
ChatGPT Empowered Long-Step Robot Control in Various
Environments: A Case Application

Naoki Wake1, Atsushi Kanehira1, Kazuhiro Sasabuchi1, Jun Takamatsu1, and Katsushi Ikeuchi1

Abstract

This paper introduces a novel method for translating natural-language instructions into executable robot actions using OpenAI’s
ChatGPT in a few-shot setting. We propose customizable input prompts for ChatGPT that can easily integrate with robot execution
systems or visual recognition programs, adapt to various environments, and create multi-step task plans while mitigating the
impact of token limit imposed on ChatGPT. In our approach, ChatGPT receives both instructions and textual environmental data,
and outputs a task plan and an updated environment. These environmental data are reused in subsequent task planning, thus
eliminating the extensive record-keeping of prior task plans within the prompts of ChatGPT. Experimental results demonstrated
the effectiveness of these prompts across various domestic environments, such as manipulations in front of a shelf, a fridge, and
a drawer. The conversational capability of ChatGPT allows users to adjust the output via natural-language feedback. Additionally,
a quantitative evaluation using VirtualHome showed that our results are comparable to previous studies. Specifically, 36% of task
planning met both executability and correctness, and the rate approached 100% after several rounds of feedback. Our experiments
revealed that ChatGPT can reasonably plan tasks and estimate post-operation environments without actual experience in object
manipulation. Despite the allure of ChatGPT-based task planning in robotics, a standardized methodology remains elusive, making
our work a substantial contribution. These prompts can serve as customizable templates, offering practical resources for the
robotics research community. Our prompts and source code are open source and publicly available at https://github.com/microsoft/
ChatGPT-Robot-Manipulation-Prompts.

Fig. 1. This paper presents practical prompts designed for various environments. The prompts enable ChatGPT to translate multi-step human instructions
into sequences of executable robot actions.

I. INTRODUCTION

Recent advances in natural language processing have yielded large language models (LLMs) with significantly improved
abilities to understand and generate language. As a result of learning vast amounts of data, some LLMs can be fine-tuned
given a small set of sample data as instructions (i.e., few-shot learning [1]). ChatGPT [2] is a representative example of such
an LLM. One exciting application of ChatGPT is in the field of robotics, where it can be used for executable robot programs
(i.e., task planning).

1Applied Robotics Research, Microsoft, Redmond, WA 98052, USA naoki.wake@microsoft.com

ar
X

iv
:2

30
4.

03
89

3v
6

 [
cs

.R
O

]
 3

0
A

ug
 2

02
3

https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts
https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts

Task planning from natural-language instructions is a research topic in robotics, and there are many existing studies [3]–[5],
some of which are built on top of LLMs [6]–[18] ([19] for review). However, most of them were developed within a limited
scope of operations, such as pick-and-place [9], [15], [20], [21], are hardware-dependent, or lack the functionality of human-in-
the-loop [10], [14], [16], [22], [23]. Additionally, most of these studies rely on specific datasets [6]–[8], [12], [13], [24]–[29],
which necessitate data recollection and model retraining when transferring or extending these to other robotic settings.

In contrast to these pioneering studies, a significant advantage of utilizing most recent LLMs, such as ChatGPT, is their
adaptability to various operational settings. This adaptability is facilitated by few-shot learning, which eliminates the need
for extensive data collection or model retraining in customizing the scope of operations. Additionally, the recent LLMs’
superior ability to process language allows for safe and robust task planning, as it can efficiently reflect user feedback in a
human-in-the-loop manner.

In this study, we aim to demonstrate a specific but extensible use case of ChatGPT for task planning (Fig. 1), employing
ChatGPT as an example of the most recent LLMs. Although interest has been growing in the potential of ChatGPT in the field
of robotics [30], its practical application is still in its early stages, and no standardized methodology has yet been proposed.
We design customizable prompts to meet the following requirements that are common to many practical robotic applications:

1) Easy integration with robot execution systems or visual recognition programs.
2) Applicability to various home environments.
3) The ability to provide multi-step instructions while mitigating the impact of token limit imposed on ChatGPT.

To meet these requirements, prompts are designed to have ChatGPT accomplish the following:
1) Output a sequence of user-defined robot actions with explanations in an easy-to-parse JSON format.
2) Explicitly handle the environmental information, enabling task planning considering the spatial relationships between

objects.
3) Estimate the post-operation environment as a hint for subsequent task planning, reducing the burden of holding lengthy

conversation histories for multi-step instructions.
Through experiments, we demonstrate that ChatGPT succeeds in estimating action sequences for multi-step instructions in

various environments. Additionally, we show that the conversational capability of ChatGPT allows users to adjust the output
through natural-language feedback, which is crucial for safe and robust task planning. Quantitative tests using the VirtualHome
environment [31] show that the proposed prompts result in both executable and correct task planning after a few rounds of
feedback, suggesting the effectiveness of our approach.

