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The recently introduced Perceus algorithm can automatically insert reference count instructions such that
the resulting (cycle-free) program is garbage free: objects are freed at the very moment they can no longer
be referenced. An important extension is reuse analysis. This optimization pairs objects of known size
with fresh allocations of the same size and tries to reuse the object in-place at runtime if it happens to be
unique. Unfortunately, current implementations of reuse analysis are fragile with respect to small program
transformations, or can cause an arbitrary increase in the peak heap usage. We present a novel drop-guided
reuse algorithm that is simpler and more robust than previous approaches. Moreover, we generalize the linear
resource calculus to precisely characterize garbage-free and frame-limited evaluations. On each function call,
a frame-limited evaluation may hold on to memory longer if the size is bounded by a constant factor. Using
this framework we show that our drop-guided reuse is frame-limited and find that an implementation of our
new reuse approach in Koka can provide significant speedups.
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1 INTRODUCTION
Reference counting [Collins 1960] is a technique for automatic memory management where each
allocated object stores the number of references that point to it. Reinking, Xie, de Moura, and
Leijen [2021] describe the Perceus algorithm for automatically inserting reference count instructions
such that the resulting (cycle-free) program is garbage free: objects are freed at the very moment they
can no longer be referenced. Even though the Perceus algorithm itself needs an internal calculus
with explicit control flow, the authors apply this work in the context of the Koka language [2021]
which supports full algebraic effect handlers. These can be used to define various kinds of implicit
control flow, including features like exceptions, async/await, and backtracking [Leijen 2017; Plotkin
and Power 2003; Plotkin and Pretnar 2009; Xie and Leijen 2021].
An important extension is reuse analysis. This optimization pairs objects of known size with

fresh allocations of the same size and tries to reuse the object in-place at runtime if it happens to
be unique. This was first described in earlier work by Ullrich and de Moura [2019] in the context
of the Lean theorem prover [Moura and Ullrich 2021]. Unfortunately, the published algorithms
for reuse analysis all have various weaknesses; for example, they are fragile with respect to small
program transformations, where inlining or rearranging expressions can cause reuse analysis to
fail unexpectedly.
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Moreover, while Perceus itself is garbage-free, reuse analysis does not have this property. By
construction, it holds on to memory that is to be reused later, which can lead to an increased peak
memory usage. We find the maximum increase is not just a constant factor but can be much larger,
and is generally not safe for space [Appel 1991; Paraskevopoulou and Appel 2019].
In this work we improve upon this with a novel reuse algorithm and a formal framework for

reasoning about heap bounds that can be applied to general transformations (including reuse
analysis). In particular:

• We define a new approach to reuse called drop guided reuse (Section 3.2). In contrast to earlier
techniques we perform the reuse after Perceus has inserted reference count instructions. This
both simplifies the analysis and makes it more robust with respect to small program trans-
formations. We formalize drop-guided reuse generally in the form of declarative derivation
rules where we can discuss clearly the various choices an algorithm can make (Section 5.4).
• We illustrate this with a practical example in Section 2.2 where we see significantly better
reuse for red-black tree balanced insertion in comparison with the previous algorithms. In
combination with the tail-recursion-modulo-cons (TRMC) optimization, we show how for red-
black tree insertion we get a highly optimized code path reusing a (unique) tree in-place while
usingminimal stack space. Our straightforward and purely functional implementation is about
19% faster than the manually optimized in-place mutating red-black tree implementation in
the C++ STL library (std::map) (Section 6).
• We reformulate the original linear resource calculus 𝜆1 [Reinking, Xie et al. 2021] in a
normalized form (𝜆1n) where we can reason precisely about reuse. As for 𝜆1, the declarative
derivation rules for the 𝜆1n calculus are non-deterministic and can derive many programs
with reference counting instructions that are all correct but may differ in their memory
consumption. However, in the normalized reformulation, it now is possible to add a single
logical side condition (★) to the let rule that captures various important variants concisely
(Section 5.3):
– If the (★) condition is unrestricted, the resulting programs are sound – that is, the reference
counting is correct and the final heap contains no garbage.

– By restricting (★) in a particular way, we can show that all derived programs are garbage-
freewhere at every allocating evaluation step there is no garbage (and all programs resulting
from the Perceus algorithm fall in this class).

– Finally, we can weaken the (★) condition of the garbage-free system to also allow deriva-
tions that we call frame-limited, where every function call uses at most a constant factor c
more memory.

• Transformations like reuse and borrowing no longer have the garbage-free property as they
hold on to some memory for a bit longer (the cell to reuse, or the data that is borrowed).
With the new formalization, we can now show that some of these transformations are
still frame-limited, and we prove that our new drop-guided reuse analysis is frame-limited
(Section 5.4). In contrast, we show that some previous reuse algorithms and unrestricted
borrow inference [Ullrich and de Moura 2019] are not frame-limited transformations (and
we argue such transformations should therefore be avoided in practice).
• Building on robust reuse analysis, we can often express imperative style algorithms in a
functional way. Such algorithms are called Functional But In-Place (FBIP). In Section 7 we
use this technique to create a faster version of the parallel binarytrees benchmark. We then
generalize this approach to visitor data types (as a derivative of the original data type) to
derive a novel FBIP algorithm for red-black tree balanced insertion that further improves
upon the standard Okisaki style implementation [Okasaki 1999a].
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The work described in this paper applies in particular to systems that use Perceus style reference
counting: both drop-guided reuse and the (★) condition to reason about space usage rely on the
linear resource calculus. As noted by Reinking, Xie et al. [2021], Perceus cannot collect cycles, and
works best in a language with limited use of (concurrent) mutable references and where potential
sharing of structures across threads is detectable. Currently, Perceus is implemented in the Lean
and Koka compilers where these assumptions hold, but we believe there are many more (ML-style
applicative) languages that could take advantage of Perceus and simplify their runtime systems.
Proofs and extended sources can be found in the associated technical report [Lorenzen and

Leijen 2021].

2 OVERVIEW AND BACKGROUND
We start with a short overview of background material and related work; in particular the Koka
language, Perceus-style reference counting, and reuse analysis. All our examples use the Koka
language [Leijen 2014 2017 2021; Xie and Leijen 2021] – a strongly typed functional language with
effect handlers which tracks (side) effects in the type of every function. Koka uses algebraic data
types extensively. For example, we can define a polymorphic list of elements of type a as:
type list⟨a⟩
Cons( head : a, tail : list⟨a⟩ )
Nil

We can match on a list to define a polymorphic map function that applies a function f to each
element of a list xs:
fun map( xs : list⟨a⟩, f : a -> e b ) : e list⟨b⟩
match xs

Cons(x,xx) -> Cons(f(x), map(xx,f))
Nil -> Nil

Here we transform the list of generic elements of type a to a list of generic elements of type b. Since
map itself has no intrinsic effect, the overall effect of map is polymorphic, and equals the effect e of
the function f as it is applied to every element.

2.1 Perceus
By starting from a languagewith strong static guarantees (like Koka), the Perceus algorithm [Reinking,
Xie et al. 2021] can insert optimized reference count instructions during compilation. Note though
it still needs separate mechanisms to address cyclic data and mitigate the impact of thread shared
reference counts – we refer to the Perceus paper for a in-depth discussion of these.

The main attribute that sets Perceus apart from most automatic memory management systems
is that it is garbage-free: for a cycle-free program, an object is freed as soon as no more references
remain. Consider for example the following function:
fun main()
val xs = list(1,1000000) // allocate a large list
val ys = map(xs,inc) // increment each element
println(ys)

Many reference count systems would drop the references to xs and ys based on the lexical scope;
for example:
fun main()
val xs = list(1,1000000)
val ys = map(xs,inc)
println(ys)
drop(xs)
drop(ys)
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where we use a gray background for generated operations. The drop(xs) operation decrements
the reference count of an object and, if it drops to zero, recursively drops all children of the object
and frees its memory. These “scoped lifetime” reference counts are for example used by a C++
shared_ptr⟨T⟩ (calling the destructor at the end of the scope), Rust’s Rc⟨T⟩ (using the Drop trait), and
Nim (using a finally block to call destroy) [Yarantsev 2020]. It is not required by the semantics,
but Swift typically emits code like this as well [Gallagher 2016].

