
Boosting DNN Cold Inference on Devices
Rongjie Yi1, Ting Cao2, Ao Zhou1, Xiao Ma1, Shangguang Wang1, Mengwei Xu1

1State Key Laboratory of Networking and Switching Technology, Beijing, China
2Microsoft Research

{yirongjie,aozhou,maxiao18,sgwang,mwx}@bupt.edu.cn
ting.cao@microsoft.com

ABSTRACT
DNNs are ubiquitous on edge devices nowadays. With its increas-
ing importance and use cases, it’s not likely to pack all DNNs into
device memory and expect that each inference has been warmed
up. Therefore, cold inference, the process to read, initialize, and exe-
cute a DNN model, is becoming commonplace and its performance
is urgently demanded to be optimized. To this end, we present
NNV12, the first on-device inference engine optimizing cold infer-
ence. NNV12 is built atop three novel optimization knobs: selecting
a proper kernel (i.e., operator implementation) for each DNN oper-
ator, bypassing the weights transformation process by caching the
post-transformed weights on disk, and pipelined execution of many
kernels on asymmetric processors. To tackle with the huge search
space, NNV12 employs a heuristic-based scheme to obtain a near-
optimal kernel scheduling plan. We fully implement a prototype of
NNV12 and evaluate its performance across extensive experiments.
It shows that NNV12 achieves up to 15.2× speedup compared to the
state-of-the-art DNN engines on edge CPUs and 401.5× speedup
on edge GPUs, respectively.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools; • Computing methodologies→ Machine
learning.

KEYWORDS
DNN Cold Inference, Deep Learning Inference, Mobile Devices
ACM Reference Format:
Rongjie Yi1, Ting Cao2, Ao Zhou1, Xiao Ma1, Shangguang Wang1, Mengwei
Xu1. 2023. Boosting DNN Cold Inference on Devices. In The 21st Annual
International Conference on Mobile Systems, Applications and Services (Mo-
biSys ’23), June 18–22, 2023, Helsinki, Finland. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3581791.3596842

1 INTRODUCTION
Deep Neural Networks (DNNs) have become indispensable for
mobile applications [55, 70]. Pursuing low inference delay and
data privacy, DNN deployment is shifting from large data centers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’23, June 18–22, 2023, Helsinki, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0110-8/23/06. . . $15.00
https://doi.org/10.1145/3581791.3596842

0.42 0.16 1.42 0.13 3.33

5.15 0.14 8.33 0.84 5.41

..

0.94 5.55 8.14 0.24 7.53

0.42 0.16 1.42

0.13 3.33 0.15

5.15 0.14 8.33

0.84

5.41

9.11

1.42 1.42 0.94

4.43 3.33 0.15

5.15 0.14 2.18

0.24

7.53

9.11

..

Conv-1 Conv-K

Input

Weights

loading

Weights

Transfor-

mation

Inference

(exec.)

Cat: 0.8

Dog: 0.1

Others: 0.1

Output

Focus of this work Focus of prior work

Figure 1: The process of cold inference.
to humble edge devices, e.g., smartphones, IoT, wearables, and
autonomous vehicles [22]. Recent work [13, 63] show the number
of DNN-embedded apps on Google Play was doubled from Fed.
2020 to Apr. 2021. Those apps have been downloaded by billions of
times by users. In essence, almost every mobile app is becoming a
DNN app.

Deploying DNNs on devices brings two challenges unpresented
on datacenters. One is the tightly constrained hardware resources
(memory, compute, energy, etc). In respond, our community has
invested tremendous amount of researches on it [23, 34, 38, 56, 57,
59, 61, 62, 64, 67, 69, 72]. Especially, it’s necessary to obtain more
accurate DNN inference results on devices with limited memory.
The second one is the volatile, multi-tenant(app) runtime envi-
ronment [23, 46], which fundamentally differs from datacenters
who typically host a single DNN service on dedicated, highly scal-
able GPU clusters [71]. It’s inevitable to switch between multiple
DNN inference on devices with limited memory. Those character-
istics lead to a phenomenon that DNNs cannot always reside in
device memory; consequently, the DNN inference often occurs in a
cold manner, i.e., the device needs to load and initialize the model
weights into memory before execution.

In general, on-device DNN cold inference could occur in both
active and passive manners.
• Active cold inference happens per developers’ willingness. By
design, developers often deliberately avoids a model residing in
memory for a long time to reduce memory footprint. For example,
certain mobile apps always re-launch DNNs that are infrequently
used to reduce its memory usage and thus the probability be-
ing killed after moved to background. We observe many such
cases from the Google Play apps: PDF scanner [4] and its optical
character recognition (OCR) model; image editing and beauty
camera apps [1, 5] and their many DNNs as image filters; etc. On
intelligent IoTs like Home Hubs [2], cameras [66] and robots [18],
DNNs multitasking imposes high pressure on memory as well.
The common approach is to pack all DNNs into device memory
through weights sharing [19, 21, 38, 39] to avoid cold inference.
Those methods, however, are not scalable as with more DNNs
the model accuracy drops significantly.
• Passive cold inference happens out of the control of developers.
This is especially the case for smartphones, where the OS aggres-
sively kills background apps (thus the DNNs) to reduce memory

https://doi.org/10.1145/3581791.3596842
https://doi.org/10.1145/3581791.3596842

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rongjie Yi et al.

footprint [44, 47]. For instance, a study on 96 Android users show
that the app cold launch probability is more than 40% under
various background activity scheduling algorithms [37]. Even if
memory permits, cold inference still occurs in abundant cases:
mobile browsers need to relaunch a DNN whenever certain web
pages are opened such as language translation [43]; a DNN-based
software could crash and needs to fast re-launch such as in au-
tonomous driving [60]; etc.

In either circumstance, DNN cold inference performance is cru-
cial to user experience and application quality. Its importance is
just the same as app launch speed [31, 68] or web page load time
(PLT) [49, 58] – two well established and explored research domains
by our community. For DNNs that execute in one shot, e.g., the PDF
scanner and beauty cameras mentioned above, each inference is
cold and its delay directly connects to the application performance.
For continuous inference, the delay of the very first inference some-
times can not be simply amortized to the whole inference session.
For instance, an auto-driving vehicle or robot need to cold-start an
obstacle detection model fast to avoid accidents, either after the
model is cleared from memory intentionally or the DL execution
engine crashes unintentionally [60].

Cold inference is poorly supported Unfortunately, the state-
of-the-art DNN engines including TFLite [10] and ncnn [8] are
not ready to boost cold inference as fast as warm inference. As
will be shown in §2, the cold inference latency of those engines
is 1.5×–12.7× and 85.5×–443.5× slower than warm inference on
embedded CPU and GPU, respectively. Taking a step closer, we find
the major portions of cold inference include reading the weights
from disk into memory (weights reading), converting raw weights
into an execution-ready format (weights transformation), and the
actual model execution, as shown in Figure 1. Those complicated
operations distinguish cold inference from traditional warm infer-
ence and compromise or even fully invalidate existing techniques
in optimizing the inference speed.

For the first time, we propose a system engine, namely NNV12,
which directly optimizes the DNN cold inference latency on edge
devices. NNV12 does not rely on any assumptions ofmodel structures
and incurs zero accuracy loss.

Optimization knobs (§3.1) We first thoroughly explore the
design spaces of cold inference and identify three effective opti-
mization knobs that are rarely touched on in previous literature. (1)
The selection of kernel. DNN engines typically incorporate many dif-
ferent implementations for one single operator (namely kernel), e.g.,
28 for convolution in ncnn. Those built-in kernels are to improve
the inference speed under specific operator configurations, and the
current kernel selection is purely based on warm inference speed.
However, we observe that the fastest kernel in warm inference
does not necessarily exhibit the best performance in cold infer-
ence, e.g., a winograd-based kernel [36] executes fast but spends
much time in weights transformation. (2) Post-transformed weights
caching. Weights transformation can be bypassed by storing the
post-transformed weights on disk so they can be directly read and
executed. However, the transformed weights might occupy more
storage and incur higher I/O time. Reading raw or post-transformed
weights opens tradeoff among disk I/O and computations. (3) The
order of operator execution and core binding. The weights reading,

transformation, and execution can be pipelined to reduce the block-
ing time of disk/memory I/O. The pipeline can also orchestrate
with the asymmetric processor on edge devices, e.g., CPU/GPU and
big.LITTLE core, which can hardly be fully utilized in executing
DNNs sequentially.

Formulation and challenges (§3.2) The above optimizations
need to be jointly considered because their impacts on cold infer-
ence are tightly coupled, e.g., choosing a different kernel could
overturn an optimal pipeline strategy. To design a holistic and judi-
cious cold inference scheme, we face two primary challenges. First,
the search space is too large. We formulize the problem in combined
kernel selection, transformation bypassing, and execution pipeline
to obtain an optimal kernel scheduling plan. The problem turns
out to be NP-hard. Second, the placement of different operations
(reading, transformation, and execution) could interfere with each
other due to the limited disk/memory I/O bandwidth, which further
complicates the problem.

A heuristic-based kernel scheduler (§3.3) It is inspired by
two observations. (1) There exists operation-processor affinity, e.g.,
the big vs. little core acceleration ratio is more significant for kernel
execution than weights reading and transformation. Therefore, the
kernel execution is always prioritized on the stronger processor.
(2) Multithreading on multiple cores is more efficient on execu-
tion operation than others. Hence, we only multithread execu-
tion operation while scheduling other operations separately. It
also exploits the opportunity that weights reading/transformation
operations have fewer dependencies than execution, therefore
can be easily scheduled individually.

Atop those heuristics, we design an intuitive yet effective kernel
scheduling algorithm. Its key idea is to balance the workloads on
different processors or cores to minimize the total running time.
Meanwhile, during the decision making, NNV12 keeps calibrating
the per-operation performance through re-profiling for better
scheduling planning. We then extend the above design to the GPU
platform (§3.4) by introducing new GPU-specific operations into
the scheduling pipeline and a shader caching technique. NNV12 also
incorporates a workload stealing technique to adapt to dynamic
load that could share the hardware resources with cold inference.
Furthermore, to ensure that the kernel selection for cold inference
does not compromise the warm inference latency in continuous
inference (§3.5), NNV12 leverages the spare CPU time slots to switch
the kernels.

