→ k Nil
Cons x xx → let y = f x in map′ xx f (𝜆x . k (Cons y x)) }

where we derived exactly the standard CPS style version of map as shown in Section 2. A general

evaluation context transformation creates more opportunities for tail-recursive calls, but this also

happens at the cost of potentially heap allocating continuation closures. As such, it is not common

for strict languages to use this instantiation. The exception would be languages like Scheme that

always guarantee tail-calls but in that case the modulo evaluation contexts instantiation is already

subsumed by general CPS conversion.

4.2 Nested Translation of Modulo Evaluation Contexts
The current instantiation is already very general as it applies to any E context but we can do a

little better. While the innermost non-tail call E[f e] becomes f ′ e (k • ctx E), the context E may

contain itself further recursive calls to f . Since k is just a variable this allocates a closure for each

composition (•) and invokes every nested call f e with an empty context as f ′ e (ctx □) before
composing with k. This is not ideal, and in the classic CPS translation this is avoided by passing k
itself into the closure for ctx E directly. Fortunately, we can achieve the same by specialising the

compose function using the specification (b):

k • (ctx E)
= 𝜆x . k ((ctx E) x) { (ecomp), (•) }
� 𝜆x . k E[x] { (ectx), (beta) }
= 𝜆x . app k E[x] { (eapp) }
� 𝜆x . JE[x]Kf ,k { specification (b) }
That is, in the compiler, instead of generating k • (ctx E), we invoke the TRMC translation recur-

sively in the (tail) case and generate 𝜆x . JE[x]Kf ,k instead. This avoids the allocation of function

composition closures and directly passes the continuation k to any nested recursive calls.

4.3 Modulo Defunctionalized Evaluation Contexts
In order to better understand the shapes that evaluation contexts can take, we want to consider

the defunctionalization [Danvy and Nielsen 2001; Reynolds 1972] of the general evaluation context

transformation. It turns out that this yields an interesting context in its own right. First, we observe

that in any recursive function the evaluation context can only take a finite number of shapes

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:10 Daan Leijen and Anton Lorenzen

depending on the number of recursive calls. We write this as:

E : := □ | E1 | . . . | En
We define an accumulator datatype by creating a constructor H for the □ context and for each Ei a

constructor Ai that carries the free variables of Ei. The compiler then generates an app function

where we interpret Ai by evaluating Ei with the stored free variables:

(dctx) ctx Ei = Ai x1 . . . xm H where x1, . . ., xm = fv(Ei)
(dcomp) k1 • H = k1
(dcomp) k1 • (Ai x1 . . . xm k2) = Ai x1 . . . xm (k1 • k2)
(dapp) app H e = e
(dapp) app (Ai x1 . . . xm k) e = JEi [e , x1 . . . xm]Kf ,k
Just as we saw in Section 4.2, we need to use the translated evaluation context in the definition

of app translate nested calls. The context laws now follow by induction – see App. B.1 in the

supplement for the derivations. In App. C in the supplement we also show that the translation

remains typable in System F as this not generally the case for defunctionalized programs [Pottier

and Gauthier 2004]. Applying this instantiation to the map function, we obtain:

type ctx 𝛼 = H | A1 𝛼 (ctx 𝛼)
map′ xs f k = match xs { Nil→ app k Nil; Cons(x, xx) → let y = f x in map′ xx f (A1 y k) }
In the Cons branch we have inlined k • (A1 y H). The app function interprets A1 by calling itself

recursively on the stored evaluation context:

app k xs = match k { H→ xs; A1 (y, k′) → app k′ (Cons y xs) }
As we can see, using the modulo defunctionalized evaluation context translation, we derived exactly

the accumulator version of the map function that reverses the accumulated list in the end (where app

is reverse)! In particular, for the special case where all evaluation contexts are constructor contexts

Cm x1 . . . (f . . .) . . . xm (as is the case for map), the accumulator datatype stores a path into the

datastructure we are building and thus essentially becomes a zipper structure [Huet 1997].

This defunctionalized approach might resemble general closure conversion at first [Appel 1991]:

In both approaches, we store the free variables in a datatype. However, in closure conversion the

datatype typically also contains a machine code pointer and one jumps to the code by calling this

pointer, while in our case we match on the specialized constructors (similar to the approach of

Tolmach and Oliva [1998]).

Reuse. As the defunctionalization makes the evaluation context explicit, we can optimize it

further. As Sobel and Friedman [1998] note, the defunctionalized closure is only applied once and

we can reuse its memory for other allocations. This can happen automatically in languages with

reuse analysis such as Koka [Lorenzen and Leijen 2022], Lean [Ullrich and de Moura 2019], or

OPAL [Didrich et al. 1994]. In particular, in the app function, the match:

A1 y k′→ app k′ Cons(y, xs)
can reuse the A1 in-place to allocate the Cons node if the A1 is unique at runtime. In our case, the

context is actually always unique (we show this formally in Section 5.1), and the A1 nodes are

always reused! Even better, if the initial list is unique, we also reuse the initial Cons cell for the
A1 accumulator itself in map′ and no allocation takes place at all – the program is functional but

in-place [Reinking, Xie et al. 2021].

4.4 Modulo Associative Operator Contexts
In the previous instantiations we considered general evaluation contexts. However, we can often

derive more efficient instantiations by considering more restricted contexts. A particularly nice

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:11

example are monoidal contexts. For any monoid with an associative operator ⊙ : 𝜏 →𝜏 → 𝜏 and a

unit value unit : 𝜏 , we can define a restricted operator context as:

A : := □ | v ⊙ A

For a concrete example, consider the length function defined as:

length xs = match xs { Cons x xx → 1 + length xx; Nil→ 0 }
which applies for integer addition (⊙ = +, unit = 0). The idea is now to define a compile-time

fold function (|_|) over a context A to always reduce the context to a single element of type 𝜏 :

(|□|) = unit
(|v ⊙ A|) = v ⊙ (|A|)
We can now instantiate the abstract contexts by defining the (★) condition to constrain the E

context to A, and the context type to ctx 𝜏 = 𝜏 , where we use the fold operation to represent

contexts always as a single element of type 𝜏 :

(lctx) ctx A = (|A|)
(lcomp) k1 • k2 = k1 ⊙ k2
(lapp) app k e = k ⊙ e
The context laws hold for this definition. For composition we can derive:

app (k1 • k2) e
= app (k1 ⊙ k2) e { (lcomp) }
= (k1 ⊙ k2) ⊙ e { (lapp) }
= k1 ⊙ (k2 ⊙ e) { assoc. }
= app k1 (app k2 e) { (lapp) }
and for context application we have:

app (ctx A) e
= app (|A|) e { (lctx) }
= (|A|) ⊙ e { (lapp) }
We proceed by induction over A.

Case A = □:
= (|□|) ⊙ e
= unit ⊙ e { fold }
= e { unit }
= □[e] { □ }

and the case A = v ⊙ A
′
:

= (|v ⊙ A
′ |) ⊙ e

= (v ⊙ (|A′ |)) ⊙ e { fold }
= v ⊙ ((|A′ |) ⊙ e) { assoc. }
= v ⊙ A

′[e] { induction hyp. }
= A[e] { A context }

Common instantiations include integer addition (⊙ = +, unit = 0) and integer multiplication

(⊙ = ×, unit = 1). The TRMC algorithm with A contexts instantiated with integer addition,

translates the previous length function to the following tail-recursive version:

length′ xs k = match xs { Cons x xx → length′ xx (k • (ctx (1 + □))); Nil→ app k 0 }
The intention is that the fold function is performed by the compiler, and the compiler can simplify

this further as:

k • (ctx (1 + □)) = k + (ctx (1 + □)) = k + (|1 +□|) = k + 1

such that we end up with:

length′ xs k = match xs { Cons x xx → length′ xx (k + 1); Nil→ k }
This time we derived exactly the text book accumulator version of length.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:12 Daan Leijen and Anton Lorenzen

Using Right Biased Contexts. Our defined context only allows the recursive call on the left, but

we can also define a right biased context:

A : := □ | A ⊙ v

with the fold defined as:

(|□|) = unit
(|A ⊙ v |) = (|A|) ⊙ v
We can now compose in the opposite order:

(rctx) ctx A = (|A|)
(rcomp) k1 • k2 = k2 ⊙ k1
(rapp) app k e = e ⊙ k
We can again show that the context laws hold for this definition (see App. B.2 in the supplement).

As an example, we can instantiate ⊙ as list append ++ with the empty list as the unit element to

transform the reverse function:
reverse xs = match xs { Cons x xx → reverse xx ++ [x]; Nil→ [] }
First, our TRMC algorithm transforms it into:

reverse′ xs k = match xs { Cons x xx → reverse′ xx (k • (ctx (□ ++ [x]))); Nil→ app k [] }
and with our instantiated context, this simplifies to:

reverse′ xs k = match xs { Cons x xx → reverse′ xx ([x] ++ k); Nil→ [] ++ k }
Using right-biased contexts, we derived the text book accumulator version of reverse.

4.5 Modulo Monoid Contexts
To handle general monoids, we need to consider recursive calls on both sides of the associative

operation:

A : := □ | v ⊙ A | A ⊙ v

This context A expresses arbitrarily nested applications of ⊙. As monoid operations may not be

commutative we cannot use a single element to represent the context. Instead we need to use a

product context where we accumulate the left- and right context separately:

(|□|) = (unit, unit)
(|v ⊙ A|) = (v ⊙ l, r) where (l, r) = (|A|)
(|A ⊙ v |) = (l, r ⊙ v) where (l, r) = (|A|)
which we compose as:

(actx) ctx A = (|A|)
(acomp) (l1, r1) • (l2, r2) = (l1 ⊙ l2, r2 ⊙ r1)
(aapp) app (l, r) e = l ⊙ e ⊙ r
We can again show that the context laws hold for this definition (see App. B.3 in the supplement).

4.6 Modulo Semiring Contexts
We can also combine the associative operators of two monoids, as long as one distributes over the

other. This is the case for semirings in particular (although we do not need commutativity of +).
Semiring contexts are relatively common in practice. For example, consider the following hashing

function for a list of integers as shown by Bloch [2008]:

hash xs = match xs { Cons x xx → x + 31 ∗ (hash xx) ; Nil→ 17 }
Implementing modulo semiring contexts in a compiler may be worthwhile as deriving a tail

recursive version manually for such contexts is not always straightforward (and the interested

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:13

reader may want to pause here and try to rewrite the hash function in a tail recursive way before

reading on).

We can define a general context for semirings as:

A : := □ | v + A | v ∗ A | A + v | A ∗ v

For simplicity, we assume we have a commutative semiring where both addition and multiplication

commute. This allows us to use again a product representation at runtime where we accumulate

the additions and multiplications separately (and without commutativity we need a quadruple

instead). In the definition of the fold we take into account that the multiplication distributes over

the addition:

(|□|) = (unit+, unit∗)
(|v + A|) = (v + l, r) where (l, r) = (|A|)
(|v ∗ A|) = (v ∗ l, v ∗ r) where (l, r) = (|A|)
(|A + v |) = (|v + A|) (+ commutes)
(|A ∗ v |) = (|v ∗ A|) (∗ commutes)
Finally, to compose the contexts we need to use distributivity again. Note how the (scomp) rule
mirrors the definition of (|A|) above:
(sctx) ctx A = (|A|)
(scomp) (l1, r1) • (l2, r2) = (l1 + (r1 ∗ l2), r1 ∗ r2)
(sapp) app (l, r) e = l + r ∗ e
We can show the context laws hold for these definitions:

app ((l1, r1) • (l2, r2)) e
= app (l1 + (r1 ∗ l2), r1 ∗ r2) e { (scomp) }
= (l1 + (r1 ∗ l2)) + (r1 ∗ r2) ∗ e { (sapp) }
= l1 + r1 ∗ (l2 + r2 ∗ e) { assoc and distr . }
= app (l1, r1) (app (l2, r2) e) { (sapp) }
and

app (ctx A) e
= app (|A|) e { (sctx) }
= l + r ∗ e { (sapp), for (l, r) = (|A|) }
We proceed by induction over A (where we compress some cases for brevity):

case A = □:
= l + r ∗ e { (|□|) = (l, r) }
= unit+ + unit∗ ∗ e { fold }
= e { unit }
= □[e] { □ }

and A = v1 + v2 ∗ A
′
:

= l + r ∗ e { (|v1 + v2 ∗ A′ |) = (l, r) }
= (v1 + v2 ∗ l′) + (v2 ∗ r ′) ∗ e { (|A′ |) = (l′, r ′) }
= v1 + v2 ∗ (l′ + r ′ ∗ e) { assoc. and distr }
= v1 + v2 ∗ A′[e] { induction hyp. }
= A[e] { A context }

When we apply this to the hash function, we derive the tail recursive version as:

hash′ xs k = match xs { Cons x xx → hash′ xx (k • (ctx (x + 31 ∗□))); Nil→ app k 17 }
which further simplifies to:

hash′ xs (l, r) = match xs { Cons x xx → hash′ xx (l + r ∗ x, r ∗ 31); Nil→ l + r ∗ 17 }
The final definition may not be quite so obvious and we argue that the modulo semiring instantiation
may be a nice addition to any optimizing compiler. Indeed, it turns out that GCC implements this

optimization [Dvořák 2004] for integers and floating point numbers (if –fast-math is enabled to allow

the assumption of associativity). This implementation specifically creates two local accumulators

for addition and multiplication, and uses a direct while loop to compile the tail recursive calls.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:14 Daan Leijen and Anton Lorenzen

4.7 Modulo Exponent Contexts
As a final example of an efficient representation of contexts we consider exponent contexts that
consist of a sequence of calls to a function g:
E : := □ | g E

If we use a defunctionalized evaluation context from Section 4.3 we derive a datatype that is

isomorphic to the peano-encoded natural numbers: the continuation counts how often we still have

to apply g. As such, we can represent it more efficiently by an integer, where we fold an evaluation

context into a count:

(|□|) = 0

(|g A|) = (|A|) + 1

We can define the primitive operations as:

(xctx) ctx A = (|A|)
(xcomp) k1 • k2 = k1 + k2
(xapp) app 0 e = e
(xapp) app (k + 1) e = app k (g e)
where app k e applies the function g to its argument k times. See App. B.4 in the supplement for

the derivations that show the context laws hold for this definition.

Note that if g is the enclosing function f , then the (xapp) specification is not tail-recursive. In

that case, we can again use specification (b) to replace app k (g e) by Jg eKf ,k at compile time (as

shown in Section 4.2). A nice example of such an exponent context is given by Wand [1980] who

considers McCarthy’s 91-function:

g x = if x > 100 then x − 10 else g (g (x + 11))
Using the exponent context with the recursive (xapp), we obtain a mutually tail-recursive version:

g′ x k = if x > 100 then app k (x − 10) else g′ (x + 11) (k + 1)
app k e = if k = 0 then e else g′ e (k − 1)

5 MODULO CONSTRUCTOR CONTEXTS
As shown in the introduction, the most interesting instantiation is of course the modulo cons
transformation on constructor contexts, since that particular case can be implemented using in-

place updates which can usually not be replicated by the programmer. We can define a constant

constructor context K as:

K ::= □ | Ck v1 . . . K . . . vk
Note that this definition is a bit too restricted in practice where we would like to allow expressions

e as constructor fields as well (as in Cons(f(x),map(xx,f)) for example). We address this in Section 7,

where we show how we can further generalize K contexts depending on the evaluation order. For

the formal development we use the more restricted K contexts for now.