Implementing reference counting this way is straightforward and integrates well with exception
handling where the drop operations are performed as part of stack unwinding. But from a perfor-
mance perspective, the technique is not always optimal: in the previous example, the large list xs is
retained in memory while a new list ys is built. Moreover, at the end of the scope, a long cascading
chain of drop operations happens for each element in both lists.

Ownership. Perceus takes a more aggressive approach where ownership of references is passed
down into each function: now map is in charge of freeing xs, and ys is freed by print: no drop

operations are emitted inside main as all local variables are consumed by other functions, while the
map and print functions drop the list elements as they go. Let’s take a look at what reference count
instructions Perceus generates for the map function:
fun map(xs : list⟨a⟩, f : a -> e b) : e list⟨b⟩

match xs
Cons(x,xx) ->

dup(x); dup(xx); drop(xs)
Cons( dup(f)(x), map(xx,f))

Nil ->
drop(xs); drop(f)
Nil

In the Cons branch, first the head and tail of the list are dupped, where a dup(x) operation increments
the reference count of an object and returns itself. The drop(xs) then frees the initial list node. We
need to dup f as well as it is used twice, while x and xx are consumed by f and map respectively.

Transferring ownership, rather than retaining it, means we can free an object immediately when
no more references remain. This both increases cache locality and decreases memory usage. For
map, the memory usage is halved: the list xs is deallocated while the new list ys is being constructed.

2.2 Reuse
Reuse analysis [Reinking, Xie et al. 2021; Ullrich and de Moura 2019] is an optimization that takes
advantage of precise reference counts to try to reuse objects in-place. We can pair objects of known
size with same sized allocated constructors and try to reuse these in-place at runtime. Reuse analysis
rewrites map into:
fun map(xs : list⟨a⟩, f : a -> e b) : e list⟨b⟩

match xs
Cons(x,xx) ->
dup(x); dup(xx); val r = dropru(xs)
Cons@r( dup(f)(x), map(xx,f))

The reuse token r becomes the address of the Cons cell xs if xs happens to be unique, and NULL

otherwise. The Cons@r allocation reuses xs in-place if r is non NULL, and otherwise allocates a fresh
Cons cell. In case we map over a unique list, the list elements are updated in-place. Given the cost
of allocation versus a single uniqueness check, reuse optimization (almost) certainly improves
performance when it can apply, and often with a significant factor [Reinking, Xie et al. 2021].

A further rewriting technique called drop specialization can further optimize this by inlining the
dropru operation and simplifying such that no reference count operations are necessary in the case
that the list is unique:
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type color { R; B }

type tree⟨a⟩
Node( clr:color, l:tree⟨a⟩, key:int, value:a, r:tree⟨a⟩ )
Leaf

fun is-red(t : tree⟨a⟩) : bool
match t

Node(R,_,_,_,_) -> True
_ -> False

fun lbal(l :tree⟨a⟩, k : int, v : a, r : tree⟨a⟩) : tree⟨a⟩
match l

Node(_, Node(R, lx, kx, vx, rx), ky, vy, ry) ->
Node(R, Node(B,lx,kx,vx,rx), ky, vy, Node(B,ry,k,v,r))

Node(_, ly, ky, vy, Node(R, lx, kx, vx, rx)) ->
Node(R, Node(B,ly,ky,vy,lx), kx, vx, Node(B,rx,k,v,r))

Node(_, lx, kx, vx, rx) ->
Node(B, Node(R,lx,kx,vx,rx), k, v, r)

Leaf -> Leaf

fun rbal(l : tree⟨a⟩, k : int, v : a, r : tree⟨a⟩) : tree⟨a⟩
...

fun ins(t : tree⟨a⟩, k : int, v : a) : tree⟨a⟩
match t

Leaf -> Node(R, Leaf, k, v, Leaf)
Node(B, l, kx, vx, r) ->

if k < kx then
if is-red(l) then lbal(ins(l,k,v), kx, vx, r)

else Node(B, ins(l,k,v), kx, vx, r)
elif k > kx then

if is-red(r) then rbal(l, kx, vx, ins(r,k,v))
else Node(B, l, kx, vx, ins(r,k,v))

else Node(B, l, k, v, r)
Node(R, l, kx, vx, r) ->

if k < kx then Node(R, ins(l,k,v), kx, vx, r)
elif k > kx then Node(R, l, kx, vx, ins(r,k,v))
else Node(R, l, k, v, r)

Fig. 1. Balanced red-black tree insertion

fun map(xs : list⟨a⟩, f : a -> e b) : e list⟨b⟩
match xs

Cons(x,xx) ->
val r = if unique(xs) then &xs // reuse the address of xs directly

else dup(x); dup(xx); decref(xs); NULL
Cons@r( dup(f)(x), map(xx,f))

...

This is an important optimization in practice and our new reuse algorithm is compatible with it,
but for clarity we generally leave it out in the following examples.

Balanced Trees. Reinking, Xie et al. [2021] provide an appealing example of the effectiveness of
reuse analysis using balanced insertion in red-black trees [Guibas and Sedgewick 1978]. Figure 1
shows the implementation in Koka based on Okasaki’s algorithm [Okasaki 1999a]. A red-black tree
has the invariant that the number of black nodes from the root to any of the leaves are the same,
and that a red node is never a parent of red node. Together this ensures that the trees are always
balanced. When inserting nodes, the invariants are maintained by rebalancing the nodes when
needed.
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If we look closely at all the match branches in Figure 1, (and assume that the lbal and rbal

functions get inlined), then we can see that we always either match one Node and allocate one,
or we match three nodes deep and allocate three (when rebalancing). In the case that the tree is
unique, the reuse analysis reuses every Node along the spine without doing any further allocations!
Moreover, if we use the tree persistently [Okasaki 1999b] where the tree is shared (or has shared
subtrees), it adapts to copying exactly the shared spine of the tree (and no more).

3 DROP-GUIDED REUSE
Previouswork has shown that reuse analysis can be very effective, and has been implemented in both
the Koka and Lean languages. Unfortunately, it turns out that both previously published algorithms
for reuse analysis are flawed: the Koka algorithm, which we call algorithm K [Reinking, Xie et
al. 2021], is fragile with respect to small program tranformations, where rearranging expressions
can cause reuse analysis to fail unexpectedly. The Lean algorithm, called algorithm D [Ullrich and
de Moura 2019 (Fig 3)], is more robust but can lead to an arbitrary increase in peak memory usage.
In this section we look at each algorithm, and propose a new approach, called drop-guided reuse,
that improves upon both the previous techniques.

3.1 Problems with Reuse
Both Reinking, Xie et al. [2021] and Ullrich and de Moura [2019] describe reuse algorithms as
a pass before the main Perceus algorithm. The reason they chose this approach is two-fold: the
dropru function can be seen as consuming its argument and thus needs no special treatment from
Perceus, and similarly, a reuse token can be deallocated by Perceus if it is not used (for example
if the constructor is only allocated in one branch of a nested match-statement but not another).
However, in practice we observed that this can lead to situations where the reuse is not optimal.

Algorithm K as implemented in the Koka compiler tries to reuse at the start of a branch whenever
a matching constructor size can be found in the branch body. That seems reasonable at first, but
consider the following example (A):
match x
Just(_) -> // x is still live here

match y
0 -> x
_ -> Just(y)

In this case, the Just(y) matches with the deconstructed x, where reuse analysis will try to reuse x,
and the generated code becomes:
match x
Just(_) ->

val r = dropru(dup(x))
match y

0 -> drop(y); drop(r); x
_ -> drop(x); Just@r(y)

Unfortunately, since x is still live in the scope it prevents any reuse at runtime due to the inserted
dup operation, and r will always be NULL at runtime.

