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ABSTRACT
DNNs are ubiquitous on edge devices nowadays. With its increas-
ing importance and use cases, it’s not likely to pack all DNNs into
device memory and expect that each inference has been warmed
up. Therefore, cold inference, the process to read, initialize, and exe-
cute a DNN model, is becoming commonplace and its performance
is urgently demanded to be optimized. To this end, we present
NNV12, the first on-device inference engine optimizing cold infer-
ence. NNV12 is built atop three novel optimization knobs: selecting
a proper kernel (i.e., operator implementation) for each DNN oper-
ator, bypassing the weights transformation process by caching the
post-transformed weights on disk, and pipelined execution of many
kernels on asymmetric processors. To tackle with the huge search
space, NNV12 employs a heuristic-based scheme to obtain a near-
optimal kernel scheduling plan. We fully implement a prototype of
NNV12 and evaluate its performance across extensive experiments.
It shows that NNV12 achieves up to 15.2× speedup compared to the
state-of-the-art DNN engines on edge CPUs and 401.5× speedup
on edge GPUs, respectively.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools; • Computing methodologies→ Machine
learning.
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1 INTRODUCTION
Deep Neural Networks (DNNs) have become indispensable for
mobile applications [55, 70]. Pursuing low inference delay and
data privacy, DNN deployment is shifting from large data centers
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Figure 1: The process of cold inference.
to humble edge devices, e.g., smartphones, IoT, wearables, and
autonomous vehicles [22]. Recent work [13, 63] show the number
of DNN-embedded apps on Google Play was doubled from Fed.
2020 to Apr. 2021. Those apps have been downloaded by billions of
times by users. In essence, almost every mobile app is becoming a
DNN app.

Deploying DNNs on devices brings two challenges unpresented
on datacenters. One is the tightly constrained hardware resources
(memory, compute, energy, etc). In respond, our community has
invested tremendous amount of researches on it [23, 34, 38, 56, 57,
59, 61, 62, 64, 67, 69, 72]. Especially, it’s necessary to obtain more
accurate DNN inference results on devices with limited memory.
The second one is the volatile, multi-tenant(app) runtime envi-
ronment [23, 46], which fundamentally differs from datacenters
who typically host a single DNN service on dedicated, highly scal-
able GPU clusters [71]. It’s inevitable to switch between multiple
DNN inference on devices with limited memory. Those character-
istics lead to a phenomenon that DNNs cannot always reside in
device memory; consequently, the DNN inference often occurs in a
cold manner, i.e., the device needs to load and initialize the model
weights into memory before execution.

In general, on-device DNN cold inference could occur in both
active and passive manners.
• Active cold inference happens per developers’ willingness. By
design, developers often deliberately avoids a model residing in
memory for a long time to reduce memory footprint. For example,
certain mobile apps always re-launch DNNs that are infrequently
used to reduce its memory usage and thus the probability be-
ing killed after moved to background. We observe many such
cases from the Google Play apps: PDF scanner [4] and its optical
character recognition (OCR) model; image editing and beauty
camera apps [1, 5] and their many DNNs as image filters; etc. On
intelligent IoTs like Home Hubs [2], cameras [66] and robots [18],
DNNs multitasking imposes high pressure on memory as well.
The common approach is to pack all DNNs into device memory
through weights sharing [19, 21, 38, 39] to avoid cold inference.
Those methods, however, are not scalable as with more DNNs
the model accuracy drops significantly.
• Passive cold inference happens out of the control of developers.
This is especially the case for smartphones, where the OS aggres-
sively kills background apps (thus the DNNs) to reduce memory
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footprint [44, 47]. For instance, a study on 96 Android users show
that the app cold launch probability is more than 40% under
various background activity scheduling algorithms [37]. Even if
memory permits, cold inference still occurs in abundant cases:
mobile browsers need to relaunch a DNN whenever certain web
pages are opened such as language translation [43]; a DNN-based
software could crash and needs to fast re-launch such as in au-
tonomous driving [60]; etc.

In either circumstance, DNN cold inference performance is cru-
cial to user experience and application quality. Its importance is
just the same as app launch speed [31, 68] or web page load time
(PLT) [49, 58] – two well established and explored research domains
by our community. For DNNs that execute in one shot, e.g., the PDF
scanner and beauty cameras mentioned above, each inference is
cold and its delay directly connects to the application performance.
For continuous inference, the delay of the very first inference some-
times can not be simply amortized to the whole inference session.
For instance, an auto-driving vehicle or robot need to cold-start an
obstacle detection model fast to avoid accidents, either after the
model is cleared from memory intentionally or the DL execution
engine crashes unintentionally [60].

Cold inference is poorly supported Unfortunately, the state-
of-the-art DNN engines including TFLite [10] and ncnn [8] are
not ready to boost cold inference as fast as warm inference. As
will be shown in §2, the cold inference latency of those engines
is 1.5×–12.7× and 85.5×–443.5× slower than warm inference on
embedded CPU and GPU, respectively. Taking a step closer, we find
the major portions of cold inference include reading the weights
from disk into memory (weights reading), converting raw weights
into an execution-ready format (weights transformation), and the
actual model execution, as shown in Figure 1. Those complicated
operations distinguish cold inference from traditional warm infer-
ence and compromise or even fully invalidate existing techniques
in optimizing the inference speed.

For the first time, we propose a system engine, namely NNV12,
which directly optimizes the DNN cold inference latency on edge
devices. NNV12 does not rely on any assumptions ofmodel structures
and incurs zero accuracy loss.

Optimization knobs (§3.1) We first thoroughly explore the
design spaces of cold inference and identify three effective opti-
mization knobs that are rarely touched on in previous literature. (1)
The selection of kernel. DNN engines typically incorporate many dif-
ferent implementations for one single operator (namely kernel), e.g.,
28 for convolution in ncnn. Those built-in kernels are to improve
the inference speed under specific operator configurations, and the
current kernel selection is purely based on warm inference speed.
However, we observe that the fastest kernel in warm inference
does not necessarily exhibit the best performance in cold infer-
ence, e.g., a winograd-based kernel [36] executes fast but spends
much time in weights transformation. (2) Post-transformed weights
caching. Weights transformation can be bypassed by storing the
post-transformed weights on disk so they can be directly read and
executed. However, the transformed weights might occupy more
storage and incur higher I/O time. Reading raw or post-transformed
weights opens tradeoff among disk I/O and computations. (3) The
order of operator execution and core binding. The weights reading,

transformation, and execution can be pipelined to reduce the block-
ing time of disk/memory I/O. The pipeline can also orchestrate
with the asymmetric processor on edge devices, e.g., CPU/GPU and
big.LITTLE core, which can hardly be fully utilized in executing
DNNs sequentially.