We define the (★) condition in the TRMC translation to restrict the context E to K contexts only.

A possible way to define the contexts is to directly use K as a runtime context:

(kctx) ctx K = K

(kcomp) K1 • K2 = K1 [K2]
(kapp) app K e = K[e]
Similar to general evaluation contexts (Section 4.1), the context laws hold trivially for such definition

(App. B.5 in the supplement) – and just as with general evaluation contexts, the map function

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:15

translates to:

map′ xs f k = match xs {
Nil→ app k Nil
Cons x xx → let y = f x in map′ xx f (k • (ctx (Cons y □))) }

Even though this is a valid instantiation, it does not yet imply that this can be efficient. In particular,

composition creates a fresh context every time as K1 [K2] and it may be difficult to implement such

substitution efficiently at runtime as it needs to copy K1 along the path to the hole. What we are

looking for instead is an in-place updating instantiation that can compose in constant time.

5.1 Minamide
Minamide [1998] presents a “hole calculus” that can directly express our contexts in a functional

way, but also allows an efficient in-place updating implementation. Using the hole calculus as our

target calculus, we can instantiate the translation function using Minamide’s system.

We define the context type as a “hole function” (
ˆ𝜆x . e), where ctx 𝛼 ≡ hfun 𝛼 𝛼 . and instantiate

the context operations to use the primitives as given by Minamide [1998]:

(hctx) ctx K = ˆ𝜆x . K[x]
(hcomp) k1 • k2 = hcomp k1 k2
(happ) app k e = happ k e
Satisfyingly, our primitives turn out to map directly to the hole calculus primitives. The reduction

rules for happ and hcomp specialized to our calculus are [Minamide 1998, fig. 5]:

(happly) happ (ˆ𝜆x . K) v −→ K[x:=v]
(hcompose) hcomp (ˆ𝜆x . K1) (ˆ𝜆y. K2) −→ ˆ𝜆y. K1 [x:=K2]
This means that for any context k, we have k � ˆ𝜆x . K[x] (1). We can now show that our context

laws are satisfied for this system:

Composition:

app (k1 • k2) e
= app (hcomp k1 k2) e { (hcomp) }
= happ (hcomp k1 k2) e { (happ) }
� happ (hcomp (ˆ𝜆x . K1 [x]) (ˆ𝜆y. K2 [y])) e { (1), 2 }
� happ (ˆ𝜆y. K1 [x] [x:=K2 [y]]) e { (hcomp) }
� (K1 [x] [x:=K2 [y]]) [y:=e] { (happly) }
= K1 [K2 [e]] { contexts }
� K1 [happ (ˆ𝜆y. K2 [y]) e] { (happly) }
� happ (ˆ𝜆x . K1 [x]) (happ (ˆ𝜆y. K2 [y]) e) { (happly) }
� happ k1 (happ k2 e) { (1), (2) }
= app k1 (app k2 e) { (happ) }

and application:

app (ctx K) e
= app (ˆ𝜆x . K[x]) e { (hctx) }
= happ (ˆ𝜆x . K[x]) e { (happ) }
� K[x] [x:=e] { (happly) }
= K[e] { contexts }

The hole calculus is restricted by a linear type discipline where the contexts ctx 𝛼 ≡ hfun 𝛼 𝛼

have a linear type. This is what enables an efficient in-place update implementation while still

having a pure functional interface. For our needs, we need to check separately that the translation

ensures that all uses of a context k are indeed linear. Type judgements in Minamide’s system

[Minamide 1998, fig. 4] are denoted as Γ ; H ⊢m e : 𝜏 where Γ is the normal type environment,

and H for linear bindings containing at most one linear value. The type environment Γ can itself

contain linear values with a linear type (like hfun) but only pass those linearly to a single premise.

The environment restricted to non-linear values is denoted as Γ |N. We can now show that our

translation can indeed be typed under the linear type discipline:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:16 Daan Leijen and Anton Lorenzen

Theorem 1. (TRMC uses contexts linearly)
If Γ |N ; ∅ ⊢m fun f = 𝜆x1 . . . xn . e : 𝜏1→ . . .→ 𝜏n→ 𝜏 and k fresh

then Γ |N, f ; ∅ ⊢m fun f ′ = 𝜆x1 . . . xn . 𝜆k. JeKf ,k : 𝜏1→ . . .→ 𝜏n→ ((𝜏, 𝜏) hfun) → 𝜏 .

To show this, we need a variant of the general replacement lemma [Hindley and Seldin 1986, Lemma

11.18; Wright and Felleisen 1994, Lemma 4.2] to reason about linear substitution in an evaluation

context:

Lemma 1. (Linear replacement)
If Γ |N ; ∅ ⊢m K[e] : 𝜏 for a constructor context K then there is a sub-deduction Γ |N ; ∅ ⊢m e : 𝜏 ′

at the hole and Γ |N ; x : 𝜏 ′ ⊢m K[x] : 𝜏 .
Interestingly, this lemma requires constructor contexts and we would not be able to derive the

Lemma for general contexts as the linear type environment is not propagated through applications.

The proofs can be found in App. B.6 in the supplement, which also contains the full type rules

adapted to our calculus.

5.2 In-place Update
The instantiation with Minamide’s system is using fast in-place updates and proven sound, but

it is still a bit unsatisfactory as how such in-place mutation is done (or why this is safe) is only

described informally. In Minamide’s system, a suggested implementation for a context is as a tuple

⟨K, x@i⟩ where K is (a pointer to) a context and x@i is the address of the hole as the ith field of

object x (in K). The empty tuple ⟨⟩ is used for an empty context (□). Composition and application

directly update the hole pointed to by x@i by overwriting the hole with the child context or value.

In contrast, Bour et al. [2021] show a TRMC translation for OCaml that uses destination passing
style which makes it more explicit how the in-place update of the hole works. In particular, the

general construct x .i := v overwrites the ith field of any object x with v. Like Minamide’s work this

is also described informally only.

To gain more insight of why in-place update is possible and correct, we are going to use the

explicit heap semantics of Perceus [Lorenzen and Leijen 2022; Reinking, Xie et al. 2021]. In such

semantics, the heap is explicit and all objects are explicitly reference counted. Using the Perceus

derivation rules, we can soundly translate our current calculus to the Perceus target calculus where

the reference counting instructions (dup and drop) are derived automatically by the derivation

rules [Reinking, Xie et al. 2021, fig. 5]. The Perceus heap semantics reduces the derived expressions

using reduction steps of the form H | e1 ↦−→r H ′ | e2, which reduces a heap H and an expression

e to a new heap H ′ and expression e2 [Reinking, Xie et al. 2021, fig. 7]. The heap H maps objects x
with a reference count n ⩾ 1 to values, denoted as x ↦→n v. In this system, we can express in-place

updates directly, and it turns out we can even calculate the in-place updating reduction rules for

comp and app from the context laws. Before we do that though, we first need to establish some

terminology and look carefully at what “in-place update” actually means.

5.2.1 The Essence of In-Place Update. Let’s consider a generic copy function, (x .i as y), that changes
the ith field of an object x to y, for any generic constructor C:

x .i as y = match x { Ck x1 . . . xi . . . xk → Ck x1 . . . y . . . xk }
When we apply the Perceus algorithm [Reinking, Xie et al. 2021] we need to insert a single drop:

x .i as y = match x { Ck x1 . . . xi . . . xk → drop xi; Ck x1 . . . y . . . xk }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:17

In the special case that x is unique at runtime (i.e. the reference count of x is 1), we can now derive

the following:

H , x ↦→1 Ck x1 . . . xi . . . xk | x .i as y { x ̸∈ H , 1 }
= H , x ↦→1 Ck x1 . . . xi . . . xk |

match x { Ck x1 . . . xi . . . xk → drop xi; Ck x1 . . . y . . . xk } { def . }
−→r H , x ↦→1 C xj | dup(xj); drop(x); drop(xi); Ck x1 . . . y . . . xk { (matchr) }
−→∗

r
H ′, x ↦→1 C xj | drop(x); drop(xi); Ck x1 . . . y . . . xk { (dupr), H ′ has xj dupped, 2 }

−→r H ′ | drop(xj); drop(xi); Ck x1 . . . y . . . xk { (dropr) }
−→r H | drop(xi); Ck x1 . . . y . . . xk { cancel H ′ dupped xj (2) }
� H | let z = Ck x1 . . . y . . . xk in drop(xi); z { drop commutes }
−→r H , z ↦→1 C x1 . . . y . . . xk | drop(xi); z { (conr), fresh z, 3 }
= H , x ↦→1 C x1 . . . y . . . xk | drop(xi); x { 𝛼 rename (1), (3) }
And this is the essence of in-place mutation: when an object is unique, an in-place update cor-

responds to allocating a fresh copy, discarding the original (due to the uniqueness of x), and
𝛼-renaming to reuse the original “address”.

We will write (x .i := z) for (x .i as z) in the special case of updating a field in a unique constructor,
where we can derive the following reduction rule:

(assign) H , x ↦→1 C . . . xi . . . | x .i := y −→∗
r

H , x ↦→1 C . . . y . . . | drop xi; x

and in the case the field is a □, we can further refine this to:

(assignn) H , x ↦→1 C . . . □i . . . | x .i := y −→∗
r

H , x ↦→1 C . . . y . . . | x
For convenience, we will from now on use the notation C . . . xi . . ., and C . . . □i . . . to denote the

ith field in a constructor if there is no ambiguity.

5.2.2 Linear Chains. Weneed a bit more generality to express hole updates in contexts. In particular,

we will see that all objects along the path from the top of the context to the hole are unique by

construction. We call such unique path a linear chain, denoted as [H]nx :
[H]nx = [x ↦→n v0, x1 ↦→1 v1, . . ., xm ↦→1 vm]nx (m ⩾ 0)
where for all xi ∈ (dom(H) − {x}), we have xi ∈ fv(vi−1) (and therefore for all y ∈ dom(H) we
have reachable(H , x)). Since the objects in H besides x are all unique and not reachable otherwise,

we also say that x dominates H . When the dominator is also unique, we call it a unique linear chain
(of the form [H]1x). We can define linear chains inductively as well since a single object always

forms a linear chain:

(linearone) x ↦→n v = [x ↦→n v]nx
and we can always extend with a unique linear chain:

(linearcons) x ↦→n . . . z . . ., [H]1z = [x ↦→n . . . z . . .,H]nx
Using (linearcons) we can derive that we can append a unique linear chain as well:

(linearapp) [H1, y ↦→1 . . . z . . .]nx, [H2]1z = [H1, y ↦→1 . . . z . . .,H2]nx

5.2.3 Contexts as a Linear Chain. To simplify the proofs, we assume in this sub section that all

fields in K contexts are variables:

K : := □ | C x1 . . . K . . . xn
since we can always arrange any K to have this form by let-binding the values v. It turns out that a
constructor context then always evaluates to a unique linear chain:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:18 Daan Leijen and Anton Lorenzen

Lemma 2. (Contexts evaluate to unique linear chains)
For any K, we have H | K[C . . . □i . . .] −→∗r H , [H ′, y ↦→1 C . . . □i . . .]1x | x.
We can show this by induction on the shape of K (App. B.7 in the supplement).

5.2.4 Calculating the Fold. Following Minamide’s approach, we are going to denote our contexts

as a tuple ⟨x, y@i⟩ where x is (a pointer to) a constructor context and y@i is the address of the hole
as the ith field of object y. We define ctx K = (|K|). For an empty context we use an empty tuple

((|□|) = ⟨⟩), but otherwise we can specify the fold as:

(foldspec) H | (|K[C . . . □i . . .] |) � H | let x = K[C . . . □i . . .] in ⟨x, [x]@i⟩
where we use the notation [x] do denote the last object of the linear chain formed by K (Lemma 2).

We can now calculate the definition of (|_|) from its specification (see App. B.8 in the supplement),

where we get following definition for (|_|):
(|□|) = ⟨⟩
(|C . . . □i . . .|) = let x = C . . . □i . . . in ⟨x, x@i⟩
(|C . . . K . . .|) = let ⟨z, x@i⟩ = (|K|) in ⟨C . . . z . . ., x@i⟩ (K ≠ □)
This builds up the context using let bindings, while propagating the address of the hole. As before,

the intention is that the compiler expands the fold statically. For example, the map function

translates to:

map′ xs f k = match xs {
Nil→ app k Nil
Cons x xx → let y = f x in map′ xx f (k • (let z = Cons y □ in ⟨z, z@2⟩)) }

where z@2 correctly denotes the address of the hole field in the context.

5.2.5 Updating a Context. Before we can define in-place application, we need an in-place substitu-

tion operation subst ⟨x, y@i⟩ z that substitutes z at the hole (at y@i) in the context x. Note that in
our representation of a context as a tuple ⟨x, y@i⟩ we treat y@i purely as an address and do not

reference count y as such. The y part is a “weak” pointer and we cannot use it directly without

also having an “real” reference. This means that if we want to define an in-place substitution we

cannot define it directly as y.i := z (since we have no real reference to y). Instead, we are going to

calculate an in-place updating substitution from its specification:

(subspec) H , [H ′, y ↦→1 C . . . □i . . .]1x | subst ⟨x, y@i⟩ z � H , [H ′, y ↦→1 C . . . z . . .]1x | x
We do this by induction of the shape of the linear chain. For the singleton case we have:

H , [y ↦→1 C . . . □i . . .]1y | subst ⟨y, y@i⟩ z
= H , [y ↦→1 C . . . □i . . .]1y | y.i := z { define, (we have a y reference!) }
−→ H , [y ↦→1 C . . . z . . .]1y | y { (assignn) }
and for the extension we have:

H , [x ↦→1 C . . . x ′j . . ., [H ′, y ↦→1 C . . . □i . . .]1x′]1x | subst ⟨x, y@i⟩ z
= H , [x ↦→1 C . . . x ′j . . ., [H ′, y ↦→1 C . . . □i . . .]1x′]1x

| dup x ′; x .j := □; x .j := subst ⟨x ′, y@i⟩ z { define }
−→∗ H , [x ↦→1 C . . . □j . . ., [H ′, y ↦→1 C . . . □i . . .]1x′]1x

| x .j := subst ⟨x ′, y⟩ z { (dupr), (assign) }
� H , [x ↦→1 C . . . □j . . ., [H ′, y ↦→1 C . . . z . . .]1x′]1x | x .j := x ′ { induction hyp. }
−→ H , [x ↦→1 C . . . x ′j . . ., [H ′, y ↦→1 C . . . z . . .]1x′]1x | x { (assignn) }
This leads to the following inductive definition of subst:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:19

H | subst ⟨x, x@i⟩ z = H | x .i := z
H | subst ⟨x, y@i⟩ z = H | dup x ′; x .j := □; x .j := subst ⟨x ′, y@i⟩ z
where x ≠ y ∧ [x ↦→1 C . . . x ′j . . ., [H ′]1x′]1x ∈ H

That is, to update the last element of the chain in-place, we need traverse down while separating

the links such that when we reach the final element it has a unique reference count and can be

updated in-place. We then traverse back up fixing up all the links again. Of course, we would not

actually use this implementation in practice – the derivation here just shows that the substitution

specification is sound, and we can thus implement the (subspec) reduction by instead using the

tuple address y@i directly to update the hole in-place. In essence, due to the uniqueness of the of

the elements in the chain, the y is uniquely reachable through x, and thus it is safe to use it directly
in this case.