An obvious way to improve on this, is by pushing down reuse operations into branches behind
the last use of an object. This is the approach used by algorithm D, where example (A) can reuse x

now effectively:
match x

Just(_) ->
match y

0 -> drop(y); x
_ -> val r = dropru(dup(x)); Just@r(y)
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This approach has a different weakness though, and can lead to an arbitrary increase in peak
memory usage. Consider the following example (B):
match xs
Cons(_,_) ->

val y = f(xs)
Cons(y,Nil)

Using algorithm D, a reuse is inserted right after the call to f, which leads to Perceus (running
afterwards) inserting a dup on the xs parameter:
match xs

Cons(_,_) ->
val y = f(dup(xs))
val r = dropru(xs)
Cons@r(y,Nil)

Even though the Cons cell of xs is actually available for reuse, it now also holds on to the full xs
list during evaluation of f. This not only means that we may use sizeof(xs) more memory than
necessary, but also that any reuse by f of xs is prevented was well (as xs is now certainly not
unique).

Reuse in Balanced Trees. The previous patterns actually occur regularly in practice. In fact, both
algorithm D and K also fail to effectively reuse, even under small rewrites, the balanced tree
insertion example. Consider again the code in Figure 1, and let’s focus on the second branch in the
ins function:
match t
Node(B, l, kx, vx, r) ->

if k < kx then
if is-red(l) then lbal(ins(l,k,v), kx, vx, r)

else Node(B, ins(l,k,v), kx, vx, r))

With both reuse algorithms, the Node allocation in the else branch will reuse the outer matched
node t. It gets more interesting though, if both lbal and is-red get inlined (and simplified); we
focus just on the then case and the first branch of lbal here:
match t

Node(B, l, kx, vx, r) ->
if k < kx then

match l
Node(R,_,_,_,_) ->

val t2 = ins(l,k,v)
match t2

Node(_, Node(R, ...), ...) ->
Node(R, Node(B, ...), ..., Node(B, ...))

Due to the inlined is-red function, we now get a situation where both algorithm D and K fall short.
This is exactly like example (B): algorithm K will try to reuse l even though it is still used later on,
leading to:
match l
Node(R,_,_,_,_) ->

val ru2 = dropru(dup(l))
val u = ins(l,k,v)

where ru2 is never available for reuse at runtime. Algorithm D does not fare much better either as
it holds on to l preventing the recursive ins from reusing the tree:
match l

Node(R,_,_,_,_) ->
val t2 = ins(dup(l),k,v)
val ru2 = dropru(l)

As shown, both published algorithms are quite fragile with respect to small program tranformations.
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3.2 Drop Guided Reuse
We believe the essential weakness of both previous algorithms is that they fail to take liveness into
account. As such, we propose to perform reuse analysis after doing Perceus dup-drop insertion.
Indeed, Perceus already performs precise liveness analysis and it has been shown it inserts

optimal dup/drop operations in the sense that the resulting program is garbage-free. This means
that the drop operations signify precisely when a cell may become available for reuse – and this is
exactly the point where we should rewrite the drop to a dropru if there is any potential for reuse.
The call to dropru cannot hold on to objects any longer than necessary since by the garbage-free
property an object must be live until directly before it is dropped.
With drop-guided reuse analysis, we keep track of the currently known sizes of each variable

(updated at each branch pattern) and if we encounter a drop we can statically determine if it can
pair with a later allocation of the same size. As type information is erased in Koka’s runtime, it
does not matter if the values are of different types. Looking at our earlier example (A) from the
previous section, Perceus generates first:
match x
Just(_) ->

match y
0 -> drop(y); x
_ -> drop(x); Just(y)

The drop-guided reuse analysis can now rewrite the drop(x) into a dropru(x) as we know that the
size of x matches the size of the following Just allocation:
match x

Just(_) ->
match y

0 -> drop(y); x
_ -> val r = dropru(x); Just@r(y)

For the other example (B) in the previous section, no drop operations are generated in the first
place, and no dropru is inserted either – perfect!

A drawback of the new approach is that we need to explicitly free newly created reuse tokens if
these happen to be unused in some branch, and we can no longer rely on Perceus doing this for us.
It may seem we need to perform another mini Perceus pass to address this, but it can be done in a
simpler way: since reuse tokens are only generated in a specific way, we can show they are only
used either never or once, and never captured under a lambda or passed as an argument. As such,
it is suffices to locally check at each branch of a match expression if a given reuse token r occurs in
this branch and insert a free(r) instruction if this is not the case. In the new Koka implementation
we combine this in one pass with the reuse analysis.

Finally, with balanced tree insertion, none of the earlier problems with algorithm D and K occur.
The drop-guided approach is robust and leads to optimal reuse:
match t
Node(B, l, kb, vb, r) ->

dup(l); dup(kb); dup(vb); dup(r)
val ru = dropru(t)
if k < kb then
match l

Node(R,_,_,_,_) ->
val t2 = ins(l,k,v)
match t2

Node(_, l2 as Node(R, ...), ..., r2) ->
val ru2 = dropru(t2)
val ru3 = dropru(l2)
Node@ru(R, Node@ru2(B, ...), ..., Node@ru3(B, ...))
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Again, the reuse analysis will reuse every Node along the spine without doing any further allocations
if the tree is unique. As we show in the benchmarking section, with the new improved reuse analysis
the performance on unique trees rivals that of the manually optimized in-place mutating red-black
tree implementation in the C++ STL library (std::map).

TRMC: Tail-Recursion-Modulo-Cons. We can make the red-black tree insertion a bit faster still
with tail-recursion-modulo-cons (TRMC) optimization. Usually, with tail-recursion any functions that
call themselves recursively in a tail position are transformed into a loop instead (using no extra stack
space). With TRMC, such function can make its tail call inside any tail-position expression consisting
of just constructors and non-allocating total expressions. For example, map is such function where
the recursion in Cons(f(x), map(xx,f)) is transformed into a loop. This is done by pre-allocating
the Cons node ahead of the recursive call with a hole in the tail field, which is later assigned by the
recursive call.

TRMC interacts well with reuse analysis as often the recursive call is inside a constructor that is
reused. In the map function for example, this will result in traversing the list in a tight loop while
updating each element in-place when the list xs happens to be unique.
For red-black tree rebalancing, we can see in Figure 1 that there are four TRMC recursive ins

calls and only in the rbal/lbal cases this does not hold. When we study the generated C code the
final result is quite sophisticated: there is an outer TRMC loop for the four TRMC ins calls, but
it is interspersed at runtime with the two actual recursive ins calls. Moreover, due to reuse, the
code updates unique nodes in place when rebalancing the spine, but adapts to copying for shared
subtrees. Overall this is very efficient code that would be difficult to write directly by hand.

4 REASONING ABOUT SPACE
As we have seen, liveness analysis helps us avoid the problems of algorithm K, but have we also
avoided the problem of algorithm D of using too much space? Indeed, since reuse analysis keeps
heap cells alive until they can be reused, it means that no reuse analysis can preserve the garbage-
free property! Is there a way to still characterize the space usage of such transformations that is
more restrictive than allowing arbitrary increases, but also more permissive than garbage-free?

4.1 Frame-Limited Transformations
Drop guided reuse analysis can, at any evaluation step, hold on to a single cell per reuse token r

that was created by dropru, but not used at a constructor yet. Since any function can only contain a
constant number of dropru calls, one might expect the total overhead to be constant as well, which
would make drop guided reuse safe for space [Appel 1991; Paraskevopoulou and Appel 2019], in
the sense that the maximum peak memory increase is bounded by a constant. However, before a
reuse token is used there might be a recursive call. Consider the map function we first viewed:
val r = dropru(xs)
Cons@r( dup(f)(x), map(xx,f))

Here, r is live during the recursive call and so reuse analysis can hold on to as many Cons cells as
either the list is long or the stack allows. In other words, we can only hope to bound the extra
memory needed for reuse analysis by a constant factor times the current number of stack frames
– we call this frame-limited. We formalize this notion in the next section, and formally prove in
Section 5.4 that our new drop guided reuse is a frame-limited transformation. In contrast, as we
showed in Section 3.1, the reuse algorithm D [Ullrich and de Moura 2019] is not frame limited and
can lead to an arbitrary increase in memory usage.
Even though weaker than being garbage-free or safe for space, we argue that frame-limited

transformations are still good in practice. First of all, programmers are already aware of recursion
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and take steps to avoid unbounded recursion. Secondly, in practice the stack size is usually already
bounded – in such case, that makes the frame-limited bound constant (and thus safe for space).