While previous research has validated the utility of ChatGPT within specific environments and scenarios [30], we explored
whether ChatGPT can operate effectively across diverse environments and scenarios. This attempt expands the practical
applicability of ChatGPT, paving the way for broader and more flexible applications in various real-world settings. Our
proposed prompts can serve as customizable templates and are open source and available at https://github.com/microsoft/
ChatGPT-Robot-Manipulation-Prompts. Depending on the specifications of robot actions, environmental representations, and
object names, users can easily modify them to meet their requirements. The contributions of this paper are threefold: we
demonstrate the applicability of ChatGPT to multi-step task planning with a focus on robot action granularity, propose a
customizable prompt adaptable to various environments, and make these prompts publicly accessible as a practical resource
for the robotics research community.

II. CHATGPT PROMPTS

The details of the designed prompts are explained in this section. The prompts consist of 1) an explanation of the role of
ChatGPT, 2) a definition of robot actions, 3) an explanation of how to represent the environment, 4) an explanation of how to
format the output, 5) examples of input and output, and 6) a specific instruction from the user.

In every instance of task planning with ChatGPT, the prompts one to five are loaded from pre-prepared text files, while
the sixth prompt is dynamically generated based on the user’s instructions and environmental information. Notably, through
preliminary experimentation, we found that ChatGPT appears to operate more robustly when we input the six prompts as a
conversation consisting of six turns (see Section II-F for details), rather than bundling them into a single prompt. All prompts
and their output examples are available online https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts, and anyone
can try them out through OpenAI’s API or a web browser.

The prompts shown in this section assumed that the robot has at least one arm, sufficient degrees of freedom, and reachability
to execute the desired task in the working environment. Additionally, we assume that each instruction is given at the granularity
of grasp-manipulation-release, which involves handling a single object from grasping to releasing. Challenges and discussions
on extending our approach to more general-purpose robotic systems are discussed in Section IV.

A. The role of ChatGPT

In the first prompt, we provide ChatGPT with a context for this task by explaining the role that ChatGPT should play
(Fig. 2). To accommodate multiple prompts, we include a sentence instructing ChatGPT to wait for the next prompt until all
the prompts are input.

https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts
https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts
https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts

You are an excellent interpreter of human instructions for household tasks. Given an instruction and information about the working environment, you break it down into a
sequence of robot actions. Please do not begin working until I say "Start working." Instead, simply output the message "Waiting for next input." Understood?

Fig. 2. The prompt for explaining the role of ChatGPT.

B. The definition of robot actions

In this prompt, we define a set of robot actions. Since an appropriate set of robot actions depends on the application and
implementation of the robotic software, this prompt should be customized by experimenters. In Fig. 3, we show an example
of robot actions based on our in-house learning-from-observation application [32], [33], in which robot actions are defined as
functions that change the motion constraints on manipulated objects based on the Kuhn-Tucker theory [34]. This definition
allows us to theoretically establish a necessary and sufficient set of robot actions for object manipulation. Experiments in
Section III are conducted using these robot actions, except for an experiment in Section III-C, in which we defined a set of
actions that were prepared for VirtualHome.

Necessary and sufficient robot actions are defined as follows:
"""
"ROBOT ACTION LIST"
- move_hand(): Move the robot hand from one position to another with/without grasping an object.
- grasp_object(): Grab an object.
- release_object(): Release an object in the robot hand.
...
- wipe_on_plane(): This action can only be performed if an object is grabbed. Move an object landing on a plane along two axes along that plane. For example, when
wiping a window with a sponge, the sponge makes this motion.
"""

Fig. 3. The prompt explaining a set of robot actions. See Fig. 20 in Appendix A for the full action list.

C. Representation of the environments

This prompt defines the rule for representing working environments (Fig. 4). In this specific prompt, all physical entities are
classified into non-manipulable obstacles, referred to as assets, such as shelves and tables, and manipulable objects, referred to
as objects, such as cans and handles. These two classes are defined to differentiate between the entities that may be manipulated
and those that cannot. As a hint for task planning, the spatial relationships between entities are described as states, which are
chosen from a “STATE LIST.” Through preliminary experimentation, items in the STATE LIST were identified as providing
sufficient hints for ChatGPT to work effectively. Notably, the STATE LIST is customizable, and in Section III-C, we define
different states to meet the specifications of VirtualHome.