5.2.6 Calculating Application and Composition. With the specification for fold and in-place substi-

tution, we can use the context laws to calculate the in-place updating version of application and

composition. Starting with application, we can calculate (for K ≠ □):

H | app (ctx K) e
= H | app (|K|) e { def . }
� H | app (let x = K[□] in ⟨x, [x]@i⟩) e { fold specification, K ≠ □ }
� H , [H ′, y ↦→1 C . . . □i . . .]1x | app ⟨x, [x]@i⟩ e { lemma 2, 1 }
= H , [H ′, y ↦→1 C . . . □i . . .]1x | app ⟨x, y@i⟩ e { def . }
� H , z ↦→1 v, [H ′, y ↦→1 C . . . □i . . .]1x | app ⟨x, y@i⟩ z { e is terminating 2 }
= H , z ↦→1 v, [H ′, y ↦→1 C . . . □i . . .]1x | subst ⟨x, y@i⟩ z { define }
� H , z ↦→1 v, [H ′, y ↦→1 C . . . z . . .]1x | x { (subspec) }
� H , z ↦→1 v | K[z] { lemma 2, (1) }
� H | K[e] { (2) }
And thus we define application directly in terms of in-place substitution as:

(uapp) H | app ⟨x, y@i⟩ z −→r H | subst ⟨x, y@i⟩ z
We arrived exactly at the “obvious” implementation where the hole inside a unique context is

updated in-place in constant time. This also corresponds to the informal implementation given in

Section 2.2. For composition, it turns out we can define it in terms of applications:

(ucomp) H | ⟨x1, y1@i⟩ • ⟨x2, y2@j⟩ −→r H | ⟨app ⟨x1, y1@i⟩ x2, y2@j⟩
where the derivation is in App. B.9 in the supplement. Again we arrived at the efficient translation

where the hole in the first unique context is updated in-place (and in constant time) with a pointer

to the second context. The full rules for application and composition are (with the derivations for

the empty contexts in App. B.9 in the supplement):

(uapph) H | app ⟨⟩ x −→r H | x
(uapp) H | app ⟨x, y@i⟩ z −→r H | subst ⟨x, y@i⟩ z
(ucomp) H | ⟨x1, y1@i⟩ • ⟨x2, y2@j⟩ −→r H | ⟨app ⟨x1, y1@i⟩ x2, y2@j⟩
(ucompl) H | ⟨⟩ • ⟨x2, y2@j⟩ −→r H | ⟨x2, y2@j⟩
(ucompr) H | ⟨x1, y1@i⟩ • ⟨⟩ −→r H | ⟨x1, y1@i⟩
Note that (ucompr) is not really needed since by construction our translation never generates empty

contexts for the second argument. The rules also correspond with the informal implementation

given in Section 2.2 where Id was used to represent the empty tuple.

With these definitions, we still need to show that we can be efficient and that we never get stuck.
For efficiency, we need to show that a context ⟨x, y@i⟩ is always a linear chain so we don’t have to

check that at runtime in (subspec). This follows by construction since any initial context ctx K is a

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:20 Daan Leijen and Anton Lorenzen

linear chain (Lemma 2), and any composition as well (ucomp). Secondly, the reference count of the
dominator should always be 1 or otherwise (subspec) may not apply – that is, contexts should be

used linearly. This follows indirectly from Lemma 3 where we show that our translation adheres to

Minamide’s linear type discipline. A more direct approach would be to show that Perceus never

derives a dup operation for a context k in our translation. However, we refrain from doing so here,

as it turns out that with general algebraic effect handlers, the linearity of a context may no longer

be guaranteed!

6 MODULO CONSTRUCTOR CONTEXTS: NON-LINEAR CONTROL
A long standing issue in a TRMc transformation is that it is unsound in the presence of non-

local control operations like call/cc, shift/reset [Danvy and Filinski 1990; Shan 2007; Sitaram and

Felleisen 1990], or in general with algebraic effect handlers [Plotkin and Power 2003; Plotkin and

Pretnar 2009], whenever a continuation or handler resumption can be invoked more than once.

Note that if only single-shot continuations or resumptions are allowed (as in OCaml [Dolan et

al. 2015] for example), the control flow is still always linear and the TRMc transformation still

sound. Since the Koka language relies foundationally on general effect handlers [Leijen 2017 2021;

Xie and Leijen 2021] we need to tackle this problem. Algebraic effect handlers extend the syntax

with a handle expression, handle h e, and operations, op, that are handled by a handler h. There
are two more reduction rules [Leijen 2014]:

(return) handle h v −→ v
(handle) handle h E[op v] −→ e[x:=v, resume:= 𝜆y. handle h E[y]]

where (op ↦→ 𝜆x . 𝜆resume. e) ∈ h ∧ op ̸∈ E
That is, when an operation is invoked it yields all the way up to the innermost handler for that

operation and continues from there with the operation clause. Besides the operation argument, it

also receives a resumption resume that allows the operation to return to the original call site with a

result y. The culprit here is that the resumption captures the delimited evaluation context E in a

lambda expression, and this can violate linearity assumptions. In particular, if we regard a TRMC

context k as a linear value (as in Minamide), then such k may be in the context E of the (handle)
rule and captured in a non-linear lambda. Whenever the operation clause calls the resumption

more than once, any captured linear values may be used more than once!

A nice example in practice of this occurs in the well known Knapsack problem as described

by Wu et al. [2014] where they use multiple resumptions to implement a non-determinism handler:

effect nondet
ctl flip() : bool // a control operation that may resume more than once
ctl fail() : a // or not at all

fun select(xs : list<a>) : nondet a // pick an element from a list
match xs

Nil -> fail()
Cons(x,xx) -> if flip() then x else select(xx)

fun knapsack(w : int, vs : list<int>) : <nondet,div> list<int>
if w < 0 then fail()
elif w == 0 then []
else val v = select(vs) in Cons(v, knapsack(w - v, vs))

The knapsack function picks items from a list of item weights vs that together do not exceed the

capacity w (of the knapsack). It uses the select function that picks an element from a list using the

nondet effect. We can now provide an effect handler that systematically explores all solutions using

multiple resumptions:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:21

val solutions = handler
return(x) [x]
ctl fail() []
ctl flip() resume(True) ++ resume(False)

fun test() : div list<list<int>>
with solutions
knapsack(3,[3,2,1])

That is, the solutions handler implements the flip function by resuming twice and appending the

results. Even though knapsack returns a single solution as a list, the test function returns a list of

all possible solution lists (as [[3],[2,1],[1,2],[1,1,1]]). The knapsack function is in the modulo cons
fragment, and gets translated to a tail recursive version by our translation into something like:

fun knapsack’(w : int, vs : list<int>, k : ctx<list<int>>) : <nondet,div> list<int>
if w < 0 then app(k,fail()) elif w == 0 then app(k,[])
else val v = select(vs) in knapsack’(w - v, vs, val z = Cons(v,□) in comp(k,<z,z@2>))

Instead of having a runtime that captures evaluation contexts E directly, Koka usually uses an

explicit monadic transformation to translate effectful computations into pure lambda calculus. The

effect handling is then implemented explicitly using a generic multi-prompt control monad eff

[Xie and Leijen 2020 2021]. This transforms our knapsack function into something like:

fun knapsack’(w : int, vs : list<int>, k : ctx<list<int>>) : eff<<nondet,div>,list<int>>
if w < 0 then ... elif w == 0 then Pure(app(k,[]))
else match select(vs)

Pure(v) -> knapsack’(w - v, vs, val z = Cons(v,□) in comp(k,<z,z@2>))
Yield(yld) -> Yield(yield-extend(yld,

fn(v) knapsack’(w - v, vs, val z = Cons(v,□) in comp(k,<z,z@2>)))

Every computation in the effect monad either returns with a result (Pure) or is yielding up to

a handler (Yield). Here we inlined the monadic bind operation where the result of select(vs) is

explicitly matched. We see that in the Yield case, the continuation expression is now explicitly

captured under a lambda expression – including the supposedly linear context k! This is how we

can end up at runtime with a context that is shared (with a reference count > 1) and where the rule

(ucomp) should not be applied.

6.1 A Hybrid Approach
Our context composition is defined in terms of context application, which in turn relies on on the

in-place substitution (Section 5.2.5):

(subspec) H , [H ′, y ↦→1 C . . . □i . . .]1x | subst ⟨x, y@i⟩ z � H , [H ′, y ↦→1 C . . . z . . .]1x | x
This is the operation that eventually fails if the runtime context x is not unique. In Section 5.2.5, the

substitution operation was calculated to recursively visit the full linear chain of the context. This

suggests a solution for any non-unique context: we can actually traverse the context at runtime

and create a fresh copy instead.

It is not immediately clear though how to implement such operation at runtime: the linear chains

up to now are just a proof technique and we cannot actually visit the elements of the chain at

runtime as we do not know which field in a chain element points to the next element. What we

need to do is to explicitly annotate each constructor Ck
(of arity k) in a context also with an index i

corresponding to the field that points to the next element, as Ck
i . It turns out, we can actually do

this efficiently while constructing the context – and we can do it systematically just by modifying

our fold function to keep track of this context path at construction:

(|□|) = ⟨⟩
(|C . . . □i . . .|) = let x = Ci . . . □i . . . in ⟨x, x@i⟩
(|C . . . Ki . . .|) = let ⟨z, x@j⟩ = (|K|) in ⟨Ci . . . z . . ., x@j⟩ (K ≠ □)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:22 Daan Leijen and Anton Lorenzen

With such indices present at runtime, we can define non-unique substitution as:

(subapp) H , [H ′]n+1x | subst ⟨x, y@i⟩ z � H , [H ′]n+1x | append x z

where append follows the context path at runtime copying each element as we go, and eventually

appending z at the hole:
H , x ↦→n Ci . . . □i . . . | append x z −→r H , x ↦→n Ci . . . □i . . . | x .i as z
H , x ↦→n Ci . . . yi . . . | append x z −→r H , x ↦→n Ci . . . yi . . . | dup yi; x .i as (append yi z)
We can show the context laws still hold for these definitions (see App. B.10 in the supplement).

The append operation in particular can be implemented efficiently at runtime using a fast loop

that updates the previous element at each iteration (essentially using manual TRMC!). In the Koka

runtime system, it happens to be the case that there is already an 8-bit field index in the header of

each object which is used for stackless freeing. We can thus use that field for context paths since if

a context is freed it is fine to discard the context path anyways. The runtime cost of the hybrid

technique is mostly due to an extra uniqueness check needed when doing context composition

to see if we can safely substitute in-place (see also App. E in the supplement). As we see in the

benchmark section, this turns out to be quite fast in practice. Moreover, the Koka compiler uses

static type information when possible to avoid this check if a function is guaranteed to be used

only with a linear effect type.

6.2 Another Approach: Fall Back to General Evaluation Contexts
The hybrid solution is elegant and duplicates no code, but it depends on both having precise

reference counts, and having extra bits in a header to track the linear chain index in objects. This is

not always available in general. However, the precise reference count is only needed for contexts,

and one may add limited reference counting just for contexts during the TRMC translation which

may work in otherwise garbage-collected systems. There is also a solution that requires no reference

counts: we can use a distinguished value for the hole and check for this atomically to either update

in place, or copy the linear chain up to the hole (this solution was suggested by Gabriel Scherer).

If there are no bits available for tracking linear chains at runtime, a posible solution is to

instantiate two versions of a function when doing TRMC translation: one that uses fast in-place

updating (Section 5.2), and one slower one that uses the general CPS-style translation (Section 4.1)

(which is safe to use with non-linear control). We then generate a wrapper function that picks

either one to use depending on whether non-linear control is possible or not. For example, if the

language has shift/reset, the presence of a reset frame would signify this. Similarly, in Koka, each

handler has a flag that signifies if it may resume more than once and we can check efficiently at

runtime if any such handler is in the current evaluation context. The Koka compiler currently uses

this technique when using the JavaScript backend.

7 IMPROVING CONSTRUCTOR CONTEXTS
As remarked before in Section 5, our constructor contexts K are still too restricted in practice as

they do not allow evaluation before the tail call f . For example C e1 (f e2) v is not a K context, and

thus our current definition would not even apply to Cons(f(x),map(xx,f)) as f(x) is an expression.

In practice though, we can let-bind expressions upfront such that TRMC applies, e.g. we rewrite

C e1 (f e2) v into let x = e1 in C x (f e2) v, or Cons(f(x),map(xx,f)) into let y = f(x) in Cons(y

,map(xx,f)). In particular, we can define a more liberal version of contexts K that allows expressions

before the hole:

ˆK : := □ | Ck e1 . . . ei−1 ˆK vi+1 . . . vk

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:23

This corresponds to the semantics of Koka which has a strict left-to-right evaluation order. Other

choices are possible too, for example, OCaml does not specify the evaluation order of the arguments

and we could use a more liberal definition of
ˆK that allows all fields to be expressions. We now

use the K̂ definition to define a lifting step before the TRMC translation algorithm that makes the

evaluation order explicit and independent of the TRMC translation as such. The lifting function

J_K is defined on recursive functions as:

Jf x1 . . . xn = eK = f x1 . . . xn = JeK

Jlet x = e0 in eK = let x = e0 in JeK
Jmatch e0 { pi → ei }K = match e0 { pi → JeiK }
J ˆK[f e1 . . . en]K = T[K[f e1 . . . en]] where (T,K) = extract(ˆK)
JeK = e otherwise

The lifting algorithm is defined analogous to TRMC translation and in practice we can do both at

the same time since during TRMC we can match on
ˆK contexts (instead of K) and use extract to

extract the required T and K contexts when needed. The extract : K̂→ (T,K) function extracts a

tail context T to explicitly let-bind expression fields, and a proper constructor context K for which

TRMC applies:

extract(□) = (□,□)
extract(Ck e1 . . . ei−1 ˆK vi+1 . . . vk)
= (let x1 = e1 in . . . let xi−1 = ei−1 in T, Ck x1 . . . xi−1 K vi+1 . . . vk)
where (T,K) = extract(ˆK)

As said, one advantage of defining lifting separately is that it abstracts from a particular evaluation

order which is language dependent. A second advantage is that it removes some of the syntactic

nature of TRMC. For example, suppose we have an expression like let x = C 1 (f e) in C x Nil.
Here, modulo-cons does not apply as the recursive call to f is in the body of the let binding.