Note that in practice, backend optimizations like tail-recursion may optimize stack frames away.
However, we formalize frame-limited in terms of the size of the evaluation context (i.e. the recursion
depth) instead of actual stack frames and thus the bound still applies.

4.2 Borrowing
Another example of a transformation that does not preserve the garbage-free property is borrow-
ing [Ullrich and de Moura 2019]: even though the first example in Section 2.1 argues that arguments
should be passed owned to the callee, this is not always optimal – sometimes it is better to pass
arguments as borrowed instead. Consider converting a list into an unbalanced binary tree:
fun make-tree( xs : list⟨a⟩ ) : tree⟨a⟩

match xs
Cons(x, xx) -> Node( R, Leaf, 0, x, make-tree(xx) )
Nil -> Leaf

Perceus inserts dup(x); dup(xx); drop(xs); in the Cons branch, which causes some overhead, espe-
cially since there are no reuse opportunities. When we annotate a parameter like xs to be borrowed
(as ^xs), the caller keeps ownership of the parameter. As a result, no reference count operations
need to be performed at all for the xs parameter in our example. Note that borrow annotations are
strictly a performance hint, and do not change semantics or whether a program is well-typed (in
contrast to the notion of borrowing in a language like Rust for example).
Borrow annotations are not always beneficial though: if xs happens to be unique, we allocate

the tree while the full xs list is still live – exactly the situation we wanted to avoid in Section 2.1. In
general, borrowing can increase the memory usage of a program by an arbitrary amount and it is
generally not frame-limited. Ullrich and de Moura [2019] describe a borrow inference algorithm
that marks xs automatically as borrowed. However, given that this is not safe for space, we argue
that automatic borrow inference should be further restricted to guarantee it is at least frame-limited.
Therefore, Koka currently has no automatic borrow inference and generally only uses borrowing
for built-in primitives (like big integer operations).

5 FORMALIZATION
We formalize our results using the linear resource calculus 𝜆1 as given by Reinking, Xie et al. [2021]
(see figure 2). This is essentially just lambda calculus extended with let bindings and pattern
matching. We assume that the patterns pi in a match are all distinct. The semantics for 𝜆1 is
standard using strict evaluation contexts E [Wright and Felleisen 1994]. The evaluation contexts
uniquely determine where to apply an evaluation step using the eval rule. As such, evaluation
contexts neatly abstract from the usual implementation context of a stack and program counter.
The small step evaluation rules perform function application (app), let-binding (let), and pattern
matching (match).

5.1 Heap Semantics
To reason precisely about reference counting, we need a semantics with an explicit heap. Reinking,
Xie et al. [2021] define a heap semantics directly over 𝜆1. However, since we aim to reason precisely
about the space behavior, this is not quite sufficient for our case as we need to be more explicit
about sharing and evaluation order. We therefore translate any expression e into normalized form
⌊e⌋, as defined in Figure 3, where all arguments become variables instead of values [Flanagan et
al. 1993].
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e ::= v
| e e
| let x = e in e
| match e { pi → ei }

v ::= x
| 𝜆x . e
| C v

p ::= C x

Semantics:

E : := □ | E e | v E

| let x = E in e
| match E { pi → ei }

e −→ e′

E[e] ↦−→ E[e′]
[eval]

Small step transitions:
(app) (𝜆x . e) v −→ e[x:=v]
(let) let x = v in e −→ e[x:=v]
(match) match (C v) {pi → ei} −→ ei [x:=v]

where pi = C x

Fig. 2. Syntax and semantics of 𝜆1

Figure 4 defines the syntax of the normalized linear resource calculus 𝜆1n where all arguments
are now variables. Moreover the syntactic constructs in gray are only generated in derivations of
the calculus and are not exposed to users. Among those constructs, dup and drop form the basic
instructions of reference counting, while r←dropru is used for reuse. Also, every lambda 𝜆zx .e is
annotated with its free variables z which becomes important during evaluation.
Contexts Δ, Γ are multisets containing variable names. We use the compact comma notation

for summing (or splitting) multisets. For example, (Γ, x) adds x to Γ, and (Γ1, Γ2) appends two
multisets Γ1 and Γ2. The set of free variables of an expression e is denoted by fv(e), and the set of
bound variables of a pattern p by bv(p).
Using our normalized calculus, Figure 5 defines the semantics in terms of a reference counted

heap, where sharing of values is explicit, and substitution only substitutes variables. Here, each heap
entry x ↦→n v points to a value v with a reference count of n (with n ⩾ 1). In these semantics, values
other than variables are allocated in the heap with rule (lamr ) and rule (conr ). The evaluation rules
discard entries from the heap when the reference count drops to zero. Any allocated lambda is
annotated as 𝜆zx . e to clarify that these are essentially closures holding an environment z and a
code pointer 𝜆x . e. Note that it is important that the environment z is a multi-set. After the initial
translation, z will be equivalent to the free variables in the body (see rule lam), but during evaluation
substitution may substitute several variables with the same reference. To keep reference counts
correct, we need to keep considering each one as a separate entry in the closure environment.

When applying an abstraction, rule (appr ) needs to satisfy the assumptions made when deriving
the abstraction in rule lam (shown in Figure 6). First, the (appr ) rule inserts dup to duplicate the
free closure variables z, as these are owned in rule lam. It then drops the reference to the closure
itself.

A difference between (appr ) and (matchr ) is that for applications the free variables z are dynamic
and thus the duplication must be done at runtime. In contrast, a match knows the bound variables
in a pattern statically and we therefore generate the required dup and drop operations statically
during elaboration for each branch (as shown in Figure 6) – this is essential as that enables the
further static optimizations of dup/drop pairs and reuse analysis.

We discuss the reuse evaluation rules later in Section 5.4.
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⌊x⌋ = x
⌊𝜆x . e⌋ = 𝜆x . ⌊e⌋
⌊e e′⌋ = let f = ⌊e⌋ in let x = ⌊e′⌋ in f x
⌊C v1. . .vn⌋= let x1 = ⌊v1⌋ in. . .let xn = ⌊vn⌋ in C x1 . . .xn
⌊match e { pi → ei }⌋= let x = ⌊e⌋ in match x { pi → ⌊ei⌋ }
⌊let x = e1 in e2⌋ = let x = ⌊e1⌋ in ⌊e2⌋

Fig. 3. Normalization. All f and x are fresh

e ::= v
| e x
| let x = e in e
| match x { pi → ei }
| dup x; e
| drop x; e
| r←dropru x; e

𝜆x .e � 𝜆zx .e (z = fv(e))

v ::= x
| 𝜆zx . e
| C x

p ::= C x

Δ, Γ ::= ∅ | Δ ∪ x

Fig. 4. The normalized linear resource calculus 𝜆1n.

H : x ↦→ (N+, v)
E : := □ | E x | let x = E in e

H | e −→r H
′ | e′

H | E[e] ↦−→r H
′ | E[e′]

[eval]

(lamr ) H | 𝜆z x . e −→r H, f ↦→1 𝜆z x . e | f fresh f
(conr ) H | C x1 . . . xn −→r H, z ↦→1 C x1 . . . xn | z fresh z
(appr ) H | f y −→r H | dup z; drop f ; e[x:=y] (f ↦→n 𝜆z x . e) ∈ H
(matchr ) H | match y {pi → ei} −→r H | ei [x:=z] with pi = C x and (y ↦→n C z) ∈ H
(letr ) H | let x = z in e −→r H | e[x:=z]
(dupr ) H, x ↦→n v | dup x; e −→r H, x ↦→n+1 v | e
(dropr ) H, x ↦→n+1 v | drop x; e −→r H, x ↦→n v | e if n ⩾ 1
(dlamr ) H, x ↦→1 𝜆xy.e′ | drop x; e −→r H | drop x; e
(dconr ) H, x ↦→1 C x | drop x; e −→r H | drop x; e
Extension with reuse (with fresh z, z):
(dropru) H, x ↦→n+1 v | r←dropru x; e −→r H, x ↦→n v, z ↦→1 () | e[r :=z] if n ⩾ 1
(dlamru) H, x ↦→1 𝜆xy.e′ | r←dropru x; e −→r H, z ↦→1 () | drop x; e[r :=z]
(dconru) H, x ↦→1 C x | r←dropru x; e −→r H, z ↦→1 (), z ↦→1 C z | drop x; e[r :=z]

Fig. 5. Reference-counted heap semantics for 𝜆1n.