Formulation and challenges (§3.2) The above optimizations
need to be jointly considered because their impacts on cold infer-
ence are tightly coupled, e.g., choosing a different kernel could
overturn an optimal pipeline strategy. To design a holistic and judi-
cious cold inference scheme, we face two primary challenges. First,
the search space is too large. We formulize the problem in combined
kernel selection, transformation bypassing, and execution pipeline
to obtain an optimal kernel scheduling plan. The problem turns
out to be NP-hard. Second, the placement of different operations
(reading, transformation, and execution) could interfere with each
other due to the limited disk/memory I/O bandwidth, which further
complicates the problem.

A heuristic-based kernel scheduler (§3.3) It is inspired by
two observations. (1) There exists operation-processor affinity, e.g.,
the big vs. little core acceleration ratio is more significant for kernel
execution than weights reading and transformation. Therefore, the
kernel execution is always prioritized on the stronger processor.
(2) Multithreading on multiple cores is more efficient on execu-
tion operation than others. Hence, we only multithread execu-
tion operation while scheduling other operations separately. It
also exploits the opportunity that weights reading/transformation
operations have fewer dependencies than execution, therefore
can be easily scheduled individually.

Atop those heuristics, we design an intuitive yet effective kernel
scheduling algorithm. Its key idea is to balance the workloads on
different processors or cores to minimize the total running time.
Meanwhile, during the decision making, NNV12 keeps calibrating
the per-operation performance through re-profiling for better
scheduling planning. We then extend the above design to the GPU
platform (§3.4) by introducing new GPU-specific operations into
the scheduling pipeline and a shader caching technique. NNV12 also
incorporates a workload stealing technique to adapt to dynamic
load that could share the hardware resources with cold inference.
Furthermore, to ensure that the kernel selection for cold inference
does not compromise the warm inference latency in continuous
inference (§3.5), NNV12 leverages the spare CPU time slots to switch
the kernels.

We’ve implemented a prototype of NNV12 atop ncnn that fully
realizes the above techniques. We then perform extensive exper-
iments to evaluate NNV12’s performance through 12 typical DNN
models and 4 devices including 2 smartphones (CPU) and 2 Jetson
embedded devices (GPU). The results show that, on Meizu 16T CPU,
NNV12 can reduce the cold inference latency by 5.1×/9.5×/3.7× at
average compared to ncnn, tflite, and AsyMo [56], respectively.
On Jetson TX2 GPU, the improvement is even up to 58.2×/401.5×
compared to ncnn and TensorFlow, respectively. NNV12 also greatly
reduces the energy consumption of cold inference. The ablation
study further shows that each individual technique of NNV12 con-
tributes to significant improvements.

The major contributions of this work are:
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Figure 2: Cold inference is significantly slower (1.5×–443.5×)
than warm inference on vanilla DL libraries.

• We highlight the importance of NN cold inference and reveal
the unsatisfactory support for cold inference quantitatively
on the state-of-the-art DNN engines.
• We identify three optimization knobs that can effectively
reduce the cold inference latency yet are underexplored in
prior literature: kernel selection, weights transformation
bypassing, and pipelined inference.
• We propose a holistic framework NNV12 that judiciously
considers the three above optimization knobs through a
heuristic-based kernel scheduling.
• We implement a prototype of NNV12 and demonstrate its
effectiveness through extensive experiments. The code is
publicly available at

https://github.com/UbiquitousLearning/NNV12.

2 UNDERSTANDING NN COLD START
Undoubtedly, AI models are going to be prevalent on edge devices.
Given the large quantity, a considerable number of model invoca-
tions will be cold due to the memory bound, especially for those not
frequently used. Indeed we have inspected a few Google Play apps.
There are some concrete evidences: (1) The voice assistant such as
Siri needs to process the received audio in a cold inference manner
each time it is awakened. (2) PDF scanners [4] perform OCR in a
cold inference manner. The application runs in a cold inference
manner every time it scans images. (3) The beauty camera [1, 5]
also employs cold inference. These applications load filters by cold
inference when a new filter is selected to beautify a image.

We first perform a set of measurement studies to understand
cold inference on edge devices. We use two typical devices: Google
Pixel 5 smartphone with Kryo 475 CPU [7] and Jetson TX2 with
NVIDIA Pascal GPU [3]. We experiment with 3 DNN models (Mo-
bileNetv1/v2, ResNet-50) on 3 popular DL libraries: TFLite/TF/tfjs,
ncnn [8], and MNN [30].

Figure 2 illustrates the performance gap between cold and warm
inference on the above hardware and libraries. As observed, the gap
is 1.5×–12.7× on CPU and 85.5×–433.5× on GPU. Concretely, the
cold inference latency of ResNet-50 on Kryo 475 CPU takes at least
511.67 ms, while the warm inference only takes 141.56 ms. Such
huge gap can inevitably hurt the user experience under scenarios
as described in §1.
Cold inference breakdown We then investigate the cold infer-
ence process internally. While different DL libraries differ in imple-
mentation, conceptually their cold inference mainly includes the
following stages:

Device Platform Google Pixel 5 Jetson TX2
Processor CPU GPU
Weights reading 36.52 ms 43.03 ms
Memory allocation 1.34 ms 0.69 ms
GPU preparation - 3004.01 ms
Weights transformation 1135.28 ms 1616.84 ms
Model execution 190.12 ms 802.77 ms
Total cold inference 1363.23 ms 5467.48 ms
Warm inference 185.82 ms 137.02 ms

Table 1: A breakdown of ResNet-50 cold inference latency on
edge CPU and GPU.

U0,0 Convolution kernel: g
kernel size (H, 3, 3, C)
Input channel size : H
Output channel size: C 
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Figure 3: The weights transformation example for a
winograd-based convolution kernel [36].

• Memory allocation: requesting memory from OS to hold the
weights and intermediate results during inference.
• Weights reading: reading the model weights from device stor-
age into memory.
• Weights transformation: converting raw weights into the
proper format to facilitate the inference. This process depends
on the kernel implementation for each operator. For example, as
shown in Figure 3, in a winograd-based convolution kernel [36],
the weights will be transformed from size (𝐻, 3, 3,𝐶) to (8 × 8 ×
𝐻 × 4, 𝐶4 , 1, 1).
• Model execution: the actual inference (forward) process by
invoking each operator of the model.
• GPU preparation (only for GPU): setting up the GPU driver,
creating data pipeline, compiling shader codes, etc.