This is why the Koka compiler performs TRMC after a local simplification phase where x is

inlined to C (C 1 (f e)) Nil, which is now amenable to TRMC. However, without the lifting

phase, doing simplification can also make things worse – consider for example an expression

like let x = id 1 in C x (f e) which simplifies to C (id 1) (f e) which is not a K context. With

lifting we resolve this tension and we can inline freely to maximise the TRMC opportunities.

7.1 Modulo Cons Products
As a final extension of the modulo cons transformation, we look at modulo cons in the context of

multiple results. Consider the partition function which partitions the elements of a list into two

lists according to a given predicate function p:
partition xs p = match xs {
Nil→ (Nil,Nil)
Cons x xx → let ok = p x in match (partition xx p) {
(ys, zs) → if ok then (Cons x ys, zs) else (ys, Cons x zs)

} }
It turns out we accommodate such multiple result functions as well in our general TRMC framework.

First we need to define a multi-hole context T that captures all tail positions:

T ::= □ | let x = e in T | match e { pi ↦→ Ti }
and, as noted by Bour et al. [2021], a tail context T is essentially the dual of an evaluation context.

Using the multi-hole tail context, we can now define a (single hole) cons product context P as:

P : := match □ { (x, y) → T[(K1 [x],K2 [y])])] }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:24 Daan Leijen and Anton Lorenzen

where x, y ̸∈ fv(T) and T[v] terminates (a). This context captures any tail context where the

product result is modified in a way that we can transform safely, i.e. where no side effects can

happen. This allows us to represent a context directly as a product where we perform the matching

upfront. We define our fold function as:

(|P|) = (|match □ { (x, y) → T[(K1 [x],K2 [y])] }|) = JT[(K1,K2)]K
where

J(K1,K2)K = (ctx K1, ctx K2)
Jmatch e { pi → ei }K = match e { pi → JeiK }
Jlet x = e in e′K = let x = e in Je′K
Due to (a), we have (|P|) � (ctx K1, ctx K2) for some K1,K2 (b) and thus we can always represent a

context as a tuple of constant constructor contexts ctx K at runtime. We can now define composition

and application in terms of the earlier modulo cons composition and application:

(qctx) ctx P = (|P|)
(qcomp) (k1, k2) • (k′1, k′2) = (k1 • k′1, k2 • k′2)
(qapp) app (k1, k2) (e1, e2) = (app k1 e1, app k2 e2)
Building on the laws for constructor contexts, we can show the context laws for product contexts

are satisfied for this definition:

app ((k1, k2) • (k′1, k′2)) (e1, e2)
= app (k1 • k′1, k2 • k′2) (e1, e2) { (qcomp) }
= (app (k1 • k′1) e1, app (k2 • k′2) e2) { (qapp) }
= (app k1 (app k′

1
e1), app k2 (app k′

2
e2)) { (kapp) }

= app (k1, k2) (app k′
1
e1, app k′

2
e2) { (qapp) }

= app (k1, k2) (app (k′1, k′2) (e1, e2)) { (qapp) }
and

app (ctx P) (e1, e2)
= app ((|P|)) (e1, e2) { (qctx) }
� app (ctx K1, ctx K2) (e1, e2) { (b) 1 }
= (app (ctx K1) e1, app (ctx K2) e2) { (qapp) }
= (K1 [e1],K2 [e2]) { (kapp) }
� P[(e1, e2)] { (1) and induction over P }

□
Using these definitions, our partition function satifies the P context and translates to:

partition′ xs p k = match xs {
Nil→ app k (Nil,Nil)
Cons x xx → let ok = p x in

let k′ = if ok then (ctx Cons x □, ctx □) else (ctx □, ctx Cons x □) in
partition′ xx p (k • k′)

}
After inlining the definitions and simplification we end up with:

partition′ xs p (k1, k2) = match xs {
Nil→ (app k1 Nil, app k2 Nil)
Cons x xx → let ok = p x in

let (k′
1
, k′

2
) = if ok then (k1 • ctx Cons x □, k2) else (k1, k2 • ctx Cons x □) in

partition′ xx p (k′
1
, k′

2
)

}

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:25

where each result list is updated in-place using the modulo cons composition and application. It

may seem that the application of this transformation is somewhat limited to partition like functions

but it turns out that various functional but in-place algorithms [Reinking, Xie et al. 2021] naturally

lead to this form function and we are currently working on implementing this transformation in

Koka as well.

8 BENCHMARKS
The Koka compiler has a full implementation the TRMC algorithm as described in this paper for

constructor contexts (since v2.0.3, Aug 2020). We measure the impact of TRMC relative to other

variants on various tests: the standard map function over a list (map), mapping over a balanced

binary tree (tmap), balanced insertion in a red-black tree (rbtree), and finally the knapsack problem

as shown in Section 6. Each test program scales the repetitions to process the same number of total

elements (100 000 000) for each test size.

The map test repeatedly maps the increment function over a shared list of numbers from 1 to N,

and sums the result list. This means that the map function repeatedly copies the original list and

Perceus cannot apply reuse here [Lorenzen and Leijen 2022]. For example, the test for the standard

(and TRMC) map function in Koka is written as:

fun map-std(xs : list<a>, f : a -> e b) : e list
match xs

Cons(x,xx) -> Cons(f(x),xx.map-std(f))
Nil -> Nil

fun test(n : int)
val xs = list(1,n)
val x = fold-int(0, 100_000_000/max(n,1), 0) fn(i,acc)

acc + xs.map-std(fn(x) x + 1).sum
println("total: " ++ x.show)

For each test, we measured five different variants:

• trmc: the TRMC version which is exactly like the standard (std) version.
• std: the standard non tail recursive version. This is the same source as the trmc version but

compiled with the –fno-trmc flag.

• acc: this is the accumulator style definition where the accumulated result list- or tree-visitor is

reversed in the end.

• acc (no reuse): this is the accumulator style version but with Perceus reuse disabled for the

accumulator. The performance of this variant may be more indicative for systems without reuse.

Accumulator reuse is important as it allows the accumulated result to be reversed “in place”.

• cps: the CPS style version with an explicit continuation function. This allocates a closure for

every element that eventually allocates the result element for the final result.

The benchmark results are shown in Figure 3. For themap functionwe see that our TRMC translation

is always faster than the alternatives for any size list. For a tree map (tmap) this is also the case,
except for one-element trees where the standard tmap is slightly faster (6%). However, when we

consider a slightly more realistic example of balanced insertion into a tree, TRMC is again as fast

or faster in all cases. The rbtree benchmark is interesting as during traversal down to the insertion

point, there a 2 recursive cases where TRMC applies, but also 2 recursive cases where TRMC does

not apply. Here we see that it still helps to apply TRMC where possible as looping is apparently

faster than a recursive call in this benchmark.

Finally, knapsack implements the example from 6 with a backtracking effect. Unfortunately, the

TRMC variant, which uses the hybrid approach to copy the context on demand, is less fast than the

alternatives. It is not that much slower though – about 25% at worst. The reason for this is that there

is less sharing. For the accumulator version, at each choice point the current accumulated result is

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:26 Daan Leijen and Anton Lorenzen

1 10 100 1000 10000 100000 1000000

0x

1x

2x

3x

(
0
.7
0
s
)

(
0
.4
3
s
)

(
0
.3
7
s
)

(
0
.3
7
s
)

(
0
.4
1
s
)

(
0
.4
1
s
)

(
0
.4
6
s
)

1
.0
1
x

1
.2
5
x

1
.6
2
x

1
.6
8
x

1
.9
0
x

2
.0
7
x

o
u
t
o
f
s
t
a
c
k

1
.1
3
x

1
.0
9
x

1
.2
2
x

1
.1
9
x

1
.2
2
x

1
.2
0
x

1
.1
5
x

1
.5
0
x

1
.7
0
x

1
.6
8
x

1
.6
8
x

1
.6
6
x

1
.6
6
x

1
.5
4
x

1
.7
8
x

2
.2
1
x

2
.4
0
x

2
.3
0
x

2
.2
7
x

2
.3
2
x

2
.1
7
x

map

r
e
l
a
t
i
v
e
t
i
m
e
(
l
o
w
e
r
i
s
b
e
tt
e
r
)

trmc

std

acc

acc (no reuse)

cps

1 10 100 1000 10000 100000 1000000

0x

1x

2x

3x

(
1
.0
5
s
)

(
0
.7
6
s
)

(
0
.7
1
s
)

(
0
.7
3
s
)

(
0
.8
3
s
)

(
0
.8
2
s
)

(
1
.0
4
s
)

0
.9
4
x

1
.0
0
x

1
.0
3
x

1
.0
1
x

1
.0
1
x

1
.0
5
x

1
.2
1
x

2
.1
8
x

2
.1
7
x

2
.2
8
x

2
.2
6
x

2
.0
8
x

2
.1
3
x

1
.9
0
x

2
.3
4
x

2
.4
3
x

2
.5
5
x

2
.5
2
x

2
.4
1
x

2
.4
9
x

2
.1
8
x

2
.0
5
x

2
.2
2
x

2
.3
4
x

2
.4
1
x

2
.3
0
x

2
.2
8
x

2
.0
2
x

tmap

r
e
l
a
t
i
v
e
t
i
m
e
(
l
o
w
e
r
i
s
b
e
tt
e
r
)

trmc

std

acc

acc (no reuse)

cps

1 10 100 1000 10000 100000 1000000

0x

1x

2x

3x

4x

(
0
.1
1
s
)

(
0
.1
4
s
)

(
0
.2
3
s
)

(
0
.4
0
s
)

(
0
.6
1
s
)

(
0
.7
0
s
)

(
0
.8
1
s
)

1
.0
0
x

1
.0
7
x

1
.2
2
x

1
.0
5
x

1
.1
1
x

1
.1
7
x

1
.2
1
x

1
.0
0
x 1
.4
3
x

1
.6
1
x

1
.8
0
x

1
.7
4
x

1
.8
3
x

1
.8
9
x

1
.0
0
x

2
.4
3
x

3
.3
5
x

3
.3
5
x

3
.2
6
x

3
.6
4
x

3
.8
5
x

1
.0
9
x

2
.5
7
x 3
.5
6
x

3
.7
7
x

3
.4
1
x

3
.7
1
x

3
.8
6
x

rbtree

r
e
l
a
t
i
v
e
t
i
m
e
(
l
o
w
e
r
i
s
b
e
tt
e
r
)

trmc

std

acc

acc (no reuse)

cps

1 10 100 1000 10000 100000 1000000

0x

1x

2x

(
0
.0
5
s
)

(
0
.0
9
s
)

(
0
.1
8
s
)

(
0
.3
7
s
)

(
0
.7
6
s
)

(
1
.5
5
s
)

(
3
.1
8
s
)

1
.0
0
x

1
.2
2
x

1
.0
5
x

1
.0
0
x

0
.9
6
x

0
.9
6
x

0
.9
6
x

0
.8
0
x

0
.8
9
x

0
.8
3
x

0
.8
1
x

0
.8
0
x

0
.7
7
x

0
.7
7
x

1
.0
0
x

1
.0
0
x

0
.8
9
x

0
.8
1
x

0
.8
0
x

0
.7
8
x

0
.7
7
x

1
.0
0
x

0
.8
9
x

0
.8
9
x

0
.8
1
x

0
.7
9
x

0
.7
9
x

0
.7
7
x

knapsack

r
e
l
a
t
i
v
e
t
i
m
e
(
l
o
w
e
r
i
s
b
e
tt
e
r
)

trmc

std

acc

acc (no reuse)

cps

Fig. 3. Benchmarks on Ubuntu 20.04 (AMD 5950x), Koka v2.4.1-dev. The benchmarks are map over a list

(map), map over a tree (tmap), balanced red-black tree insertion (rbtree), and the knapsack program that

use non-linear control flow. Each workload is scaled to process the same number of total elements (usually

100 000 000). The tested variants are TRMC (trmc), the standard non tail recursive style (std), accumulator

style (acc), accumulator style without Perceus reuse (acc (no reuse)), and finally CPS style (cps).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:27

shared between each choice, building a tree of choices. At the end, many of these choices are just

discarded (as the knapsack is too full), and only for valid solutions a result list is constructed (as a

copy). However, for the hybrid trmc approach, we copy the context on demand at each choice point,
and when we reach a point where the knapsack is too full the entire result is discarded, keeping

only valid solutions. As such, the trmc variant copies more than the other approaches depending

on how many of the generated solutions are eventually kept. Still, in Koka we prefer the hybrid

approach to avoid code duplication.

9 RELATEDWORK
Tail recursion modulo cons was a known technique in the LISP community as early as the

1970’s. Risch [1973] describes the TRMc transformation in the context of REMREC system which

also implemented the modulo associative operators instantiation described in Section 4.4. A more

precise description of the TRMc transformation was given by Friedman and Wise [1975].

More recently, Bour et al. [2021] describe an implementation for OCaml which also explores

various language design issues with TRMc. The implementation is based on destination passing
style where the result is always directly written into the destination hole. This entails generating

an initial unrolling of each function. For example, the map function is translated (in pseudo code) as:

fun map(xs, f)
match xs

Nil -> Nil
Cons(x,xx) ->

val y = f(x)
val dst = Cons(y,□)
map_dps(xx, f, dst@2)
dst

fun map_dps(xs, f, dst@i) : ()
match xs

Nil -> dst.i := Nil
Cons(x,xx) ->

val y = f(x)
val dst’ = Cons(y,□)
dst.i := dst’
map_dps(xx, f, dst’@2)

This can potentially be more efficient since there is only one extra argument for the destination

address (instead of our representation as a Minamide tuple of the final result with the hole address)

but it comes at the price of duplicating code. Note that the map_dps function returns just a unit value

and is only called for its side effect. As such it seems quite different from our general TRMC based on

context composition and application. However, the destination passing style may still be reconciled

with our approach: with a Minamide tuple the first iteration always uses an “empty” tuple, while

every subsequent iteration has a tuple with the fixed final result as its first element, where only

the hole address (i.e. the destination) changes. Destination passing style uses this observation to

specialize for each case, doing one unrolling for the first iteration (with the empty tuple), and then

iterating with only the second hole address as the destination.

The algorithm rules by Bour et al. [2021] directly generate a destination passing style program.

For example, the core translation rule for a constructor with a hole is:

n′ = | I | + 1 d ′.n′← □[U] ⇝ dps T[dl .nl ← Kl] l

d .n← K[C ((ei)i∈I ,□, (ej)j)] [U] ⇝ dps let d ′ = C ((ei)i∈I ,Hole, (ej)j) in
d .n← K[d ′];
T[dl .nl ← Kl] l

[dps-reify]

Here a single rule does various transformations that we treat as orthogonal, such as folding,

extraction, instantiation of composition, and the actual TRMc transformation.

