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Abstract
Current serverless offerings give users limited flexibility for
configuring the resources allocated to their function invoca-
tions. This simplifies the interface for users to deploy server-
less computations but creates deployments that are resource
inefficient. In this paper, we take a principled approach to
the problem of resource allocation for serverless functions,
analyzing the effects of automating this choice in a way that
leads to the best combination of performance and cost. In
particular, we systematically explore the opportunities that
come with decoupling memory and CPU resource alloca-
tions and also enabling the use of different VM types, and
we find a rich trade-off space between performance and cost.
The provider can use this in a number of ways, e.g., expos-
ing all these parameters to the user; eliding preferences for
performance and cost from users and simply offer the same
performance with lower cost; or exposing a small number of
choices for users to trade performance for cost.
Our results show that, by decoupling memory and CPU

allocation, there is the potential to have up to 40% lower ex-
ecution cost than the preset coupled configurations that are
the norm in current serverless offerings. Similarly, making
the correct choice of VM instance type can provide up to 50%
better execution time. Furthermore, we demonstrate that
providers have the flexibility to choose different instance
types for the same functions to maximize resource utiliza-
tion while providing performance within 10-20% of the best
resource configuration for each respective function.
∗Currently with Unbabel. Work done in part while author was interning at
KAUST.
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1 Introduction
The serverless programming model has flourished in the last
few years, mainly because it allows developers to concentrate
on the application logic and not worry about scalability and
resource management. Developers only have to create cloud
functions, and have little to no control over the infrastructure
where those functions run. Cloud providers take care of
provisioning, deployment, scalability, and maintenance of
the resources required for each function invocation.
A particular aspect of this lack of control is the fact that

the current serverless computing interface typically cou-
ples memory and CPU resource allocations together. Both
AWS [4] and GCP [25] provide preset resource allocation
configurations: AWS assigns a CPU share proportional to
the amount of requested memory (in a fine-grained way,
but up to 10 GB); GCP provides seven preset resource allo-
cation options to choose from. Azure Functions [36] guar-
antees at least 1 vCPU core to each function instance and
allows up to 1.5GB of memory per function instance (charg-
ing based on the actual memory consumption). Additionally,
most cloud providers do not provide users the option to se-
lect the type of CPU for their serverless functions,1 even
though the VM type used to run serverless functions is not
always the same [34, 53].

This simple interface is one of the defining characteristics
of serverless computing, with the advantage of removing the
configuration burden from the user. This is in stark contrast
with the complexity of selecting and provisioning machines
from the hundreds of configuration options and VM types in

1Lately AWS has started offering Lambda functions on ARM processors [5].

https://doi.org/10.1145/3552326.3567506
https://doi.org/10.1145/3552326.3567506


EuroSys ’23, May 9–12, 2023, Rome, Italy Muhammad Bilal, Marco Canini, Rodrigo Fonseca, and Rodrigo Rodrigues

regular IaaS offerings [2, 55]. However, it also comes with
significant disadvantages.

First, as we show later, in most cases, there are configura-
tions that achieve better performance, better cost, or both,
than the ones from current offerings. Second, when there are
knobs such as the ones mentioned above, they are low-level:
it is difficult for most users to translate memory and CPU to
performance and cost. Third, the lack of full transparency
hurts predictability, and even raises the question of whether
the cloud provider is making the right choices to optimize
resource usage, translating into lower costs for the users.
In this paper, we take a step back and rethink, from a

clean slate, the allocation of resources for the execution of
serverless functions. To achieve this goal in a principled way,
we conduct a feasibility study to precisely characterize the
gains that can be obtained by taking fine-grained control
over the individual allocation of CPU, memory, and VM type
to each serverless invocation. The key challenge of this study
is to understand how these allocation decisions influence
the trade-off between performance and monetary cost, the
predictability of these metrics, and the ability to meet target
execution times. Furthermore, we need to understand what
is the minimal resource allocation that is required to meet
such targets, if possible leveraging idle resources, whose type
and availability may vary with time.

Despite the benefits of flexibility, simply offering a much
larger configuration space to users negates the advantages
of simplicity. Therefore, we also provide a thorough study
of the effectiveness of black-box optimization algorithms to
automatically determine the right resource configuration, to
remove the need for the user to deal with the complexity of
profiling their functions and choosing the right resources.
The output of these algorithms can then be used in two
possible ways: either by a cloud provider to automatically
allocate resources for a user’s functions, or by the serverless
end-user if the cloud provider provides a set of configuration
knobs. In addition, we address the problem of determining
what is the right interface when these configuration knobs
are exposed to the end-user. The challenge here is to strike a
good balance between maintaining simplicity and giving the
user control of both cost and execution time. Our proposed
interface allows an auto-tuning framework built using black-
box optimization algorithms to determine a set of optimal
points in the trade-off space, allowing the user to only choose
between a small number of possibilities.
Finally, if automatic resource configuration is provided

by the cloud vendor, we study the benefits of using spare
resources in a principled way. To this end, we determine
whether cloud providers can allocate functions on different
VM types, including those that leverage spare resources, thus
minimizing cost while providing predictable performance.
Our experimental analysis shows that a flexible resource

allocation provides up to 40% better execution time and 50%
better execution cost than the restrictive resource allocation

Resource Configuration Values

CPU share [0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2]
Memory limit (MB) [128, 256, 512, 768, 1024, 2048]
Instance types [c6g, m6g, c5, m5, c5a, m5a]

Table 1. Resource allocation search space (288 configura-
tions). A configuration is a value for CPU share, memory
limit and instance type.
Instance type prefix: ‘c’ = compute-optimized; ‘m’ = general-purpose / suffix:
‘g’ = Graviton2 ARM-based; ‘a’ AMD-based / no suffix = Intel-based.

strategy that cloud providers currently use. We also show
that black-box optimization algorithms can reach within
10% of the performance of the best configuration in our re-
source allocation search space within 20 optimization trials.
Finally, we show that cloud providers can reduce their costs
(or conversely increase resource utilization) by utilizing dif-
ferent instance types for the same function, while providing
performance within 10% of the best configuration.
Contributions. We make the following contributions:
• We determine the ground truth about the execution time
and execution cost of 6 serverless applications across 288
resource configurations and multiple inputs (§2). Our bench-
marks and data are available as open source [10].
• We analyze the potential benefits of enabling a more flexi-
ble resource allocation for serverless functions (§4).
• We analyze the accuracy of four Bayesian Optimization
algorithms for determining the best resource allocation for
two optimization objectives: execution time and cost (§5).
• We verify whether the serverless functions of our study
have data-dependent performance characteristics (§5.4).
• We propose a set of possible interfaces for enabling the
user to benefit from multi-objective optimization (§6.1).
•We evaluate the cost reduction opportunities for the cloud
providers by using different instance types while providing
predictable performance (§6.2).

2 Motivation
Resource allocation decisions can significantly impact the
performance and execution cost of serverless functions. To
characterize this performance and cost variation, we exhaus-
tively test six benchmark functions on the resource configu-
ration space defined in Table 1. (We defer to §3 the detailed
setup for these experiments, including a description of the
functions.) We run these benchmarks on AWS and adopt
their nomenclature of instance families. As AWS does not
provide information about the per-core or per-GB price, we
calculate the execution cost based on a set of assumptions
encapsulated in a methodology defined in §3.