Information about environments and objects are given as Python dictionary. Example:
"""
{

"environment":{
"assets": ["<table>", "<shelf_bottom>", "<shelf_top>", "<trash_bin>", "<floor>"],
"asset_states": {"<shelf_bottom>": "on_something(<table>)",

"<trash_bin>": "on_something(<floor>)"},
"objects": ["<spam>", "<juice>"],
"object_states": {"<spam>": "on_something(<table>)",

"<juice>": "on_something(<shelf_bottom>)"}
}

}
"""
Asset states and object states are represented using those state sets:
"""
"STATE LIST"
- on_something(<something>): Object is located on <something>
- inside_something(<something>): Object is located inside <something>
- inside_hand(): Object is being grasped by a robot hand
- closed(): Object can be opened
- open(): Object can be closed or kept opened
"""
<something> should be one of the assets or objects in the environment.

Fig. 4. The prompt for defining the rules for representing working environments.

D. The format of the output produced by ChatGPT

This prompt defines the format of the output produced by ChatGPT (Fig. 5). To facilitate easy integration with other pipelines,
such as robot control systems and visual recognition programs, we encourage ChatGPT to output a Python dictionary that can

be saved as a JSON file. Additionally, we encourage ChatGPT to include not only the sequence of robot actions, but also
explanations of each action step and supplementary information on the updated environment after executing the actions. These
additional pieces of information help the user debug whether ChatGPT correctly processes the input information.

You divide the actions given in the text into detailed robot actions and put them together as a Python dictionary. The dictionary has five keys:
"""
- dictionary["task_cohesion"]: A dictionary containing information about the robot’s actions that have been split up.
- dictionary["environment_before"]: The state of the environment before the manipulation.
- dictionary["environment_after"]: The state of the environment after the manipulation.
- dictionary["instruction_summary"]: contains a brief summary of the given sentence.
- dictionary["question"]: If you cannot understand the given sentence, you can ask the user to rephrase the sentence. Leave this key empty if you can understand the given
sentence.
"""
Three keys exist in dictionary["task_cohesion"].
"""
- dictionary["task_cohesion"]["task_sequence"]: Contains a list of robot actions. Only the behaviors defined in the "ROBOT ACTION LIST" will be used.
- dictionary["task_cohesion"]["step_instructions"]: contains a list of instructions corresponding to dictionary["task_cohesion"]["task_sequence"].
- dictionary["task_cohesion"]["object_name"]: The name of the manipulated object. Only objects defined in the input dictionary will be used for the object name.
"""

Fig. 5. The prompt for defining the format of the output produced by ChatGPT.

E. Examples of input and output

This prompt provides examples of the expected inputs and outputs (Fig. 6). We found that providing more examples helps
ChatGPT generate the desired sequence and thus minimizes the effort users need to expend to correct the output through
conversations.

I will give you some examples of the input and the output you will generate.
"""
Example 1:
"""
- Input:
{

...(environmental information)...
"instruction": "Put the juice on top of the shelf"

}
- Output:
{

"task_cohesion": {
"task_sequence": [

"move_hand()",
"grasp_object()",
... ,
"attach_to_plane()",
"release_object()"

],
"step_instructions": [

"move the hand near the juice",
"grasp the juice",
... ,
"place the juice",
"release the juice"

],
"object_name": "<juice>"

},
"environment_before": ... ,
"environment_after": ... ,
"instruction_summary": "put the juice on top of the shelf",

}
"""
Example 2:
"""
...

Fig. 6. The prompt providing examples of desired inputs and outputs. The full information is available at the URL provided in the text.

F. Specific instruction from the user

While the previous five prompts are fixed, the sixth prompt is dynamically generated in every instance of task planning
by editing a template prompt (Fig. 7). This prompt is generated by replacing [INSTRUCTION] with the given instruction
and [ENVIRONMENT] with the corresponding environmental information. Notably, the user is required to provide the
environmental information in the initial instance of task planning using a separate process (e.g., manual preparation). However,

this effort is unnecessary for subsequent instances because we can reuse an updated environment incorporated in the last
output of ChatGPT (orange parts in Fig. 8). This approach facilitates task planning based on the most recent environment,
eliminating the need for extensive historical records that exceed ChatGPT’s token limit. In our experiments, we practically
included as much of the historical record as the token limit of ChatGPT would allow, ranging from the most recent to the
oldest conversation history (Fig. 8).