Table 1 shows the breakdown of cold inference with ResNet-
50. On both CPU and GPU, each stage except memory allocation
contributes to a considerable portion of the slow cold inference. To
obtain an acceptable cold inference latency, we need to optimize
each of the above stages.

Opportunities Our design is inspired by two key observations.
First, DNNs typically have a layer-by-layer computation pattern.
As such, the system does not need to wait for the whole model to
be loaded to begin the inference execution. Instead, the loading,
transformation, and execution of different layers can be possibly
pipelined. The concept of layer in DNNs also provides an easy-
to-use basis to schedule the I/O, data-intensive, and computation-
intensive stages in devices. Second, common DL libraries often
provide multiple kernels (i.e., the concrete implementation of op-
erators) for each operator. Those kernels provide a large room of
trade-off in disk I/O, memory I/O, and computing.

https://github.com/UbiquitousLearning/NNV12
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Figure 4: The simplified workflow of NNV12.

3 NNV12 DESIGN
NNV12 is designed to enable fast NN cold inference on edge devices
with the following principles:
• It shall sacrifice zero prediction accuracy.
• It shall require minimal additional efforts from developers.
• It builds atop DL kernels that are already existing in DL libraries.
Generating better-optimized kernels is not our contribution and
is orthogonal to this work.
The workflow of NNV12 consists of two main stages as shown

in Figure 4: offline decision generation and online cold inference
runtime. The decision stage is to generate an optimal kernel sched-
uling plan for a huge design space as explored in §3.1. This stage
runs fully automatically on device for one shot, e.g., when a model
is fetched to the device, so the decision is optimized for different
devices’ hardware capacity and requires no efforts from developers.
NNV12 follows the generated plan to optimize the cold inference at
runtime. From developers’ perspective, NNV12 is akin to traditional
DL inference libraries in deployment.

3.1 Optimization Knobs
We first discuss the optimization knobs that can be explored: kernel
selection, weights transformation bypassing, and inference pipeline.
While being intuitive, those optimizations have been rarely touched
in prior work.

3.1.1 Kernel selection. A DNN model can be represented as a di-
rected data graph consisting of many operators. An operator de-
scribes how the input data is mapped to output data at a high
level, while the kernels represent the different implementation of
an operator.

One operator, many kernels A key observation we make from
existing DL libraries is that there are often multiple kernels imple-
mented for one operator, especially those computation-intensive
ones. For instance, as shown in Figure 5, ncnn implements 28 dif-
ferent kernels for convolutional operator.

There are three main reasons for such phenomenon. (1) Kernels
can be better optimized with assumptions on the input/weights
configurations, e.g., the convolution kernel size and input/output
channel numbers. (2) The relative kernel performance relies on
the specific hardware platforms. Therefore, developers write multi-
ple kernels to obtain good performance on different platforms by
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Figure 5: The 28 kernels implemented by ncnn for convolu-
tion. On the top box, “A:B” indicates “B” is a kernel implemen-
tion and abbreviated as “A”. Within the tree structure, each
node (as rectangle) contains the usable kernels for each situ-
ation. K/S indicate the convolutional kernel size and stride
size. “I4O4” means the input and output channels are divisi-
ble by 4.

Kernels Cold Inference Time (ms)
Read
Raw

Weights
Trans.

Read
Cache Execution

3x3s1-winograd-pack4 0.70 38.23 5.23 2.98
sgemm-pack4 0.70 2.21 0.70 8.14
pack4 0.70 2.22 0.70 18.63
3x3s1-winograd 0.70 65.67 4.12 3.37
3x3s1 0.70 0.00 0.70 8.01
general 0.70 0.00 0.70 87.12

Table 2: The weights transformation (on CPU little cores) and
execution time (on CPU big cores) of different kernel alter-
natives for conv op (kernel size = 3, stride = 1, input/output
size = 64/192). “Read Raw/Cache” is the I/O time of reading
the weights w/o and with cache policy (i.e., pre-transformed).

choosing the best fitting. (3) New kernels are emerging but the old
ones are kept in the codebase for legacy reasons.

No silver-bullet kernel The current kernel selection policy of
popular DNN engines is hard-coded and only considers the warm in-
ference speed. However, such selection may not be optimal for cold
inference. Taking ncnn as an example, as we quantitatively show in
Table 2, the default kernel used by ncnn for convolution operators
with 4x input/output channel numbers and 3x3 convolution kernel
size is a winograd-based implementation (3x3s1-winograd-pack4)
because it achieves the fastest warm inference. Such a kernel, how-
ever, incurs a high time cost in weights transformation. Instead,
a more generic sgemm-based implementation (sgemm-pack4) has
less total time cost with simpler weights transformation.
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Notation Description
𝑀𝑙 ,𝑀𝑏 Number of little and big CPU cores
𝑁 Number of model layers
𝑟𝑖 , 𝑤𝑖 , 𝑒𝑖 The 𝑖-th read/transform/execution operation (1 ≤ 𝑖 ≤ 𝑁 )
𝑓 (𝑖, 𝑗, 𝑡 ) Whether operation 𝑖 executes on core 𝑗 at time 𝑡
𝑆𝑖,𝑗 The timestamp when operation 𝑖 starts running on core 𝑗
𝐸𝑖 The timestamp when operation 𝑖 finish running
𝑇 (𝑓 (𝑖, 𝑗, 𝑡 ) ) Latency of operation 𝑖 runs
Θ𝑖 The set of precursor operations of operation 𝑖
𝜂, 𝐹 The set of all operations and all inference operations

Table 3: Notations used in §3.2 and §3.3.

3.1.2 Bypassed weights transformation. As shown above, theweights
transformation for certain kernels can be extremely costly, despite
that the kernel executes quite fast. One possible method to avoid the
heavy transformation while leveraging the kernel’s fast execution
is to cache the transformed weights on disk, which can be directly
loaded and executed.

By using this method, NNV12 will cache the post-transformation
weights to disk during the decision stage shown in Figure 4, and
load these cached weights from disk during the execution stage.
This method eliminates the weights transformation time in cold
inference, however, could also introduce additional disk storage
and I/O.

As shown in the column ”Read Cache” column of Table 2, the
post-transformationweights often occupymore storage because the
weightswill be duplicated. In otherwords, caching post-transformation
weights trades off disk read with memory-access-intensive weights
transformation for a given kernel. From the perspective of a whole
model’s cold inference that consists of many kernels, it opens rich
trade-offs between the I/O and memory access.