A resource allocation choice specifies a CPU share, a mem-
ory limit, and the instance type.2 The CPU share is the time-
share of a vCPU allocated to the function. For example, a

2Throughout the paper, we use the term instance type to refer to the type
of VM instance, which in practice corresponds to a given type of CPU, since
the remaining differences between VM instances are irrelevant in this work.
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Figure 1. Execution time and cost of each function across
the entire configuration space defined in Table 1, normal-
ized w.r.t. the best configuration of each function.

share of 0.25 means that a quarter of vCPU time is allocated
to the function whereas a share of 1 or 2 implies allocations
of 1 and 2 entire vCPUs, respectively. The memory limit,
expressed in MB, is simply the amount of memory allocated
to the function. In addition, we run functions on a diverse
range of instance types. The caption of Table 1 lists their
nomenclature.
Figure 1 shows a boxplot3 of the normalized execution

time and execution cost for each function across the entire
configuration search space of Table 1. For each function, the
normalization is done w.r.t. the best (minimum) execution
time and execution cost for that function in the search space.
We observe that, in the worst case, selecting the wrong

configuration can lead to up to 14.9× worse execution time
and 5.6× worse execution cost than the best configuration.
A somewhat different effect happens in the s3 application,
which has a small variation in execution time but a significant
variation in execution cost. This is because s3 is a network
bound application, and therefore increasing the resources
(CPU and memory) assigned to it leads to minor improve-
ments in the execution time beyond a certain point, but to
an increase in the cost for the additional resources.4

3 Experimental setup
To understand the impact of different resource allocation
decisions on the cost and performance of running serverless
functions, we use the OpenFaaS [39] serverless framework
to execute and measure the performance of a diverse range
of benchmark functions across the resource allocation search
space. We deploy OpenFaaS atop the k3s distribution [29]
of Kubernetes as a cluster running on AWS EC2 instances.
We prepare multi-architecture Docker containers (amd64

3All boxplots in the paper show median, 1st and 3rd quartiles with whiskers
showing the distribution 1.5× IQR past the high and low quartiles and
anything beyond is shown as outliers.
4This effect can also be observed from the best configuration for s3 for the
execution time and execution cost objectives in Table 2.

and arm64) for all benchmark functions using docker buildx
without using any platform-specific optimized libraries.
Data. We collect ground truth performance and cost data
as follows. We execute each function using multiple input
data samples on every resource allocation in the configura-
tion search space of Table 1. For every resource allocation,
a single instance of each function is deployed in isolation
on the desired instance type to measure its performance. To
minimize the impact of performance outliers, we execute
each function at least 5 times on a given configuration. We
use a function execution timeout of 600s, which is compara-
ble to the timeouts in current serverless offerings [54]. The
input samples were randomly chosen from publicly avail-
able datasets. We set one input sample as the default, but
we analyze how the performance depends on input data (a
modest 20% at most, §5.4). We run over 5,000 combinations
of resource configurations, benchmarks and input samples.
We identify the overall best configuration for each function
with regard to both execution time and execution cost.
Benchmark functions. From publicly available code, we
select a diverse set of applications based on their characteris-
tics and resource usage, i.e., combining applications that are
single-threaded, multi-threaded/multi-process, require stor-
age access, and have different memory requirements. In par-
ticular, these benchmarks are based on functions from Func-
tionBench [30] and from the OpenFaaS function store [38].
Note that we do not use the entire OpenFaaS function store
repository: we exclude applications with extremely short
execution time and low resource requirements because re-
source allocation optimization for these applications is not
useful. Table 2 details the chosen benchmark functions.
transcode’s and ocr’s request handlers are in Python but

use internal bindings to invoke C and C++ code, respectively.
facedetect and faceblur use Go libraries [46, 47]. linpack uses
an application from FunctionBench [31]. Both transcode and
ocr effectively utilize more than 1 vCPU, as shown in Column
𝑃 of Table 2. Since s3 downloads and uploads objects to an
AWS S3 bucket, its performance mainly depends on network
resources.

These six benchmarks provide a good mix of applications
that have different resource requirements, as shown in Ta-
ble 2, based on our experiments. We determined these re-
source requirements based on the observed performance
characteristics of the applications, i.e., resources required to
run the application (memory configuration) and how their
execution time varies with an increase of different resources.
Table 2 also shows the best configuration for both the execu-
tion time (ET) and execution cost (EC) objective functions
in the search space of Table 1, as reference.
Cost model. To perform a cost analysis in our resource
allocation setting, we need a pricing function per-vCPU and
per-GB of memory for different instance types. However,
we cannot infer this information from the pricing models of
the current serverless offering because FaaS providers either
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Name Purpose Language

Important
Resources Best Configurations

C P M N ET EC

CPU Mem Inst. CPU Mem Inst.

facedetect Image face detection Go • 1.0 2048Mi c5 1.0 512Mi m6g
faceblur Image face blurring Go • 1.0 768Mi c5 0.5 256Mi c5a
transcode Video transcoding Python & C • • • 2.0 1024Mi c5a 2.0 512Mi m6g
ocr Optical character recognition Python & C++ • • 2.0 512Mi c5 2.0 256Mi m6g
linpack Solve linear equations Python • • 2.0 512Mi c5a 0.5 512Mi c5a

s3 Download then upload an object
from one S3 bucket to another Python • 2.0 256Mi c5a 0.25 128Mi m6g

Table 2. Benchmark serverless functions and their best configurations for Execution Time (ET) and Execution Cost (EC) objec-
tives (using median values) in our configuration search space. Each benchmark has certain resources that are more important
than others, either for performance or to avoid function failure. Resources: C: CPU, P: parallelism, M: memory, N: network.

bundle the pricing of CPU share and allocation memory in a
single price per unit of time or provide the CPU share pric-
ing for only a single CPU type. For example, AWS lambda
charges a fixed price for each GB-second (per 1ms) of func-
tion execution [6]5, while Google Cloud Functions provides
the decomposition of the total price of Cloud functions into
the price for each GB-second and GHz-second, the latter
being provided without specifying the CPU type [24]. Thus,
we cannot determine per-vCPU, per-GB of memory, or per-
instance type pricing using the current pricing schemes of
FaaS providers. Consequently, we must create a reasonable
pricing model that allows for the fine grained accounting of
CPU and memory consumption.

To this end, and since we deploy OpenFaaS on top of EC2,
we use the AWS EC2 instance pricing so that, based on the
overall pricing of various different instance types, we infer
a per-vCPU and per-GB memory cost for those types. In
particular, we calculate per-vCPU and per-GB memory cost
by solving a system of linear equations for instances with
the same instance type. Each equation is of the form below,
defining the instance price 𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 (given as input) as a sum
of per-vCPU cost 𝑋 and per-GB of memory cost 𝑌 :

𝛼𝑋𝑣𝐶𝑃𝑈 + 𝛽𝑌𝑚𝑒𝑚 = 𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 (1)

To create a well-defined system of equations, we use pub-
licly available information from AWS to determine the num-
ber of vCPUs 𝛼 and the amount of memory in GB 𝛽 for a
sufficient number of equations. For example, x86 instances
m5, c5, and r5 are assumed to have the same per-GB mem-
ory cost 𝑌𝑚𝑒𝑚 . Moreover, m5 and r5 instances have same
CPU. Thus, we have 𝑋 1

𝑣𝐶𝑃𝑈
for c5 and 𝑋 2

𝑣𝐶𝑃𝑈
for m5 and r5.