In logic languages, difference lists [Clark and Tärnlund 1977] can be used to encode a form

of TRMc: difference lists are usually presented as a pair (L,X) where X is a logic variable which

is the last element of the list L. With in-place update of the unification variable X , one can thus

append to L in constant time – quite similar to our constructor contexts. Engels [2022] describes an

implemention of TRMC for the Elm language, that can also tail-optimize calls to the right of a list

append by keeping the last cell of the right-appended list as a context. Pottier and Protzenko [2013]

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:28 Daan Leijen and Anton Lorenzen

implement a type system inspired by separation logic, which allows the user to implement a safe

version of in place updating TRMc through a mutable intermediate datatype. Lazyness works

similar to TRMc for the functions we consider: recursive calls guarded by a constructor are thunked

and incremental forcing can happen without using the stack. The listless machine [Wadler 1984] is

an elegant model for this behaviour.

Hughes [1986] considers the function reverse and shows how the fast version can be derived

from the naive version by defining a new representation of lists as a composition of partially applied

append functions (which are sometimes also called difference lists). His function rep(xs) (defined

as fn(ys) xs ++ ys) creates such abstract list, and is equal to our ctx when instantiated to append

functions and list contexts (Section 4.1). Similarly, his abs(f) function (defined as f []) corresponds

to our app k [] in that case, and finally, the correctness condition would correspond to our (appctx)
law. The idea of calculating programs from a specification has a long history and we refer the

reader to early work by Bird [1984], Wand [1980], and Meertens [1986], and more recent work

by Gibbons [2022] and Hutton [2021].

Defunctionalization [Danvy and Nielsen 2001; Reynolds 1972] has often been used to eliminate

all higher-order calls and obtain a first-order version of a program. Wand and Friedman [1978]

describes a defunctionalization algorithm in the context of LISP. Minamide et al. [1996] introduce

special primitives pack and open (that correspond roughly to our ctx and app) and describe a type

system for correct usage. Bell et al. [1997] and Tolmach and Oliva [1998] perform the conversion

automatically at compile-time. Danvy and Nielsen [2001] propose to apply defunctionalization

only to the closures of self-recursive calls, which should produce equal results as our approach in

Section 4.3. However, they do not give an algorithm for this and the technique has so far mainly

been used manually [Danvy and Goldberg 2002; Gibbons 2022].

An early implementation of TRMc in a typed language was in the OPAL compiler [Didrich et

al. 1994]. Similar to Bour et al. [2021] they also used destination passing style compilation with an

extra destination argument where the final result is written to. Like Koka and Lean, OPAL also

managed memory using reference counting and could reuse matched constructors [Schulte and

Grieskamp 1992]. Reuse combines well with TRMc and in recent work Lorenzen and Leijen [2022]

show how this can be used to speed up balanced insertion into red-black trees using the functional
but in-place (FBIP) technique. Sobel and Friedman [1998] propose to reuse the closures of a CPS

transformed program for newly allocated constructors and show that this approach succeeds for all

anamorphisms. However, reuse based on dynamic reference counts can improve upon this by for

example also reusing the original data for the accumulator (and generalize to non-linear control).

We are using the linearity of the Perceus heap semantics [Lorenzen and Leijen 2022; Reinking,

Xie et al. 2021] to reason about linear chains and the essence of in-place updates. In our case, these

linear chains are used to reason about the shape of a separate part of the heap. This suggest that

separation logic [Reynolds 2002] could also be used effectively for such proofs. For example, Moine

et al. [2023] use separation logic to reason about space usage under garbage collection.

10 CONCLUSION AND FUTUREWORK
In this paper we explored tail recursion modulo context and tried to bring the general principles

out of the shadows of specific algorithms and into the light of equational reasoning. We have a full

implementation of the modulo cons instantiation and look forward to explore future extensions to

other instantiations as described in this paper.

REFERENCES
Andrew W. Appel. 1991. Compiling with Continuations. Cambridge University Press. doi:https://doi.org/10.1017/

CBO9780511609619.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

https://doi.org/10.1017/CBO9780511609619
https://doi.org/10.1017/CBO9780511609619

Tail Recursion Modulo Context: An Equational Approach 40:29

Jeffrey M. Bell, Françoise Bellegarde, and James Hook. 1997. Type-Driven Defunctionalization, ICFP ’97, . Association for

Computing Machinery, New York, NY, USA, 25–37. doi:https://doi.org/10.1145/258948.258953.

Richard S. Bird. Oct. 1984. The Promotion and Accumulation Strategies in Transformational Programming. ACM Transactions
on Programming Languages and Systems 6 (4): 487–504. doi:https://doi.org/10.1145/1780.1781.

Joshua Bloch. 2008. Effective Java (2nd Edition) (The Java Series). 2nd edition. Prentice Hall PTR, USA. doi:https://doi.org/10.

5555/1377533.

Frédéric Bour, Basile Clément, and Gabriel Scherer. Apr. 2021. Tail Modulo Cons. Journeées Francophones Des Langages
Applicatifs (JFLA), April. Saint Médard d’Excideuil, France. https://hal.inria.fr/hal-03146495/document. hal-
03146495.

Keith L Clark, and Sten-ke Tärnlund. 1977. A First Order Theory of Data and Programs. In IFIP Congress, 939–944.
Olivier Danvy, and Andrzej Filinski. 1990. Abstracting Control. In Proceedings of the 1990 ACM Conference on LISP and

Functional Programming, 151–160. LFP ’90. Nice, France. doi:https://doi.org/10.1145/91556.91622.

Olivier Danvy, and Mayer Goldberg. 2002. There and Back Again. In Proceedings of the Seventh ACM SIGPLAN International
Conference on Functional Programming, 230–234. ICFP ’02. Pittsburgh, PA, USA. doi:https://doi.org/10.1145/581478.581500.

Olivier Danvy, and Lasse R. Nielsen. 2001. Defunctionalization at Work. In Proceedings of the 3rd ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, 162–174. PPDP ’01. Florence, Italy. doi:https://doi.org/

10.1145/773184.773202.

Klaus Didrich, Andreas Fett, Carola Gerke, Wolfgang Grieskamp, and Peter Pepper. 1994. OPAL: Design and Implementa-

tion of an Algebraic Programming Language. In Programming Languages and System Architectures, 228–244. Springer.
doi:https://doi.org/10.1007/3-540-57840-4_34.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Madhavapeddy. Sep. 2015. Effective Concurrency

through Algebraic Effects. In OCaml Workshop.
Damien Doligez, and Xavier Leroy. 1993. A Concurrent, Generational Garbage Collector for a Multithreaded Implementation

of ML. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 113–123.
POPL ’93. Association for Computing Machinery, New York, NY, USA. doi:https://doi.org/10.1145/158511.158611.

Zdeněk Dvořák. 2004. Declarative World Inspiration. In GCC Developers’ Summit, 25. See also https://github.com/gcc-
mirror/gcc/blob/master/gcc/tree-tailcall.cc.

Jeroen Engels. 2022. Tail Recursion, but modulo Cons. https://jfmengels.net/modulo-cons/. Accessed: 2022-06-06.
Daniel P. Friedman, and David S. Wise. Dec. 1975. Unwinding Stylized Recursion into Iterations. 19. Bloomingdale, Indiana.

https://legacy.cs.indiana.edu/ftp/techreports/TR19.pdf.
Jeremy Gibbons. Nov. 2022. Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity. The Art,

Science, and Engineering of Programming 6 (November). Article 7.

Robert Harper. 2012. 15-150 Equational Reasoning Guide. https://www.cs.cmu.edu/~15150/previous-semesters/2012-
spring/resources/handouts/equational.pdf. Notes for the 15-150 CMU Functional Programming course.

J. Hindley, and Jonathan Seldin. Sep. 1986. Introduction to Combinators and Lambda-Calculus. Lambda-Calculus and Combi-
nators, an Introduction. doi:https://doi.org/10.1017/CBO9780511809835.

Gérard P. Huet. 1997. The Zipper. Journal of Functional Programming 7 (5): 549–554. doi:https://doi.org/10.1017/

S0956796897002864.

R John Muir Hughes. 1986. A Novel Representation of Lists and Its Application to the Function “reverse.” Information
Processing Letters 22 (3). Elsevier: 141–144. doi:https://doi.org/10.1016/0020-0190(86)90059-1.

Graham Hutton. Jan. 2021. It’s as Easy as 1, 2, 3. https://www.cs.nott.ac.uk/~pszgmh/123.pdf. Unpublished draft.

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In MSFP’14, 5th Workshop on Mathematically
Structured Functional Programming. doi:https://doi.org/10.4204/EPTCS.153.8.

Daan Leijen. Jan. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proc. of the 44th ACM SIGPLAN Symp.
on Principles of Programming Languages (POPL’17), 486–499. Paris, France. doi:https://doi.org/10.1145/3009837.3009872.

Daan Leijen. 2021. The Koka Language. https://koka-lang.github.io.
Daan Leijen, and Anton Lorenzen. Jul. 2022. Tail Recursion Modulo Context – An Equational Approach. MSR-TR-2022-18.

Microsoft Research.

Anton Lorenzen, and Daan Leijen. Aug. 2022. Reference Counting with Frame Limited Reuse. In Proc. ACM Program. Lang.,
volume 6. ICFP. Association for Computing Machinery, New York, NY, USA. doi:https://doi.org/10.1145/3547634.

Lambert Meertens. Jan. 1986. Algorithmics: Towards Programming as a Mathematical Activity. InMathematics and Computer
Science, 289–334.

Yasuhiko Minamide. 1998. A Functional Representation of Data Structures with a Hole. In Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 75–84. POPL ’98. San Diego, California,

USA. doi:https://doi.org/10.1145/268946.268953.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed Closure Conversion. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 271–283. POPL ’96. Association for Computing

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

https://doi.org/10.1145/258948.258953
https://doi.org/10.1145/1780.1781
https://doi.org/10.5555/1377533
https://doi.org/10.5555/1377533
https://hal.inria.fr/hal-03146495/document
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/581478.581500
https://doi.org/10.1145/773184.773202
https://doi.org/10.1145/773184.773202
https://doi.org/10.1007/3-540-57840-4_34
https://doi.org/10.1145/158511.158611
https://github.com/gcc-mirror/gcc/blob/master/gcc/tree-tailcall.cc
https://github.com/gcc-mirror/gcc/blob/master/gcc/tree-tailcall.cc
https://jfmengels.net/modulo-cons/
https://legacy.cs.indiana.edu/ftp/techreports/TR19.pdf
https://www.cs.cmu.edu/~15150/previous-semesters/2012-spring/resources/handouts/equational.pdf
https://www.cs.cmu.edu/~15150/previous-semesters/2012-spring/resources/handouts/equational.pdf
https://doi.org/10.1017/CBO9780511809835
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1016/0020-0190%252886%252990059-1
https://www.cs.nott.ac.uk/~pszgmh/123.pdf
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/3009837.3009872
https://koka-lang.github.io
https://doi.org/10.1145/3547634
https://doi.org/10.1145/268946.268953

40:30 Daan Leijen and Anton Lorenzen

Machinery, New York, NY, USA. doi:https://doi.org/10.1145/237721.237791.

Alexandre Moine, Arthur Charguéraud, and François Pottier. Jan. 2023. A High-Level Separation Logic for Heap Space

under Garbage Collection (Extended Version). In Proceedings of the 50th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, 1–27. POPL ’23.

Chris Okasaki. Jun. 1999. Purely Functional Data Structures. Colombia University, New York.

Gordon D. Plotkin, and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11 (1):
69–94. doi:https://doi.org/10.1023/A:1023064908962.

Gordon D. Plotkin, andMatija Pretnar. Mar. 2009. Handlers of Algebraic Effects. In 18th European Symposium on Programming
Languages and Systems, 80–94. ESOP’09. York, UK. doi:https://doi.org/10.1007/978-3-642-00590-9_7.

François Pottier, and Nadji Gauthier. 2004. Polymorphic Typed Defunctionalization, POPL ’04, . Association for Computing

Machinery, New York, NY, USA, 89–98. doi:https://doi.org/10.1145/964001.964009.

François Pottier, and Jonathan Protzenko. 2013. Programming with Permissions in Mezzo. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming, 173–184. ICFP ’13. ACM, Boston, Massachusetts,

USA. doi:https://doi.org/10.1145/2500365.2500598.

Reinking, Xie, de Moura, and Leijen. 2021. Perceus: Garbage Free Reference Counting with Reuse. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation, 96–111. PLDI 2021. ACM,

New York, NY, USA. doi:https://doi.org/10.1145/3453483.3454032.

John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM
Annual Conference - Volume 2, 717–740. ACM, Boston, Massachusetts, USA. doi:https://doi.org/10.1145/800194.805852.

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science, 55–74. LICS ’02. IEEE Computer Society, USA.

Tore Risch. Nov. 1973. REMREC - A Program for Automatic Recursion Removal. Inst. för Informationsbehandling, Uppsala

Universitet. https://user.it.uu.se/~torer/publ/remrec.pdf.
Wolfram Schulte, and Wolfgang Grieskamp. 1992. Generating Efficient Portable Code for a Strict Applicative Language. In

Declarative Programming, Sasbachwalden 1991, 239–252. Springer. doi:https://doi.org/10.1007/978-1-4471-3794-8_16.
Chung-chieh Shan. 2007. A Static Simulation of Dynamic Delimited Control. Higher-Order and Symbolic Computation 20 (4):

371–401. doi:https://doi.org/10.1007/s10990-007-9010-4.

Dorai Sitaram, and Matthias Felleisen. 1990. Control Delimiters and Their Hierarchies. LISP and Symbolic Computation 3 (1):

67–99. doi:https://doi.org/10.1007/BF01806126.

Jonathan Sobel, and Daniel P. Friedman. 1998. Recycling Continuations. In Proc. of the Third ACM SIGPLAN Int. Conf. on
Functional Programming, 251–260. ICFP ’98. Baltimore, Maryland, USA. doi:https://doi.org/10.1145/289423.289452.

Andrew Tolmach, and Dino P Oliva. 1998. From ML to Ada: Strongly-Typed Language Interoperability via Source Trans-

lation. Journal of Functional Programming 8 (4). Cambridge University Press: 367–412. doi:https://doi.org/10.1017/

S0956796898003086.

Sebastian Ullrich, and Leonardo de Moura. Sep. 2019. Counting Immutable Beans – Reference Counting Optimized for

Purely Functional Programming. In Proceedings of the 31st Symposium on Implementation and Application of Functional
Languages (IFL’19). Singapore.

Philip Wadler. 1984. Listlessness Is Better than Laziness: Lazy Evaluation and Garbage Collection at Compile-Time. In

Proceedings of the 1984 ACM Symposium on LISP and Functional Programming, 45–52. LFP ’84. Association for Computing

Machinery, New York, NY, USA. doi:https://doi.org/10.1145/800055.802020.

Mitchell Wand. Jan. 1980. Continuation-Based Program Transformation Strategies. Journal of the ACM 27 (1): 164–180.

doi:https://doi.org/10.1145/322169.322183.

Mitchell Wand, and Daniel P. Friedman. Jan. 1978. Compiling Lambda-Expressions Using Continuations and Factorizations.