3.1.3 Pipelined inference. Nowadays edge devices are typically
equipped with multi-process/core architecture such as big.LITTLE
CPU cores. To fully exploit those processors to boost cold inference,
one might simply multithread the kernel preparation and execu-
tion, e.g., using many threads to read and transform the weights
simultaneously. However, we observe the benefits from such mul-
tithreading are limited due to two reasons. First, weights reading
and transformation stages are not bounded by the computation
but disk I/O and memory I/O, respectively. Second, the asymmetric
multiprocessor on edge devices makes it difficult to partition the
DL workloads to fully utilize each processor’s capacity [56], there-
fore a straggler processor could significantly slow down the whole
inference regarding the data flow dependency.

Instead of simply multithreading the kernels separately, we pro-
pose to pipeline them: overlap different kernels’ weights reading,
transformation, and execution. This is based on a key opportunity
that DNNs typically have a layer-by-layer computation pattern.
As such, the system does not need to wait for the whole model
to be loaded or all weights to be transformed to begin the kernel
execution. Instead, the loading, transformation, and execution of
different layers can be possibly pipelined. The concept of the layer
in DNNs also provides an easy-to-use basis to schedule the I/O,
memory-intensive, and computation-intensive stages in devices.

3.2 Problem Formulation
The need for a kernel scheduler To fully harness the optimiza-
tion knobs introduced in §3.1, we need a global kernel scheduler to
determine (i) which kernel to use for each operator; (ii) whether

to load the raw weights or the cached post-transformed weights
for each kernel; (iii) when and where to execute each operation.
In this work, we use the term operation to indicate each stage of
a kernel, e.g., its weights reading, transformation, and execution
are three different operations. Apparently, those knobs need to be
jointly considered as they inherently are coupled with each other.
For instance, choosing a different kernel could overturn an optimal
pipeline strategy.
Formulation of the kernel scheduling problem For simplicity,
we first use big.LITTLE CPU architecture as the target scheduling
platform to introduce our formulation and scheduling scheme. They
can be easily extended to other heterogeneous processors, e.g.,
CPU + GPU as will be discussed later. The annotations used are
summarized in Tabel 3. We use 𝑓 (𝑖, 𝑗, 𝑡) = 1 to indicate operation
𝑖 executes on core 𝑗 at time 𝑡 (otherwise 0). Based on that, 𝑆𝑖, 𝑗 and
𝐸𝑖 can be expressed by 𝑓 (𝑖, 𝑗, 𝑡) in Equation (1). Here, 𝜂𝑖 means the
set of cores where operation 𝑖 runs on.

𝜂𝑖 = { 𝑗 |
∑︁
𝑡

𝑓 (𝑖, 𝑗, 𝑡) ≥ 1}

𝑆𝑖, 𝑗 = argmin
𝑡
{𝑓 (𝑖, 𝑗, 𝑡) = 1}, 𝑗 ∈ 𝜂𝑖

𝐸𝑖 = max{𝑆𝑖, 𝑗 +𝑇 (𝑓 (𝑖, 𝑗, 𝑡))}, 𝑗 ∈ 𝜂𝑖

(1)

Minimizing the cold-inference latency equals to minimizing the
finishing time of the last execution operation 𝑓𝑁 :

min𝐸𝑒𝑁

𝑠 .𝑡 .


𝑆𝑖, 𝑗 ≥ 𝐸𝛼 , 𝛼 ∈ Θ𝑖 ,∀𝑖,∀𝑗∑
𝑖∈𝜂

𝑓 (𝑖, 𝑗, 𝑡) ≤ 1, ∀𝑡,∀𝑗∑
𝑖∈𝜂

𝑀𝑙+𝑀𝑏∑
𝑗=0

𝑓 (𝑖, 𝑗, 𝑡) ≤ 𝑀𝑙 +𝑀𝑏 , ∀𝑡

(2)

The solver is restricted by three conditions: (1) For each operation,
its starting time is no earlier than the end time of its all precur-
sor operations. We can build a dependency graph among the
total 3 × 𝑁 operations in a DNN by integrating the original de-
pendency of the model (among execution operations) and the
read-transform-execution flow of every single kernel. (2) For each
core, only one operation can run at a given timestamp; (3) At any
time, the total number of cores being used should be no larger than
𝑀𝑙 +𝑀𝑏 .
Challenges Solving the above challenges faces the following pri-
mary challenges. First, according to Equation (1), 𝑆𝑖, 𝑗 and 𝐸𝑖 are
nonlinear functions of the optimization variables 𝑓 (𝑖, 𝑗, 𝑡). There-
fore it is Nonlinear Integer Programming, a classical NP-hard prob-
lem. Second, we observe that the execution time 𝑇 (𝑓 (𝑖, 𝑗, 𝑡)) can
be interfered with by each other even though they run on different
cores. This is mainly because the co-running operations reach the
limit of disk and/or memory I/O speed. In summary, it’s not likely
to obtain an optimal kernel scheduling plan directly.

3.3 A Heuristic-Based Kernel Scheduler
HeuristicsWe design our kernel scheduling algorithm based on
the following heuristics. First, for almost every DNN we have
tested, the kernel execution is still the most time-consuming type of
operation. The lower bound we can possibly achieve for cold infer-
ence latency is equal to the warm inference, which usually places
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Algorithm 1: Our kernel scheduler
input :Number of little cores,𝑀𝑙 ;

Number of layers, 𝑁 ;
Sets of candidate kernels’ combination, 𝐾 ;
operations 𝑟𝑖 , 𝑤𝑖 , 𝑒𝑖 (𝑖 ∈ {1, 2, ..., 𝑁 }).

output :Combination of selected kernels, 𝐾𝑐 ;
The list of operations running on little core 𝑗 ,
𝑄 𝑗 ( 𝑗 ∈ {1, 2, ..., 𝑀𝑙 });
The list of operations running on big cores,𝑄0 .