We’ve implemented a prototype of NNV12 atop ncnn that fully
realizes the above techniques. We then perform extensive exper-
iments to evaluate NNV12’s performance through 12 typical DNN
models and 4 devices including 2 smartphones (CPU) and 2 Jetson
embedded devices (GPU). The results show that, on Meizu 16T CPU,
NNV12 can reduce the cold inference latency by 5.1×/9.5×/3.7× at
average compared to ncnn, tflite, and AsyMo [56], respectively.
On Jetson TX2 GPU, the improvement is even up to 58.2×/401.5×
compared to ncnn and TensorFlow, respectively. NNV12 also greatly
reduces the energy consumption of cold inference. The ablation
study further shows that each individual technique of NNV12 con-
tributes to significant improvements.

The major contributions of this work are:

Boosting DNN Cold Inference on Devices MobiSys ’23, June 18–22, 2023, Helsinki, Finland

MobileNet MobileNetV2 ResNet-500

2

4

6

8

10

12

Co
ld

 v
s.

W
ar

m
 In

fe
re

nc
e

 L
at

en
cy

 R
at

io
 (X

)

5.4

8.8
7.2

3.7 3.1

12.7

5.7
7.3

9.5

1.3 1.5 1.5

TFLite
ncnn
MNN
tfjs

(a) Google Pixel 5 CPU

MobileNet MobileNetV2 ResNet-500

100

200

300

400

Co
ld

 v
s.

W
ar

m
 In

fe
re

nc
e

 L
at

en
cy

 R
at

io
 (X

)

85
136 113124 104

129121 124

443

114 93 78

TF
ncnn
MNN
tfjs

(b) Jetson TX2 GPU

Figure 2: Cold inference is significantly slower (1.5×–443.5×)
than warm inference on vanilla DL libraries.

• We highlight the importance of NN cold inference and reveal
the unsatisfactory support for cold inference quantitatively
on the state-of-the-art DNN engines.
• We identify three optimization knobs that can effectively
reduce the cold inference latency yet are underexplored in
prior literature: kernel selection, weights transformation
bypassing, and pipelined inference.
• We propose a holistic framework NNV12 that judiciously
considers the three above optimization knobs through a
heuristic-based kernel scheduling.
• We implement a prototype of NNV12 and demonstrate its
effectiveness through extensive experiments. The code is
publicly available at

https://github.com/UbiquitousLearning/NNV12.

2 UNDERSTANDING NN COLD START
Undoubtedly, AI models are going to be prevalent on edge devices.
Given the large quantity, a considerable number of model invoca-
tions will be cold due to the memory bound, especially for those not
frequently used. Indeed we have inspected a few Google Play apps.
There are some concrete evidences: (1) The voice assistant such as
Siri needs to process the received audio in a cold inference manner
each time it is awakened. (2) PDF scanners [4] perform OCR in a
cold inference manner. The application runs in a cold inference
manner every time it scans images. (3) The beauty camera [1, 5]
also employs cold inference. These applications load filters by cold
inference when a new filter is selected to beautify a image.

We first perform a set of measurement studies to understand
cold inference on edge devices. We use two typical devices: Google
Pixel 5 smartphone with Kryo 475 CPU [7] and Jetson TX2 with
NVIDIA Pascal GPU [3]. We experiment with 3 DNN models (Mo-
bileNetv1/v2, ResNet-50) on 3 popular DL libraries: TFLite/TF/tfjs,
ncnn [8], and MNN [30].

Figure 2 illustrates the performance gap between cold and warm
inference on the above hardware and libraries. As observed, the gap
is 1.5×–12.7× on CPU and 85.5×–433.5× on GPU. Concretely, the
cold inference latency of ResNet-50 on Kryo 475 CPU takes at least
511.67 ms, while the warm inference only takes 141.56 ms. Such
huge gap can inevitably hurt the user experience under scenarios
as described in §1.
Cold inference breakdown We then investigate the cold infer-
ence process internally. While different DL libraries differ in imple-
mentation, conceptually their cold inference mainly includes the
following stages:

Device Platform Google Pixel 5 Jetson TX2
Processor CPU GPU
Weights reading 36.52 ms 43.03 ms
Memory allocation 1.34 ms 0.69 ms
GPU preparation - 3004.01 ms
Weights transformation 1135.28 ms 1616.84 ms
Model execution 190.12 ms 802.77 ms
Total cold inference 1363.23 ms 5467.48 ms
Warm inference 185.82 ms 137.02 ms

Table 1: A breakdown of ResNet-50 cold inference latency on
edge CPU and GPU.

U0,0 Convolution kernel: g
kernel size (H, 3, 3, C)
Input channel size : H
Output channel size: C
Winograd output: U = GgGT

for each kernel :
Uh,c = Ggh,cGT

G
GTx

U0,0

x =g0,0

flatten

U1,0

U0,0

UH-1,0

U0,C-1

H

C

8×8

(H, 8, 8, C)(8, 3)

(H, 3, 3, C)

U0,0 U1,0 U1,0 U1,1 U0,2 U1,2

8×8×H×4

𝐶𝐶
4

(3, 8)

(H, 8×8, C)

(8×8×H×4, C, 1, 1)

Figure 3: The weights transformation example for a
winograd-based convolution kernel [36].

• Memory allocation: requesting memory from OS to hold the
weights and intermediate results during inference.
• Weights reading: reading the model weights from device stor-
age into memory.
• Weights transformation: converting raw weights into the
proper format to facilitate the inference. This process depends
on the kernel implementation for each operator. For example, as
shown in Figure 3, in a winograd-based convolution kernel [36],
the weights will be transformed from size (𝐻, 3, 3,𝐶) to (8 × 8 ×
𝐻 × 4, 𝐶4 , 1, 1).
• Model execution: the actual inference (forward) process by
invoking each operator of the model.
• GPU preparation (only for GPU): setting up the GPU driver,
creating data pipeline, compiling shader codes, etc.

Table 1 shows the breakdown of cold inference with ResNet-
50. On both CPU and GPU, each stage except memory allocation
contributes to a considerable portion of the slow cold inference. To
obtain an acceptable cold inference latency, we need to optimize
each of the above stages.

Opportunities Our design is inspired by two key observations.
First, DNNs typically have a layer-by-layer computation pattern.
As such, the system does not need to wait for the whole model to
be loaded to begin the inference execution. Instead, the loading,
transformation, and execution of different layers can be possibly
pipelined. The concept of layer in DNNs also provides an easy-
to-use basis to schedule the I/O, data-intensive, and computation-
intensive stages in devices. Second, common DL libraries often
provide multiple kernels (i.e., the concrete implementation of op-
erators) for each operator. Those kernels provide a large room of
trade-off in disk I/O, memory I/O, and computing.

https://github.com/UbiquitousLearning/NNV12

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rongjie Yi et al.

Figure 4: The simplified workflow of NNV12.

3 NNV12 DESIGN
NNV12 is designed to enable fast NN cold inference on edge devices
with the following principles:
• It shall sacrifice zero prediction accuracy.
• It shall require minimal additional efforts from developers.
• It builds atop DL kernels that are already existing in DL libraries.
Generating better-optimized kernels is not our contribution and
is orthogonal to this work.
The workflow of NNV12 consists of two main stages as shown

in Figure 4: offline decision generation and online cold inference
runtime. The decision stage is to generate an optimal kernel sched-
uling plan for a huge design space as explored in §3.1. This stage
runs fully automatically on device for one shot, e.g., when a model
is fetched to the device, so the decision is optimized for different
devices’ hardware capacity and requires no efforts from developers.
NNV12 follows the generated plan to optimize the cold inference at
runtime. From developers’ perspective, NNV12 is akin to traditional
DL inference libraries in deployment.

3.1 Optimization Knobs
We first discuss the optimization knobs that can be explored: kernel
selection, weights transformation bypassing, and inference pipeline.
While being intuitive, those optimizations have been rarely touched
in prior work.

3.1.1 Kernel selection. A DNN model can be represented as a di-
rected data graph consisting of many operators. An operator de-
scribes how the input data is mapped to output data at a high
level, while the kernels represent the different implementation of
an operator.

One operator, many kernels A key observation we make from
existing DL libraries is that there are often multiple kernels imple-
mented for one operator, especially those computation-intensive
ones. For instance, as shown in Figure 5, ncnn implements 28 dif-
ferent kernels for convolutional operator.

There are three main reasons for such phenomenon. (1) Kernels
can be better optimized with assumptions on the input/weights
configurations, e.g., the convolution kernel size and input/output
channel numbers. (2) The relative kernel performance relies on
the specific hardware platforms. Therefore, developers write multi-
ple kernels to obtain good performance on different platforms by

S1:sgemm S2:sgemm_pack4 S3:1x1s1_sgemm S4:1x1s1_sgemm_pack4
S5:1x1s1_sgemm_pack4to1 S6:1x1s2_sgemm_pack4 S7:3x3s2_sgemm_pack4
W1:3x3s1_winograd W2:3x3s1_winograd_pack4 W3:3x3s1_winograd_pack4to1
P1:pack4 P2:pack4to1 P3:pack1to4 P4:3x3s1_pack1to4 P5:3x3s2_pack4
P6:3x3s2_pack1to4 P7:5x5s1_pack4 P8:5x5s2_pack4 P9:7x7s2_pack1to4 G1:vanilla
G2:1x1s1 G3:1x1s2 G4:3x3s1 G5:3x3s2 G6:4x4s4 G7:5x5s1 G8:5x5s2
G9:7x7s2

I4O4 I1O4 I4O1 I1O1

Convolution

K1

K=1

K3K=3

K4K=4

K5
K=5

K7

K=7

K_

else

S4 S2 P1 S3
S1 G2 G1S=1

S6 S2 P1 S1
G3 G1

S=2

S2 P1 G1
S>2

P3 S3 S1
G2 G1

S5 P2 S3
S1 G2 G1

S3 S1
G2 G1

P3 S1
G3 G1

P2 S1
G3 G1

S1 G3
G1

P3 G1 P2 G1 G1
W2 S2 P1
W1 G4 G1S=1

S7 P5 S2
P1 G5 G1

S=2

S2 P1 G1
S>2

P4 P3 W1
G4 G1

W3 P2 W1
G4 G1

W1 G4
G1

P6 P3
G5 G1

P2 G5
G1 G5 G1

P3 G1 P2 G1 G1
S2 P1 G6 G1

S=4

S2 P1 G1S≠4
P3 G6 G1 P2 G6 G1 G6 G1

P3 G1 P2 G1 G1
P7 S2 P1
G7 G1

S=1

P8 S2 P1
G8 G1

S=2

S2 P1 G1

S>2

P3 G7
G1

P2 G7
G1 G7 G1

P3 G8
G1

P2 G8
G1 G8 G1

P3 G1 P2 G1 A
S2 P1 G9 G1S=2

S2 P1 G1
S≠2

P9 P3 G9 G1 P2 G9 G1 G9 G1
P3 G1 P2 G1 G1

S2 P1 G1
S>0

P3 G1 P2 G1 G1

Figure 5: The 28 kernels implemented by ncnn for convolu-
tion. On the top box, “A:B” indicates “B” is a kernel implemen-
tion and abbreviated as “A”. Within the tree structure, each
node (as rectangle) contains the usable kernels for each situ-
ation. K/S indicate the convolutional kernel size and stride
size. “I4O4” means the input and output channels are divisi-
ble by 4.