As a specific usage of this task planner within a robot system, we assume that the output of ChatGPT is checked by the
user in every instance of task planning. If the user confirms that there is no further need for adjustment, the output is then
saved as a JSON file. In Appendix C, we have provided more details regarding how the proposed task planner is integrated
and operated within a robot system.

"""
{"environment":[ENVIRONMENT]}
"""
The instruction is as follows:
"""
{"instruction": [INSTRUCTION]}
"""
The dictionary that you return should be formatted as python dictionary. Follow these rules:
1. The first element should be move_hand() to move the robot hand closer to the object. Always end with releasing the object.
2. Make sure that each element of the ["step_instructions"] explains corresponding element of the ["task_sequence"]. Refer to the "ROBOT ACTION LIST" to understand
the elements of ["task_sequence"].
...
9. Make sure that you output a consistent manipulation as a single arm robot. For example, grasping an object should not occur in successive steps.
Adhere to the output format I defined above. Follow the nine rules. Think step by step.

Fig. 7. The user input template and examples of the actual input used. The user is assumed to provide environmental information. Multi-step task planning
can be realized by reusing the environmental information that ChatGPT outputs in the following task planning.

Fig. 8. The entire structure of the conversation with ChatGPT in task planning.

III. EXPERIMENTS

We tested the prompts to verify whether ChatGPT behaves in accordance with the specified requirements. We used a fixed
GPT model provided by Azure OpenAI (gpt-3.5-turbo) in our experiments. Some experimental results are not fully presented
in order to save space, but all results, including parameters for ChatGPT inference, instructions, and environment definitions,
can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

A. Multi-step manipulation of the environment

We tested the applicability of the proposed prompts to multi-step instructions in various environments. As examples of
household tasks, we conducted role-plays instructing the rearrangement and disposal of objects placed on tables and shelves,
retrieving objects from refrigerators and drawers, and cleaning tables and windows with a sponge. The instructions and feedback
texts were prepared in a style that resembles the way humans communicate with each other. The environmental information in
the initial instance of task planning was prepared manually for each scenario. The output of ChatGPT was manually checked

https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts

by the authors at every instruction step. Specifically, we conducted a visual inspection to qualitatively confirm whether the
generated action sequences were executable and whether they accompanied reasonable environment estimations. In summary,
the results shown below suggest that ChatGPT can translate multi-step human instructions into adequate sequences of executable
robot actions.

1) Relocation of objects on a table: The task involves manipulating a can of juice situated on the bottom shelf of a two-shelf
structure and a can of spam positioned on a table (refer to the top panel in Fig. 1 for the scene). First, the juice is relocated
from the bottom to the top shelf. Subsequently, the spam is discarded into a trash bin. Thereafter, the juice is moved from
the top shelf to the table. Finally, the juice, too, is discarded into the trash bin. The output of ChatGPT, which demonstrates
successful task planning, is shown in Fig. 9.

Fig. 9. An example of the output produced by ChatGPT for the task of relocating objects. (Left panel) Robot actions broken down for each natural language.
(Right panel) The state of the environment that is output by ChatGPT. A part of the JSON output is shown for each file. All the results, including the
representation of the environment can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

2) Open a fridge/drawer door: Next, we tested the scenario of opening a refrigerator door, opening the door slightly wider,
removing a juice from the refrigerator and placing it on the floor, and finally closing the refrigerator (see the middle panel in
Fig. 1 for the scene). The output of ChatGPT is shown in Fig. 10, indicating a successful task planning. Similar results were
obtained for the scenario of sliding a drawer open (Figure not shown).

3) Wipe a window with a sponge, and throw it away: Next, we tested the scenario of taking a sponge from the desk, wiping
the window with the sponge, and returning it to the table. Following the operation, a user throws the sponge into a trash
bin. The output of ChatGPT is shown in Fig. 11, indicating a successful task planning. Similar results were obtained for the
scenario of wiping the table with a sponge (data not shown).

B. Adjustment of the output produced by ChatGPT through user feedback

Since ChatGPT does not always generate complete action sequences, it is important for users to review and correct errors
to ensure safe and robust operation. With this in mind, we tested the ability of ChatGPT to adjust the output through natural-
language feedback.

Fig. 12 shows the result when a user asked ChatGPT to add/remove a task in the output sequence. ChatGPT changed the
output following the semantic content of the feedback, suggesting the functionality for making the necessary adjustments.