This yields a system of equations with 3 unknowns and 3
equations, using 𝛼 = 2 and 𝛽 = 4, 8, 16 for c5, m5, and r5
instances, respectively. While we do not use r5 instances, its
pricing information is also used to solve the system. (The
same approach was used for ARM and AMD instances.)

5AWS lambda now offers ARM-based serverless functions, but that still
does not give us the complete pricing information we need.

Figure 2. Four strategies for configuring serverless func-
tions. Each strategy defines a search space, corresponding to
a subset of the possible resource allocation configurations.

Note that we are not arguing for cloud providers to adopt
this specific pricing scheme. Instead, our goal is to come
up with reasonable pricing for an execution in our scenario,
given current instance costs. Generally, cloud providers add
a premium for managed services on top of the infrastructure
costs. Prior work [33] provide guidelines to create the opti-
mal pricing for serverless from the provider’s perspective.

4 How good is flexible resource allocation?
To understand the opportunities that current serverless offer-
ings are missing, we start by characterizing the best execu-
tion time and cost for different resource allocation options.

4.1 Larger search spaces yield advantages...
Setup. We consider four strategies for resource allocation,
with an increasing level of flexibility. Each strategy corre-
sponds to a subset of the configuration search space, as de-
picted in Figure 2. The first three strategies assume a fixed
instance type, corresponding to the EC2 m5 instance in our
experiments.
Fixed CPU allocates a single-vCPU for each function instance,
whereas the memory is charged based on the average actual
consumption. This strategy is inspired by Azure Functions.
Prop. CPU allocates a share of CPU proportional to the
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Figure 3. Potential gains within each search space. The
graphs show the best (a) Execution Time (ET) and (b) Ex-
ecution Cost (EC) of each function across different search
spaces, normalized to the overall best configuration.

amount of memory selected. This strategy is inspired by
AWS Lambda and Google Cloud Functions.
Decoupled (m5) decouples CPU and memory allocations. In
this case, the search space includes all CPU and memory
values in Table 1, but it uses only the default m5 type.
Decoupled has the largest search space, encompassing all
other strategies and covers the search space in Table 1.
Results. Wemeasure the best execution time and execution
cost for each benchmark function in each of the different
resource allocation search spaces. Figure 3 shows the best
execution time (ET) and execution cost (EC) of each strat-
egy’s search space normalized w.r.t. the best possible ones
in Decoupled, since its search space includes all others.
Observations. Figure 3a shows that, by using different in-
stance types, Decoupled can provide 5%-40% better execution
time than Decoupled (m5) and Prop. CPU. In most cases, the
execution time improvement is not significant, but the de-
coupled strategy achieves improved execution times at lower
cost compared to a proportional resource allocation. These
gains are primarily due to the use of different instance types.
In addition, decoupling memory and CPU in Decoupled (m5)
is sufficient to provide 10%-50% better execution cost com-
pared to Prop. CPU, as shown in Figure 3b.

Fixed CPU leads to 2.7× and 2.1× higher execution time for
transcode and ocr, respectively, and 2.6× higher execution
cost for s3. This is because, for transcode and ocr, having 1
fixed vCPU per function invocation does not exploit avail-
able parallelism opportunities. For s3, Fixed CPU has higher
execution cost because the function is not compute intensive
and its execution time already plateaus with a CPU share
lower than 1.
Takeaways: Using different instance types allows for im-
proving the execution time, while decoupling CPU and mem-
ory enables potential improvements in execution cost com-
pared to currently deployed resource allocation strategies.

4.2 ... and potential to use other instance types
The compute infrastructure of a cloud provider includes
dozens of different instance/VM types. Another potential
advantage of flexible resource allocation for serverless func-
tions is that a cloud provider might be able to use under-
utilized instance types, even if the instance type is not the
best for a given function. Decoupled gives us the opportu-
nity to use different instance types, when doing so provides
sufficient performance for a given objective.
Setup. To quantify the number of different instance types
(from our search space) that provide satisfactory perfor-
mance, we use multiple performance thresholds (𝜃 ) w.r.t.
the best configuration and multiple performance objectives
based on weighted combinations of execution time and cost.
We use the execution time data collected across all the con-
figurations in our search space to calculate the value of each
performance objective for each configuration and benchmark
function.
Results. Table 3 shows the number of instance types that
have at least one configuration that is within 𝜃% of the best
Decoupled configuration. The results demonstrate the po-
tential of using alternative instance types while providing
comparable performance for different performance objec-
tives for each function. The objectives are execution time
(left), execution cost (right), and three weighted combina-
tions of the two (denoted with𝑊𝑡 and𝑊𝑐 for execution time
and cost, respectively).
Observations. We highlight two types of special cases in
Table 3. The cells in red indicate cases where there is no
other instance type able to reach within 𝜃% of the best con-
figuration. The cells in blue denote cases where all instance
types have at least one configuration that provides perfor-
mance within 𝜃% of the best configuration. The likelihood of
being able to use available resources of an alternative type
clearly increases with the number of alternative instance
types and depends on the function as well as the parameter
𝜃 . The results show a prevalence of white and blue cells,
indicating the existence of alternative deployment options
for serverless functions, at a small sacrifice in the objective
function value.
Takeaways: In our experiments, we found that in most
cases (28 out of 30 settings in Table 3) there are opportunities
to use idle or underutilized instances of different types while
providing performance within 10% of the best configuration.

5 Is automatically discovering good
configurations possible?

While more flexibility in the choice of resources is benefi-
cial, the task of determining the right configuration from a
large search space can be daunting, requiring performance
modeling and/or profiling. This is in contrast with the goal
of serverless — to relieve the user from the burden of man-
aging resources. Thus, we explore the effectiveness of using
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Execution Time 𝑊𝑡 = 0.25 &𝑊𝑐 = 0.75 𝑊𝑡 = 0.5 &𝑊𝑐 = 0.5 𝑊𝑡 = 0.75 &𝑊𝑐 = 0.25 Execution Cost

Threshold (𝜃 ) Threshold (𝜃 ) Threshold (𝜃 ) Threshold (𝜃 ) Threshold (𝜃 )Benchmark
5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ocr 2 4 5 1 1 2 1 1 4 1 3 4 1 1 2
transcode 0 0 2 2 2 2 2 2 2 0 2 2 1 2 2
faceblur 1 2 2 0 1 3 1 1 3 1 1 2 0 3 4
facedetect 1 4 4 1 1 3 2 3 3 2 3 3 1 1 3
linpack 2 2 4 0 2 3 0 2 3 1 1 4 1 1 3
s3 3 5 5 0 1 5 1 4 5 0 4 5 0 0 3

Table 3. Number of alternative instance typeswith one ormore resource allocation configurationswith the performancemetric
within threshold (𝜃 ) of the best configuration in the Decoupled search space. The cells in red indicate cases where there is no
alternative instance type able to reach within 𝜃% of the best configuration. The cells in blue denote cases where all instance
types have at least one configuration that provides performance within 𝜃% of the best configuration.

black-box optimization algorithms to automatically deter-
mine the right allocation of resources (either transparently
by the provider or by a library used by serverless users).