Comput. Lang. 3 (4). Pergamon Press, Inc., USA: 241–263. doi:https://doi.org/10.1016/0096-0551(78)90042-5.

Andrew K. Wright, and Matthias Felleisen. Nov. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115 (1): 38–94.
doi:https://doi.org/10.1006/inco.1994.1093.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. In Proceedings of the 2014 ACM SIGPLAN
Symposium on Haskell, 1–12. Haskell ’14. Göthenburg, Sweden. doi:https://doi.org/10.1145/2633357.2633358.

Ningning Xie, and Daan Leijen. 2020. Effect Handlers in Haskell, Evidently. In Proceedings of the 13th ACM SIGPLAN Interna-
tional Symposium on Haskell, 95–108. Haskell 2020. Association for Computing Machinery, New York, NY, USA. doi:https://

doi.org/10.1145/3406088.3409022.

Ningning Xie, and Daan Leijen. Aug. 2021. Generalized Evidence Passing for Effect Handlers: Efficient Compilation of Effect

Handlers to C. In Proc. ACM Program. Lang., volume 5. ICFP. Association for Computing Machinery, New York, NY,

USA. doi:https://doi.org/10.1145/3473576.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

https://doi.org/10.1145/237721.237791
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1145/964001.964009
https://doi.org/10.1145/2500365.2500598
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/800194.805852
https://user.it.uu.se/~torer/publ/remrec.pdf
https://doi.org/10.1007/978-1-4471-3794-8_16
https://doi.org/10.1007/s10990-007-9010-4
https://doi.org/10.1007/BF01806126
https://doi.org/10.1145/289423.289452
https://doi.org/10.1017/S0956796898003086
https://doi.org/10.1017/S0956796898003086
https://doi.org/10.1145/800055.802020
https://doi.org/10.1145/322169.322183
https://doi.org/10.1016/0096-0551%252878%252990042-5
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/3406088.3409022
https://doi.org/10.1145/3406088.3409022
https://doi.org/10.1145/3473576

Tail Recursion Modulo Context: An Equational Approach 40:31

map 1 map 10 map 100 map 1000 map 10000 map 100000 map 1000000

0x

1x

2x

3x

(
0
.6
8
s
)

(
0
.4
0
s
)

(
0
.3
7
s
)

(
0
.3
7
s
)

(
0
.4
1
s
)

(
0
.4
2
s
)

(
0
.4
9
s
)

1
.1
0
x

1
.1
8
x

1
.2
2
x

1
.1
9
x

1
.2
0
x

1
.1
7
x

1
.1
2
x

1
.0
6
x

1
.3
5
x

1
.6
5
x

1
.6
8
x 1
.9
3
x

2
.1
0
x

o
u
t
o
f
s
t
a
c
k

1
.7
8
x

2
.3
8
x

2
.4
3
x

2
.3
2
x

2
.2
9
x

2
.3
1
x

2
.1
2
x

1
.1
2
x

0
.9
5
x

1
.0
3
x

1
.0
5
x

1
.3
9
x

4
.8
8
x

4
.5
3
x

0
.9
4
x

0
.7
5
x 0
.9
7
x

1
.0
3
x

1
.5
6
x

5
.4
3
x

8
.3
9
x

0
.9
4
x

0
.7
5
x 1
.0
0
x

1
.0
0
x

1
.4
4
x

4
.4
3
x

o
u
t
o
f
s
t
a
c
k

1
.0
6
x

1
.2
0
x

1
.5
9
x

1
.8
6
x

3
.9
8
x

1
1
.7
6
x

1
5
.4
7
x

r
e
l
a
t
i
v
e
t
i
m
e
(
l
o
w
e
r
i
s
b
e
tt
e
r
)

koka trmc koka acc koka std koka cps

ocaml trmc ocaml acc ocaml std ocaml cps

Fig. 4. Benchmarks on Ubuntu 20.04 (AMD 5950x), Koka v2.4.1-dev, OCaml 4.14.0. The benchmark repeatedly

maps the increment function over a list of a given size and sums the result list. Each workload is scaled

to process the same number of total elements (100 000 000). The tested variants of map are TRMC (trmc),

accumulator style (acc), the standard non tail recursive style (std), and finally CPS style (cps).

A FURTHER BENCHMARKS
Figure 4 shows benchmark results of the map benchmark. This time we included the results for

OCaml 4.14.0 which has support for TRMc [Bour et al. 2021] using the [@tail_mod_cons] attribute.

For example, the TRMc map function is expressed as:

let[@tail_mod_cons] rec map_trmc xs f =
match xs with
| [] -> []
| x :: xx -> let y = f x in y :: map_trmc xx f

Comparing across systems is always difficult since there are many different aspects, in particular

the different memory management of both systems where Koka uses Perceus style reference

counting [Reinking, Xie et al. 2021] and OCaml uses generational garbage collection, with a

copying collector for the minor generation, and a mark-sweep collector for the major heap [Doligez

and Leroy 1993].

The results at least indicate that our approach, using Minamide style tuples of the final result

object and a hole address, is competitive with the OCaml approach based on direct destination

passing style. For our translation, the trmc translation is always as fast or faster as the alternatives,

but unfortunately this is not the case in OCaml (yet) where it requires larger lists to become faster

then the standard recursion.

OCaml is also faster for lists of size 10 where std is about 25% faster than Koka’s trmc. We believe

this is in particular due to memory management. For the micro benchmark, such small lists always

fit in the minor heap with very fast bump allocation. Since in the benchmark the result is always

immediately discarded no live data needs to be traced in the minor heap for GC – perfect! In

contrast, Koka uses regular malloc/free with reference counting with the associated overheads.

However, once the workload increases with larger lists, the overhead of garbage collection and

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:32 Daan Leijen and Anton Lorenzen

copying to the major heap becomes larger, and in such situation Koka becomes (significantly) faster.

Also, the time to process the 100M elements stays relatively stable for Koka (around 0.45s) no

matter the sizes of the lists, while with GC we see that processing on larger lists takes much longer.

B PROOFS
B.1 Context Laws for Defunctionalized Contexts

app (k1 • k2) e
= app (k1 • Hole) e { assumption }
= app k1 e { def • }
= app k1 (app Hole e) { def app }
= app k1 (app k2 e) { def k2 }
and case k2 = Ai x1 . . . xm k3

app (k1 • k2) e
= app (k1 • Ai x1 . . . xm k3) e { assumption }
= app (Ai x1 . . . xm (k1 • k3)) e { def ◦ }
= J Ei [e | x1, . . ., xm] Kf ,k { def app, k = k1 • k3 }
= app (k1 • k3) (Ei [e | x1, . . ., xm]) { spec (b) }
= app k1 (app k3 (Ei [e | x1, . . ., xm])) { inductive hypothesis }
= app k1 (app (Ai x1 . . . xm k3) e) { def app }
= app k1 (app k2 e) { def app }
For application we have:

app (ctx Ei) e
= app (Ai x1, . . . xm Hole) e { def ctx }
= J Ei [e | x1, . . ., xm] Kf ,k { def app, k = Hole }
= app Hole (Ei [e | x1, . . . xm]) { spec (b) }
= Ei [e | x1, . . . xm] { def app }
= Ei [e]

□

B.2 Context Laws for Right-biased-contexts

app (k1 • k2) e
= app (k2 ⊙ k1) e { (rcomp) }
= e ⊙ (k2 ⊙ k1) { (rapp) }
= (e ⊙ k2) ⊙ k1 { assoc. }
= app k1 (app k2 e) { (rapp) }
and for context application we have:

app (ctx A) e
= app (|A|) e { (rctx) }
= e ⊙ (|A|) { (rapp) }
We proceed by induction over A.

Case A = □:
= e ⊙ (|□|)
= e ⊙ unit { fold }
= e { unit }
= □[e] { □ }

and the case A = A
′ ⊙ v:

= e ⊙ (|A′ ⊙ v |)
= e ⊙ ((|A′ |) ⊙ v) { fold }
= (e ⊙ (|A′ |)) ⊙ v { assoc. }
= A

′[e] ⊙ v { induction hyp. }
= A[e] { A context }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:33

B.3 General Monoid Contexts
app ((l1, r1) • (l2, r2)) e

= app (l1 ⊙ l2, r2 ⊙ r1) e { (acomp) }
= (l1 ⊙ l2) ⊙ e ⊙ (r2 ⊙ r1) { (aapp) }
= (l1 ⊙ (l2 ⊙ e ⊙ r2) ⊙ r1) { assoc. }
= app (l1, r1) (app (l2, r2) e) { (aapp) }
and

app (ctx A) e
= app (|A|) e { (actx) }
= l ⊙ e ⊙ r { (aapp), for (l, r) = (|A|) }
We proceed by induction over A: case A = □:

= l ⊙ e ⊙ r { for (l, r) = (|□|) }
= unit ⊙ e ⊙ unit { fold }
= e { unit }
= □[e] { □ }
and A = v ⊙ A

′
:

= l ⊙ e ⊙ r { for (l, r) = (|v ⊙ A
′ |) }

= (v ⊙ l) ⊙ e ⊙ r { fold, for (l, r) = (|A′ |) }
= v ⊙ (l ⊙ e ⊙ r) { assoc., for (l, r) = (|A′ |) }
= v ⊙ A

′[e] { induction hyp., for (l, r) = (|A′ |) }
= A[e] { A context }
and A = A

′ ⊙ v:
= l ⊙ e ⊙ r { for (l, r) = (|A′ ⊙ v |) }
= l ⊙ e ⊙ (r ⊙ v) { fold, for (l, r) = (|A′ |) }
= (l ⊙ e ⊙ r) ⊙ v { assoc., for (l, r) = (|A′ |) }
= A

′[e] ⊙ v { induction hyp., for (l, r) = (|A′ |) }
= A[e] { A context }

□

B.4 Context Laws for Exponent Contexts
We prove the composition law by induction on k2:

app (k1 • k2) e
= app (k1 + k2) e
= app k1 e { case k2 = 0 }
= app k1 (app 0 e) { (xapp) }
= app k1 (app k2 e) { k2 = 0 }
and

app (k1 • k2) e
= app (k1 + (k′ + 1)) e { case k2 = k′ + 1 }
= app ((k1 + k′) + 1) e { assoc. }
= app (k1 + k′) (g e) { (xapp) }
= app k1 (app k′ (g e)) { inductive hyp. }
= app k1 (app (k′ + 1) e) { (xapp) }
= app k1 (app k2 e) { k2 = k′ + 1 }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:34 Daan Leijen and Anton Lorenzen

Appliction can be derived as:

app (ctx A) e
= app (|A|) e { (xctx) }
We proceed by induction over A: case A = □:

= app (|□|) e
= app 0 e { fold }
= e { (xapp) }
= □[e] { □ }
and A = g A

′
:

= app (|g A
′ |) e

= app ((|A′ |) + 1) e { fold }
= app (|A′ |) (g e) { (xapp) }
= A

′[g e] { induction hyp. }
= A[e] { A context }

□

B.5 Constructor Contexts
Composition:

app (k1 • k2) e
= app (k1 [k2]) e { (kcomp) }
= (k1 [k2]) [e] { (kapp) }
= k1 [k2 [e]] { contexts }
= k1 [app k2 e] { (kapp) }
= app k1 (app k2 e) { (kapp) }
and application:

app (ctx K) e
= app K e { (kctx) }
= K[e] { (kapp) }

□

B.6 Constructor Contexts and Minamide
The hole calculus is restricted by a linear type discipline where the contexts ctx 𝛼 ≡ hfun 𝛼 𝛼

have a linear type. This is what enables an efficient in-place update implementation while still

having a pure functional interface. For our needs, we need to check separately that the translation

ensures that all uses of a context k are indeed linear. Type judgements in Minamide’s system

[Minamide 1998, fig. 4] are denoted as Γ ; H ⊢m e : 𝜏 where Γ is the normal type environment, and

H the linear one containing at most one linear value. The type environment Γ can still contain linear

values with a linear type but only pass those to one of the premises. The environment restricted

to non-linear values is denoted at Γ |N. We can now show that our translation can be typed in

Minamide’s system:

Lemma 3. (TRMC uses contexts linearly)
If Γ |N ; ∅ ⊢m fun f = 𝜆xs. e : 𝜏1→ . . .→ 𝜏n→ 𝜏 and k fresh

then Γ |N, f ; ∅ ⊢m fun f ′ = 𝜆xs. 𝜆k. JeKf ,k : 𝜏1→ . . .→ 𝜏n→ ((𝜏, 𝜏) hfun) → 𝜏 .

To show this, we need a variant of the general replacement lemma [Hindley and Seldin 1986, Lemma

11.18; Wright and Felleisen 1994, Lemma 4.2] to reason about linear substitution in an evaluation

context:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:35

x : 𝜏 ∈ Γ
Γ ; ∅ ⊢m x : 𝜏

[var]

Γ ; x : 𝜏 ⊢m x : 𝜏
[hle]

Γ |N ⊎ {x : 𝜏1} ; ∅ ⊢m M : 𝜏2

Γ ; ∅ ⊢m 𝜆x : 𝜏1 . M : 𝜏1→ 𝜏2
[abs]

Γ ; x : 𝜏1 ⊢m M : 𝜏2

Γ ; ∅ ⊢m ˆ𝜆x : 𝜏1. M : (𝜏1, 𝜏2) hfun
[hfun]

Γ1 ; ∅ ⊢m M1 : 𝜏1→ 𝜏2 Γ2 ; ∅ ⊢m M2 : 𝜏1

Γ1 ⊎ Γ2 ; ∅ ⊢m M1 M2 : 𝜏2
[app]

Γ1 ; ∅ ⊢m M1 : (𝜏1, 𝜏2) hfun Γ2 ; H ⊢m M2 : 𝜏1

Γ1 ⊎ Γ2 ; H ⊢m happ M1 M2 : 𝜏2
[happ]

Γi ; Hi ⊢m Mi : 𝜏 i Ck
: 𝜏1→ . . .→ 𝜏k → 𝜏

⊎i Γi ; ⊕i Hi ⊢m Ck M1 . . . Mk : 𝜏
[cons]

Γ1 ; ∅ ⊢m M : 𝜏1 Γ2 ; ∅ ⊢pat pi : 𝜏1 ↦→ Mi : 𝜏2

Γ1 ⊎ Γ2 ; ∅ ⊢m match M { pi ↦→ Mi } : 𝜏2
[match]

Γ, f : 𝜏 ; ∅ ⊢m 𝜆x . e : 𝜏

Γ ; ∅ ⊢m fun f = 𝜆x . e : 𝜏
[fundecl]

Γ1 ; ∅ ⊢m M1 : 𝜏1 Γ2, x : 𝜏1 ; ∅ ⊢m M2 : 𝜏1

Γ1 ⊎ Γ2 ; ∅ ⊢m let x = M1 in M2 : 𝜏2
[let]

Ck
: 𝜏 ∈ Γ

Γ ⊢m Ck
: 𝜏

[con]

f : 𝜏 ∈ Γ
Γ ⊢m f : 𝜏

[fun]

Γ ; ∅ ⊢m Ck
: 𝜏1→ . . .→ 𝜏k → 𝜏

Γ, x1 :𝜏1, . . ., xk :𝜏k ; ∅ ⊢ Mi : 𝜏
′

Γ ; ∅ ⊢pat Ck x1 . . . xk : 𝜏 ↦→ ei : 𝜏 ′
[pat]

Fig. 5. Minamide’s type system adapted to our language

Lemma 4. (Linear replacement)
If Γ |N ; ∅ ⊢m K[e] : 𝜏 for a constructor context K then there is a sub-deduction Γ |N ; ∅ ⊢m e : 𝜏 ′

at the hole and Γ |N ; x : 𝜏 ′ ⊢m K[x] : 𝜏 .