Fig. 10. An example of the output produced by ChatGPT for the task of opening a refrigerator and retrieving juice. (Left panel) Robot actions broken down
for each natural language. (Right panel) The state of the environment that is output by ChatGPT. A part of the JSON output is shown for each file. All the
results, including the representation of the environment can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

C. Quantitative evaluation of task decomposition performance of ChatGPT

The previous sections qualitatively demonstrated that the proposed prompts achieve successful task planning using an action
set from our in-house learning-from-observation system. In this section, we quantitatively evaluate the performance of task
planning using a general-use simulation environment called VirtualHome [31]. Specifically, we made ChatGPT generate task
plans from a single instruction for several household operation scenarios, and tested whether the resulting action sequences
were valid in terms of executability in simulation and correctness upon visual inspection. All the source codes and prompts
used for the experiment can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

1) Experimental setup: VirtualHome is software that simulates interactions between an agent and various home environments.
The agent can navigate and interact within these environments by executing sequences of commands using a Python-based
API. This API provides a set of pre-defined atomic actions (see Table IV in Appendix B for the action list), which represent the
smallest units of action in VirtualHome. The environment consists of typical household objects (e.g., a plate, a microwave, and
a table), each associated with unique IDs. The relationships between objects are represented as a graph that can be accessed
through the API.

In the experiments, we selected a kitchen as a representative home environment and defined test scenarios for household
chores that could be implemented in VirtualHome. To mitigate bias in the process of scenario preparation, we utilized ChatGPT
to generate scenario candidates1. We then manually selected the test scenarios that satisfied the following criteria:

• The scenario can be realized by executing multiple actions in sequence.
• The scenario involves at least one instance of object manipulation, i.e., grasping or releasing an object.
• The tasks in the scenario are relevant to everyday activities.
Fourteen scenarios were prepared as test scenarios (Table I). For these scenarios, we manually identified action sequences

to achieve the scenarios along with the list of objects involved with their IDs. The action sequences identified are provided in
Table V in Appendix B.

ChatGPT generated an action sequence intended to complete the scenario, given the proposed prompts, environmental
information, and an instruction provided in the right column of Table I. The environmental information, which corresponds
to each scenario, was derived from the graph. Because of redundancy in representing all kitchen objects, only those objects
involved in each scenario were considered. The action sequence generated by ChatGPT was then converted into a format

1ChatGPT was provided with the list of the kitchen objects and the pre-defined atomic actions to generate the candidates.

https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts

Fig. 11. An example of the output produced by ChatGPT for the task of wiping a window with a sponge (Left panel) Robot actions broken down for each
natural language. (Right panel) The state of the environment that is output by ChatGPT. A part of the JSON output is shown for each file. All the results,
including the representation of the environment can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

Fig. 12. An example of adjusting an output sequence through natural-language feedback. The initial instruction was to move a juice from the bottom shelf
to the top shelf. (Top panel) After the feedback of “Insert another move_object() to move the juice upward.,” an action of move_object() was added to the
sequence. (Bottom panel) After the feedback of “In this case, you can omit one move_object() that moves the juice upward,” an action of move_object() was
deleted from the sequence.

that VirtualHome could interpret and executed in a step-by-step manner through the API. An action sequence was considered
successful when the following two conditions were met:

• Executability: The simulator was able to execute all steps without encountering any errors.
• Correctness: Upon visual inspection, it was determined that the proposed action steps could successfully complete the

scenario.
We incorporated visual inspections in our criteria because a successful execution in the simulator does not necessarily guarantee
that the final goal is achieved [23].

TABLE I
THE LIST OF SCENARIOS USED IN THE EXPERIMENT

Scenario Textual instruction

Scenario1 Take the bread from the toaster on the kitchen counter and
place it on the plate on the table.

Scenario2 Take the frying pan from the counter and place it in the
sink.

Scenario3 Take the pie from the table and put it in the microwave.

Scenario4 Take the condiment shaker from the bookshelf and place it
on the table.

Scenario5 Take the book from the table and put it on the bookshelf.

Scenario6 Take the water glass from the table and drink from it.

Scenario7 Take the salmon on top of the microwave and put it in the
fridge.

Scenario8 Turn on the TV.

Scenario9 Put a plate that is on the table into the sink.

Scenario10 Take the pie on the table and warm it using the stove.

Scenario11 Put the sponge in the sink and wet it with water.

Scenario12 Take the knife from the table and move it to another place
on the table.

Scenario13 Take the plate from the table and move it to another place
on the table.