1 Filter out the kernel candidates that exhibit no faster operation;
2 foreach combination 𝑘 = {< 𝑟𝑖 , 𝑤𝑖 , 𝑒𝑖 > |𝑖 = 1, 2, ...𝑁 } (𝑘 ∈ 𝐾 ) do
3 Initialize𝑄0 : Insert the operations 𝑟1 , 𝑤1 and all 𝑒𝑖 of 𝑘 into the big

cores sequentially, s=2;
4 Initialize the execution time of the operations on core 𝑗 :

𝑇𝑄𝑗
= 0, 𝑗 ∈ {0, 1, ..., 𝑀𝑙 };

5 Update the execution time of operation 𝑜 on little cores 𝑡 l𝑜 and big
cores 𝑡b𝑜 ;

6 while
���� max
1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
− 𝑇𝑄0

���� > 𝜀 or𝑇𝑄𝑗
= 0, ( 𝑗 ∈ {0, 1, ..., 𝑀𝑙 }) do

7 if max
1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
> 𝑇𝑄0 then

8 for 𝑖 ← 𝑠 to 𝑁 do
9 if (𝑡b𝑟𝑖 + 𝑡

b
𝑤𝑖
) + (𝑡 l𝑟𝑖 + 𝑡

l
𝑤𝑖
) < max

1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
− 𝑇𝑄0 then

10 Insert 𝑟𝑖 , 𝑤𝑖 into𝑄0 header, 𝑠 := 𝑖 ;
11 break;
12 Initialize𝑄 𝑗 ( 𝑗 = 1, .., 𝑀𝑙 ) : schedule 𝑟𝑖 , 𝑤𝑖 (𝑖 = 𝑠 + 1, .., 𝑁 ) to

different little cores sequentially;
13 while max

1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
− min

1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
> 𝜀 do

14 𝑗max := arg max
1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗

15 𝑗min := arg min
1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗

16 Sort operations in𝑄 𝑗𝑚𝑎𝑥 descendingly according to the
execution time as𝑄𝑠𝑜𝑟𝑡 ;

17 foreach operation (𝑟, 𝑤 ) in𝑄𝑠𝑜𝑟𝑡 do

18 if 𝑡 l𝑟 + 𝑡 l𝑤 <
𝑇𝑄𝑗max

−𝑇𝑄𝑗min
2 then

19 Move (𝑟 , 𝑤) from𝑄𝑖𝑚𝑎𝑥 to𝑄𝑖𝑚𝑖𝑛
;

20 Compute𝑇𝑄𝑗
(𝑗 = 0, 1, .., 𝑀𝑙 );

21 Compute the completion time of kernel combination 𝑘 ,𝑇𝑘
𝑐𝑜𝑙𝑑

;
22 𝐾𝑐 = argmin

𝑘
(𝑇𝑘

𝑐𝑜𝑙𝑑
)
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Figure 6: The consumed time of different stages of cold start
on different ARM core types and numbers.
all the execution operations on big cores with multithreading
acceleration. Second, there exists operation-to-hardware affinity.
As shown in Figure 6, the big core on Meizu 16T can reduce the
execution time by 6× compared to the little core, but can only
reduce the weights reading and transformation by 2× and 3.8×, re-
spectively. This is because weights reading and transformation are
more likely to be bottlenecked by disk I/O and memory I/O instead
of computing. Third, multithreading is more efficient for execu-
tion operation than others. Conceptually, every single operation
can be multithreaded on multiple cores for acceleration. However,
according to results in Figure 6, the speedup of multithreading

on kernel execution can almost linearly scale with the number of
cores, yet multithreading exhibits poor performance on weights
reading and transformation. This is because multithreading is more
friendly to computation-intensive operations as it incurs inter-cores
synchronization overhead.

Assumptions Based on the above heuristics, we build our algo-
rithm atop the following key assumptions.
• Each kernel’s execution operation always occupies all big cores
and is executed sequentially.

This is based on our observation that executing execution operation
on LITTLE cores could easily bottleneck the whole inference, leav-
ing the big cores under-utilized. Meanwhile, multitasking many
execution operations on big cores does not exhibit any improve-
ment as the highly optimized DNN engine could already fully utilize
the cores with execution operations. Figure 6 illustrates how ker-
nel execution on big CPU cores achieves the lowest warm inference
latency. This is critical to push the performance of cold inference
to the limit of warm inference.
•Weights reading and transformation operations of the same oper-
ator are always bundled together (as a new preparation operation)
and mostly placed on little cores without multithreading. The ratio-
nale is that the precursor operation of transformation operations
is the weights reading operations of the same operator, which are
both I/O intensive and have very few precursor operations (0 or
1) as compared to execution operation (at least 2), therefore can be
easily pipelined. Since execution operation occupies all big cores,
we can use many little cores to run those operations separately
at the same time.
Algorithm of kernel scheduling. Our proposed algorithm (Algo-
rithm 1) is composed of two layers. In the outer layer (line 2), we
traverse to find the optimal kernel combination. A kernel combina-
tion refers to, for each operator, what kernel to use and whether
to bypass the weights transformation. There are

∏𝑁
𝑖=1 (2 · 𝑐𝑖 ) such

combinations, where 𝑐𝑖 is the number of kernel candidates of 𝑖𝑡ℎ
operator. Apparently, we do not need to iterate over all of them;
instead, for each operator, we filter out the kernel candidates that
exhibit no faster operation in either preparation or execution than
any other candidate. After that, there are only 1–2 candidate kernels
left for each operator as observed.

In the inner layer, we schedule given kernel combination to min-
imize the completion time of the last kernel. As each kernel’s execu-
tion operation always occupies all big cores, we further divide the
task to: (1) balance the loads among the little cores to minimize the
largest completion time on them; (2) balance the workloads between
the little cores and large cores to minimize the completion time of
big cores. In the algorithm, we use two loops to solve this problem.
In the big-core loop (line 6-11), we determine which operations
should be executed on big cores. The operations of the first kernel
(to fast boot) and all the execution operations of the rest kernels
should run on big cores (line 3). If the completion time of big cores
(𝑇𝑄0 ) is still less than the largest completion time of the little cores
after moving one reading and transformation operation from little
cores to big cores (line 9), the weights reading and transformation
operation should be inserted to the big cores (line 10); In the little-
core loop (line 13-20), the reading and transformation operations
are scheduled among the little cores to balance the workloads. We
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Figure 7: An illustrative example of how NNV12’s kernel scheduling algorithm works (Algorithm 1).

initialize the operation lists of little cores (line 12) by sequentially
scheduling the reading and transformation operations one by one
to different little cores (as shown in Figure 7(b)). If the little core
with the earliest completion time has the potential to accommodate
the reading and transformation operations from the little core
with the largest completion time (line 18), migrate the reading and
transformation operations to balance the workloads (line 19).

An illustrative example is shown in Figure 7. Figure 7(a)
corresponds to Line 3 in Algorithm (1), where we set the read-
ing and transformation operations of layer 1 and all execution
operations on big cores, while the other operations are placed
on little core. Figure 7(b)–(e) and Figure 7(f)–(h) are two iterations
of the big-core loop in Algorithm (1). Figure 7(b)–(e) are four itera-
tions of the little-core loop.

Dealing with hardware dynamics NNV12 further introduces a
workload stealing technique to adapt to hardware dynamics, e.g.,
cores occupied by other tasks/apps during inference. The key idea
is that, once a core is shared by other workloads, the operations
scheduled on it will run slower and some of them are better to be
relocated to other cores. NNV12 determines such workload stealing
on demand: when a busy core slows down the whole inference and
another core becomes idle with no other operations to run, that
idle core will steal the operations from the head of the job queue
of the busy core and execute them accordingly. Such stealing could
happen among multiple cores, as long as there are idle cores whose
next operation has unfinished dependency.