Proof. By induction over the constructor context K.

Case □.
Γ |N ; ∅ ⊢m □[e] : 𝜏 { assumption }
Γ |N ; ∅ ⊢m e : 𝜏 { subject reduction }
Γ |N ; x : 𝜏 ⊢m x : 𝜏 { [hle] }
Γ |N ; x : 𝜏 ⊢m □[x] : 𝜏 ′ { definition }
Γ |N ; x : 𝜏 ⊢m E[x] : 𝜏 ′ { definition }
Case Ck w1 . . . K

′ . . . wk .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:36 Daan Leijen and Anton Lorenzen

Γ |N ; ∅ ⊢m Ck w1 . . . K
′[e] . . . wk : 𝜏 { assumption }

Γ |N ; ∅ ⊢m wi : 𝜏 i for i ≠ j { [cons] and nonlinearity }
Γ |N ; ∅ ⊢m K

′[e] : 𝜏 j { [cons] }
Γ |N ; x : 𝜏 ′ ⊢m K

′[x] : 𝜏 j { inductive hypothesis }
Γ |N ; x : 𝜏 ′ ⊢m Ck w1 . . . K

′[x] . . . wk : 𝜏 { [cons] }

Again we see that our maximal context is an evaluation context as we would not be able to derive the

Lemma for contexts under lambda’s for example (as the linear type environment is not propagated

under lambda’s).

Proof. (Of Theorem 3) By the fundecl and abs rules we obtain:

Γ1 = Γ |N, f : 𝜏1→ . . .→ 𝜏n→ 𝜏, x1 : 𝜏1, . . ., xn : 𝜏n
Γ1 ; ∅ ⊢m e : 𝜏 { inductive property }
By the fundecl and abs rules, we need to derive:

Γ2 = Γ |N, f : 𝜏1→ . . .→ 𝜏n→ 𝜏, f ′ : 𝜏1→ . . .→ 𝜏n→ ((𝜏, 𝜏) hfun) → 𝜏, x1 : 𝜏1, . . ., xn : 𝜏n
Γ2, k : ((𝜏, 𝜏) hfun) ; ∅ ⊢m JeKf ,k : 𝜏

In particular, we have Γ1 ⊆ Γ2. We proceed by induction over the translation function while

maintaining the inductive property.

Case (base).
JeKf ,k = app k e = happ k e

k : (𝜏, 𝜏) hfun ; ∅ ⊢m k : (𝜏, 𝜏) hfun { [hle] }
Γ1 ; ∅ ⊢m e : 𝜏 { assumption }
Γ2 ; ∅ ⊢m e : 𝜏 { weakening }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ ⊢m happ k e { [happ] }

Case (tail), e = K[f e1 . . . en].
JeKf ,k = f ′ e1 . . . en (k • ctx K) = f ′ e1 . . . en (hcomp k (ˆ𝜆x . K[x]))

Γ1 ; ∅ ⊢m K[f e1 . . . en] : 𝜏 { assumption }
Γ2 ; ∅ ⊢m K[f e1 . . . en] : 𝜏 { weakening }
Γ2 ; x : 𝜏 ′ ⊢m K[x] : 𝜏 { linear replacement with nonlinearity of Γ2 }
Γ2 ; ∅ ⊢m ˆ𝜆x . K[x] : (𝜏, 𝜏) hfun { [hfun] }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ ⊢m hcomp k (ˆ𝜆x . K[x]) : (𝜏, 𝜏) hfun { hcomp, [happ], [hfun] }
Γ2 ; ∅ ⊢m f e1 . . . en : 𝜏 ′ { linear replacement with nonlinearity of Γ2 }
Γ2 ; ∅ ⊢m ei : 𝜏 i { [app] }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ ⊢m f ′ e1 . . . en (hcomp k (ˆ𝜆x . K[x])) { [app] }

Case (let), e = let x = e1 in e2.
JeKf ,k = let x = e1 in Je2Kf ,k

Γ1 ; ∅ ⊢m let x = e1 in e2 : 𝜏 { assumption }
Γ1 ; ∅ ⊢m e1 : 𝜏1 { [let] }
Γ2 ; ∅ ⊢m e1 : 𝜏1 { weakening }
Γ1, x : 𝜏1 ; ∅ ⊢m e2 : 𝜏 { [let] }
Γ2, k : (𝜏, 𝜏) hfun, x : 𝜏1 ; ∅ ⊢m Je2Kf ,k : 𝜏 { inductive hypothesis }
Γ2, k : (𝜏, 𝜏) hfun, ; ∅ ⊢m let x = e1 in Je2Kf ,k : 𝜏 { [let] }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:37

Case (match), e = match e1 { pi ↦→ ei }.
JeKf ,k = match e1 { pi ↦→ JeiKf ,k }

Γ1 ; ∅ ⊢m match e1 { pi ↦→ ei } : 𝜏 { assumption }
Γ1 ; ∅ ⊢m e1 : 𝜏 ′ { [match] }
Γ2 ; ∅ ⊢m e1 : 𝜏 ′ { weakening }
Γ1 ; ∅ ⊢pat pi ↦→ ei : 𝜏 { [match] }
Γ1 ; ∅ ⊢m Ck

: 𝜏1→ . . .→ 𝜏k → 𝜏 ′ { [pat] }
Γ1, x1 : 𝜏1, . . ., xk : 𝜏k ; ∅ ⊢m ei : 𝜏 { [pat] }
Γ2, k : (𝜏, 𝜏) hfun, x1 : 𝜏1, . . ., xk : 𝜏k ; ∅ ⊢m JeiKf ,k : 𝜏 { inductive hypothesis }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ ⊢pat pi ↦→ JeiKf ,k : 𝜏 { [pat] }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ ⊢m match e1 { pi ↦→ JeiKf ,k } : 𝜏 { [match] }

□

B.7 Contexts Form Linear Chains

Proof. (Of Lemma 2) By induction on the shape of K:

Case C . . . □i . . .:

H | C . . . □i . . .

−→∗
r

H , x ↦→1 C . . . □i . . . | x { (conr) }
= H , [x ↦→1 C . . . □i . . .]1x | x { linear chain }

Case C . . . K′[C ′ . . . □i . . .] . . .
H | (|C . . . K′[C ′ . . . □i . . .] . . .|)

−→∗
r

H , [H ′, y ↦→1 C ′ . . . □i . . .]1x′ | ⟨C . . . x ′ . . .⟩ { induction hyp. }
−→r H , x ↦→1 C . . . x ′ . . ., [H ′, y ↦→1 C ′ . . . □i . . .]1x′ | x { (conr) }
= H , [x ↦→1 C . . . x ′ . . ., H ′, y ↦→1 C ′ . . . □i . . .]1x | x { linear chain }

□

B.8 Deriving Constructor Context Fold
Given the specification:

(foldspec) H | (|K[C . . . □i . . .] |) � H | let x = K[C . . . □i . . .] in ⟨x, [x]@i⟩
we can calculate the fold using induction over the shape of K. In the case that K = □, we derive:

H | (|C . . . □i . . .|)
� H | let x = C . . . □i . . . in ⟨x, [x]@i⟩ { specification }
� H , x ↦→1 C . . . □i . . . | ⟨x, [x]@i⟩ { (letr), (conr), 1 }
= H , [x ↦→1 C . . . □i . . .]1x | ⟨x, [x]@i⟩ { linear chain }
= H , [x ↦→1 C . . . □i . . .]1x | ⟨x, x@i⟩ { def . }
� H | let x = C . . . □i . . . in ⟨x, x@i⟩ { (letr), (conr), 1 }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:38 Daan Leijen and Anton Lorenzen

and otherwise,K has the formC ′ . . . K′ . . .where (|K′[C . . . □i . . .] |) = let x = K
′[C . . . □i . . .] in ⟨x, [x]@i⟩

(by induction):

H | (|C ′ . . . K′[C . . . □i . . .] . . .|)
� H | let x = C ′ . . . K′[C . . . □i . . .] . . . in ⟨x, [x]@i⟩ { specification }
� H | let z = K

′[C . . . □i . . .] in let x = C . . . z . . . in ⟨x, [x]@i⟩ { (letr) }
� H | let ⟨z, [z]@i⟩ = (|K′[C . . . □i . . .] |) in let x = C . . . z . . . in ⟨x, [x]@i⟩ { calculate }
� H , [H ′, y ↦→1 C . . . □i . . .]1z, x ↦→1 C . . . z . . . | ⟨x, [x .i] ⟩ { (letr), lemma 2, 1 }
= H , [x ↦→1 C . . . z . . ., [H ′, y ↦→1 C . . . □i . . .]1z]1x, | ⟨x, [x]@i⟩ { linear chain }
= H , [x ↦→1 C . . . z . . ., [H ′, y ↦→1 C . . . □i . . .]1z]1x, | ⟨x, y@i⟩ { def . }
� H | let ⟨z, y@i⟩ = (|K′[C . . . □i . . .] |) in ⟨C . . . z . . ., y@i⟩ { (letr), (conr) (1) }

B.9 Deriving Constructor Context Composition
We can calculate for a K1,K2 ≠ □:

H | app (ctx K1 • ctx K2) e
� H | app (let x1 = K1 [□] in ⟨x1, [x1]@i⟩) • (ctx K2) e { fold specification, K1 ≠ □ }
� H , [H1, y1 ↦→1 C1 . . . □i . . .]1x1 | app (⟨x1, [x1]@i⟩ • ctx K2) e { lemma 2, 1 }
� H , [H1, y1 ↦→1 C1 . . . □i . . .]1x1 , [H2, y2 ↦→1 C2 . . . □j . . .]1x2
| app (⟨x1, [x1]@i⟩ • ⟨x2, [x2]@j⟩) e { fold specification, K2 ≠ □, lemma 2, 2 }

= H , [H1, y1 ↦→1 C1 . . . □i . . .]1x1 , [H2, y2 ↦→1 C2 . . . □j . . .]1x2
| app (⟨x1, y1@i⟩ • ⟨x2, y2@j⟩) e { def . }

= H , [H1, y1 ↦→1 C1 . . . □i . . .]1x1 , [H2, y2 ↦→1 C2 . . . □j . . .]1x2
| app ⟨app ⟨x1, y1@i⟩, y2@j⟩ e { calculate }

= H , [H1, y1 ↦→1 C1 . . . x2 . . .]1x1 , [H2, y2 ↦→1 C2 . . . □j . . .]1x2
| app ⟨x1, y2@j⟩) e { (uapp) }

= H , [H1, y1 ↦→1 C1 . . . x2 . . .]1x1 , [H2, y2 ↦→1 C2 . . . □j . . .]1x2 , z ↦→
1 v

| app ⟨x1, y2@j⟩ z { e terminating, 3 }
� H , [H1, y1 ↦→1 C1 . . . □i . . .]1x1 , [H2, y2 ↦→1 C2 . . . z . . .]1x2 , z ↦→

1 v
| app ⟨x1, y1@i⟩ x2 { (app) }

� H , [H1, y1 ↦→1 C1 . . . □i . . .]1x1 , [H2, y2 ↦→1 C2 . . . □j . . .]1x2 , z ↦→
1 v

| app ⟨x1, y1@i⟩ (app ⟨x2, y2@j⟩ z) { (app) }
� H , [H1, y1 ↦→1 C1 . . . □i . . .]1x1 , [H2, y2 ↦→1 C2 . . . z . . .]1x2
| app ⟨x1, y1@i⟩ (app ⟨x2, y2 .j) e { (3) }

� H , [H1, y1 ↦→1 C1 . . . □i . . .]1x1 | app ⟨x1, y1@i⟩ (app ctx K2) e { (2) }
� H | app (ctx K1) (app (ctx K2) e) { (1) }
and thus define composition as:

(ucomp) H | ⟨x1, y1@i⟩ • ⟨x2, y2@j⟩ −→r H | ⟨app ⟨x1, y1@i⟩ x2, y2@j⟩
In case the context is empty, we can calculate immediately:

H | app (ctx □) e
= H | app (|□|) e { def . }
� H | app ⟨⟩ e { fold specification }
� H | e { calculate }
= H | □[e] { contex }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:39

For the empty contexts we can calculate for application:

app (ctx □ • ctx K2) e
= app ((|□|) • ctx K2) e { def . }
� app (⟨⟩ • ctx K2) e { fold specification }
� app (ctx K2) e { calculate }
� K[e] { (appctx) }
� □[K[e]] { contexts }
and similarly for K2 = □ (but note that in our translation we never have k • ctx □).
B.10 Soundness of the Hybrid Approach
We need to show the context laws still hold for the hybrid approach.