Kernels Cold Inference Time (ms)
Read
Raw

Weights
Trans.

Read
Cache Execution

3x3s1-winograd-pack4 0.70 38.23 5.23 2.98
sgemm-pack4 0.70 2.21 0.70 8.14
pack4 0.70 2.22 0.70 18.63
3x3s1-winograd 0.70 65.67 4.12 3.37
3x3s1 0.70 0.00 0.70 8.01
general 0.70 0.00 0.70 87.12

Table 2: The weights transformation (on CPU little cores) and
execution time (on CPU big cores) of different kernel alter-
natives for conv op (kernel size = 3, stride = 1, input/output
size = 64/192). “Read Raw/Cache” is the I/O time of reading
the weights w/o and with cache policy (i.e., pre-transformed).

choosing the best fitting. (3) New kernels are emerging but the old
ones are kept in the codebase for legacy reasons.

No silver-bullet kernel The current kernel selection policy of
popular DNN engines is hard-coded and only considers the warm in-
ference speed. However, such selection may not be optimal for cold
inference. Taking ncnn as an example, as we quantitatively show in
Table 2, the default kernel used by ncnn for convolution operators
with 4x input/output channel numbers and 3x3 convolution kernel
size is a winograd-based implementation (3x3s1-winograd-pack4)
because it achieves the fastest warm inference. Such a kernel, how-
ever, incurs a high time cost in weights transformation. Instead,
a more generic sgemm-based implementation (sgemm-pack4) has
less total time cost with simpler weights transformation.

Boosting DNN Cold Inference on Devices MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Notation Description
𝑀𝑙 ,𝑀𝑏 Number of little and big CPU cores
𝑁 Number of model layers
𝑟𝑖 , 𝑤𝑖 , 𝑒𝑖 The 𝑖-th read/transform/execution operation (1 ≤ 𝑖 ≤ 𝑁)
𝑓 (𝑖, 𝑗, 𝑡) Whether operation 𝑖 executes on core 𝑗 at time 𝑡
𝑆𝑖,𝑗 The timestamp when operation 𝑖 starts running on core 𝑗
𝐸𝑖 The timestamp when operation 𝑖 finish running
𝑇 (𝑓 (𝑖, 𝑗, 𝑡)) Latency of operation 𝑖 runs
Θ𝑖 The set of precursor operations of operation 𝑖
𝜂, 𝐹 The set of all operations and all inference operations

Table 3: Notations used in §3.2 and §3.3.

3.1.2 Bypassed weights transformation. As shown above, theweights
transformation for certain kernels can be extremely costly, despite
that the kernel executes quite fast. One possible method to avoid the
heavy transformation while leveraging the kernel’s fast execution
is to cache the transformed weights on disk, which can be directly
loaded and executed.

By using this method, NNV12 will cache the post-transformation
weights to disk during the decision stage shown in Figure 4, and
load these cached weights from disk during the execution stage.
This method eliminates the weights transformation time in cold
inference, however, could also introduce additional disk storage
and I/O.

As shown in the column ”Read Cache” column of Table 2, the
post-transformationweights often occupymore storage because the
weightswill be duplicated. In otherwords, caching post-transformation
weights trades off disk read with memory-access-intensive weights
transformation for a given kernel. From the perspective of a whole
model’s cold inference that consists of many kernels, it opens rich
trade-offs between the I/O and memory access.

3.1.3 Pipelined inference. Nowadays edge devices are typically
equipped with multi-process/core architecture such as big.LITTLE
CPU cores. To fully exploit those processors to boost cold inference,
one might simply multithread the kernel preparation and execu-
tion, e.g., using many threads to read and transform the weights
simultaneously. However, we observe the benefits from such mul-
tithreading are limited due to two reasons. First, weights reading
and transformation stages are not bounded by the computation
but disk I/O and memory I/O, respectively. Second, the asymmetric
multiprocessor on edge devices makes it difficult to partition the
DL workloads to fully utilize each processor’s capacity [56], there-
fore a straggler processor could significantly slow down the whole
inference regarding the data flow dependency.

Instead of simply multithreading the kernels separately, we pro-
pose to pipeline them: overlap different kernels’ weights reading,
transformation, and execution. This is based on a key opportunity
that DNNs typically have a layer-by-layer computation pattern.
As such, the system does not need to wait for the whole model
to be loaded or all weights to be transformed to begin the kernel
execution. Instead, the loading, transformation, and execution of
different layers can be possibly pipelined. The concept of the layer
in DNNs also provides an easy-to-use basis to schedule the I/O,
memory-intensive, and computation-intensive stages in devices.

3.2 Problem Formulation
The need for a kernel scheduler To fully harness the optimiza-
tion knobs introduced in §3.1, we need a global kernel scheduler to
determine (i) which kernel to use for each operator; (ii) whether

to load the raw weights or the cached post-transformed weights
for each kernel; (iii) when and where to execute each operation.
In this work, we use the term operation to indicate each stage of
a kernel, e.g., its weights reading, transformation, and execution
are three different operations. Apparently, those knobs need to be
jointly considered as they inherently are coupled with each other.
For instance, choosing a different kernel could overturn an optimal
pipeline strategy.
Formulation of the kernel scheduling problem For simplicity,
we first use big.LITTLE CPU architecture as the target scheduling
platform to introduce our formulation and scheduling scheme. They
can be easily extended to other heterogeneous processors, e.g.,
CPU + GPU as will be discussed later. The annotations used are
summarized in Tabel 3. We use 𝑓 (𝑖, 𝑗, 𝑡) = 1 to indicate operation
𝑖 executes on core 𝑗 at time 𝑡 (otherwise 0). Based on that, 𝑆𝑖, 𝑗 and
𝐸𝑖 can be expressed by 𝑓 (𝑖, 𝑗, 𝑡) in Equation (1). Here, 𝜂𝑖 means the
set of cores where operation 𝑖 runs on.

𝜂𝑖 = { 𝑗 |
∑︁
𝑡

𝑓 (𝑖, 𝑗, 𝑡) ≥ 1}

𝑆𝑖, 𝑗 = argmin
𝑡
{𝑓 (𝑖, 𝑗, 𝑡) = 1}, 𝑗 ∈ 𝜂𝑖

𝐸𝑖 = max{𝑆𝑖, 𝑗 +𝑇 (𝑓 (𝑖, 𝑗, 𝑡))}, 𝑗 ∈ 𝜂𝑖

(1)

Minimizing the cold-inference latency equals to minimizing the
finishing time of the last execution operation 𝑓𝑁 :

min𝐸𝑒𝑁

𝑠 .𝑡 .

𝑆𝑖, 𝑗 ≥ 𝐸𝛼 , 𝛼 ∈ Θ𝑖 ,∀𝑖,∀𝑗∑
𝑖∈𝜂

𝑓 (𝑖, 𝑗, 𝑡) ≤ 1, ∀𝑡,∀𝑗∑
𝑖∈𝜂

𝑀𝑙+𝑀𝑏∑
𝑗=0

𝑓 (𝑖, 𝑗, 𝑡) ≤ 𝑀𝑙 +𝑀𝑏 , ∀𝑡

(2)

The solver is restricted by three conditions: (1) For each operation,
its starting time is no earlier than the end time of its all precur-
sor operations. We can build a dependency graph among the
total 3 × 𝑁 operations in a DNN by integrating the original de-
pendency of the model (among execution operations) and the
read-transform-execution flow of every single kernel. (2) For each
core, only one operation can run at a given timestamp; (3) At any
time, the total number of cores being used should be no larger than
𝑀𝑙 +𝑀𝑏 .
Challenges Solving the above challenges faces the following pri-
mary challenges. First, according to Equation (1), 𝑆𝑖, 𝑗 and 𝐸𝑖 are
nonlinear functions of the optimization variables 𝑓 (𝑖, 𝑗, 𝑡). There-
fore it is Nonlinear Integer Programming, a classical NP-hard prob-
lem. Second, we observe that the execution time 𝑇 (𝑓 (𝑖, 𝑗, 𝑡)) can
be interfered with by each other even though they run on different
cores. This is mainly because the co-running operations reach the
limit of disk and/or memory I/O speed. In summary, it’s not likely
to obtain an optimal kernel scheduling plan directly.

3.3 A Heuristic-Based Kernel Scheduler
HeuristicsWe design our kernel scheduling algorithm based on
the following heuristics. First, for almost every DNN we have
tested, the kernel execution is still the most time-consuming type of
operation. The lower bound we can possibly achieve for cold infer-
ence latency is equal to the warm inference, which usually places

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rongjie Yi et al.

Algorithm 1: Our kernel scheduler
input :Number of little cores,𝑀𝑙 ;

Number of layers, 𝑁 ;
Sets of candidate kernels’ combination, 𝐾 ;
operations 𝑟𝑖 , 𝑤𝑖 , 𝑒𝑖 (𝑖 ∈ {1, 2, ..., 𝑁 }).

output :Combination of selected kernels, 𝐾𝑐 ;
The list of operations running on little core 𝑗 ,
𝑄 𝑗 (𝑗 ∈ {1, 2, ..., 𝑀𝑙 });
The list of operations running on big cores,𝑄0 .