5.1 Background on optimization techniques
Recent works developed techniques for automatic cloud con-
figuration [2, 11, 12, 28, 51]. At the core of many of these
approaches there lie various optimization techniques rang-
ing from model-based optimization algorithms to sampling-
based search techniques. These approaches are also called
black-box optimization algorithms, as they consider the ob-
jective function as a black-box: onemay evaluate it at specific
points (using profiling runs), but the techniques make lit-
tle or no assumptions about the function. In contrast, other
works (e.g., Ernest [51]) rely on analytical modeling to create
a mathematical model dependent on the characteristics of
the application and thus varies with each application.
We believe that black-box optimization methods are a

good fit for serverless, since the search space is large, and
function invocations can provide good performance indica-
tors, while keeping the objective function as a black-box.
Even though the resulting configurations may be, in some
cases, worse than using analytical models, we believe that the
advantage of being able to quickly reuse existing algorithms
outweighs those limitations.

We next briefly review a range of optimization techniques
that we use and point out a relevant change when using
these methods for the serverless scenario.
Model-based algorithms build a model of the underlying

black-box objective function. Following a comprehensive
study [12], we adopt the best-performing method, which is
Bayesian Optimization (BO).We consider four variants of the
surrogate model (required for approximating the objective
function): (1) Gaussian Processes (GP), (2) Gradient Boosted
Regression Trees (GBRT), (3) Random Forests (RF), and (4)
Extra Trees (ET). In all cases, we use the popular Expected
Improvement (EI) as the acquisition function. We use the

Figure 4. Performance of the best-found configurations for
sampling-based and model-based algorithms.
Scikit-Optimize Python library [44] with its default parame-
ters unless otherwise stated. By default, based on previous
findings [2], we use three random initial samples.

Sampling-based search techniques sample the search space
to find good configurations. These methods are easy to par-
allelize. We use both Random Sampling as well as Latin Hy-
percube Sampling (LHS) [35]. LHS samples the search space
using a space filling design to create samples from a given
search space. We use pyDOE [41] to generate LHS samples.

5.2 Adapting to the serverless scenario
An issue that arises when using the above techniques out-
of-the-box is that they can produce configurations on which
the function fails because not enough memory is allocated.
At first, we attempted to address this by assigning a large
value to represent the performance objective (e.g., execution
time) of a failed function invocation. However, that created
a non-smooth underlying function, which affects the quality
of the optimization.
To address this, we resorted to pruning the search space

to remove the resource configurations with memory less
than or equal to every memory configuration for which
we determine that the function failed. This is based on the
simple property that if a function fails for a certain memory
limit, it will likely fail with a lower memory limit. Thus,
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Figure 5. Execution time performance of the best found configuration as optimization by different BO variants progresses.
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Figure 6. Execution cost performance of the best found configuration as optimization by different BO variants progresses.

every time we record a function failure, the search space is
dynamically pruned, removing all configurations that would
lead to failure due to a lower memory limit.

External failures (e.g., bugs or unreliable external services)
can also contribute to function failure, but these can be hard
to detect without application-specific knowledge. The easiest
way to handle such cases is to repeat the experiments, which
increases cost at the expense of providing more reliable data
when the services are unreliable.

Next, we present the methods and findings of our study.

5.3 Optimization techniques are effective
Sampling-based vs. model-based algorithms. We first
study how well black-box algorithms optimize the resource
allocation as compared to the ground-truth best configura-
tion in theDecoupled search space.We fix a budget of 20 trials
for each method and report on the best execution time and
cost found. For the sampling-based methods (Random Sam-
pling and LHS), this entails generating 20 samples. For the
Bayesian Optimization (BO) methods, we start with 3 initial
samples and then use the acquisition function to repeatedly
sample from the search space a series of configurations to
test until the budget is matched. The BO methods learn a
mapping from the resource allocation of the function (input
features) to the function’s execution cost or time (objective
function). We repeat the process 10 times using different
random seeds (for sampling) and initial samples (for BO).
The search space sampling and the optimization runs can
be done either online, based on the first set of user requests
(§5.5) or based on a profiling run, which can use either a
sample of past user requests, or inputs that were created
specifically for that purpose. Different methods have their
pros and cons (e.g., real user requests may generate side
effects during profiling).

Figure 4 shows the best-found execution time and exe-
cution cost normalized w.r.t. the best configuration in the
search space. The boxplot captures the variation in the best-
found configuration across different repetitions. For these
results, we only show the values for BO with GP, because
this method outperforms other BO variants.

We observe that both sampling methods and BO with GP
perform comparably in most cases. While BO with GP finds
a better execution time for transcode (Figure 4 left), both
sampling methods find better execution cost for s3 (Figure 4
right). We got similar results for weighted combinations of
execution time and cost (omitted due to space limitations).

Thus, while sampling- and model-based methods perform
comparably in finding the best configuration for an objective
function, model-based methods have the additional benefit
of generating performance models that can provide predic-
tions for yet-unseen configurations. Therefore, given the
overall good performance of model-based methods and the
importance of predicting configurations with larger search
spaces, we focus on model-based methods next.
Convergence speed of model-based algorithms. We
now analyze how fast model-based methods converge to-
wards the best configuration in the search space for each
benchmark function. This analysis offers an early indication
of how many optimization trials would be necessary as a
baseline, as we later turn to online optimization in §5.5.

We run the four BO variants for 20 steps (including the 3
initial samples), using execution time and cost as the perfor-
mance objective. Figures 5 and 6 show the execution time
and execution cost, respectively, of the best-found configura-
tion as the optimization progresses. The dashed lines denote
the overall best execution time (resp. execution cost) in the
search space. We repeat the experiment 10× for each opti-
mization method using different random initial samples. The
shaded area is the 95𝑡ℎ percentile confidence interval.
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With regard to execution time, while almost all optimiza-
tion algorithms perform comparably, BO with GP overall
tends to outperform other methods and reaches within 5% of
the best execution time in 20 optimization trials, in all cases.
When optimizing for execution cost, the best configura-

tions are harder to find and thus there is a larger gap between
the best-found configurations and the overall best ones in the
search space. This is particularly true for s3 and facedetect. In
5 out of 6 benchmarks, BO with GP finds configurations that
are within 20% of the best execution cost in the search space.
However, for s3, it only finds configurations that are within
30%. As with execution time, BO with GP either outperforms
or performs comparably to other BO variants.
Takeaways: While both sampling-based search and model-
based optimization methods find good resource allocations,
we favor model-based methods as they provide predictions
for untested configurations. In that context, different BO
variants perform comparably when optimizing for execution
time and execution cost, with an advantage for BO with GP.

5.4 Input data variation has modest influence
The performance of a function in general depends on its
input data. For instance, transcode significantly depends on
the input video dimension whereas facedetect and faceblur
depend on the input image size. Indeed, all of our benchmark
functions have input data-dependent execution time.
Dealing with data dependence is challenging. One ap-

proach would be to create data-specific performance models
that account for the input data characteristics. However, this
adds significant complexity to the optimization framework.
First, the model needs to be sophisticated enough to encap-
sulate these performance-determining characteristics, which
is especially difficult if the relation between input data and
execution time is complex (e.g., if it has many modalities
that require advanced profiling [42]). Second, even utilizing,
e.g., a performance model is difficult because, at invocation
time, the serverless framework would need to evaluate with
minimal overhead the input data and route accordingly.
A simpler approach instead is to use a generic model us-

ing representative input data samples. This is based on the
intuition that, even though the absolute performance may
vary, a good configuration for one input data sample might
also be a good configuration for other input data samples.
We therefore study to what extent the resource configu-

ration depends on input data and the effectiveness of this
latter approach. To this end, we use the methods in §5.3 so
that, for each function, we use the default input to create
a single generic model as well as 10 input-specific models,
one for each input sample. The different input samples used
are available in our artifact repository [10]. The input sam-
ples vary in size from 74KB to 1.4MB for images, 4.3KB to
634KB for OCR images, and 3.1MB to 18MB for videos. Input
samples for facedetect and faceblur also vary in terms of the
number of faces in the images.