3.4 Extending to CPU/GPU architecture
In the previous sections, wemainly introduce how NNV12 fits big.LITTLE
CPU architecture. Conceptually, the above design can be easily ex-
tended into GPU platform by treating the GPU as the big core
and CPU as little cores. Yet, the unique characteristics of GPUs re-
quire NNV12 to make further revisions and optimizations to achieve
optimal performance.
Creating pipeline as another operation For each operator, in ad-
dition to the weights reading, transformation, and kernel execution
on CPU, there is another operation in the cold inference namely
creating pipeline [11]. Taking Vulkan as an instance, this step sets

up a pipeline that describes the configurable state of the graphics
card, like the viewport size and depth buffer operation. It is usu-
ally implemented with ahead-of-time compilation [12], therefore
incurs no overhead for warm inference. In cold inference, however,
this operation can take a considerable amount of time to run as
previously shown in Table 1.
Operations-to-processor placement The GPU is only in charge
of kernel execution while all other operations are scheduled on
CPUs as the latter can hardly be accelerated by GPU. It also helps
reduce the CPU-GPU data copy. Further partitioning the execution
across CPU and GPU [34] might enlarge the optimization spaces
but is orthogonal to this work and left to be explored in the future.
Caching compute shadersOne time-consuming andGPU-specific
process we observed is shaders compiling [6]. In Neural Networks,
a kernel is implemented as a shader [14]. For example, 3D graphics
and compute API Vulkan drivers are supposed to ingest shaders
already translated into an intermediate binary format called SPIR-V
(Standard Portable Intermediate Representation). For a given DNN
model, the shaders that need to be compiled and generated at each
layer are determined. Therefore, we can cache those shaders on
disk and load them directly to speed up the cold inference just as
how we bypass the weights transformation stage.

3.5 Kernel Switching for Warm Inference
The kernels selected by NNV12 are optimized for cold inference. As
discussed in §3.1, the kernels with the fastest warm inference might
be different from what NNV12 selects. We use 𝐾𝑐𝑜𝑙𝑑 and 𝐾𝑤𝑎𝑟𝑚 to
represent two different sets of kernels. If NNV12 keeps using the
kernels of 𝐾𝑐𝑜𝑙𝑑 in subsequent inferences, it leads to a suboptimal
warm inference latency.

To handle such side effects, NNV12 provides an additional mode
besides the one only optimized for cold inference as discussed above.
This mode indicates that there will be continuous inferences tasks.
In that case, NNV12 still follows the aforementioned techniques to
optimize the cold inference, but makes the following key differences:
(1) It also prepares the kernels in 𝐾𝑐𝑜𝑙𝑑 − 𝐾𝑤𝑎𝑟𝑚 and switches to
kernels in 𝐾𝑤𝑎𝑟𝑚 for later inferences. (2) The preparation of those
additional kernels is performed on little cores when idle during the
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cold inference. The rationale is that the little cores have some idle
time before the kernel execution finishes on big cores. If such idle
time is not enough to prepare the kernels in 𝐾𝑐𝑜𝑙𝑑 − 𝐾𝑤𝑎𝑟𝑚 , the
rest of the operations will be pipelined in the second inference as
NNV12 does for the cold inference. In §4.5 we experimentally show
that NNV12 achieves (near-)optimal performance in continuous in-
ference as well.

4 EVALUATION
4.1 Implementation and Methodology
NNV12 prototypeWe’ve implemented a prototype of NNV12 with
18K C++ LoC atop ncnn (version 20211208) for its lightweight code-
base and superior performance as compared to TFLite. We used
Vulkan GPU backend for its more generic support for different
platforms. Note that the techniques of NNV12 are compatible with
other DL libraries as well.
ModelsWe use 12 popular NN models as summarized in Table 4 to
test the performance of NNV12. Those models span across different
tasks (image classification and object detection) and computation
complexity.Wemainly use CNNmodels in our experiments because
a recent empirical study shows that CNNs are dominant use cases
in nowaday edge devices [13]. The models mainly come from the
official model zoo of those libraries [9], while for the ones that do not
exist in the zoo, we generate them by ourselves, e.g., implementing
the model structure in TF APIs and then converting it to TFLite
format. We manually check that the same model used by each
library has a consistent structure.
HardwareWe use 6 different devices: Meizu 16T smartphone with
Snapdragon 855, Google Pixel 5 with Snapdragon 765G, Redmi 9
with MTK Helio G80, Meizu 18 Pro with Snapdragon 888, Jetson
TX2, and Jetson Nano. The OS of Meizu 16T and Google Pixel 5
is Android 11. The OS of Jetson TX2 and Jetson Nano is Ubuntu
18.04. We use only CPUs for the two smartphones and use GPUs
on the Jetson boards. The reason is that, on smartphone SoCs, the
CPUs perform much better than GPUs for cold inference as GPU
preparation takes much more time than CPU as shown in Table 1.
Yet, on Jetson TX2/Nanowithmuchmore powerful GPUs, the DNNs
are almost always placed on GPUs.
Baselines On Meizu 16T and Pixel 5, we compare the perfor-
mance of NNV12 to 3 baselines: ncnn, TFLite, and AsyMo [56].
Since NNV12 is implemented atop ncnn, the comparison between
them can directly reveal the effectiveness of NNV12’s key techniques.
Still, TFLite is added as it is the most popular DL library used in
end devices (version 2.5.0). AsyMo is the state-of-the-art DL engine
that can fully exploit the asymmetric CPU architecture on smart-
phones. Since AsyMo is not open-sourced yet, we re-implement
it atop ncnn for a fair comparison. On Jetson TX2/Nano, we also
use ncnn with its Vulkan backend. However, since TFLite does
not support either Vulkan or CUDA backend, we replace it with
TensorFlow (version 2.5.0) for comparison.
Setups and configurations On Meizu 16T and Pixel 5, we exhaus-
tively try different core numbers for TFLite and ncnn and use the
best configuration. In practice, it turns out to be 4 cores on Meizu
16T and 2 cores on Pixel 5. Note that AsyMo always uses all the
CPU cores available. The model files are stored on SDCards for
both smartphones and Jetson boards. To eliminate the impacts of

file cache, we clear the system cache before each cold inference.
For all experiments, the cold inference latency does not include the
loading and initialization time of the libraries. Each experiment is
repeated by 100 times and the average numbers are reported.