1 Filter out the kernel candidates that exhibit no faster operation;
2 foreach combination 𝑘 = {< 𝑟𝑖 , 𝑤𝑖 , 𝑒𝑖 > |𝑖 = 1, 2, ...𝑁 } (𝑘 ∈ 𝐾) do
3 Initialize𝑄0 : Insert the operations 𝑟1 , 𝑤1 and all 𝑒𝑖 of 𝑘 into the big

cores sequentially, s=2;
4 Initialize the execution time of the operations on core 𝑗 :

𝑇𝑄𝑗
= 0, 𝑗 ∈ {0, 1, ..., 𝑀𝑙 };

5 Update the execution time of operation 𝑜 on little cores 𝑡 l𝑜 and big
cores 𝑡b𝑜 ;

6 while
���� max
1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
− 𝑇𝑄0

���� > 𝜀 or𝑇𝑄𝑗
= 0, (𝑗 ∈ {0, 1, ..., 𝑀𝑙 }) do

7 if max
1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
> 𝑇𝑄0 then

8 for 𝑖 ← 𝑠 to 𝑁 do
9 if (𝑡b𝑟𝑖 + 𝑡

b
𝑤𝑖
) + (𝑡 l𝑟𝑖 + 𝑡

l
𝑤𝑖
) < max

1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
− 𝑇𝑄0 then

10 Insert 𝑟𝑖 , 𝑤𝑖 into𝑄0 header, 𝑠 := 𝑖 ;
11 break;
12 Initialize𝑄 𝑗 (𝑗 = 1, .., 𝑀𝑙) : schedule 𝑟𝑖 , 𝑤𝑖 (𝑖 = 𝑠 + 1, .., 𝑁) to

different little cores sequentially;
13 while max

1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
− min

1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗
> 𝜀 do

14 𝑗max := arg max
1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗

15 𝑗min := arg min
1≤ 𝑗≤𝑀𝑙

𝑇𝑄𝑗

16 Sort operations in𝑄 𝑗𝑚𝑎𝑥 descendingly according to the
execution time as𝑄𝑠𝑜𝑟𝑡 ;

17 foreach operation (𝑟, 𝑤) in𝑄𝑠𝑜𝑟𝑡 do

18 if 𝑡 l𝑟 + 𝑡 l𝑤 <
𝑇𝑄𝑗max

−𝑇𝑄𝑗min
2 then

19 Move (𝑟 , 𝑤) from𝑄𝑖𝑚𝑎𝑥 to𝑄𝑖𝑚𝑖𝑛
;

20 Compute𝑇𝑄𝑗
(𝑗 = 0, 1, .., 𝑀𝑙);

21 Compute the completion time of kernel combination 𝑘 ,𝑇𝑘
𝑐𝑜𝑙𝑑

;
22 𝐾𝑐 = argmin

𝑘
(𝑇𝑘

𝑐𝑜𝑙𝑑
)

Read Trans. Trans.
(4 cores)

Exec. Exec.
(4 cores)

0
10
20
30
40

La
te

nc
y

(m
s)

0.3

10.2
5.0 7.0

2.40.6

38.3

26.5

42.0

10.2

big core little core

Figure 6: The consumed time of different stages of cold start
on different ARM core types and numbers.
all the execution operations on big cores with multithreading
acceleration. Second, there exists operation-to-hardware affinity.
As shown in Figure 6, the big core on Meizu 16T can reduce the
execution time by 6× compared to the little core, but can only
reduce the weights reading and transformation by 2× and 3.8×, re-
spectively. This is because weights reading and transformation are
more likely to be bottlenecked by disk I/O and memory I/O instead
of computing. Third, multithreading is more efficient for execu-
tion operation than others. Conceptually, every single operation
can be multithreaded on multiple cores for acceleration. However,
according to results in Figure 6, the speedup of multithreading

on kernel execution can almost linearly scale with the number of
cores, yet multithreading exhibits poor performance on weights
reading and transformation. This is because multithreading is more
friendly to computation-intensive operations as it incurs inter-cores
synchronization overhead.

Assumptions Based on the above heuristics, we build our algo-
rithm atop the following key assumptions.
• Each kernel’s execution operation always occupies all big cores
and is executed sequentially.

This is based on our observation that executing execution operation
on LITTLE cores could easily bottleneck the whole inference, leav-
ing the big cores under-utilized. Meanwhile, multitasking many
execution operations on big cores does not exhibit any improve-
ment as the highly optimized DNN engine could already fully utilize
the cores with execution operations. Figure 6 illustrates how ker-
nel execution on big CPU cores achieves the lowest warm inference
latency. This is critical to push the performance of cold inference
to the limit of warm inference.
•Weights reading and transformation operations of the same oper-
ator are always bundled together (as a new preparation operation)
and mostly placed on little cores without multithreading. The ratio-
nale is that the precursor operation of transformation operations
is the weights reading operations of the same operator, which are
both I/O intensive and have very few precursor operations (0 or
1) as compared to execution operation (at least 2), therefore can be
easily pipelined. Since execution operation occupies all big cores,
we can use many little cores to run those operations separately
at the same time.
Algorithm of kernel scheduling. Our proposed algorithm (Algo-
rithm 1) is composed of two layers. In the outer layer (line 2), we
traverse to find the optimal kernel combination. A kernel combina-
tion refers to, for each operator, what kernel to use and whether
to bypass the weights transformation. There are

∏𝑁
𝑖=1 (2 · 𝑐𝑖) such

combinations, where 𝑐𝑖 is the number of kernel candidates of 𝑖𝑡ℎ
operator. Apparently, we do not need to iterate over all of them;
instead, for each operator, we filter out the kernel candidates that
exhibit no faster operation in either preparation or execution than
any other candidate. After that, there are only 1–2 candidate kernels
left for each operator as observed.

In the inner layer, we schedule given kernel combination to min-
imize the completion time of the last kernel. As each kernel’s execu-
tion operation always occupies all big cores, we further divide the
task to: (1) balance the loads among the little cores to minimize the
largest completion time on them; (2) balance the workloads between
the little cores and large cores to minimize the completion time of
big cores. In the algorithm, we use two loops to solve this problem.
In the big-core loop (line 6-11), we determine which operations
should be executed on big cores. The operations of the first kernel
(to fast boot) and all the execution operations of the rest kernels
should run on big cores (line 3). If the completion time of big cores
(𝑇𝑄0) is still less than the largest completion time of the little cores
after moving one reading and transformation operation from little
cores to big cores (line 9), the weights reading and transformation
operation should be inserted to the big cores (line 10); In the little-
core loop (line 13-20), the reading and transformation operations
are scheduled among the little cores to balance the workloads. We

Boosting DNN Cold Inference on Devices MobiSys ’23, June 18–22, 2023, Helsinki, Finland

11

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1 2 4 5 9

little core 1

little core 2

little core 3

little core 4

big core 11

2 2

3 3

4 4

5 5

6

7 7

8 8

9 9

1 2 9

little core 1

little core 2

little core 3

little core 4

big core 11

2 2

3 3

4 4

5 5

6

7 7

8 8

9 9

1 2

little core 1

little core 2

little core 3

little core 4

big core 11

2 2

3 3 4 4

5 5

6

7 7

8 8

9 9

1 2

little core 1

little core 2

little core 3

little core 4

big core

read
transform

execute

6 7 83 4 5 6 7 83 4 5 6 7 83 9

6 6 6

4 5 6 7 83 9

1122

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1 2 4 5 9

little core 1

little core 2

little core 3

little core 4

6 7 83 1122

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1 2 4 5 9

little core 1

little core 2

little core 3

little core 4

big core 6 7 831122

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1 2 4 5 9

little core 1

little core 2

little core 3

little core 4

big core 6 7 83big core 1122

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1 2 4 5

little core 1

little core 2

little core 3

little core 4

big core 6 7 83

output

98

2 2 6 6

1 5 6

2 4

little core 1

big core 3 98

2 2 6 6

5 611

3 3 4 4 5 5 7 7 8 8 9 9

1

9

(b)

(f)

(c)

(g)

(d)

(h) (i)

(e)

(a)

Figure 7: An illustrative example of how NNV12’s kernel scheduling algorithm works (Algorithm 1).

initialize the operation lists of little cores (line 12) by sequentially
scheduling the reading and transformation operations one by one
to different little cores (as shown in Figure 7(b)). If the little core
with the earliest completion time has the potential to accommodate
the reading and transformation operations from the little core
with the largest completion time (line 18), migrate the reading and
transformation operations to balance the workloads (line 19).

An illustrative example is shown in Figure 7. Figure 7(a)
corresponds to Line 3 in Algorithm (1), where we set the read-
ing and transformation operations of layer 1 and all execution
operations on big cores, while the other operations are placed
on little core. Figure 7(b)–(e) and Figure 7(f)–(h) are two iterations
of the big-core loop in Algorithm (1). Figure 7(b)–(e) are four itera-
tions of the little-core loop.

Dealing with hardware dynamics NNV12 further introduces a
workload stealing technique to adapt to hardware dynamics, e.g.,
cores occupied by other tasks/apps during inference. The key idea
is that, once a core is shared by other workloads, the operations
scheduled on it will run slower and some of them are better to be
relocated to other cores. NNV12 determines such workload stealing
on demand: when a busy core slows down the whole inference and
another core becomes idle with no other operations to run, that
idle core will steal the operations from the head of the job queue
of the busy core and execute them accordingly. Such stealing could
happen among multiple cores, as long as there are idle cores whose
next operation has unfinished dependency.

3.4 Extending to CPU/GPU architecture
In the previous sections, wemainly introduce how NNV12 fits big.LITTLE
CPU architecture. Conceptually, the above design can be easily ex-
tended into GPU platform by treating the GPU as the big core
and CPU as little cores. Yet, the unique characteristics of GPUs re-
quire NNV12 to make further revisions and optimizations to achieve
optimal performance.
Creating pipeline as another operation For each operator, in ad-
dition to the weights reading, transformation, and kernel execution
on CPU, there is another operation in the cold inference namely
creating pipeline [11]. Taking Vulkan as an instance, this step sets

up a pipeline that describes the configurable state of the graphics
card, like the viewport size and depth buffer operation. It is usu-
ally implemented with ahead-of-time compilation [12], therefore
incurs no overhead for warm inference. In cold inference, however,
this operation can take a considerable amount of time to run as
previously shown in Table 1.
Operations-to-processor placement The GPU is only in charge
of kernel execution while all other operations are scheduled on
CPUs as the latter can hardly be accelerated by GPU. It also helps
reduce the CPU-GPU data copy. Further partitioning the execution
across CPU and GPU [34] might enlarge the optimization spaces
but is orthogonal to this work and left to be explored in the future.
Caching compute shadersOne time-consuming andGPU-specific
process we observed is shaders compiling [6]. In Neural Networks,
a kernel is implemented as a shader [14]. For example, 3D graphics
and compute API Vulkan drivers are supposed to ingest shaders
already translated into an intermediate binary format called SPIR-V
(Standard Portable Intermediate Representation). For a given DNN
model, the shaders that need to be compiled and generated at each
layer are determined. Therefore, we can cache those shaders on
disk and load them directly to speed up the cold inference just as
how we bypass the weights transformation stage.