Scenario14 Take the condiment bottle from the bookshelf and put it on
the table.

2) Results: We first tested whether the generated action sequences were successful without feedback. Since we conducted
multiple trials, we set the temperature parameter to its maximum to ensure trial-to-trial variations in the output of ChatGPT.
Table II shows the results, with a success rate of approximately 36% (5 out of 14 scenarios), with only a minimal variation
observed between trials.

TABLE II
EXECUTABILITY OF THE OUTPUT ACTION SEQUENCE ACROSS TRIALS. “1” INDICATES SUCCESS, AND “0” INDICATES FAILURE.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Trial 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0
Trial 2 0 0 0 0 1 1 0 1 0 0 0 1 1 0
Trial 3 0 0 0 0 1 1 0 1 0 0 0 1 1 0
Trial 4 0 0 0 0 1 1 0 1 0 0 0 1 1 0
Trial 5 0 0 0 0 1 1 0 1 0 0 0 1 1 0

Upon investigating the unsuccessful cases, we identified two failure patterns in ChatGPT:
• Incorrect verb selection: In VirtualHome, the simulator raises errors when it fails to select an action applicable to an

object. For example, when the task involves ‘placing an object,’ the action ‘PutIn’ should be selected when placing the
object inside a container, while the action ‘Put’ should be selected when placing it on a flat surface. Despite these verb
selection rules being part of the prompts, ChatGPT sometimes confused the actions.

• Omission of necessary steps: Some outputs skipped essential steps necessary for successfully completing a scenario, such
as opening a container before placing an object inside it.

Following this analysis, we investigated whether adjustments could be made with a reasonable amount of effort, given
appropriate feedback from a user who is familiar with task planning. To this end, we prepared an automatic feedback system
as an objective method that detects these types of errors. This system was designed to simulate a user who is knowledgeable
in task planning, instead of relying on manual feedback. The output of ChatGPT was checked by the system in every instance
of task planning, and if an error was detected, an error message was automatically generated and fed back to ChatGPT. Using
this feedback system, we examined the number of rounds of feedback needed to reach a successful sequence, or whether it
was possible at all, across 14 scenarios. We set the temperature parameter to its minimum to ensure the reproducibility of the
results.

Table III shows the results. ChatGPT was able to produce successful action sequences in all scenarios after receiving several
rounds of feedback. Fig. 13 shows an example where auto-generated feedback texts guide ChatGPT towards a successful action

sequence, suggesting that ChatGPT is capable of reflecting the semantic content of the feedback in its output and making the
necessary adjustments.

TABLE III
THE NUMBER OF ROUNDS OF FEEDBACK NEEDED TO REACH A SUCCESSFUL SEQUENCE

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of feedback 1 1 3 1 0 0 1 0 1 2 1 0 0 1

Fig. 13. Example of adjusting an output sequence through auto-generated feedback. The output for the scenario 10 is shown (i.e., Take the pie on the table
and warm it using the stove.) All the results, including the representation of the environment, can be found here: https://github.com/microsoft/ChatGPT-Robot-
Manipulation-Prompts.

Our proposed prompts aim to estimate the post-operation environment as a hint for subsequent task planning, which enables
multi-step task planning beyond the token limit imposed on ChatGPT. Therefore, we visually inspected the output of ChatGPT
in Table II and examined whether the post-operation environment was accurately estimated. As a result, we found that for
all 14 scenarios and five trials, the estimation by ChatGPT was accurate, regardless of the success or failure of the action
sequence. This result suggests that our proposed prompts can be adopted for multi-step task planning beyond a single scenario.
The results can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

IV. DISCUSSION: TOWARDS MORE GENERAL ROBOTIC APPLICATIONS

In this study, we focused on task planning of robot actions from multi-step instructions. We designed prompts for ChatGPT
to meet three requirements: 1) easy integration with robot execution systems or visual recognition programs, 2) applicability
to various environments, and 3) the ability to provide multi-step instructions while mitigating the impact of token limit
imposed on ChatGPT. Through experiments, we confirmed that the proposed prompts work for multi-step instructions in
various environments, and that ChatGPT enables the user to adjust the output interactively. Based on these results, we believe
that the proposed prompts are practical resources that can be widely used in the robotics research community.

It is noteworthy that ChatGPT is capable of performing task planning without any actual experience in object manipulation,
relying solely on few-shot data. This ability may be attributed to the fact that the model acquires knowledge of object
manipulation and the temporal relationships between cohesively occurring actions during its training on a vast amount of
data. In fact, the ability of ChatGPT to generate recipes from a menu suggests that it implicitly learns procedural steps [30].
Nevertheless, we cannot access the inner computations of ChatGPT, thus the computation process for task planning, including
the estimation of the post-operation environment, remains unclear.