5.2 Dup-Drop Insertion in 𝜆1n

Figure 6 defines the logical derivation rules over 𝜆1n for inserting reference count instructions such
that the resulting expression can be soundly evaluated by the heap semantics of Figure 5. The
judgement Δ | Γ ⊢ e ⇝ e′ in Figure 6 reads as follows: given a borrowed environment Δ, a linear
environment Γ, an expression e is translated into an expression e′ with explicit reference counting
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Δ
↑
| Γ
↑
⊢ e
↑
⇝ e′

↓
(↑ is input, ↓ is output)

Δ and Γ are multisets of the borrowed and owned variables in scope

Δ | x ⊢ x ⇝ x
[var]

Δ, x | Γ ⊢ e ⇝ e′

Δ | Γ, x ⊢ e x ⇝ e′ x
[app]

Δ | Γ, x ⊢ e ⇝ e′ x ∈ Δ, Γ
Δ | Γ ⊢ e ⇝ dup x; e′

[dup]

Δ | x ⊢ C x ⇝ C x
[con]

∅ | Γ, x ⊢ e ⇝ e′ Γ = fv(𝜆x . e)
Δ | Γ ⊢ 𝜆x . e ⇝ 𝜆Γ x . e′

[lam]

Δ | Γ ⊢ e ⇝ e′

Δ | Γ, x ⊢ e ⇝ drop x; e′
[drop]

Δ | Γ, r ⊢ e ⇝ e′ fresh r

Δ | Γ, x ⊢ e ⇝ r←dropru x; e′
[dropru]

Δ, Γ2 | Γ1 ⊢ e1 ⇝ e′1 Δ | Γ2, x ⊢ e2 ⇝ e′2 (★)
Δ | Γ1, Γ2 ⊢ let x = e1 in e2 ⇝ let x = e′1 in e′2

[let]

Δ | Γ, zi ⊢ ei ⇝ e′i pi = Ci zi x ∈ Δ, Γ
Δ | Γ ⊢ match x { pi ↦→ ei } ⇝ match x { pi ↦→ dup(zi); e′i }

[match]

Fig. 6. Logical derivation rules of 𝜆1n. The rules are parameterized by the (★) condition on let. We write⊢gf
for garbage-free derivations, and use⊢fl for derivations that are frame-limited.

instructions. We call variables in the linear environment owned.
The key idea is that each resource (i.e., owned variable) is consumed exactly once. That is, a

resource needs to be explicitly duplicated (in rule dup) if it is needed more than once; or be explicitly
dropped (in rule drop) if it is not needed. The rules are closely related to linear typing.
The rules are close to the derivation rules by Reinking, Xie et al. [2021] but differ in important

details. In particular, by using a normalized form we only split the owned environment Γ in the
let rule, and no longer in the app and con rules which are now much simpler. This in turn allows
us to parameterize the system by a single side condition (★) that allows us to concisely capture
garbage-free, frame-limited, and sound transformations as shown in Section 5.3.

The let rule splits the owned environment Γ into two separate contexts Γ1 and Γ2 for expression
e1 and e2 respectively. Each expression then consumes its corresponding owned environment. Since
Γ2 is consumed in the e2 derivation, we know that resources in Γ2 are surely alive when deriving
e1, and thus we can borrow Γ2 in the e1 derivation. The rule is quite similar to the [let!] rule of
Wadler’s linear type rules [Wadler 1990, pg.14] where a linear type can be “borrowed” as a regular
type during evaluation of a binding.
The lam rule is interesting as it essentially derives the body of the lambda independently. The

premise Γ = fv(𝜆x .e) requires that exactly the free variables in the lambda are owned – this
corresponds to the notion that a lambda is allocated as a closure at runtime that holds all free
variables of the lambda (and thus the lambda expression consumes the free variables). The body of
a lambda is evaluated only when applied, so it is derived under an empty borrowed environment
only owning the argument and the free variables (in the closure). The translated lambda is also
annotated with Γ, as 𝜆Γx . e, so we know precisely the resources the lambda should own when
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evaluated in a heap semantics. We often omit the annotation when it is irrelevant.
Another important difference from earlier work is that the match rule now statically generates

dup instructions for the pattern bindings (since the new (matchr ) rule no longer dups the fields
at runtime). Inserting dup instructions statically is essential to actually perform further dup/drop
optimizations (like reuse!) on the final derived expression. Finally, we also added the dropru rule
to reason precisely about reuse analysis described later.

Properties. Many of the properties proven for 𝜆1 [Reinking, Xie et al. 2021] carry over to 𝜆1n.
In particular, the logical derivation rules precisely elaborate expressions with reference count
operations such that they can be correctly evaluated by the target heap semantics, as stated in the
following theorem:
Theorem 1. (Reference-counted heap semantics is sound)
If we have ∅ | ∅ ⊢ e ⇝ e′ and e ↦−→∗ v, then we also have ∅ | e′ ↦−→∗r H | x with [H]x = v.
We prove this theorem in separate steps: first we show soundness in a heap semantics that ignores
reference count instructions (App. C.2 in the tech report), then use a separate resource calculus to
show reference counts are correct (App. C.3 in the tech report), and finally combine these results
for the final proof (App. C.4 in the tech report).
Second, we prove that the reference counting semantics never hold on to unused variables. We

first define the notion of reachability.
Definition 1. (Reachability)
We say a variable x is reachable in terms of a heapH and an expression e, denoted as reach(x, H | e),
if (1) x ∈ fv(e); or (2) for some y, we have reach(y, H | e) ∧ y ↦→n v ∈ H ∧ reach(x, H | v).
With reachability, we can show (see App. C.5 in the tech report):
Theorem 2. (Reference counting leaves no garbage)
Given ∅ | ∅ ⊢ e ⇝ e′, and ∅ | e′ ↦−→∗r H | x, then for every intermediate state Hi | ei, we have
for all y ∈ dom(Hi), reach(y, Hi | ei).
Note that similar to 𝜆1, 𝜆1n does not model mutable references. A natural extension of the system is
to include mutable references and thus cycles. In that case, we could generalize Theorem 2, where
the conclusion would be that for all resources in the heap, it is either reachable from the expression,
or it is part of a cycle.
These theorems establish the correctness of the reference-counted heap semantics. However,

correctness does not imply that evaluation is garbage-free. Eventually all live data is discarded
but an evaluation may well hold on to live data too long by delaying drop operations. As an
example, consider y ↦→1 () | (𝜆x . x) (drop y; ()), where y is reachable but dropped too late: it is
only dropped after the lambda gets allocated. In contrast, a garbage-free algorithm would produce
y ↦→1 () | drop y; (𝜆x . x) ().

5.3 Reasoning about Space with the “Star” Condition
Reinking, Xie et al. [2021] give declarative derivation rules for reference counting but then provide
a separate algorithm that is then proven to be garbage-free. This is not ideal as it does not provide
any particular insight why the algorithm is garbage-free, and if other approaches may exist as well.

By making evaluation order explicit in the normalized 𝜆1n calculus, we found a way to capture the
garbage-free property declaratively as a single side condition on the let rule in our new derivation
rules. Moreover, by weakening the condition, this can also be used to characterize other interesting
points in the design space, and provide a general framework to reason about memory consumption.
In particular, we can concisely characterize frame-limited derivations. We can thus instantiate the
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rules by giving a specific (★) condition:

• General derivations⊢ . Whenwe define (★) to be true, the evaluation of any derived expression
is sound (Theorem 1).
• Garbage-free derivations ⊢gf. When we define the (★) condition as Γ2 ⊆ fv(e2), then the
evaluation of any derived expression is garbage-free (Definition 2 and Theorem 3). At the let
rule we have the freedom to split Γ into Γ1 and Γ2 in any way. For garbage-free derivations
though we try to minimize borrowing in the e1 derivation (of Γ2) and thus the condition
captures intuitively that we should use the smallest Γ2 possible, and not include variables
that are not needed for the e2 derivation.
• Frame-limited derivations ⊢fl. When we define (★) as Γ2 = Γ′, Γ′′ where Γ′ ⊆ fv(e2) and
sizeof (Γ′′) ⩽ c for some constant c, then the evaluation for any derived expression is frame-
limited (Definition 3 and Theorem 4). We define sizeof (Γ′′) as the sum of the sizes of each
element:

∑
y∈Γ′′ sizeof (y). This weakens the garbage-free condition to allow borrowing of

any y where the runtime size of y is known to be limited by a constant. This is just enough
for transformations like reuse where we borrow a reuse token until it can be reused.