4.2 End-to-End Performance
Cold inference latency on CPU Figure 8 compares the cold
inference latency of NNV12 with the baselines on edge CPUs and
Table 5 summarizes NNV12’s overall improvements. It shows that
NNV12 significantly outperforms the baselines on all models and
platforms, i.e., 1.1×–15.2× speedup over TFLite and 1.2×–10.3×
speedup over ncnn.

NNV12 also achieves close performance to warm inference, i.e.,
only 1.72× slower at average. On ShuffleNetV2, the gap is even
negligible (≤1ms). This is because NNV12 effectively overlaps the
preparation stages (loading and transformation) with the execu-
tion, therefore their latency can be mostly hidden. Yet, the gap
still exists for three reasons. First, the model execution could be
waiting for the preparation to be done on CPU little cores when the
overlapping is not perfectly planned. Second, even without waiting,
the execution could be slowed down due to the cross-operation
interference as mentioned in §3.3. Third, NNV12 selects kernel for
fast cold inference, whose real execution speed might be slower
than the original selection that optimizes for the warm inference.

The more competitive baseline AsyMo achieves relatively limited
improvements over the vanilla DNN engine ncnn, i.e., only 1.03×–
1.28× speedup. This is because it only improves the execution speed
by fully utilizing the asymmetric CPU cores through kernel sched-
uling, but the weights preparation still takes a considerable amount
of time in cold inference.

Impacts of CPU core numbers In the above experiments, we
always set the CPU core number to the one obtaining the best per-
formance for TFLite and ncnn. In practice, it turns out to be 4 on
Meizu 16T and 2 on Pixel 5. Figure 9 further shows a comprehen-
sive comparison by using different core numbers on Meizu 16T. It
confirms our observation that using 4 cores exhibits the best perfor-
mance for TFLite and ncnn, which is also consistent with the prior
study [56]. This is mainly because those DL engines cannot well
exploit the asymmetric CPU cores for DL execution. Note that they
also use multi-threads to accelerate the weights transformation
yet the profit from more threads is also marginal. This is because
the weights transformation is mainly memory-bounded. Instead,
NNV12 pipelines different kinds of operations to fully exploit the
disk, memory, and computing capacity.

Cold inference latency on GPU Figure 10 compares the cold
inference latency of NNV12 with the baselines on edge GPUs and
Table 5 summarizes NNV12’s overall improvements. It shows that
the performance improvement of NNV12 compared to the baselines
is even more significant than CPU, i.e., 10.4×–401.5× speedup over
TensorFlow and 4.0×–58.2× speedup over ncnn. There are two
primary reasons for such a huge improvement. First, the cold infer-
ence on GPU requires more preparations such as creating pipeline.
Therefore NNV12’s key techniques, especially the kernel pipeline
(§3.3), bring more benefits. Second, NNV12 incorporates additional
optimizations for GPU like shader caching (§3.4).
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Model Task Parameters Model Size FLOPs Storage Scheduling Plan Generation Time (Offline)
Overhead Meizu 16T Pixel 5 TX2 Nano

AlexNet [33] C 61.3M 237.5M 1.4G 172.3M 1,538.4ms 4,157.4ms 8,197.3ms 22,962.6ms
GoogLeNet [53] C 7.1M 26.9M 3.2G 22.6M 1,301.9ms 2,304.3ms 6,457.6ms 9,648.7ms
MobileNet [27] C 4.4M 16.2M 1.1G 12.6M 796.5ms 1,796.5ms 5,443.0ms 8,357.5ms
MobileNetV2 [52] C 3.7M 13.3M 0.6G 10.3M 759.3ms 1,796.5ms 4,770.0ms 8,441.1ms
ResNet18 [26] C 12.7M 45.5M 3.9G 34.3M 892.6ms 1,896.2ms 1,461.1ms 2,599.1ms
ShuffleNet [73] C 3.6M 12.9M 1.9G 10.0M 577.8ms 1,005.9ms 5,872.3ms 7,996.8ms
EfficientNetB0 [54] C 5.4M 19.6M 0.8G 15.2M 1,129.9ms 2,446.0ms 6,481.2ms 6,031.4ms
ResNet50 [26] C 25.7M 97.4M 7.8G 89.7M 1,652.2ms 2,974.3ms 3,757.6ms 3,854.0ms
SqueezeNet [29] C 1.4M 4.7M 1.7G 3.8M 717.9ms 1,788.8ms 5,849.8ms 6,738.9ms
ShuffleNetV2 [42] C 3.4M 12.0M 0.5G 10.9M 532.1ms 920.7ms 4,724.5ms 5,665.3ms
MobileNetv2-YOLOv3 [51] OD 3.6M 13.1M 1.0G 12.5M 849.2ms 2,544.5ms 3,394.3ms 4,979.7ms
MobileNet-YOLO [50] OD 11.9M 49.1M 2.9G 38.3M 984.2ms 2,485.5ms 5,047.5ms 7,710.2ms
CRNN-lite [24] OCR 2.4M 2.6M 3.1G 45.4M 116.32ms 375.32 ms 4,597.6ms 6,257.3ms

Table 4: The NN models used in experiments. Input size: 224x224. “C”: classification; “OD”: Object Detection; “OCR”: Optical
Character Recognition.
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Figure 8: The cold inference latency of NNV12 and baselines on edge CPUs.

Dynamic Loads We also evaluate how NNV12 adapts to the dy-
namic background loads as compared to vanilla ncnn. We use a cus-
tomized program to impose different levels of pressure (0%/25%/50%

CPU utilization) on different cores in background while the cold
inference takes place. Figure 11 shows the testing results with
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HW Platform Speedup over baselines (min – max, avg)
ncnn TFLite (TF)

Meizu 16T (CPU) 1.1× – 10.3× (3.7×) 4.2× – 15.2× (7.5×)
Pixel 5 (CPU) 1.1× – 6.4× (2.8×) 2.1× – 5.2× (2.2×)
Redmi 9 (CPU) 1.2× – 8.5× (3.1×) 1.1× – 8.9× (3.2×)
Meizu 18 Pro (CPU) 1.2× – 16.4× (3.9×) 1.5× – 9.4× (5.2×)
Jetson TX2 (GPU) 9.0× – 38.9× (29.6×) 14.6× – 355.3× (154.8×)
Jetson Nano (GPU) 4.0× – 58.2× (28.5×) 10.4× – 401.5× (234.3×)

Table 5: Summarized performance comparision of NNV12 over
baselines on different platforms.
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Figure 9: The cold inference latency of NNV12 and baselines
running on different CPU core numbers. “X+Y” indicate X
big cores and Y little cores.