The quantitative analysis using VirtualHome showed that ChatGPT produced action sequences with a success rate of 36%
without feedback, which approached 100% after several rounds of feedback. Although we used a different task set, our results
align with those of previous studies that used LLMs for task planning in VirtualHome. Huang et al. [23] reported that 35.23%
of an LLM’s outputs were both executable and correct from a human perspective. Raman et al. [17] showed an improvement
in both task execution and correctness through re-prompting based on precondition error information. Thus, we emphasize that
our findings attest to the effectiveness of the proposed prompts, which aligns with the existing research.

The prompts were designed under the assumption that the robot has at least one arm, sufficient degrees of freedom, and
reachability to execute the desired task in a given environment. Additionally, we assume that each instruction is given at the
granularity of grasp-manipulation-release. However, these assumptions may be restrictive for some scenarios in general robotic
manipulations. In the following sections, we discuss several strategies to effectively integrate our task planner with practical
robotic applications.

A. Handling of conditional branching

Some manipulations may require selecting actions based on the recognition results (e.g., disposing of a food item if it
is recognized as out of date), or require repeating actions until certain conditions are met (e.g., wiping a table until it is

https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts

spotless). It is known that LLMs can generate programs that include conditional branching [35]. It has also been suggested
that ChatGPT can handle conditional branching for robotic applications [30]. Consistent with these ideas, we confirmed that
small modifications to the prompts enabled ChatGPT to generate a Python code that included conditional branching (Fig. 14).
Additionally, we verified that employing a separate ChatGPT process enables higher-level conditional branching by composing
sets of task plans (Fig. 15). These results suggest the feasibility of extending the proposed task planner to handle conditional
branching.

Fig. 14. An example demonstrating the feasibility of using ChatGPT to generate control programs that include conditional branching. A part of the prompts is
shown. Note that we encouraged ChatGPT to add comments at every line to track the state of objects, as the final state may vary according to the conditional
branching. We also added a non-manipulative function (i.e., check_best_by_date()) in the robot action set. All the results, including the representation of the
environment, can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

B. Collaboration of multiple arms and robots

A robot with multiple arms may need to coordinate its arms to perform a task. We confirmed that small modifications
to the prompts enabled ChatGPT to generate an action sequence involving the arms (Fig. 16). Additionally, we verified that
employing a separate ChatGPT process enables the coordination of multiple arms by composing sets of task plans (Fig. 17).
These results suggest the feasibility of extending the proposed task planner to handle multiple arms and robots.

C. Managing environmental changes

One unique aspect of our approach is that we explicitly handle changes in environmental information by incorporating
it as part of the input to and output of ChatGPT, respectively. In the context of Minsky’s frame theory [36], environmental
information can serve as “frames” that guide ChatGPT in selecting the most appropriate plan among a multitude of task planning
options. Moreover, enabling ChatGPT to be aware of environmental information may enhance its ability to output consistent
task plans [37]. However, a limitation of this approach is the necessity to prepare environmental information, specifically for

Fig. 15. An example of using separate ChatGPT process to generate higher-level conditional branching control by reading out stored task plans.

the initial instance of task planning (Fig. 8). In future studies, we aim to explore a separate ChatGPT process to prepare this
information based on a symbolic scene understanding given either by a vision encoder or through human explanation (Fig. 18).

Additionally, our current approach assumes static environments, where changes are attributed solely to the robot’s actions,
and the environment remains consistent from task planning to execution. However, real-world scenarios frequently involve
dynamic changes, such as the movement, introduction, or disappearance of objects, including people. Addressing such dynamic
environments in task planning is an important direction for future research.

D. Connection with vision systems and robot controllers

Among recent experimental attempts that used ChatGPT for task planning, our work is unique in its focus on the generation
of robot action sequences, addressing the “what-to-do” aspect, and we consciously avoid redundant language instructions related
to visual and physical parameters, such as how to grab [39]–[41], where to focus [42], and what posture to adopt [32], [43],
which are part of the “how-to-do” aspect. Both types of information are vital for robot operation [44], yet the “how-to-do”
aspect is often more effectively demonstrated visually. Therefore, our design approach is such that the “what-to-do” is obtained
by a vision system or a robot system following task planning, which is outside the scope of this paper.