3.5 Kernel Switching for Warm Inference
The kernels selected by NNV12 are optimized for cold inference. As
discussed in §3.1, the kernels with the fastest warm inference might
be different from what NNV12 selects. We use 𝐾𝑐𝑜𝑙𝑑 and 𝐾𝑤𝑎𝑟𝑚 to
represent two different sets of kernels. If NNV12 keeps using the
kernels of 𝐾𝑐𝑜𝑙𝑑 in subsequent inferences, it leads to a suboptimal
warm inference latency.

To handle such side effects, NNV12 provides an additional mode
besides the one only optimized for cold inference as discussed above.
This mode indicates that there will be continuous inferences tasks.
In that case, NNV12 still follows the aforementioned techniques to
optimize the cold inference, but makes the following key differences:
(1) It also prepares the kernels in 𝐾𝑐𝑜𝑙𝑑 − 𝐾𝑤𝑎𝑟𝑚 and switches to
kernels in 𝐾𝑤𝑎𝑟𝑚 for later inferences. (2) The preparation of those
additional kernels is performed on little cores when idle during the

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rongjie Yi et al.

cold inference. The rationale is that the little cores have some idle
time before the kernel execution finishes on big cores. If such idle
time is not enough to prepare the kernels in 𝐾𝑐𝑜𝑙𝑑 − 𝐾𝑤𝑎𝑟𝑚 , the
rest of the operations will be pipelined in the second inference as
NNV12 does for the cold inference. In §4.5 we experimentally show
that NNV12 achieves (near-)optimal performance in continuous in-
ference as well.

4 EVALUATION
4.1 Implementation and Methodology
NNV12 prototypeWe’ve implemented a prototype of NNV12 with
18K C++ LoC atop ncnn (version 20211208) for its lightweight code-
base and superior performance as compared to TFLite. We used
Vulkan GPU backend for its more generic support for different
platforms. Note that the techniques of NNV12 are compatible with
other DL libraries as well.
ModelsWe use 12 popular NN models as summarized in Table 4 to
test the performance of NNV12. Those models span across different
tasks (image classification and object detection) and computation
complexity.Wemainly use CNNmodels in our experiments because
a recent empirical study shows that CNNs are dominant use cases
in nowaday edge devices [13]. The models mainly come from the
official model zoo of those libraries [9], while for the ones that do not
exist in the zoo, we generate them by ourselves, e.g., implementing
the model structure in TF APIs and then converting it to TFLite
format. We manually check that the same model used by each
library has a consistent structure.
HardwareWe use 6 different devices: Meizu 16T smartphone with
Snapdragon 855, Google Pixel 5 with Snapdragon 765G, Redmi 9
with MTK Helio G80, Meizu 18 Pro with Snapdragon 888, Jetson
TX2, and Jetson Nano. The OS of Meizu 16T and Google Pixel 5
is Android 11. The OS of Jetson TX2 and Jetson Nano is Ubuntu
18.04. We use only CPUs for the two smartphones and use GPUs
on the Jetson boards. The reason is that, on smartphone SoCs, the
CPUs perform much better than GPUs for cold inference as GPU
preparation takes much more time than CPU as shown in Table 1.
Yet, on Jetson TX2/Nanowithmuchmore powerful GPUs, the DNNs
are almost always placed on GPUs.
Baselines On Meizu 16T and Pixel 5, we compare the perfor-
mance of NNV12 to 3 baselines: ncnn, TFLite, and AsyMo [56].
Since NNV12 is implemented atop ncnn, the comparison between
them can directly reveal the effectiveness of NNV12’s key techniques.
Still, TFLite is added as it is the most popular DL library used in
end devices (version 2.5.0). AsyMo is the state-of-the-art DL engine
that can fully exploit the asymmetric CPU architecture on smart-
phones. Since AsyMo is not open-sourced yet, we re-implement
it atop ncnn for a fair comparison. On Jetson TX2/Nano, we also
use ncnn with its Vulkan backend. However, since TFLite does
not support either Vulkan or CUDA backend, we replace it with
TensorFlow (version 2.5.0) for comparison.
Setups and configurations On Meizu 16T and Pixel 5, we exhaus-
tively try different core numbers for TFLite and ncnn and use the
best configuration. In practice, it turns out to be 4 cores on Meizu
16T and 2 cores on Pixel 5. Note that AsyMo always uses all the
CPU cores available. The model files are stored on SDCards for
both smartphones and Jetson boards. To eliminate the impacts of

file cache, we clear the system cache before each cold inference.
For all experiments, the cold inference latency does not include the
loading and initialization time of the libraries. Each experiment is
repeated by 100 times and the average numbers are reported.

4.2 End-to-End Performance
Cold inference latency on CPU Figure 8 compares the cold
inference latency of NNV12 with the baselines on edge CPUs and
Table 5 summarizes NNV12’s overall improvements. It shows that
NNV12 significantly outperforms the baselines on all models and
platforms, i.e., 1.1×–15.2× speedup over TFLite and 1.2×–10.3×
speedup over ncnn.

NNV12 also achieves close performance to warm inference, i.e.,
only 1.72× slower at average. On ShuffleNetV2, the gap is even
negligible (≤1ms). This is because NNV12 effectively overlaps the
preparation stages (loading and transformation) with the execu-
tion, therefore their latency can be mostly hidden. Yet, the gap
still exists for three reasons. First, the model execution could be
waiting for the preparation to be done on CPU little cores when the
overlapping is not perfectly planned. Second, even without waiting,
the execution could be slowed down due to the cross-operation
interference as mentioned in §3.3. Third, NNV12 selects kernel for
fast cold inference, whose real execution speed might be slower
than the original selection that optimizes for the warm inference.

The more competitive baseline AsyMo achieves relatively limited
improvements over the vanilla DNN engine ncnn, i.e., only 1.03×–
1.28× speedup. This is because it only improves the execution speed
by fully utilizing the asymmetric CPU cores through kernel sched-
uling, but the weights preparation still takes a considerable amount
of time in cold inference.

Impacts of CPU core numbers In the above experiments, we
always set the CPU core number to the one obtaining the best per-
formance for TFLite and ncnn. In practice, it turns out to be 4 on
Meizu 16T and 2 on Pixel 5. Figure 9 further shows a comprehen-
sive comparison by using different core numbers on Meizu 16T. It
confirms our observation that using 4 cores exhibits the best perfor-
mance for TFLite and ncnn, which is also consistent with the prior
study [56]. This is mainly because those DL engines cannot well
exploit the asymmetric CPU cores for DL execution. Note that they
also use multi-threads to accelerate the weights transformation
yet the profit from more threads is also marginal. This is because
the weights transformation is mainly memory-bounded. Instead,
NNV12 pipelines different kinds of operations to fully exploit the
disk, memory, and computing capacity.

Cold inference latency on GPU Figure 10 compares the cold
inference latency of NNV12 with the baselines on edge GPUs and
Table 5 summarizes NNV12’s overall improvements. It shows that
the performance improvement of NNV12 compared to the baselines
is even more significant than CPU, i.e., 10.4×–401.5× speedup over
TensorFlow and 4.0×–58.2× speedup over ncnn. There are two
primary reasons for such a huge improvement. First, the cold infer-
ence on GPU requires more preparations such as creating pipeline.
Therefore NNV12’s key techniques, especially the kernel pipeline
(§3.3), bring more benefits. Second, NNV12 incorporates additional
optimizations for GPU like shader caching (§3.4).

Boosting DNN Cold Inference on Devices MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Model Task Parameters Model Size FLOPs Storage Scheduling Plan Generation Time (Offline)
Overhead Meizu 16T Pixel 5 TX2 Nano

AlexNet [33] C 61.3M 237.5M 1.4G 172.3M 1,538.4ms 4,157.4ms 8,197.3ms 22,962.6ms
GoogLeNet [53] C 7.1M 26.9M 3.2G 22.6M 1,301.9ms 2,304.3ms 6,457.6ms 9,648.7ms
MobileNet [27] C 4.4M 16.2M 1.1G 12.6M 796.5ms 1,796.5ms 5,443.0ms 8,357.5ms
MobileNetV2 [52] C 3.7M 13.3M 0.6G 10.3M 759.3ms 1,796.5ms 4,770.0ms 8,441.1ms
ResNet18 [26] C 12.7M 45.5M 3.9G 34.3M 892.6ms 1,896.2ms 1,461.1ms 2,599.1ms
ShuffleNet [73] C 3.6M 12.9M 1.9G 10.0M 577.8ms 1,005.9ms 5,872.3ms 7,996.8ms
EfficientNetB0 [54] C 5.4M 19.6M 0.8G 15.2M 1,129.9ms 2,446.0ms 6,481.2ms 6,031.4ms
ResNet50 [26] C 25.7M 97.4M 7.8G 89.7M 1,652.2ms 2,974.3ms 3,757.6ms 3,854.0ms
SqueezeNet [29] C 1.4M 4.7M 1.7G 3.8M 717.9ms 1,788.8ms 5,849.8ms 6,738.9ms
ShuffleNetV2 [42] C 3.4M 12.0M 0.5G 10.9M 532.1ms 920.7ms 4,724.5ms 5,665.3ms
MobileNetv2-YOLOv3 [51] OD 3.6M 13.1M 1.0G 12.5M 849.2ms 2,544.5ms 3,394.3ms 4,979.7ms
MobileNet-YOLO [50] OD 11.9M 49.1M 2.9G 38.3M 984.2ms 2,485.5ms 5,047.5ms 7,710.2ms
CRNN-lite [24] OCR 2.4M 2.6M 3.1G 45.4M 116.32ms 375.32 ms 4,597.6ms 6,257.3ms

Table 4: The NN models used in experiments. Input size: 224x224. “C”: classification; “OD”: Object Detection; “OCR”: Optical
Character Recognition.