GoogLeNet on the Meizu 16T device. It shows that, when little
cores are occupied and if NNV12 sticks to the optimal kernel sched-
uling plan generated offline, its performance degrades significantly,
e.g., up to 2.1×. This is because NNV12 schedules the read and trans-
formation operations across the little cores; when some of them
are busy, they bottleneck the whole cold inference process. Mean-
while, the performance of ncnn is not affected as it only leverages
the 4 big cores to obtain the best possible performance. Neverthe-
less, thanks to the workloads stealing technique, NNV12 does not
bottleneck on the little cores but make dynamic decision to balance
the workloads across all cores. With 2 little cores occupied by 50%
each, NNV12’s cold inference performance only drops from 50ms to
75ms and is still 2.5× faster than ncnn. On the other hand, when
big cores are occupied, the performance of NNV12 degrades more
significantly as well as vanilla ncnn.

Energy consumptionWealso evaluate the energy consumption
of NNV12 and illustrate the results in Figure 12. We observe that
NNV12 can significantly reduce the energy consumption, i.e., 0.2×–
0.6× compared to ncnn. Such energy-saving mainly comes from the
saved inference time through NNV12’s key techniques, especially
the kernel selection.

4.3 Ablation Study
We then evaluate the benefits brought by NNV12’s each key tech-
nique separately. The results are illustrated in Figure 13. Our major
observation is that each of NNV12’s key techniques contributes no-
ticeably to the cold inference speedup. For example, with ResNet-50
and Jetson TX2, the kernel selection first reduces the cold inference
latency from 8,272ms to 2,300ms. Caching the post-transformed
weights further reduces the latency to 555ms, and with pipelined
execution the latency finally becomes 240ms.

4.4 Resource Overhead
There are two kinds of overhead NNV12 introduces: at offline, NNV12
needs to generate the optimal kernel scheduling plan according
(§3.3); to boost the cold inference, NNV12 opportunistically stores
the post-transformed weights on disk in addition to the rawweights
(§3.1). (1) Time to generate scheduling plan As shown in Table 4,
NNV12 takes only 532.1ms–4157.4ms on Meizu 16T and Pixel 5 CPU
to generate the kernel scheduling plan. It takes more time on Jetson
TX2 and Nano, i.e., 1461.1ms–22962.6ms, because of the more com-
plicated preparation stages of GPUs. Note that this overhead only
occurs for one shot when a model is fetched to a device, and shall
not compromise the user experience. (2) Disk storage for post-
transformed weights As shown in Table 4, the storage overhead
to cache the post-transformed weights is 7.1MB–164.8MB. Note
that not every layer will apply the cache technique depending on
the operator characteristics and kernel scheduling strategy. Since
nowaday edge devices are typically equipped with a few to tens of
GBs disk, such storage overhead is tolerable.

4.5 NNV12 in Continuous Inference
Recall that NNV12 incorporates a unique design (§3.5) to optimize for
consecutive inferences as well. We experiment with GoogLeNet and
ResNet-50 on Meizu 16T. The results are illustrated in Figure(14).
It shows that NNV12 not only greatly optimizes the cold inference
latency, but also achieves close performance to ncnn in the second
inference, i.e., only 8% slower, and the same speed since the 3rd
inference. NNV12 runs slightly slower on the second inference than
ncnn because the idle time of little cores during cold inferencemight
not be enough to prepare all the kernels for the warm inference. In
that case, NNV12 follows the pipeline design to speed up the second
inference.

5 RELATEDWORK
DNN weights sharing To reduce the memory footprint of multi-
ple concurrent DNNs, prior works [23, 34, 38, 56, 59, 67, 72] have
proposed to let the DNNs share certain layers of weights (especially
the beginning ones). This approach has the scalability issue as with
more DNNs the model accuracy can drop significantly. Or, they
virtualize the DNN weights memory to better manage the data
in/out switching among DRAM and disk [38]. This approach still
incurs a high overhead in data swapping, thus does not address the
slow cold start inference. Instead, this work directly optimizes the
cold inference and does not compromise accuracy.
Apps pre-launchMobile apps also face the cold launch problem.
Prior works mainly use pre-launching [15, 48, 68] to mitigate the
slow cold launch, i.e., by predicting when an app is going to be
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Figure 10: The cold inference latency of NNV12 and baselines on edge GPUs.
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Figure 11: The performance of NNV12 adapting to dynamic
background workloads. The numbers 0%/25%/50% indicate
the background load on the CPU cores. “WS”: workloads
stealing technique.
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launched soon so the OS can prepare it. Intuitively, we can retrofit
this idea to reduce the cold inference times of DNNs as well. Yet,
it has the following drawbacks. First, there will be much more
DNNs than apps on a device [13, 63], making an accurate prediction
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Figure 13: The ablation study results of NNV12. “K”: kernel
selection; “C”: caching the post-transformed weights (and
shaders); “P”: kernel execution pipeline.

difficult. Second, unlike apps, DNNs are transparent to mobile OSes,
thus there is no unified interface for OSes to bookkeep and operate
on the DNNs hosted on a device.
DNN fast switch on clouds PipeSwitch [16] enables fast switch
among training and inference tasks on the same cloud GPU. It
inspired some of NNV12’s design points, e.g., pipelined I/O and exe-
cution by exploiting the layer-by-layer structure of DNNs. However,
PipeSwitch is not designed for cold inference optimization, as it
does not consider the model loading and weights transformation
stages. Therefore it’s not directly comparable to NNV12.
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Figure 14: The cold inference and subsequent warm inference
latency of NNV12 and baselines.

DNN inference optimizations There are two main categories of
on-device DNN inference optimizations. One is at system level, e.g.,
by exploiting heterogeneous processors [20, 25, 28, 34], cache [45,
61, 67], generating high-performance GPUs kernels [40], or adap-
tive offloading [35, 65]. Suchmethods only work for warm inference.
The other one is model level, e.g., quantization [32, 41] or sparsi-
fiction [17, 46]. While those works mainly target warm inference,
conceptually, they can also improve the cold inference as they re-
duce the execution time and/or the weights to be read from disk.
NNV12 explores optimization knobs from different aspects and is
orthogonal to them.

6 CONCLUSIONS
In this work, we propose NNV12, the first DL engine that optimizes
the cold inference on edge devices. NNV12 fully exploits three opti-
mizations knobs: kernel selection, weights transformation caching,
and pipelined inference through a heuristic-based kernel schedul-
ing scheme. Extensive experiments demonstrate the effectiveness
of NNV12 to boost cold inference on edge CPU and GPU hardware.
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