Garbage-Free Evaluation. We define garbage-free evaluation formally as:
Definition 2. (Garbage free evaluation)
An evaluation ∅ | e′ ↦−→∗r H | x is called garbage-free iff for every intermediate state Hi | E[v] in
the evaluation, we have that for all y ∈ dom(Hi), reach(y, Hi | ⌈E[v]⌉).
where we use the notation ⌈e⌉ to erase all drop and dup in the expression e. This is a refinement of
the definition given by Reinking, Xie et al. [2021], which considered any non dup/drop steps, while
we weaken this and consider only value steps v. By using E[v] we consider exactly those points
where we are at an allocation step (C x or 𝜆zx . e), and this is exactly the point where we want to
ensure that there is no garbage. In particular, match and let are heap invariant, and applications just
expand to dups, drops, and substitution. This also gives more freedom to garbage-free algorithms
as it becomes possible for example to push a drop down into the branches of a match which was
not possible before. Using our new definition, we can then prove (App. C.6 in the tech report):
Theorem 3. (⊢gf derivations are garbage-free)
If ∅ | ∅ ⊢gf e ⇝ e′ and ∅ | e′ ↦−→∗r H | x , then the evaluation is garbage-free.
Even with the garbage-free side-condition, there are still many choice points in the derivations
which gives us freedom to consider various algorithms. Generally though, when implementing
Perceus one wants to dup as late as possible (push up dup into the leaves of the derivation), and do
drops as early as possible. The original Perceus algorithm does this, and also trivially satisfies our
garbage-free condition as it has the invariant Γ ⊆ fv(e) for any derivation step.

Frame-Limited Evaluation. Similar to garbage-free evaluations, we can define frame-limited
evaluations:
Definition 3. (Frame-limited evaluation)
An evaluation∅ | e′ ↦−→∗r H | x is called frame-limited iff for every intermediate state Hi | E[v] in
the evaluation, we have thatHi equals (H1,H2) such that for all y ∈ dom(H1), reach(y,H1 | ⌈E[v]⌉)
and |H2 | ⩽ c · |E| for some constant c.
This expresses that at every allocation step, we may now hold on to extra heap space H2, but the
size of H2 is limited by a constant amount times the size of the evaluation context (i.e. the stack).
We can now prove (App. C.7 in the tech report):
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S

↑
| R
↑
⊩ e
↑
⇝ e′

↓
(↑ is input, ↓ is output)

S maps variables to their heap size (if known)
R maps reuse variables 𝑟 to their available heap size, dom(R) ̸∩ fv(e)

S | ∅ ⊩ x ⇝ x
[rvar]

S | ∅ ⊩ C x ⇝ C x
[rcon]

S | R ⊩ e ⇝ e′

S | R ⊩ e x ⇝ e′ x
[rapp]

∅ | ∅ ⊩ e ⇝ e′

S | ∅ ⊩ 𝜆Γ x . e ⇝ 𝜆Γ x . e′
[rlam]

S | R ⊩ e ⇝ e′

S | R ⊩ dup x; e ⇝ dup x; e′
[rdup]

S | R ⊩ e ⇝ e′

S | R, r : n ⊩ e ⇝ drop r ; e′
[rdropr]

x : n ∈ S S | R, r : n ⊩ e ⇝ e′ fresh r

S | R ⊩ drop x; e ⇝ r←dropru x; e′
[rdrop-reuse]

S | R1 ⊩ e1 ⇝ e′1 S | R2 ⊩ e2 ⇝ e′2
S | R1,R2 ⊩ let x = e1 in e2 ⇝ let x = e′1 in e′2

[rlet]

S | R, r ⊩ e ⇝ e′

S | R ⊩ r←dropru x; e ⇝ r←dropru x; e
[rdropru]

S | R ⊩ e ⇝ e′

S | R ⊩ drop x; e ⇝ drop x; e′
[rdrop]

S, x : n | R ⊩ ei ⇝ e′i pi = C x1 . . . xn

S | R ⊩ match x { pi ↦→ ei } ⇝ match x { pi ↦→ e′i }
[rmatch]

Fig. 7. Declarative rules for drop-guided reuse analysis

Theorem 4. (⊢fl derivations are frame-limited)
If ∅ | ∅ ⊢fl e ⇝ e′ and we have ∅ | e′ ↦−→∗r H | x , then the evaluation is frame-limited with
respect to the constant c chosen in the (★) condition.
Borrowing a variable for a function call can also be frame-limited: Whenever an owned variable is
passed as borrowed, we need to move it from the linear environment to the borrowed environment.
But this can only happen in the app and let rules. With the app rule, we can safely borrow since we
use the variable later and with the let rule this is frame-limited whenever the size of the borrowed
variables is bounded by a constant.

5.4 Drop-Guided Reuse
Figure 7 shows the declarative derivation rules for drop-guided reuse analysis. A rule S | R ⊩ e ⇝ e′

states we can derive e′ from e given a mapping S from variables to their heap cell size (if known),
and a mapping R from reuse tokens r to their available heap size. Again, we use a multi-set for S
and R; we need to ensure we only use a reuse token r once, and similar to the owned environment
Γ the leaf derivations require R to be empty (as in rvar, rcon, and rlam).
We state drop-guided reuse in terms of derivation rules instead of a specific algorithm in order

to clearly expose the choice points. At any drop x; e expression we can choose to either leave it as
is, or use rdrop-reuse to try to reuse it at runtime. We can only use rdrop-reuse though if the size
of x is known statically – in our rules (and in our implementation) this only happens by matching
on a particular constructor (in rmatch) but in principle we could also use other sources, like type
information for example where all constructors happen to have the same size. Furthermore, in an
implementation we also would only apply rdrop-reuse if there is an actual opportunity in e for
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reuse to occur – that is, we look first if e contains an occurrence of C x1 .. xn. This is what we do in
the Koka implementation where we actually do this in a single pass by passing all available reuse
tokens R statefully and after transforming the sub expression we only apply drop-reuse if the reuse
token was actually used (and otherwise we leave it unchanged as rdrop).
Another choice point is in the rlet rule where we can freely split R into R1 and R2, where we

may either reuse early or late if reuse is possible in both e1 and e2. Also, rule rdropr is not syntax
directed and thus we have a choice in what reuse token to use if there are multiple reuse tokens
of the right size. In the Koka implementation we always reuse early and in the rlet rule we first
process e1 and then e2 with an R2 consisting of any unused reuse tokens. If there is a choice of reuse
tokens of the same size, we prefer a token of the same constructor and with the most fields that are
unchanged, as that is beneficial for reuse specialization [Reinking, Xie et al. 2021, section 2.5].
To simplify the formalization and proofs, we do not introduce a new form of constructor reuse

that we used before (as C@r) but instead assume the runtime evaluation recognizes a pair drop r ; C x
as a reuse opportunity, that is:
H, r ↦→1 C ′ ⊥1 . . . ⊥n | drop r ; C x1 . . . xn −→r H, x ↦→1 C x1 . . . xn | x
Also, to simplify the formalization, we do not add ⊥ either and use allocated unit constructors ()
instead. The rules for dropru evaluation are given in Figure 5. We can now show that drop-guided
reuse is sound and frame-limited (App. C.8 in the tech report):
Theorem 5. (Reuse is frame-limited)
If Δ | Γ ⊢gf e ⇝ e′, and reuse derives S | R ⊩ e′ ⇝ e′′, then Δ | Γ,R ⊢fl e ⇝ e′′.
That is, if we have a garbage free derivation followed by drop-guided reuse, we could have derived
that same expression directly as well using a frame-limited derivation. This is how Koka implements
this as well: first a Perceus algorithm (that satisfies garbage-free derivations) followed by a drop-
guided reuse algorithm (that satisfies reuse derivations).