Figure 7 contrasts the performance of the best-found con-
figuration for the two model types – generic (blue) vs. input-
specific (orange) – for each input, together with the overall
best configuration (green) in the search space (for that input).
The input-specific scenario represents an artificial best-case
scenario where the same input that is arriving was used
to train the model. For clarity, we only show the results
of 5 out of 10 input samples (except for linpack). We show
the optimization scenario for execution time and note that
optimizing for execution cost obtains similar results.

In our experiments, using input-specific models provided
up to 20% better execution time. linpackwith a 𝑁 = 7500ma-
trix is a special case since it requires more memory and the
optimization process using a default input leads to lack-of-
memory failure in 3 out of 10 repetitions of the optimization
process (which we exclude). However, this performance im-
provement comes with significantly increased complexity. In
addition, it is unrealistic for each input to have its ownmodel,
and therefore we leave it as an open research direction to cre-
ate more sophisticated performance models. Consequently,
we adopt the generic models in the rest of the paper.

Note that these results are specific to our benchmarks and
input data samples. It is easy to conceive scenarios where
some input data samples would require morememory. For ex-
ample, a 1GB video input for the transcode application would
require significantly more memory than a 10MB video input.
As a consequence, the memory allocation might need to be
adjusted based on the input data, or, alternatively, should be
set based on the biggest input video size expected. Finally, an
alternative way that could, in some applications, handle this
kind of scenario gracefully would be to split the data into
smaller fixed-size chunks and process them independently.
This technique will provide predictable performance without
requiring adjusting configurations based on input data size.
It is important to note that this problem is independent of
whether resource allocation is automated or manual.
Takeaways: In general, the performance of a serverless
function, depends on its input data. But, in our experiments,
good configurations for one input sample were also good for
others: i.e., the configuration that works best with input 𝐼1
in terms of ET or EC is also the one that works best or close
to best for other inputs 𝐼2, 𝐼3, ..., 𝐼𝑁 . However, the absolute
value for the objective function would naturally vary with
different inputs in general. Input-specific optimization can
improve ET, but since input-specific performance models are
more complex to create and maintain, this trade-off must be
considered carefully.

5.5 Online optimization is feasible
The optimization of resource configurations can occur in
two ways: (1) offline or (2) online. Offline optimization re-
quires running the optimization process described in §5.3
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Figure 7. Execution time of the best configurations found by a generic optimization process (blue), a data-specific optimization
process (orange), and the overall ideal configuration (green).

Figure 8. Average number violations during online optimiza-
tion for (a) execution time (ET) and (b) execution cost (EC).

upon function deployment with representative input sam-
ples. Conversely, online optimization exploits function invo-
cations in production as trials of the optimization process.
However, in the online scenario, it is important to reduce the
possibility of performance degradation due to trials with bad
configurations. Thus, we now analyze which optimization
methods lead to fewer degraded runs during optimization.
Figure 8 shows the average number of violations during

10 repetitions of the optimization process. Here we consider
a violation when the performance objective is at or above
1.5× the objective value6 for the best configuration in the
search space. On average, BO with GP has a number of vio-
lations comparable to sampling-based search techniques for
execution cost, but it has a lower number of violations for
execution time. Overall, sampling-based search techniques
incur in slightly more violations than model-based methods.
Takeaways: BOwith GP has slightly lower average number
of violations for execution time compared to other methods.
For execution cost, it has slightly higher number of violations
compared to other BO variants, but overall it leads to fewer
violations than sampling-based online optimization.

5.6 Resource allocation models can predict
performance of untested configurations

Predicting the performance of an untested configuration
is harder than converging to the best performing config-
uration during the search. A low prediction accuracy for

61.5× is an arbitrary objective threshold, chosen for illustrative purposes.

Figure 9. MAPE for different benchmarks and optimization
methods for (a) execution time and (b) execution cost.

models built using Bayesian Optimization would suggest
that sampling-based search methods, which are simpler, may
be sufficient after all. Therefore, we now analyze how well
model-based methods can predict the performance objec-
tive across configurations in two different scenarios: (1) over
the entire Decoupled search space (except the failed runs),
and (2) when the configuration prediction is restricted to
match a particular instance type. This second scenario is
relevant in the context of helping the cloud provider utilize
idle resources of different instance types while providing
predictable performance (as we elaborate in §6.2). We repeat
every measurement 10 times and report average and 95𝑡ℎ
percentile confidence interval of the error metric.
Scenario 1. Figure 9 shows, for each BO variant, the Mean
Absolute Percentage Error (MAPE) across all configurations
between the actual execution time/cost and the predicted
value. We observe that BO with GP has lower error than
other optimization algorithms. Compared to other variants,
BO with GP, on average, has up to 16× and 2.3× lower MAPE
for execution time and execution cost objective, respectively.
Scenario 2. Figure 10 shows the MAPE across the best
predicted configuration for each instance type. Similar to the
previous case, BO with GP generally outperforms other BO
variants in most cases, except for transcode and ocr when
optimizing for execution cost. BO with GP, on average, has
up to 7× and 3.5× lower MAPE than other variants for the
execution time and execution cost objective, respectively.
Takeaways: BOwithGP not onlyworkswell when it comes
to convergence towards the best configuration (as shown
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Figure 10.MAPE for different benchmarks and optimization
methods when comparing the best configuration for each
instance type, for (a) execution time and (b) execution cost.

in §5.3) but overall has lower error compared to models
created using other BO variants. In our experiments, models
built with BO with GP provide up to 16× lower MAPE than
models build with other BO variants. This means that the
performance models built with BO with GP are better at
predicting the performance of untested configurations.

6 Automatic resource allocation from the
provider’s perspective

Having looked at the potential gains from flexible resource
allocation, and the effectiveness with which we can exploit
these gains using black-box optimization algorithms, in this
section we discuss how the cloud provider can not only ex-
pose this to users without unduly complicating the ‘server-
less’ interface, but also leverage model predictions to oppor-
tunistically select available instance types that can reduce
costs without significantly sacrificing performance.

6.1 On the interface between user and provider
Given the performance and cost benefits of flexible resource
allocations, the provider could expose the knobs for fine-
grained resource configuration (selecting instance type, mem-
ory and CPU allocation separately). While possible, this
would, however, shift the complexity of configuration selec-
tion back to the user, and negate one of the big advantages
of serverless: its simplicity. Alternatively, the provider could
abstract away that interface and allocate resources automat-
ically and transparently. Furthermore, as we describe in the
next contribution of this analysis, our automatic exploration
of the configuration space additionally allows for the best
of both worlds: a simple, high-level interface that exposes
to the user in a simple way the cost/performance benefits of
decoupled resource allocation.