AlexNet
GoogLeNet MobileNet

MobileNetV2 ResNet-18 ShuffleNet
EfficientNet_B0ResNet-50

SqueezeNet
ShuffleNetV2

MobileNetV2-YOLOv3
MobileNet-YOLOCRNN-lite

0
50

100
150
200
250
300
350
400

Co
ld

 In
fe

re
nc

e
La

te
nc

y
(m

s)

491

258

105
145

305

117

243

553

119
105

241

499

245

333

184

45 45

628

33
61

706

65
40

80
109

62

323

174

40 39

620

28 53

691

61
37

67 91
60

103

50
21 22

61

9 26

105

13 12 27 32 58
29 25

12 14 23
6 16

55

10 12 26 30 49

TFLite ncnn Asymo Ours warm

(a) Meizu 16T CPU

AlexNet
GoogLeNet MobileNet

MobileNetV2 ResNet-18 ShuffleNet
EfficientNet_B0ResNet-50

SqueezeNet
ShuffleNetV2

MobileNetV2-YOLOv3
MobileNet-YOLOCRNN-lite

0
50

100
150
200
250
300

Co
ld

 In
fe

re
nc

e
La

te
nc

y
(m

s)

582

236

108 117

263

89

284 511

83
54

177

410
276606 302

102
90

826

45

251
1065

85

30

96

213

126

562
285

92
74

804

37
81

998

75

22

90

164

123

278

89

49 52

129

17
56

189

33
21

82

194

108
89

51
26 30 51

16 31

141

26
15

52

116
98

(b) Google Pixel 5 CPU

AlexNet
GoogLeNet MobileNet

MobileNetV2 ResNet-18 ShuffleNet
EfficientNet_B0ResNet-50

SqueezeNet
ShuffleNetV2

MobileNetV2-YOLOv3
MobileNet-YOLOCRNN-lite

0
50

100
150
200
250
300

Co
ld

 In
fe

re
nc

e
La

te
nc

y
(m

s)

210

354

166 165

400 313 449 598

90

167
163

378 356625 710

133 132

2127

74

159

2781

155

57

125
169

238

598 698

115 115

1978

64

139

2548

142

46

138 145

203
191

180

67 78

314

34

79

329

48
35

66
91

195

128
104

60 65 84

33
74

220

36 28
57 66

170

(c) Redmi 6 CPU

AlexNet
GoogLeNet MobileNet

MobileNetV2 ResNet-18 ShuffleNet
EfficientNet_B0ResNet-50

SqueezeNet
ShuffleNetV2

MobileNetV2-YOLOv3
MobileNet-YOLOCRNN-lite

0
50

100
150
200
250
300

Co
ld

 In
fe

re
nc

e
La

te
nc

y
(m

s)

195

351

36

84

170

84

165

348

58
81 78

254 268

227

279

41 41

895

15
40

1077

48

16 35 45 51

201
245

32 34

882

12 32

1034

43
12 29 40 48

129

57

18 19
54

8
24

100

15 10 22 27 45
27 29

13 15 21
6 16

60

9 9 14 17
41

(d) Meizu 18 Pro CPU

Figure 8: The cold inference latency of NNV12 and baselines on edge CPUs.

Dynamic Loads We also evaluate how NNV12 adapts to the dy-
namic background loads as compared to vanilla ncnn. We use a cus-
tomized program to impose different levels of pressure (0%/25%/50%

CPU utilization) on different cores in background while the cold
inference takes place. Figure 11 shows the testing results with

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rongjie Yi et al.

HW Platform Speedup over baselines (min – max, avg)
ncnn TFLite (TF)

Meizu 16T (CPU) 1.1× – 10.3× (3.7×) 4.2× – 15.2× (7.5×)
Pixel 5 (CPU) 1.1× – 6.4× (2.8×) 2.1× – 5.2× (2.2×)
Redmi 9 (CPU) 1.2× – 8.5× (3.1×) 1.1× – 8.9× (3.2×)
Meizu 18 Pro (CPU) 1.2× – 16.4× (3.9×) 1.5× – 9.4× (5.2×)
Jetson TX2 (GPU) 9.0× – 38.9× (29.6×) 14.6× – 355.3× (154.8×)
Jetson Nano (GPU) 4.0× – 58.2× (28.5×) 10.4× – 401.5× (234.3×)

Table 5: Summarized performance comparision of NNV12 over
baselines on different platforms.

1+0 2+0 4+0 4+2 4+4
CPU core used

50
100
150
200
250
300
350
400

La
te

nc
y

(m
s)

397
373

258

373 355

258
207

184

243 223

50 50 50 50 50

TFLite ncnn Ours

(a) GoogLeNet
Meizu 16T

1+0 2+0 4+0 4+2 4+4
CPU core used

0
200
400
600
800

1000
1200

La
te

nc
y

(m
s)

765
651

553 596 645

1000

825
706

932

1189

55 55 55 55 55

TFLite ncnn Ours

(b) ResNet-50
Meizu 16T

1+0 2+0 2+2 2+4 2+6
CPU core used

100
150
200
250
300
350
400

La
te

nc
y

(m
s)

247 238 240 242 252

353

302

379

315 326

89 89 89 89 89

TFLite ncnn Ours

(c) GoogLeNet
Google Pixel 5

1+0 2+0 2+2 2+4 2+6
CPU core used

200
400
600
800

1000
1200
1400

La
te

nc
y

(m
s)

550 511 525 530 525

1247

1065

1314

1147 1082

189 189 189 189 189

TFLite ncnn Ours

(d) ResNet-50
Google Pixel 5

Figure 9: The cold inference latency of NNV12 and baselines
running on different CPU core numbers. “X+Y” indicate X
big cores and Y little cores.

GoogLeNet on the Meizu 16T device. It shows that, when little
cores are occupied and if NNV12 sticks to the optimal kernel sched-
uling plan generated offline, its performance degrades significantly,
e.g., up to 2.1×. This is because NNV12 schedules the read and trans-
formation operations across the little cores; when some of them
are busy, they bottleneck the whole cold inference process. Mean-
while, the performance of ncnn is not affected as it only leverages
the 4 big cores to obtain the best possible performance. Neverthe-
less, thanks to the workloads stealing technique, NNV12 does not
bottleneck on the little cores but make dynamic decision to balance
the workloads across all cores. With 2 little cores occupied by 50%
each, NNV12’s cold inference performance only drops from 50ms to
75ms and is still 2.5× faster than ncnn. On the other hand, when
big cores are occupied, the performance of NNV12 degrades more
significantly as well as vanilla ncnn.

Energy consumptionWealso evaluate the energy consumption
of NNV12 and illustrate the results in Figure 12. We observe that
NNV12 can significantly reduce the energy consumption, i.e., 0.2×–
0.6× compared to ncnn. Such energy-saving mainly comes from the
saved inference time through NNV12’s key techniques, especially
the kernel selection.

4.3 Ablation Study
We then evaluate the benefits brought by NNV12’s each key tech-
nique separately. The results are illustrated in Figure 13. Our major
observation is that each of NNV12’s key techniques contributes no-
ticeably to the cold inference speedup. For example, with ResNet-50
and Jetson TX2, the kernel selection first reduces the cold inference
latency from 8,272ms to 2,300ms. Caching the post-transformed
weights further reduces the latency to 555ms, and with pipelined
execution the latency finally becomes 240ms.

4.4 Resource Overhead
There are two kinds of overhead NNV12 introduces: at offline, NNV12
needs to generate the optimal kernel scheduling plan according
(§3.3); to boost the cold inference, NNV12 opportunistically stores
the post-transformed weights on disk in addition to the rawweights
(§3.1). (1) Time to generate scheduling plan As shown in Table 4,
NNV12 takes only 532.1ms–4157.4ms on Meizu 16T and Pixel 5 CPU
to generate the kernel scheduling plan. It takes more time on Jetson
TX2 and Nano, i.e., 1461.1ms–22962.6ms, because of the more com-
plicated preparation stages of GPUs. Note that this overhead only
occurs for one shot when a model is fetched to a device, and shall
not compromise the user experience. (2) Disk storage for post-
transformed weights As shown in Table 4, the storage overhead
to cache the post-transformed weights is 7.1MB–164.8MB. Note
that not every layer will apply the cache technique depending on
the operator characteristics and kernel scheduling strategy. Since
nowaday edge devices are typically equipped with a few to tens of
GBs disk, such storage overhead is tolerable.

4.5 NNV12 in Continuous Inference
Recall that NNV12 incorporates a unique design (§3.5) to optimize for
consecutive inferences as well. We experiment with GoogLeNet and
ResNet-50 on Meizu 16T. The results are illustrated in Figure(14).
It shows that NNV12 not only greatly optimizes the cold inference
latency, but also achieves close performance to ncnn in the second
inference, i.e., only 8% slower, and the same speed since the 3rd
inference. NNV12 runs slightly slower on the second inference than
ncnn because the idle time of little cores during cold inferencemight
not be enough to prepare all the kernels for the warm inference. In
that case, NNV12 follows the pipeline design to speed up the second
inference.

5 RELATEDWORK
DNN weights sharing To reduce the memory footprint of multi-
ple concurrent DNNs, prior works [23, 34, 38, 56, 59, 67, 72] have
proposed to let the DNNs share certain layers of weights (especially
the beginning ones). This approach has the scalability issue as with
more DNNs the model accuracy can drop significantly. Or, they
virtualize the DNN weights memory to better manage the data
in/out switching among DRAM and disk [38]. This approach still
incurs a high overhead in data swapping, thus does not address the
slow cold start inference. Instead, this work directly optimizes the
cold inference and does not compromise accuracy.
Apps pre-launchMobile apps also face the cold launch problem.
Prior works mainly use pre-launching [15, 48, 68] to mitigate the
slow cold launch, i.e., by predicting when an app is going to be

Boosting DNN Cold Inference on Devices MobiSys ’23, June 18–22, 2023, Helsinki, Finland

AlexNet
GoogLeNet MobileNet

MobileNetV2 ResNet-18 ShuffleNet
EfficientNet_B0ResNet-50

SqueezeNet
ShuffleNetV2

MobileNetV2-YOLOv3
MobileNet-YOLOCRNN-lite

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Co
ld

 In
fe

re
nc

e
La

te
nc

y
(s

ec
.)