6 BENCHMARKS
We measured the performance of the new drop-guided reuse in Koka, versus the previous algo-
rithm K. To get a sense of the absolute performance of Koka with the new reuse and as evidence that
our compilation techniques (Perceus, drop-guided reuse, TRMC) are viable and can be competitive,
we also included comparisons against other mature systems that use a range of memory reclamation
techniques and are considered best-in-class. However, when comparing across systems we should
interpret those results with care; for example, a particular benchmark may not be idiomatic for that
particular language (like a pure tree versus using in place updates) etc. Similarly, we cannot draw
conclusions from these small benchmarks on the relation of Perceus reference counting versus GC
in general. However, the difference between the Koka variants is of course carefully controlled and
supports the claims in this paper.

We use the following functional programming languages:
• “Koka”: Koka v2.3.3 with drop-guided reuse, compiling the generated C code with gcc 9.4.0
using a customized version of the mimalloc allocator [Leijen et al. 2019].
• “Koka, no trmc”: As “Koka”, but we disable TRMC (with “–fno-opttrmc”) to measure the
impact of this optimization.
• “Koka, old”: As “Koka”, but we use AlgorithmK instead of drop-guided reuse and no borrowing
(on a branch of Koka: v2.3.3-old).
• “Koka, fbip”: As “Koka”, but with the implementations discussed in section 7.
• Multi-core OCaml 4.12. This has a concurrent generational collector with a minor and major
heap. The minor heap uses a copying collector, while non-copying mark-sweep collector is
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Fig. 8. All benchmarks with relative execution time and peak working set with respect to Koka. Using a

32-core x64 AMD5950X 3.4Ghz with 32GiB 3600Mhz memory (32KiB L1, 512KiB L2), Ubuntu 20.04.

used for the major heap [Doligez and Leroy 1993; Minsky et al. 2012, Chap.22; Sivaramakr-
ishnan et al. 2020].
• Haskell, GHC 8.6.5. A highly optimizing compiler with a multi generational garbage collector.
We used strictness annotations in the data structures to speed up the benchmarks, as well as
to ensure that the same amount of work is done.

We also compare against Swift 5.6.1 and Java 17.0.1 LTS. Here, we keep the benchmarks in a
functional style (without direct mutation) and only replace tail-calls with explicit loops. While
Swift also uses reference counting [Choi et al. 2018; Ungar et al. 2017], Java uses the HotSpot JVM
and the G1 concurrent, low-latency, generational garbage collector.
Finally, we use C++ as our performance baseline (with gcc 9.4.0 and using the standard libc

allocator): For the rbtree benchmark we used the standard STL std::map implementation that uses a
highly optimized in-place updating version of red-black trees [Free Software Foundation et al. 1994].
The binarytrees benchmark use a monotonic buffer resource for memory management, while the
other benchmarks (nqueens, deriv, and cfold) do not reclaim memory at all (for C++).
The results of all benchmarks on an AMD5950x x64 system with Ubuntu 20.04 are shown in

Figure 8. The most important conclusion is that over these benchmarks the new drop-guided reuse
is always as fast (and sometimes up to 1.6× faster) than the old reuse algorithm.
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6.1 Benchmarking Balanced Trees
We use the same red-black tree benchmarks as used by Reinking, Xie et al. [2021] (which makes
use of the insertion algorithm in our running example from section 2.2). There are two versions:
• rbtree: inserts 4200000 elements in tree and afterwards folds over the tree counting the True

elements.
• rbtree-ck: like rbtree but also keeps a list of every 5th tree that is generated, effectively
sharing many subtrees. This implies many subtrees have a non-unique reference count which
causes many more slow paths to be taken in the Koka code. This is not done for C++ as
std::map does not support persistence.

If we look at the results in Figure 8, we see that Koka performs surprisingly well in comparison
with other mature systems, and outperforms the C++ implementation by almost 20% – how is that
even possible? We conjecture this is mainly due to two factors: 1) the TRMC optimization leads to
using less stack space than the C++ implementation (and perhaps less register-spills), and 2) the
allocator that Koka uses can use 8-byte alignment while C++ requires 16-byte minimal alignment
which leads to less allocated memory. If we compare the non-TRMC optimized version it performs
only slightly better than C++ which seems to supports our thesis. Even though this is a typical
functional style algorithm both OCaml and Haskell are quite a bit slower (1.7× and 3×).
The rbtree-ck version with many shared subtrees increases the relative speed of Koka even

further. This is also somewhat surprising as it is clearly much worse for reuse (with many shared
subtrees), but of course it similarly causes more pressure on garbage collectors as well as more
objects get promoted to older generations. Still, with only every 5th tree shared there is some
opportunity for reuse left. The Multi-core OCaml GC performs especially well here staying within
20% of Koka’s garbage-free memory usage.

If we compare Koka with drop-guided reuse against Koka “old” which uses algorithm K, we can
see the new algorithm does about 1.6× better on this benchmark due to the improved reuse for
the is-red test as explained in Section 2.2. Finally, what is the fastest “Koka, fbip” version? We will
discuss this in Section 7.

6.2 Binary Trees
The binarytrees benchmark comes from the Computer Language Benchmark Game [Game 2021]
which is an adaptation of Hans Boehm’s GCBench benchmark [Boehm 2000] (which in turn was
adapted from a benchmark by John Ellis and Pete Kovac). This is an interesting benchmark as it
uses concurrent allocation of many binary trees and calculates their checksums. Moreover, we can
compare against the best performing implementations that were created by experts in each of our
comparison languages.
The top 17 implementations are all languages with manual allocation (C++, C, Rust, and Free

Pascal) with the top entry being C++ (#7) followed very closely by Rust and two other C++ entries (#5
and #4). For our purposes, we use C++ benchmark #5 since the performance of #7 was uneven across
systems. The C++ entries all use very efficient allocation by using a monotonic_buffer_resource for
bump-pointer allocation where all nodes are freed at once at every iteration.

Figure 8 shows the benchmark results of binarytrees (the Koka implementation can be found in
App. A.1 in the tech report). Besides C++, Koka outperforms all other languages here even though
it uses a simple thread pool implementation without work-stealing. The C++ implementation is
still quite a bit faster though (0.66×). Since the benchmark does concurrent allocations reference
counting generally needs to be atomic. However, due to careful language design, Koka can avoid
most of the overhead by checking upfront if a reference count needs to be atomic or not [Reinking,
Xie et al. 2021].
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6.3 Other Benchmarks
The nqueens, cfold, and deriv benchmarks are the same as used in the Perceus paper. We included
them here for completeness but for these benchmarks the new drop guided reuse gives very similar
results to algorithm K.

The nqueens benchmark computes a list of all solutions to the N-queens problem of size 21. The
large speedup here compared to Koka “old” is actually due to borrowing in the safe function. The
cfold benchmark performs constant folding in a program, and the deriv benchmark computes
a symbolic derivative of a large expression. Again, in these benchmarks the difference with the
previous reuse algorithm is minimal.

7 FBIP: FUNCTIONAL BUT IN-PLACE ALGORITHMS
Just like tail-recursion let us express loops as recursive functions, reuse analysis can be used to
express imperative algorithms in a functional style. We call such algorithms Functional But In-Place
(FBIP) [Reinking, Xie et al. 2021]. In particular, it is often possible to reformulate an algorithm with
non-tail-recursive calls into one that is tail recursive using an explicit visitor data type. By relying
on drop-guided reuse analysis, we can now make the allocation of the visitor data type “free” by
ensuring we can reuse existing objects. In this section we illustrate this technique to the rbtree and
binarytrees benchmarks and show we can improve their performance even further.