More specifically, we describe three ways to select a trade-
off between execution time and cost: 1) Providing configu-
rations from the predicted Pareto front, 2) Weighted multi-
objective optimization [9] to provide best configurations for
different weights, and 3) Hierarchical multi-objective opti-
mization [9] to satisfy a user-provided trade-off constraint.
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Figure 11. Distance between the configurations in predicted
and actual Pareto fronts, with time and cost components.

Pareto front: We use the predictions from the black-box
model to create a Pareto front and expose the configurations
that have different trade-offs between execution time and
cost. The predicted Pareto front is created by normalizing
the execution time and cost so that the values of the two
objectives are on a similar scale. Since we do not know the
actual minimum value of the objectives, we use the respec-
tively observed minimum values to perform normalization.
Thus, two models have to be trained to create a Pareto front.

To assess the effectiveness of using the configurations
from the predicted Pareto front, we measure the distance
of those configurations to the nearest configuration in the
actual Pareto front, as shown in Figure 11. We measure the
distances in terms of normalized execution time (𝑑𝑡 ) and cost
(𝑑𝑐 ) separately. We normalize 𝑑𝑡 and 𝑑𝑐 for each configura-
tion using the corresponding objective value for the nearest
configuration in the actual Pareto front.
Figure 12 shows, for each function, the average distance

between the points in the predicted Pareto front and the
actual Pareto front for the default input. In our experiments,
the average difference between the configurations in pre-
dicted Pareto front and actual Pareto fronts is up to 20% (cost)
and 25% (time). This difference is because of the prediction
error in the model and thus it leads to 𝑑𝑡 > 0, 𝑑𝑐 > 0.

In this option, the interface to the user exposes the small
set of configurations (between 2 and 10) in the Pareto front,
with the corresponding predicted cost and execution times.
Weighted multi-objective optimization: With weighted
multi-objective optimization, the cloud provider can select
relative weights for execution time (𝑊𝑡 ) and execution cost
(𝑊𝑐 ), where 𝑊𝑐 = 1 −𝑊𝑡 . Using these weights, the cloud
provider can form a weighted objective function 𝐹𝑤 (𝑋 ) for
a configuration 𝑋 , from normalized objective functions for
execution time (𝐹𝑡 (𝑋 )) and cost (𝐹𝑐 (𝑋 )):

𝐹𝑤 (𝑋 ) =𝑊𝑡 × 𝐹𝑡 (𝑋 )
𝐵𝑡

+𝑊𝑐 × 𝐹𝑐 (𝑋 )
𝐵𝑐

(2)

where 𝐵𝑡 and 𝐵𝑐 are the minimum values for execution cost
and execution time objectives, found during the optimization
process for 𝐹𝑡 (𝑋 ) and 𝐹𝑐 (𝑋 ). To simplify the process for the
user, we pre-train three models with𝑊𝑡 ∈ {0.25, 0.5, 0.75}.
The twomodels trained first for execution time and execution
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Figure 12. Normalized average distance between the points
in the predicted Pareto front and the actual front for the de-
fault input. We show normalized execution cost (𝑑𝑐 ) and ex-
ecution time (𝑑𝑡 ) components of the distance separately.

cost translate to𝑊𝑡 = 1 and𝑊𝑡 = 0, giving a total of five
models and five best configurations (each suggested by every
optimization process) for the user to choose from.
Figure 13 shows the best configurations found by the

weighted multi-objective optimization (using BOwith GP) as
we perform more optimization trials. We can see that even in
the weighted multi-objective setting, for most cases, the opti-
mization process is able to find configurations that are within
20% of the best configurations in the search space after 20
optimization trials. While not shown here, we increased the
number of trials and observed that within 40 trials, BO with
GP is able to find configurations with performance within
5-10% of the best configuration, for all cases.
In this option, the interface is similar to the Pareto front

one: in this case, the user chooses between at most 5 configu-
rations, based solely on their predicted cost and performance.
Hierarchical multi-objective optimization: In hierar-
chical multi-objective optimization, we first optimize one of
the objective functions (primary objective). Then, the opti-
mizedmodel can be used to find configurations thatminimize
the value for the second objective function (secondary ob-
jective) while degrading the primary objective value by at
most a user-defined amount (𝜃 ). This allows for showing the
users the best value for the primary objective function, and
then they can decide if they are willing to degrade that value
by up to 𝜃% to improve the secondary objective.

Figure 14 shows the normalized value for execution time
and execution cost metrics after the hierarchical optimiza-
tion (satisfying user’s constraints) for the two combinations
of primary and secondary objective functions. We used a
threshold of 𝜃 = 20% for this experiment. ET/EC and ideal-
ET/ideal-EC represent the best configuration using the pre-
diction model and oracle-like knowledge. The normalization
is done w.r.t. the best configuration found after optimizing
the primary objective only. The dashed line shows the user-
specified degradation threshold for the primary objective.
ET and EC are both included in each scenario to indicate the
execution cost and execution time of the best configurations

found by the hierarchical optimization. In some cases, the
prediction error leads to a higher degradation of the primary
objective than the threshold. But in other cases, hierarchi-
cal optimization using the performance models performs
comparably to the ideal case.
Unlike weighted multi-objective optimization, only one

model needs to be trained for the hierarchical counterpart.
Takeaways: While certainly not a definitive answer, these
three options serve as a starting point for a much needed
discussion on how to give the user access to a broader space
of configurations in serverless offers, without requiring the
user to deal with complex resource allocation choices. In
fact, these proposals do so while shifting the language from
resources to outcomes: performance and cost. They also rep-
resent different trade-offs in terms of simplicity and effec-
tiveness. With the Pareto front and the weighted multi-
objective optimization, users simply get a small set of cost-
performance tuples to select from. In our experiments, both
methods found configurations that were only up to 30%
worse than the best in both cost and performance. In turn,
the hierarchical optimization offers a more explicit prioriti-
zation, but users have to choose the threshold themselves. It
also has good results: for an increase of roughly 20% in the
primary metric, a reduction of up to 50% in the other. They
also present different costs for the provider: for Pareto front
and hierarchical multi-objective optimization, we need to
train 2 and 1 models, respectively. In turn, for the weighted
multi-objective optimization, the number of models we need
to train depends on the number of weighted combinations
of ET and EC. A full evaluation of these interfaces would
require user studies and a more thorough cost analysis, and
we leave it as an open direction for future work.

6.2 Cost vs. performance of different instance types
Table 3 shows that there is potential for using different in-
stance types while providing performance within a certain
margin of the best found configuration. We now evaluate
how effectively we can utilize that potential. In particular,
we measure this benefit by translating utilization of idle re-
sources into a cost decrease. Similarly to spot instances, we
assume that a serverless instance type with many idle in-
stances is assigned a lower cost, to incentivize the utilization
of the idle resources. We assume that the spot pricing for the
serverless instance will decrease the per-CPU and per-GB
cost to a fraction of the original price.

Figure 15 shows the decrease in deployment cost that the
cloud provider can observe by utilizing the best configura-
tions for each instance type predicted by the model. For this
figure, we assume that spot pricing is 20% of the normal pric-
ing. Figure 15 shows the decrease in execution cost while
the performance model is predicting configurations that are
within 10% of the execution time (marked by the dashed
line) of the best found configuration. The figure shows the
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Figure 13. Convergence of the optimization process (BO with GP) for all the benchmarks and different weights for execution
time and execution cost.