8.0 15.0 15.3 19.7 12.2 35.5 23.8 22.6 5.4 5.3 22.6 18.0 16.54.9 3.2 2.3 2.6 3.8 2.8 5.6 5.5 3.6 3.0 4.3 3.6 3.1

0.55

0.25
0.15

0.14
0.1 0.1 0.15 0.24

0.11 0.11 0.11 0.13
0.060.06 0.07

0.03 0.03 0.04
0.02 0.06 0.14

0.02 0.04 0.08
0.07

0.05

TF ncnn Ours warm

(a) Jetson TX2 GPU

AlexNet
GoogLeNet MobileNet

MobileNetV2 ResNet-18 ShuffleNet
EfficientNet_B0ResNet-50

SqueezeNet
ShuffleNetV2

MobileNetV2-YOLOv3
MobileNet-YOLOCRNN-lite

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Co
ld

 In
fe

re
nc

e
La

te
nc

y
(s

ec
.)

16.1 26.3 29.7 33.2 34.1 54.7 40.0 38.9 29.8 38.5 40.0 39.9 25.36.2 3.1
1.84 2.1 3.8 3.0 8.1 4.2 4.7 4.6 6.1 3.8 3.1

1.54

0.37
0.23 0.25

0.18
0.14 0.14 0.25

0.13 0.13 0.16 0.16
0.120.14

0.1 0.06
0.05 0.07

0.05 0.05 0.16
0.03 0.03 0.13 0.15

0.08

(b) Jetson Nano GPU

Figure 10: The cold inference latency of NNV12 and baselines on edge GPUs.

0% 25% 50%0
25
50
75

100
125
150
175
200

La
te

nc
y

(m
s)

184 184 184

50
68 82

50 64 67

ncnn
ours w/o WS

ours w/ WS

(a) 1x little core

0% 25% 50%0
25
50
75

100
125
150
175
200

La
te

nc
y

(m
s)

184 184 184

50
75

91

50 65 67

ncnn
ours w/o WS

ours w/ WS

(b) 2× little cores

0% 25% 50%0
50

100
150
200
250

La
te

nc
y

(m
s)

184 202
251

50
78

113

50 71 91

ncnn
ours w/o WS

ours w/ WS

(c) 1x big core

0% 25% 50%0
50

100
150
200

La
te

nc
y

(m
s) 184

210 225

50
76 82

50 65 68

ncnn
ours w/o WS

ours w/ WS

(d) 1x little+big cores

Figure 11: The performance of NNV12 adapting to dynamic
background workloads. The numbers 0%/25%/50% indicate
the background load on the CPU cores. “WS”: workloads
stealing technique.

AlexNet
0

500

1000

1500

2000

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

2267

1539

476

GoogLeNet
0

200
400
600
800

1000
12001192

850

232

MobileNet
0

100
200
300
400
500 486

208

101

MobileNetV2
0

100
200
300
400
500
600
700 671

207

104

ResNet-18
0

500
1000
1500
2000
2500
3000

1408

2897

281

ShuffleNet
0

100
200
300
400
500

540

153

45

TFLite ncnn Ours

Figure 12: The energy consumption of cold inference.

launched soon so the OS can prepare it. Intuitively, we can retrofit
this idea to reduce the cold inference times of DNNs as well. Yet,
it has the following drawbacks. First, there will be much more
DNNs than apps on a device [13, 63], making an accurate prediction

GoogLeNet ResNet-500
100
200
300
400
500
600
700

La
te

nc
y

(m
s)

184

706

97
182

69

175

50
105

Cold
Cold+K

Cold+K&C
Cold+K&C&P

(a) Meizu 16T CPU

GoogLeNet ResNet-500
200
400
600
800

1000
1200
1400

La
te

nc
y

(m
s)

401

1363

212
393

187
341

89
189

Cold
Cold+K

Cold+K&C
Cold+K&C&P

(b) Google Pixel 5 GPU

GoogLeNet ResNet-500

2000

4000

6000

8000

La
te

nc
y

(m
s)

3632

8272

760

2300

300 555242 239

Cold
Cold+K

Cold+K&C
Cold+K&C&P

(c) Jetson TX2 GPU

GoogLeNet ResNet-500

1000

2000

3000

4000
La

te
nc

y
(m

s) 3118

4171

891

1562

442 561373 246

Cold
Cold+K

Cold+K&C
Cold+K&C&P

(d) Jetson Nano GPU

Figure 13: The ablation study results of NNV12. “K”: kernel
selection; “C”: caching the post-transformed weights (and
shaders); “P”: kernel execution pipeline.

difficult. Second, unlike apps, DNNs are transparent to mobile OSes,
thus there is no unified interface for OSes to bookkeep and operate
on the DNNs hosted on a device.
DNN fast switch on clouds PipeSwitch [16] enables fast switch
among training and inference tasks on the same cloud GPU. It
inspired some of NNV12’s design points, e.g., pipelined I/O and exe-
cution by exploiting the layer-by-layer structure of DNNs. However,
PipeSwitch is not designed for cold inference optimization, as it
does not consider the model loading and weights transformation
stages. Therefore it’s not directly comparable to NNV12.

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rongjie Yi et al.

1 2 3 4 5
Inference Number

50

100

150

200

250

In
fe

re
nc

e
La

te
nc

y
(m

s)

TFLite
ncnn
Ours

(a) GoogLeNet

1 2 3 4 5
Inference Number

100
200
300
400
500
600
700

In
fe

re
nc

e
La

te
nc

y
(m

s)

TFLite
ncnn
Ours

(b) ResNet50

Figure 14: The cold inference and subsequent warm inference
latency of NNV12 and baselines.

DNN inference optimizations There are two main categories of
on-device DNN inference optimizations. One is at system level, e.g.,
by exploiting heterogeneous processors [20, 25, 28, 34], cache [45,
61, 67], generating high-performance GPUs kernels [40], or adap-
tive offloading [35, 65]. Suchmethods only work for warm inference.
The other one is model level, e.g., quantization [32, 41] or sparsi-
fiction [17, 46]. While those works mainly target warm inference,
conceptually, they can also improve the cold inference as they re-
duce the execution time and/or the weights to be read from disk.
NNV12 explores optimization knobs from different aspects and is
orthogonal to them.

6 CONCLUSIONS
In this work, we propose NNV12, the first DL engine that optimizes
the cold inference on edge devices. NNV12 fully exploits three opti-
mizations knobs: kernel selection, weights transformation caching,
and pipelined inference through a heuristic-based kernel schedul-
ing scheme. Extensive experiments demonstrate the effectiveness
of NNV12 to boost cold inference on edge CPU and GPU hardware.

7 ACKNOWLEDGMENT
This work was supported by National Key R&D Program of China
(No.2021ZD0113001), NSFC (No. 62102045), Beijing Nova Program
(No.Z211100002121118), and Young Elite Scientists Sponsorship
Program by CAST (No.2021QNRC001). We thank the anonymous
shepherd and MobiSys reviewers for their valuable suggestions.

A ARTIFACT APPENDIX
The research artifact accompanying this paper is available via
https://doi.org/10.5281/zenodo.7909709.

REFERENCES
[1] Adobe capture. https://play.google.com/store/apps/details?id=com.adobe.

creativeapps.gather&gl=US, 2022.
[2] Introducing google nest hub. https://support.google.com/googlenest/answer/

9136909?hl=en, 2022.
[3] Jetson tx2 modules. https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-tx2/, 2022.
[4] Pdf scanner - document scanner. https://play.google.com/store/apps/details?id=

com.camscanner.documentscanner.pdfscanner.textscanner.photos.scanner&gl=
US, 2022.

[5] Photo editor - all picture art. https://play.google.com/store/apps/details?id=com.
supe.photoeditor&gl=US, 2022.

[6] Shader - wikipedia. https://en.wikipedia.org/wiki/Shader, 2022.
[7] Snapdragon 765g 5g mobile platform. https://www.qualcomm.com/products/

snapdragon-765g-5g-mobile-platform, 2022.
[8] Tencent ncnn. https://github.com/Tencent/ncnn, 2022.
[9] Tencent ncnn benchmark. https://github.com/Tencent/ncnn/tree/master/

benchmark, 2022.

[10] Tensorflow lite. https://www.tensorflow.org/lite/, 2022.
[11] Vkpipeline - opaque handle to a pipeline object. https://www.khronos.org/

registry/vulkan/specs/1.3-extensions/man/html/VkPipeline.html, 2022.
[12] Vulkan tutorial - graphics pipeline. https://vulkan-tutorial.com/Overview#page_

Step-6-Graphics-pipeline, 2022.
[13] Mario Almeida, Stefanos Laskaridis, Abhinav Mehrotra, Lukasz Dudziak, Ilias

Leontiadis, and Nicholas D Lane. Smart at what cost? characterising mobile deep
neural networks in the wild. In Proceedings of the 21st ACM Internet Measurement
Conference, pages 658–672, 2021.

[14] Fredrik Åström. Neural network on compute shader: Running and training a
neural network using gpgpu, 2011.

[15] Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and Beverly Harrison. Predict-
ing the next app that you are going to use. In Proceedings of the eighth ACM
international conference on web search and data mining, pages 285–294, 2015.

[16] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. {PipeSwitch}: Fast pipelined
context switching for deep learning applications. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 499–514, 2020.

[17] Sourav Bhattacharya and Nicholas D Lane. Sparsification and separation of deep
learning layers for constrained resource inference on wearables. In Proceedings
of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, pages
176–189, 2016.

[18] Jonathan Bohren, Radu Bogdan Rusu, E Gil Jones, Eitan Marder-Eppstein, Caro-
line Pantofaru, Melonee Wise, Lorenz Mösenlechner, Wim Meeussen, and Stefan
Holzer. Towards autonomous robotic butlers: Lessons learned with the pr2. In
2011 IEEE International Conference on Robotics and Automation, pages 5568–5575.
IEEE, 2011.

[19] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,
David G Andersen, Michael Kaminsky, and Subramanya Dulloor. Scaling video
analytics on constrained edge nodes. Proceedings of Machine Learning and Systems,
1:406–417, 2019.

[20] Qingqing Cao, Niranjan Balasubramanian, andAruna Balasubramanian. Mobirnn:
Efficient recurrent neural network execution on mobile gpu. In Proceedings of the
1st International Workshop on Deep Learning for Mobile Systems and Applications,
pages 1–6, 2017.

[21] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.
[22] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review.

Proceedings of the IEEE, 107(8):1655–1674, 2019.
[23] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant

on-device deep learning for continuous mobile vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, pages
115–127, 2018.