7.1 Binary Trees
Most of the work in the binarytrees benchmark is in creating the trees and calculating their size
using the check function:
type tree

Node( left: tree, right: tree )
Tip

fun check( t : tree ) : int
match t

Node(l,r) -> check(l) + check(r) + 1
Tip -> 0

This consists of two non-tail-recursive calls to check. We can improve upon this using FBIP where
we use a visitor data type that tracks where we are in the tree. For our purposes we define:
type visit

NodeR( right: tree, rest: visit )
Done

We can use the new visitor datatype to write a check function that uses no extra stack space as all
calls are tail-recursive:
fun check-fbip( t : tree, v : visit, acc : int ) : int
match t

Node(l,r) -> check-fbip( l, NodeR(r,v), acc + 1) // (A)
Tip -> match v

NodeR(r,v’) -> check-fbip( r, v’, acc) // (B)
Done -> acc // (C)

At every Node we directly go down the left branch but remember that we still need to visit the right
node by extending our visit datatype (A). When we reach a Tip we go through our visitor to now
visit the saved right nodes (B) until we are done (C).

This may look more expensive, but when t happens to be unique at runtime, the NodeR allocations
in (1) will reuse the Node that is matched – effectively updating these nodes in place to create a list
of nodes that still need to be visited. At runtime this becomes tight loop that directly reuses the
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memory of the tree it is checking. Effectively, the generated code uses in-place pointer reversal to
visit the tree without using further stack space much like stackless marking in garbage collecters
with the Schorr-Waite algorithm [Schorr and Waite 1967]. In Figure 8 this is the Koka fbip variant
and with this implementation of check Koka becomes 17% faster and within 25% of the performance
of the C++ implementation (0.8× versus Koka fbip).

7.2 Balanced Trees
We can apply the same FBIP technique on our previous red-black tree balanced insertion: as
we saw in Section 3.2, due to TRMC most calls to ins are tail recursive but not the ones that
needed rebalancing. We can define a visitor for red-black trees as the derivative of the tree data
type [Huet 1997; McBride 2001]:
type zipper⟨a⟩

NodeR(clr:color, l:tree⟨a⟩, key:int, value:a, zip:zipper⟨a⟩)
NodeL(clr:color, zip:zipper⟨a⟩, key:int, value:a, r:tree⟨a⟩)
Done

Using this data type we can now traverse down a tree in tail-recursive way to the insertion point,
while building up the zipper that tracks where we are in the tree:
fun ins(t : tree⟨a⟩, k : int, v : a, z : zipper⟨a⟩) : tree⟨a⟩

match t
Node(c, l, kx, vx, r)

-> if k < kx then ins(l, k, v, NodeL(c, z, kx, vx, r))
elif k > kx then ins(r, k, v, NodeR(c, l, kx, vx, z))
else rebuild(z, Node(c, l, kx, vx, r)) // A

Leaf -> balance(z, Leaf, k, v, Leaf) // B

If the element is already present (A), we can use the tail-recursive rebuild function to reconstruct
the tree using our just constructed zipper:
fun rebuild( z : zipper⟨a⟩, t : tree⟨a⟩ ) : tree⟨a⟩

match z
NodeR(c, l, k, v, z1) -> rebuild(z1, Node(c, l, k, v, t))
NodeL(c, z1, k, v, r) -> rebuild(z1, Node(c, t, k, v, r))
Done -> t

If we reach a leaf node though (B), we use balance to rebalance the tree going upward. Rebalancing
is also tail-recursive now:
fun balance( z : zipper⟨a⟩, l : tree⟨a⟩, k : int, v : a, r : tree⟨a⟩ ) : tree⟨a⟩

match z
Done -> Node(Black,l,k,v,r)
NodeR(Black, l1, k1, v1, z1) -> rebuild( z1, Node(Black,l1,k1,v1, Node(Red,l,k,v,r)) )
NodeR(Red, l1, k1, v1, z1) -> match z1
Done -> Node(Black,l1,k1,v1, Node(Red,l,k,v,r))
NodeR(_,l2,k2,v2,z2) -> balance(z2,Node(Black,l2,k2,v2,l1),k1,v1,Node(Black,l,k,v,r))
NodeL(...) -> ...

NodeL(Black, ...) -> ...
NodeL(Red, ...) -> ...

As before, besides the inserted node, every Node allocation in rebuild and balance can be paired
with a matched NodeR or NodeL (and the other way around in ins), and all can be reused in-place at
runtime if the tree happens to be unique. Furthermore, for a shared tree we only allocate the zipper
upfront, but the zipper itself is always unique and reused in-place by rebuild and balance.
Our novel FBIP algorithm for balanced insertion improves further upon the standard Okasaki

style algorithm [Okasaki 1999a] since we stop rebalancing as soon as we reach a Black node, and
switch to rebuild instead (which is also done in the usual imperative algorithms [Guibas and
Sedgewick 1978]). The full implementation can be found in App. A.2 in the tech report. This is the
Koka fbip variant in Figure 8 which is about 10% faster than the regular version and now around
30% faster than the C++ STL version.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 103. Publication date: August 2022.



103:22 Anton Lorenzen and Daan Leijen

8 RELATEDWORK
Our work is closely based earlier work by Reinking, Xie et al. [2021] and Ullrich and deMoura [2019]
(in the context of the Lean theorem prover [Moura and Ullrich 2021]). In this work we improve
upon the both of the two earlier reuse algorithms, and show that drop-guided reuse is strictly better
as it is frame-limited and can find more opportunities for reuse. Our 𝜆1n calculus, heap semantics,
and derivation rules differ in important details from [Reinking, Xie et al. 2021]: the normalization
simplifies the derivation rules and allows us to concisely express the garbage-free and frame-limited
side conditions (and no longer as a particular property of a specific algorithm). It is also now
immediate that the previous published Perceus algorithm is garbage-free. The new frame-limited
condition allows us to reason about various transformations that are no longer garbage-free but
can still be bounded.
The notion of safe-for-space was introduced by Appel [1991] and Paraskevopoulou and Ap-

pel [2019] studied this further. Similar to our reuse transformation and frame-limited notion, the
latter work introduces a general framework to show that the closure conversion transformation with
flat environments is safe-for-space, while linked closure conversion is not. Other examples where a
program transformation was proven to respect a resource bound include Crary and Weirich [2000]
and Minamide [1999].
Using explicit reference count instructions in order to optimize them via static analysis is

described as early as Barth [1975]. Mutating unique references in place has traditionally focused
on array updates [Hudak and Bloss 1985], as in functional array languages like Sisal [McGraw et
al. 1983] and SaC [Grelck and Trojahner 2004; Scholz 2003]. Férey and Shankar [2016] provide
functional array primitives that use in-place mutation if the array has a unique reference which is
also present in the Koka implementation. We believe this would work especially well in combination
with reuse-analysis for BTree-like structures using trees of small functional arrays.

The 𝜆1 and 𝜆1n calculus are closely based on linear logic. Turner and Wadler [1999] give a heap-
based operational interpretation which does not need reference counts as linearity is tracked by
the type system. In contrast, Chirimar et al. [1996] give an interpretation of linear logic in terms
of reference counting, but in their system, values with a linear type are not guaranteed to have a
unique reference at runtime.
Generally, a system with linear types [Wadler 1990], like linear Haskell [Bernardy et al. 2017],

the uniqueness typing of Clean [Barendsen and Smetsers 1996; Vries et al. 2008], or the quantitative
type theory of Idris [Brady 2021], can offer static guarantees that the corresponding objects are
unique at runtime, so that destructive updates can always be performed safely. However, this also
requires writing multiple versions of a function for each case (unique- versus shared argument,
or an in-place mutating data structure versus a persistent one). In contrast, reuse analysis relies
on dynamic runtime information, and thus reuse can be performed generally. This is also what
enables FBIP to use a single function that can be used for both unique or shared objects (since the
uniqueness property is not part of the type). These two mechanisms can be combined: if our system
is extended with unique types, then reuse analysis can eliminate corresponding uniqueness checks.

9 CONCLUSION AND FUTUREWORK
In this work we show the effectiveness of drop-guided reuse, and give a precise characterization of
garbage-free and frame-limited evaluations. However, this works well partly because in a functional
style language like Koka it is uncommon to create cycles (which can only be created through
mutable references). We would like to see if we can combine some of the static analysis with cycle
collection. Also, we are interested in language support to guarantee that reuse is happening at
compile time.
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