Figure 14. Normalized values for execution time and execu-
tion cost after a hierarchical optimization. ET/EC and ideal-
ET/ideal-EC represent the best configuration using the pre-
diction model and with oracle-like knowledge, respectively.

normalized value for execution time and execution cost w.r.t.
to the best configuration found by the optimization process.
We can see from Figure 15 that, by using the predicted

best configurations of other instance types, we can achieve
between 25-75% reduction in execution cost, on average, for
different benchmarks. This execution cost reduction comes
at < 10% increase in execution time, on average. There are
outliers where the execution time penalty is up to 50% be-
cause of prediction error. The main exception is transcode,
for which there are very few execution cost reduction op-
tions available (cf. Table 3).
Takeaways: In our experiments, we found that some con-
figurations utilize different instance types but provide perfor-
mance similar to the best configuration in the search space.
A cloud provider can exploit this behavior and use predic-
tion models to achieve lower execution costs (by using idle
resources) while providing comparable execution time to
the best found configuration. Even with prediction error, we

Figure 15. Reduction in cloud provider costs while keeping
the objective function value within 10% of the best found
configuration (assuming an 80% discount for idle resources).

show that it is possible to significantly reduce costs while
delivering performance within 10% (on average) of the exe-
cution time of the best found configuration.

7 Design space
Figure 16 shows the design choices that should be considered
when developing an automatic resource allocation system
for serverless functions. First, the designer has to decide be-
tween providing offline or online optimization. If offline op-
timization is desired, then both search-based (sampling) and
model-based optimization are valid choices. But with online
optimization, we recommend a model-based approach. We
found that Bayesian Optimization with Gaussian Processes
performs better than other optimization algorithms that we
tested, as it converges to the best configuration faster and
it is better at predicting the objective function value for un-
seen configurations because it builds more accurate models
as shown by the lower prediction error in Figure 9 and 10.
After deciding on the optimization algorithm, a designer

would need to decide whether to create a data-specific or a
generic optimizationmodel. A data-specific optimization pro-
cess might provide better performance but with added com-
plexity. Irrespectively of whether the model is data-specific
or not, one has to decide whether to provide single objective
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Figure 16. Systematic set of design choices of a system providing automatic resource allocation for serverless functions.

or multi-objective optimization options. A single objective
optimization would provide the user with the option of either
finding the configuration with the lowest execution time or
cost. For multi-objective optimization, in turn, we discussed
three options: 1) Pareto front, 2) weighted multi-objective
optimization, and 3) hierarchical multi-objective optimiza-
tion. Hierarchical optimization is the most intuitive for the
end-user to reason about, since it allows the user to select a
given trade-off the user is willing to accept.

8 Related work
Serverless computing. Recent work demonstrated the ad-
vantages of serverless computing for several applications,
ranging from data analytics [37, 40], DAG processing [14],
video transcoding [23], compilation [22], machine learn-
ing [13, 21, 52] and more [8, 48]. A few proposals aimed
to optimize the cost of serverless functions [19, 20, 45, 49].
Sizeless [19] and [45] use a regression model to minimize
execution cost of AWS lambda functions. [49] uses memory
tracing information to collect utilization metrics and find
the right memory allocation. COSE [1] uses BO to select a
serverless configuration for running a single or a chain of
functions, while satisfying customer objectives. Costless [20]
uses function fusion, splitting the function between edge and
cloud, and allocating memory resources for a sequence of
functions to optimize cost. However, these are limited to the
resource allocation strategy that AWS Lambda or similar ser-
vices expose at the moment. In contrast, we take a step back
and analyze the space of possible fine-grained configurations,
and rethink the interface of services like AWS Lambda.

Several works gain insights into the characteristics of pub-
lic serverless offerings by creating experiments and bench-
marks to test the behavior of these platforms [34, 53, 54, 56].
However, they do not analyze the space of possible configu-
rations beyond the current offerings and their effects.

HarvestVMs [7] create flexible VMs that grow and shrink
based on available unallocated resources in an underlying
server. Zhang et al. [57] show how to use HarvestVMs for
serverless. Our work is complementary since it can inform
scheduling functions on the variable resources of HarvestVMs,

and enable the use of different instance types, minimizing
costs while providing predictable execution times.
Cloud configuration optimization. Cherrypick [2], Ar-
row [26], Scout [28], Micky [27], Vanir [11] and Lynceus [15]
perform cloud configuration optimization for distributed
data analytics frameworks. Ernest [51] creates an analyti-
cal model for Spark applications and uses that to optimize
cloud configurations. PARIS [55] uses historical data and
machine learning to quickly choose cloud configurations
for tasks that run on single VM instances. Selecta [32] also
uses historical data and also it incorporates different storage
options into the configuration search space. Our work is not
aimed at finding the best optimization algorithm for auto-
matic resource allocation for serverless functions; instead,
we deal with design space questions to show the potential
opportunities and how they can be utilized.
Google uses Autopilot [43] to configure resources auto-

matically, adjusting both the number of concurrent tasks in
a job (horizontal scaling) and the CPU/memory limits for
individual tasks (vertical scaling). Autopilot uses ML algo-
rithms applied to historical data about prior executions of
a job, plus a set of finely-tuned heuristics, to walk this line.
Autopilot changes the amount of CPU and memory but does
not provide CPU or machine type recommendations, which
is a focus in our work. The black box algorithms discussed
in this work could be used as a custom recommendation
algorithm in a system like Autopilot.
Resource allocation in data centers. Paragon [17] and its
follow-upQuasar [18] propose heterogeneity and interference-
aware schedulers for data center workloads. They use col-
laborative filtering to classify an unknown incoming job to
assign resources to it. Similarly, DejaVu [50] also tackles
the problem of allocating resources to workloads in a data
center, but uses clustering instead of collaborative filtering.
Despite tackling a different problem, we note that their use
of collaborative filtering and clustering could also replace
the black-box optimization methods we have discussed.

9 Discussion
Tail latency. While we focused on median latency in our
study, using tail latency as a performance metric should not
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change the algorithms or the techniques discussed; how-
ever, it could change the best configuration that is found.
In addition, it might require more measurements and could
potentially increase the time it takes to find a good configura-
tion. More importantly, cold starts, queuing and interference
can be major sources of increased tail latency in serverless
functions (assuming a scalable FaaS implementation). These
issues should be addressed by improving scheduling deci-
sions among other options, more so than by our resource
selection. We leave it as future work to devise ways to inform
scheduling decisions using the models we propose.
Interference and resource contention. Our central con-
cern is resource allocation for serverless functions. Interfer-
ence and resource contention can influence this decision. A
resource configuration deemed to be the best in isolation
might not provide the same performance depending on the
interference and noise from other applications sharing the
same underlying server. We consider this to be a relevant but
complementary issue, and an interesting avenue for future
work. We envision that it can be dealt with via interference-
aware scheduling techniques such as CloudScope [16], in
conjunction with resource allocation decisions.
On cold-start latency. Cold start latency will impact per-
formance of any selected configuration in a serverless en-
vironment. Cold-start latency can be measured against the
warm-start latency for the same application. This informa-
tion can then be used by the cloud provider to decide whether
to start a new serverless instance for a serverless function
with the best configuration or use a sub-optimal but already
warm serverless instance, for an incoming request to the
serverless application.
Impact on scheduling. The implications of decoupled and
flexible resource allocation on scheduling are important and
handling it can be challenging. However, cloud providers al-
ready offer semi-flexible decoupling of memory and CPU for
services like AWS Elastic Container Service with Fargate [3].
In this paper, we similarly use a coarse-grained resource
allocation rather than arbitrary value for CPU and memory.
Thus, we believe that it is a challenge that cloud providers
are equipped to handle.
On concurrent serverless instances. FaaS providers al-
low users to specify the provisioned concurrency level for
their serverless applications. The concurrency setting can
improve the latency (by decreasing queuing time and cold-
start latency at the expense of cost). But the lower bound on
the latency of a single request to the serverless function de-
pends on the resource allocation to each serverless function
instance, which we address in this work.