[24] Xinyu Fu, Eugene Ch’ng, Uwe Aickelin, and Simon See. Crnn: a joint neural
network for redundancy detection. In 2017 IEEE international conference on smart
computing (SMARTCOMP), pages 1–8. IEEE, 2017.

[25] Petko Georgiev, Nicholas D Lane, Kiran K Rachuri, and Cecilia Mascolo. Leo:
Scheduling sensor inference algorithms across heterogeneous mobile processors
and network resources. In Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking, pages 320–333, 2016.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[28] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile gpu-
based deep learning framework for continuous vision applications. In Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications, and
Services, pages 82–95, 2017.

[29] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[30] Xiaotang Jiang, HuanWang, Yiliu Chen, Ziqi Wu, LichuanWang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, et al. Mnn: A universal and efficient
inference engine. arXiv preprint arXiv:2002.12418, 2020.

[31] Yongsoo Joo, Junhee Ryu, Sangsoo Park, and Kang G Shin. {FAST}: Quick
application launch on {Solid-State} drives. In 9th USENIX Conference on File and
Storage Technologies (FAST 11), 2011.

[32] Youngsok Kim, Joonsung Kim, Dongju Chae, Daehyun Kim, and Jangwoo Kim.
𝜇layer: Low latency on-device inference using cooperative single-layer accelera-
tion and processor-friendly quantization. In Proceedings of the Fourteenth EuroSys
Conference 2019, pages 1–15, 2019.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

[34] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao,
Lorena Qendro, and Fahim Kawsar. Deepx: A software accelerator for low-power

https://play.google.com/store/apps/details?id=com.adobe.creativeapps.gather&gl=US
https://play.google.com/store/apps/details?id=com.adobe.creativeapps.gather&gl=US
https://support.google.com/googlenest/answer/9136909?hl=en
https://support.google.com/googlenest/answer/9136909?hl=en
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://play.google.com/store/apps/details?id=com.camscanner.documentscanner.pdfscanner.textscanner.photos.scanner&gl=US
https://play.google.com/store/apps/details?id=com.camscanner.documentscanner.pdfscanner.textscanner.photos.scanner&gl=US
https://play.google.com/store/apps/details?id=com.camscanner.documentscanner.pdfscanner.textscanner.photos.scanner&gl=US
https://play.google.com/store/apps/details?id=com.supe.photoeditor&gl=US
https://play.google.com/store/apps/details?id=com.supe.photoeditor&gl=US
https://en.wikipedia.org/wiki/Shader
https://www.qualcomm.com/products/snapdragon-765g-5g-mobile-platform
https://www.qualcomm.com/products/snapdragon-765g-5g-mobile-platform
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn/tree/master/benchmark
https://github.com/Tencent/ncnn/tree/master/benchmark
https://www.tensorflow.org/lite/
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/man/html/VkPipeline.html
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/man/html/VkPipeline.html
https://vulkan-tutorial.com/Overview#page_Step-6-Graphics-pipeline
https://vulkan-tutorial.com/Overview#page_Step-6-Graphics-pipeline

Boosting DNN Cold Inference on Devices MobiSys ’23, June 18–22, 2023, Helsinki, Finland

deep learning inference on mobile devices. In 2016 15th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), pages 1–12. IEEE,
2016.

[35] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D Lane. Spinn: synergistic progressive inference of neural networks
over device and cloud. In Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking, pages 1–15, 2020.

[36] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4013–4021, 2016.

[37] Joohyun Lee, Kyunghan Lee, Euijin Jeong, Jaemin Jo, and Ness B Shroff. Context-
aware application scheduling in mobile systems: What will users do and not do
next? In Proceedings of the 2016 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, pages 1235–1246, 2016.

[38] Seulki Lee and Shahriar Nirjon. Fast and scalable in-memory deep multitask
learning via neural weight virtualization. In Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services, pages 175–190, 2020.

[39] Sijin Li, Zhi-Qiang Liu, andAntoni B Chan. Heterogeneousmulti-task learning for
human pose estimation with deep convolutional neural network. In Proceedings
of the IEEE conference on computer vision and pattern recognition workshops, pages
482–489, 2014.

[40] Rendong Liang, Ting Cao, Jicheng Wen, Manni Wang, Yang Wang, Jianhua Zou,
and Yunxin Liu. Romou: Rapidly generate high-performance tensor kernels for
mobile gpus. 2022.

[41] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du.
On-demand deep model compression for mobile devices: A usage-driven model
selection framework. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services, pages 389–400, 2018.

[42] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2:
Practical guidelines for efficient cnn architecture design. In Proceedings of the
European conference on computer vision (ECCV), pages 116–131, 2018.

[43] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuanzhe Liu. Moving
deep learning into web browser: How far can we go? In The World Wide Web
Conference, pages 1234–1244, 2019.

[44] Marcelo Martins, Justin Cappos, and Rodrigo Fonseca. Selectively taming back-
ground android apps to improve battery lifetime. In 2015 USENIXAnnual Technical
Conference (USENIX ATC 15), pages 563–575, 2015.

[45] Akhil Mathur, Nicholas D Lane, Sourav Bhattacharya, Aidan Boran, Claudio
Forlivesi, and Fahim Kawsar. Deepeye: Resource efficient local execution of
multiple deep vision models using wearable commodity hardware. In Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications, and
Services, pages 68–81, 2017.

[46] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. Patdnn: Achieving real-time dnn execution on mobile
devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 907–922, 2020.

[47] Ana CR Paiva, Joao MEP Gouveia, Jean-David Elizabeth, and Márcio E Delamaro.
Testing when mobile apps go to background and come back to foreground. In
2019 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 102–111. IEEE, 2019.

[48] Abhinav Parate, Matthias Böhmer, David Chu, Deepak Ganesan, and Benjamin M
Marlin. Practical prediction and prefetch for faster access to applications on
mobile phones. In Proceedings of the 2013 ACM international joint conference on
Pervasive and ubiquitous computing, pages 275–284, 2013.

[49] Behnam Pourghassemi, Ardalan Amiri Sani, and Aparna Chandramowlishwaran.
What-if analysis of page load time in web browsers using causal profiling. Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems, 3(2):1–23,
2019.

[50] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[51] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[52] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
4510–4520, 2018.

[53] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

[54] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In International conference on machine learning, pages
6105–6114. PMLR, 2019.

[55] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios
Protopapadakis. Deep learning for computer vision: A brief review. Computa-
tional intelligence and neuroscience, 2018, 2018.

[56] Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan Xu. Asymo:
scalable and efficient deep-learning inference on asymmetric mobile cpus. In
MobiCom, pages 215–228, 2021.

[57] Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin Jin, Gang
Huang, Yunxin Liu, and Xuanzhe Liu. Melon: Breaking the memory wall for
resource-efficient on-device machine learning. 2022.

[58] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. Demystifying page load performance with {WProf}. In 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13), pages
473–485, 2013.

[59] Hao Wu, Xuejin Tian, Minghao Li, Yunxin Liu, Ganesh Ananthanarayanan,
Fengyuan Xu, and Sheng Zhong. Pecam: privacy-enhanced video streaming
and analytics via securely-reversible transformation. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking, pages
229–241, 2021.

[60] Linhai Xie, Sen Wang, Andrew Markham, and Niki Trigoni. Towards monocular
vision based obstacle avoidance through deep reinforcement learning. arXiv
preprint arXiv:1706.09829, 2017.

[61] Daliang Xu, Mengwei Xu, Qipeng Wang, Shangguang Wang, Yun Ma, Kang
Huang, Gang Huang, Xin Jin, and Xuanzhe Liu. Mandheling: Mixed-precision
on-device dnn training with dsp offloading. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking, pages 214–227,
2022.

[62] Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang
Wang, Ke Li, Jingyu Yang, and Xuanzhe Liu. From cloud to edge: a first look
at public edge platforms. In Proceedings of the 21st ACM Internet Measurement
Conference, pages 37–53, 2021.

[63] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and
Xuanzhe Liu. A first look at deep learning apps on smartphones. In The World
Wide Web Conference, pages 2125–2136, 2019.

[64] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. Deeptype:
On-device deep learning for input personalization service with minimal privacy
concern. IMWUT, 2(4):1–26, 2018.

[65] Mengwei Xu, FengQian,Mengze Zhu, FeifanHuang, Saumay Pushp, andXuanzhe
Liu. Deepwear: Adaptive local offloading for on-wearable deep learning. IEEE
Transactions on Mobile Computing, 19(2):314–330, 2019.

[66] Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Fe-
lix Xiaozhu Lin. Approximate query service on autonomous iot cameras. In
Proceedings of the 18th International Conference on Mobile Systems, Applications,
and Services, pages 191–205, 2020.

[67] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.
Deepcache: Principled cache for mobile deep vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, pages
129–144, 2018.

[68] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app
launching for mobile devices using predictive user context. In Proceedings of the
10th international conference on Mobile systems, applications, and services, pages
113–126, 2012.

[69] Chengxu Yang, QipengWang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin
Liu, and Xuanzhe Liu. Characterizing impacts of heterogeneity in federated
learning upon large-scale smartphone data. In Proceedings of the Web Conference
2021, pages 935–946, 2021.

[70] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent
trends in deep learning based natural language processing. ieee Computational
intelligenCe magazine, 13(3):55–75, 2018.

[71] Fuxun Yu, Shawn Bray, Di Wang, Longfei Shangguan, Xulong Tang, Chenchen
Liu, and Xiang Chen. Automated runtime-aware scheduling for multi-tenant
dnn inference on gpu. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1–9. IEEE, 2021.

[72] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang,
and Yunxin Liu. Nn-meter: Towards accurate latency prediction of deep-learning
model inference on diverse edge devices. In Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services, pages
81–93, 2021.

[73] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 6848–6856,
2018.

	Abstract
	1 Introduction
	2 Understanding NN Cold Start
	3 NNV12 Design
	3.1 Optimization Knobs
	3.2 Problem Formulation
	3.3 A Heuristic-Based Kernel Scheduler
	3.4 Extending to CPU/GPU architecture
	3.5 Kernel Switching for Warm Inference

	4 Evaluation
	4.1 Implementation and Methodology
	4.2 End-to-End Performance
	4.3 Ablation Study
	4.4 Resource Overhead
	4.5 NNV12 in Continuous Inference

	5 Related Work
	6 Conclusions
	7 Acknowledgment
	A Artifact Appendix
	References