At runtime, a context K is always a linear chain resulting from the fold or composition. We write

H | K̂ for a non-empty context [H ′, y ↦→m C . . . □i . . .]nx | ⟨x, y@i⟩ if we haveH0 | (|K|) � H0, [H ′, y ↦→m C . . . □i . . .]1x | ⟨x, y@i⟩.
Application:

H | app K̂ e
= H , [H ′, y ↦→m C . . . □i . . .]n+1x | app ⟨x, y@i⟩ e { (A), 1 }
� H , z ↦→1 v, [H ′, y ↦→m Ci . . . □i . . .]n+1x | app ⟨x, y@i⟩ z { e is terminating 2 }
= H , z ↦→1 v, [H ′, y ↦→m Ci . . . □i . . .]n+1x | append x z { calculate }
Now proceed by induction on H ′. H ′ = □:

H , z ↦→1 v, [y ↦→n+1 Ci . . . □i . . .]n+1y | append y z { singleton }
� H , z ↦→1 v, [y ↦→n+1 Ci . . . □i . . .]n+1y | y.i as z { calculate }
� H , z ↦→1 v, [y ↦→n Ci . . . □i . . .]ny, [x ′ ↦→1 Ci . . . z . . .]1x′ | x ′ { (as) }
� H , z ↦→1 v, [y ↦→n Ci . . . □i . . .]ny | ˆK[z] { (1) }
� H , [y ↦→n Ci . . . □i . . .]ny | K̂[e] { (2) }
and

H , z ↦→1 v, [x ↦→n+1 C ′ . . . yi . . ., [H1]1y]n+1x
| append x z

� H , z ↦→1 v, [x ↦→n+1 C ′ . . . yi . . ., [H1]1y]n+1x
| dup yi; x .i as (append yi z) { (append) }

� H , z ↦→1 v, [x ↦→n+1 C ′ . . . yi . . ., [H1]2y]n+1x
| x .i as (append y z)

� H , z ↦→1 v, [x ↦→n+1 C ′ . . . yi . . ., [H1]1y]n+1x , [H2]1y′
| x .i as y′ { induction hyp. }

� H , z ↦→1 v, [x ↦→n C ′ . . . yi . . ., [H1]1y]nx, [x ′ ↦→1 C ′ . . . y′i . . ., [H ′′]1y′]1x′
| x ′ { (as) }

� H , z ↦→1 v, [x ↦→n C ′ . . . yi . . ., [H1]1y]nx
| C ′ . . . ˆK

′[z] . . .
� H , z ↦→1 v, [x ↦→n C ′ . . . yi . . ., [H1]1y]nx
| K̂[z]

� H , [x ↦→n C ′ . . . yi . . ., [H1]1y]nx
| K̂[e] { (2) }

C TYPING DEFUNCTIONALIZED CONTEXTS
In general, defunctionalized programs can not always be typed in polymorphic type systems like

ML or System F. As Pottier and Gauthier [2004] show, the problem arises in the definition of app, as

the type of the second argument may depend on the first. For the CPS-transform this is no problem:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:40 Daan Leijen and Anton Lorenzen

fun plusOne(x : int)
1 + x

fun consOne(xs : list<int>)
Cons(1, xs)

fun app(k : a -> b, x : a) : b
k(x)

app(plusOne, 1)
app(consOne, [])

But when we defunctionalize it, we can no longer type app:

type defun<a>
PlusOne
ConsOne

fun app(k : defun<a>, x : a) : a
match k

PlusOne -> 1 + x // type error, can not unify a with int
ConsOne -> Cons(1, x) // type error, can not unify a with list<int>

app(PlusOne, 1)
app(ConsOne, [])

Pottier and Gauthier [2004] propose an easy fix: Just use GADTs! In pseudo-code:

type defun<a>
PlusOne : defun<int>
ConsOne : defun<list<int>>

This indeed fixes the problem. However, our approach can even work without GADTs, as we restrict

the type of the hole as a in ctx<a>. While this can not handle polymorphic recursion, it is general

enough for all examples in the paper – and ensures that our translation can be typed in System F.

In this section, we want to show the last claim in formal.

First, let us define the accum type. Formally, we introduce a new type constructor A with a

parameter for each type variable 𝛼 bound at the top-level in the definition of f . The constructor
symbols get the type Ai : ∀𝛼. 𝜏1→ . . .→ 𝜏k → A 𝛼 , where 𝜏 i is the type of the ith free variable.

As the context transformation does not descend into Λ𝛼. e terms, the free type variables of 𝜏 i are

contained in 𝛼 . In the map example, this yields the accumulator:

type accum<a, b>
Hole
A1(x : b, k : accum<a, b>)

We now show that the transformed program is typeable. For convenience, we redefine f ′ to take

the continuation k as the first parameter.

Lemma 5.
Let Γ be a context that contains a type 𝜏 , a list of types 𝜏1 . . . 𝜏n, a list of type variables 𝛼 and variables

f : ∀𝛼. 𝜏1→ . . .→ 𝜏n→ 𝜏 , f ′ : ∀𝛼. A 𝛼 → 𝜏1→ . . .→ 𝜏n→ 𝜏 , k : A 𝛼 and app : ∀𝛼. A 𝛼 → 𝜏 → 𝜏 .

Let e be an expression with Γ ⊢ e : 𝜏 . Then Γ ⊢ J e Kf ,k : 𝜏 .

Proof by induction on e.
Case Γ ⊢ (let x = e′ : 𝜎 in e) : 𝜏 .

Γ, x : 𝜎 ⊢ e : 𝜏 { [let] }
Γ, x : 𝜎 ⊢ J e Kf ,k : 𝜏 { inductive hypothesis }
Γ ⊢ let x = e′ in J e Kf ,k : 𝜏 { [let] }
Γ ⊢ J let x = e′ in e Kf ,k : 𝜏 { (tlet) }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

Tail Recursion Modulo Context: An Equational Approach 40:41

Types

𝜏 ::= 𝛼 (type variable)

| T
k 𝜏1 . . . 𝜏k (fully applied type constructors)

| 𝜏 → 𝜏 (functions)

| ∀𝛼. 𝜏 (abstraction)

Γ, x :𝜎 ⊢ e : 𝜏

Γ ⊢ 𝜆x . e : 𝜎 → 𝜏
[lam]

Γ ⊢ e1 : 𝜎 → 𝜏 Γ ⊢ e2 : 𝜏

Γ ⊢ e1 e2 : 𝜏
[app]

Γ ⊢ e1 : 𝜎 Γ, x :𝜎 ⊢ e2 : 𝜏

Γ ⊢ let x = e1 in e2
[let]

Γ ⊢ e : 𝜎 Γ ⊢pat pi : 𝜎 ↦→ ei : 𝜏

Γ ⊢ match e { pi ↦→ ei } : 𝜏
[match]

Γ ⊢ Ck
: 𝜎1→ . . .→ 𝜎k → 𝜎

Γ, x1 :𝜎1, . . ., xk :𝜎k ⊢ ei : 𝜏
Γ ⊢pat Ck x1 . . . xk : 𝜎 ↦→ ei : 𝜏

[pat]

x : 𝜎 ∈ Γ
Γ ⊢ x : 𝜎

[var]

Ck
: 𝜎 ∈ Γ

Γ ⊢ Ck
: 𝜎

[con]

f : 𝜎 ∈ Γ
Γ ⊢ f : 𝜎

[fun]

Γ, 𝛼 type ⊢ e : 𝜎

Γ ⊢ Λ𝛼. e : ∀𝛼. 𝜎
[gen]

Γ ⊢ e : ∀𝛼. 𝜎
Γ ⊢ e 𝜏 : 𝜎 [𝛼 :=𝜏]

[inst]

𝛼 type, 𝜏 type, f : ∀𝛼. 𝜏 ⊢ 𝜆x . e : 𝜏 𝛼 = ftv(𝜏)
Γ ⊢ fun f = Λ𝛼. 𝜆x . e : ∀𝛼. 𝜏

[fundecl]

Fig. 6. Typing rules for System F in our language

Case Γ ⊢ match (e′ : 𝜎) { pi ↦→ ei } : 𝜏 .
Γ ⊢pat pi : 𝜎 ↦→ ei : 𝜏 { [match] }
Γ, x1 :𝜎1, . . ., xk : sk ⊢ ei : 𝜏 { [pat] }
Γ, x1 :𝜎1, . . ., xk : sk ⊢ J ei Kf ,k : 𝜏 { inductive hypothesis }
Γ ⊢pat pi : 𝜎 ↦→ J ei Kf ,k : 𝜏 { [pat] }
Γ ⊢ match (e′ : 𝜎) { pi ↦→ J ei Kf ,k } : 𝜏 { [match] }
Γ ⊢ J match (e′ : 𝜎) { pi ↦→ ei } Kf ,k : 𝜏 { (tmatch) }

Case E[f b e1 . . . en], with f b e1 . . . en : 𝜏 . We write b for type variables that are potentially distinct
from 𝛼 .

Γ ⊢ f b e1 . . . en : 𝜏 { by assumption }
Γ ⊢ f ′ b k e1 . . . en : 𝜏 { by assumption }
Γ ⊢ k : A b { by [app] }
Γ ⊢ Ai x1 . . . xm k : A b { for x1 . . . xm the free variables in E }
Γ ⊢ f ′ b (Ai x1 . . . xm k) e1 . . . en : 𝜏 { follows }
Γ ⊢ J E[f b e1 . . . en] Kf ,k : 𝜏 { (tail) }

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:42 Daan Leijen and Anton Lorenzen

Case else.

Γ ⊢ app 𝛼 : A 𝛼 → 𝜏 → 𝜏 { by assumption }
Γ ⊢ k : A 𝛼 { by assumption }
Γ ⊢ e : 𝜏 { by assumption }
Γ ⊢ app 𝛼 k e : 𝜏 { [app] }
Γ ⊢ J e Kf ,k : 𝜏 { (base) }
Lemma 6.
Let Γ be a context that contains the variable app : ∀𝛼. A 𝛼 → 𝜏 → 𝜏 .

If Γ ⊢ fun f = Λ𝛼. 𝜆xs. e : ∀𝛼. 𝜏1→ . . .→ 𝜏n→ 𝜏

then Γ, f ⊢ fun f ′ = Λ𝛼. 𝜆k. 𝜆xs. J e Kf ,k : ∀ 𝛼. A 𝛼 → 𝜏1→ . . .→ 𝜏n→ 𝜏 .

Directly by lemma 5, lam and fundecl.

Lemma 7.
Let Γ ⊢ fun f = Λ𝛼. 𝜆x . e : ∀𝛼. 𝜏 . Then Γ ⊢ fun app = Λ𝛼. 𝜆k. 𝜆x . e′ : ∀𝛼. A 𝛼 → 𝜏 → 𝜏 with

e′ as defined above.

We prove app k x : 𝜏 for the individual cases of k. The lemma follows by the match, lam and

fundecl rules.

Case k = Hole. Obvious as x : 𝜏 .

Case k = Ai x1 . . . xm k′. We need to show that J Ei [x | x1 . . . xm] Kf ,k : 𝜏 . By lemma 5, it

suffices to show Ei [x | x1 . . . xm] : 𝜏 . However, this follows from x : 𝜏 and the requirement in

(tail) that E[f e] : 𝜏 .

D POLYMORPHIC RECURSION
In this paper we have limited ourselves to recursive functions where each recursive call has the

same return type. However, there are some functions where the recursive call might have a different

return type due to polymorphic recursion. For example, Okasaki [1999] presents the following

random access list:

type seq<a>
Nil
Zero(s : seq<(a, a)>)
One(x : a, s : seq<(a, a)>)

fun cons(x : a, s : seq<a>) : seq<a>
match s

Nil -> One(x, Nil)
Zero(ps) -> One(x, ps)
One(y, ps) -> Zero(cons((x, y), ps))

Here the recursive call instantiates a with (a,a), and the hole in Zero(□) has type seq<(a,a)>. As a

consequence, performing the translation for polymorphically recursive code can lead to code that

is not typeable is System F (see discussion in section C), but as with defunctionalization, one can

regain typability with GADTs [Pottier and Gauthier 2004]. Even though Koka has an intermediate

core representation based on System F, the application and composition functions are primitives

and can be typed without needing extensions (and Koka transforms the above function without

problems).

E AN EXAMPLE OF THE GENERATED CODE
As an example of the code generation of our TRMC scheme we consider the map function from our

benchmarks where the map function is specialized by the compiler for the increment function as:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

40:30 Daan Leijen and Anton Lorenzen

fun map_trmc’(xs : list<int32>, k : ctx<int32>) : list<int32>
match xs

Nil -> app k Nil
Cons x xx -> val y = x+1 in map_trmc’(xx, comp(k,y))

fun map_trmc(xs : list<int32>) : list<int32>
map_trmc’(xs, Ctx invalid null)

Here the Ctx constructor is the Minamide tuple as a value type containing the final result and hole

address. For efficiency we represent the empty tuple with a null address for the hole. Eventually,

such value type is passed in registers, and the generated code for arm64 becomes:

map_trmc’:
... ; setup
mov x21, x2 ; x21 is the hole address of the tuple
mov x19, x1 ; x19 the final result part of the tuple
cmp x0, #5 ; is it Nil?
b.ne LBB3_5 ; if not, goto to Cons branch
...

LBB3_5: ; Cons branch
mov x20, x3 ; set up loop variables in registers
mov x23, #x100000000 ; used for fast int32 arithmetic
mov w24, #x020202 ; Cons header: total fields=2, context path index=2, tag=2, rc=0
mov w25, #1

LBB3_6: ; tail call entry
ldp x26, x22, [x0, #8] ; load pair: x = x26 and xx = x22
ldr w8, [x0, #4] ; load ref count in w8
cbnz w8, LBB3_10 ; if not unique, goto slower copying path

LBB3_7:
add x8, x23, x26, lsl #31 ; increment x from/to a boxed int32 representation
asr x8, x8, #31
orr x8, x8, #0x1
stp x24, x8, [x0] ; store pair in-place: the header and the incremented x
mov x8, x0
str x25, [x8, #16]! ; set the tail to invalid (1) for now (not really needed)
cbz x21, LBB3_16 ; if this an empty tuple (hole==NULL), goto slow path
str x0, [x21] ; else store our Cons result into the current hole

LBB3_9:
mov x0, x22 ; continue with the tail (x22)
mov x21, x8 ; and set x21 to the new hole
cmp x22, #5 ; is it a Nil?
b.ne LBB3_6 ; if not, make a tail call
b LBB3_2 ; otherwise return
...

map_trmc:
mov x3, x1 ; set up the empty Minamide tuple
mov w1, #1 ; final result is invalid for now (1)
mov x2, #0 ; with the initial hole==NULL
b map_trmc’ ; and jump

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 40. Publication date: January 2023.

	Abstract
	1 Introduction
	2 An Overview of Tail Recursion Modulo Cons
	2.1 Continuation Style TRMc
	2.2 Linear Continuation Style

	3 Calculating Tail-Recursion-Modulo-Context
	3.1 Abstract Contexts
	3.2 Calculating a General Tail-Recursion-Modulo-Contexts Algorithm

	4 Instantiations of the General TRMC Transformation
	4.1 Modulo Evaluation Contexts
	4.2 Nested Translation of Modulo Evaluation Contexts
	4.3 Modulo Defunctionalized Evaluation Contexts
	4.4 Modulo Associative Operator Contexts
	4.5 Modulo Monoid Contexts
	4.6 Modulo Semiring Contexts
	4.7 Modulo Exponent Contexts

	5 Modulo Constructor Contexts
	5.1 Minamide
	5.2 In-place Update
	5.2.1 The Essence of In-Place Update
	5.2.2 Linear Chains
	5.2.3 Contexts as a Linear Chain
	5.2.4 Calculating the Fold
	5.2.5 Updating a Context
	5.2.6 Calculating Application and Composition

	6 Modulo Constructor Contexts: Non-Linear Control
	6.1 A Hybrid Approach
	6.2 Another Approach: Fall Back to General Evaluation Contexts

	7 Improving Constructor Contexts
	7.1 Modulo Cons Products

	8 Benchmarks
	9 Related Work
	10 Conclusion and Future Work
	References
	A Further Benchmarks
	B Proofs
	B.1 Context Laws for Defunctionalized Contexts
	B.2 Context Laws for Right-biased-contexts
	B.3 General Monoid Contexts
	B.4 Context Laws for Exponent Contexts
	B.5 Constructor Contexts
	B.6 Constructor Contexts and Minamide
	B.7 Contexts Form Linear Chains
	B.8 Deriving Constructor Context Fold
	B.9 Deriving Constructor Context Composition
	B.10 Soundness of the Hybrid Approach

	C Typing Defunctionalized Contexts
	D Polymorphic Recursion
	E An Example of the Generated Code