Our study focuses on resource allocation for a single func-
tion invocation, and therefore we consider the aspect of
concurrent invocations to be an interesting avenue of future
work. As a first approximation, each concurrent function
instance can be assigned the best configuration found by the
optimizer (for that function). Once the prediction models

are built, the optimizer can also suggest the top 𝑘 config-
urations. The FaaS provider can then make a decision for
concurrent function invocations based on several factors,
including resources available, performance constraints and
cold-start latency.
Limitations. While we employed a diverse set of appli-
cations, we note that other applications might have a be-
havior that changes with their inputs, thus requiring a data-
dependent approach. Similarly, BOwithGPwill not be a good
optimization algorithm if the underlying performance model
is not smooth, and other optimization algorithms might per-
form better. Finally, if an analytical model is known for a
function, e.g., if a function is embarrassingly parallel, then a
mathematical model is better than black-box methods.

We assumed that actual workload inputs to the functions
would have similar characteristics to the inputs used to opti-
mize the serverless application. A drift in the predicted and
observed performance characteristics over time can be one of
the indicators used to retrigger optimization or improvement
of the optimization algorithm automatically.
Lastly, we created our own pricing model based on the

cost of different EC2 instances. However, if a FaaS provider
is to offer a decoupled allocation service, it is likely going
to use a different pricing scheme. Cloud providers usually
charge a premium for managed services like serverless. The
black-box algorithms used in this paper should be equally
applicable when used with a different pricing model. Quan-
titatively, our results in absolute terms will change with a
different pricing model. Qualitatively, as long as the ratio of
prices across different instance types and between CPU and
memory remain the same, our results should also hold true.

10 Conclusion
We highlighted the importance of carefully reasoning about
each resource underlying the execution of serverless func-
tions. We thoroughly studied the gains that can be obtained,
and propose possible interfaces that allow users to only
worry about the essential tradeoffs. The fact that AWS lambda
now also offers ARM-based serverless functions (increasing
the resource configuration options) further highlights that
cloud providers are moving in the direction where automatic
resource allocation might become necessary.
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A Artifact Appendix
A.1 Abstract
This appendix provides the details of the artifacts available
for the research paper. The artifacts include the serverless
applications, input data for the applications, the optimization
algorithms, analysis notebooks, and the performance data
collected for the experimental scenarios described in the
paper.

A.2 Description & Requirements
A.2.1 How to access. The public repository containing
data and code for the research paper can be found at:
https://doi.org/10.5281/zenodo.7143413.

A.2.2 Hardware dependencies. When running the opti-
mization code/notebooks, a multi-core machine is ideal but
otherwise, there are no specific hardware requirements.

A.2.3 Software dependencies. A Linux/Mac machine
with Python >=3.8 and Jupyter Notebooks (the code has
been executed on Mac OS) is required for running python
code that is in the repository. Any other specific software
requirements (if any) for running specific parts of the code
are mentioned in the README files of the sub-directories in
the repository.

A.2.4 Benchmarks. Benchmarks/Serverless applications
used in the paper are available in the repository in the bench-
marks sub-directory. These benchmarks are compatible with
OpenFaaS.

A.3 Set-up
Using different parts of the repository requires different in-
stallation setups. But all of the configuration setups can be
done locally (in some cases using python virtualenv). The
instructions in the sub-directories of the repository contain
the requirements as well (and instructions on how to install
them).

A.4 Evaluation workflow
A.4.1 MajorClaims. Themajor claims of the researchwork
include:

• (C1): We determine the ground truth about the execution
time and execution cost of 6 serverless applications across
288 resource configurations and multiple inputs. Our
benchmarks and data are available as open source.

• (C2): We analyze the potential benefits of enabling a
more flexible resource allocation for serverless functions

• (C3): We analyze the accuracy of 4 Bayesian Optimiza-
tion algorithms for determining the best resource alloca-
tion for two optimization objectives: execution time and
cost.

• (C4): We verify whether the serverless functions of our
study have data-dependent performance characteristics
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• (C5): We propose a set of possible interfaces for enabling
the user to benefit from multi-objective optimization.

• (C6): We evaluate the cost reduction opportunities for the
cloud providers by using different instance types while
providing predictable performance.

A.4.2 Experiments. Instructions are provided in the
analysis/README.md on the setup required to run the note-
books needed for some of the experiments below.

Experiment (E1): [BenchmarkData] [30 human-minutes]:
The benchmark data is available under benchmarks/ sub-
directory of the repo with instructions on the naming of
the files and metrics that have been used in our paper. This
relates to C1.

Experiment (E2): [30 human-minutes + 15 compute-minutes]:
For C2, we have two notebooks in the repository to show
the benefits of flexible resource allocation strategies.

1. analysis/decoupled-vs-default.ipynb
2. analysis/alternative-analysis.ipynb

[Results] The notebooks have previously created graphs and
outputs that have been used in the paper. Running decoupled-
vs-default creates a plot that is Figure 3 in the research paper.
Running alternative-analysis provides the alternative configu-
rations that were used in Table 2.

Experiment (E3): [1 human-hour + 2 compute-hour]: For
C4, we have the notebook
analysis/optimization-analysis-notebook.ipynb that
runs four Bayesian optimization algorithms that we have
discussed in the paper, for execution cost and execution time
objective functions.
[Results] The notebooks have the code to create Figures 5-6

and Figures 8-10 of the paper.
Experiment (E4): [30 human-minutes + 1 compute-hour]:

For C4, we have the notebook

analysis/optimization-across-data.ipynb that compared
the two scenarios:

1. When a generic performance model is used to predict
performance for input data it has not seen before.

2. When the performance model is trained for that spe-
cific input.

[Results] The notebooks have the code to create Figure 7 of
the paper.

Experiment (E5): [1 human-hour + 3 compute-hour]: For
C5, we have three notebooks in the repository that use dif-
ferent optimization techniques to provide possible interfaces
for the user as discussed in Section 6.1 of the research paper.

1. analysis/pareto-front.ipynb
2. analysis/multi-objective.ipynb
3. analysis/hierarchical-mo.ipynb

[Results] The notebooks have the code to create Figures 12-14
of the paper.

Experiment (E6): [30 human-minutes + 1 compute-hour]:
For C6, we have
analysis/cost-benefit-alternatives.ipynb in the repos-
itory to show cost benefit of using alternative instance type
configurations that are within the performance threshold of
the best configuration.

[Results] The notebooks have the code to create Figure 15 of
the paper.

A.5 Notes on Re-usability
Several components of the repository are standalone in terms
of usability. The performance data available (under data/)
in the repository can be easily used in other research works
on optimization without using any other part of the repos-
itory. Additionally, only changes to the input parameters
and settings (usually in the first section of the notebook) are
required to use them for analysis of other benchmarks and
additional input data.
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