As part of our efforts to develop a realistic robotic operation system, we have integrated our proposed task planner with
a learning-from-observation system (Fig. 19) incorporating a speech interface [45], [46], a visual teaching interface [47], a
reusable robot skill library [48], [49], and a simulator [50]. The code for the teaching system is available at: https://github.
com/microsoft/cohesion-based-robot-teaching-interface. For reference, details of the robotic system—including how the output
of ChatGPT are specifically translated into robot actions that are quantitatively controlled, how the system handles errors or
unanticipated situations, and the timing for user feedback within the overall system—are provided in Appendix C.

V. METHODOLOGICAL CONSIDERATIONS

A. Token limit

Our proposed prompts aim to estimate the post-operation environment as a hint for subsequent task planning. This approach
can alleviate the impact of the token limit imposed on ChatGPT, as it reduces the burden of maintaining lengthy conversation

https://github.com/microsoft/cohesion-based-robot-teaching-interface
https://github.com/microsoft/cohesion-based-robot-teaching-interface

Fig. 16. An example demonstrating the feasibility of ChatGPT in generating control programs that involve multiple arms or robots cooperating. Note that we
included hand laterality in every function and outputted all the objects to be manipulated, as multiple objects can be handled during the grasp-manipulation-
release operations of both hands. All the results, including the representation of the environment, can be found here: https://github.com/microsoft/ChatGPT-
Robot-Manipulation-Prompts.

histories for multi-step instructions. However, the issue of the token limit is not completely eliminated, and it might affect the
scalability of the system.

For example, if many actions need to be explained in detail, or if an environmental description becomes lengthy as the result
of including information about numerous objects, the prompts may use a significant portion of the total available tokens for
the entire conversation. In such cases, one might need to accept the system limitations imposed by the token limit and adapt a
strategy accordingly. This could involve simplifying the environmental descriptions or reducing the number of defined actions,
in accordance with the specific scenarios being addressed (e.g., kitchen tasks, bedroom tasks, or factory assembly tasks).

Furthermore, if a long action step is anticipated from an instruction, the need for user feedback in adjusting the output
of ChatGPT may lead to increased consumption of available tokens in the conversation. In such situations, truncation of the
conversation to accommodate the token limit could result in the loss of human intent included in earlier feedback (see Fig. 8).
This means that the token limit imposes certain restrictions on the length of actions that can be taught in a single instruction. If
an instruction is likely to result in a long action sequence, the instruction may need to be broken down into smaller segments.
This could help the task planning of ChatGPT, and thus reduce the amount of required feedback.

B. Optimal prompting strategies

Through our experiment with VirtualHome, we identified two failure patterns in ChatGPT: incorrect verb selection and
omission of necessary steps.

Incorrect verb selection may be partially attributable to the naming conventions used for actions. In the experiment, we
adhered to the original action names in VirtualHome, such as “Put” (an action of placing an object on another object) and
“PutIn” (an action of placing an object inside a container with a door, such as a microwave). While these terms denote
distinct actions, their similar names could potentially lead to confusion. To verify this hypothesis, we conducted a follow-up

Fig. 17. An example demonstrating the feasibility of ChatGPT in generating control programs that involve multiple arms or robots coordinating. This type
of planning is beyond the scope of this paper.

experiment where we renamed the actions to “PutSurface” and “PutContainerWithDoor,” respectively, to reflect their definitions
more accurately. This modification led to a reduction in this type of error (data not shown2), underscoring the importance of
precise action naming when instructing ChatGPT—–a finding that aligns with prior research [30].

Omission of necessary steps may partially stem from ChatGPT’s difficulty in interpreting the granularity of defined actions.
The granularity of actions implied by language is often ambiguous. For example, an instruction such as “Put food in the
microwave” could be perceived either as a single action or a sequence of more detailed actions, such as “open the microwave,
put food in it, close it.” Despite having provided action definitions in the prompt, the inherent ambiguity in language may
lead to the omission of necessary actions in task planning. To address this failure pattern, providing more examples could
effectively guide ChatGPT to decompose intended actions at the desired level of granularity. Although our initial experiments
with VirtualHome included one pick-and-place example in the prompt, a follow-up experiment confirmed that including an
example of placing food in a microwave reduced the occurrence of step omission—specifically, the omission of opening and
closing actions (data not shown2).

C. Variations in the expression of instructions

In our experiments, the instructions used were relatively explicit expressions that directly specified the actions to be performed.
While the use of LLMs in processing such expressions might not yield significantly greater benefits compared to conventional
machine learning techniques (e.g., [51]) for text processing, one advantage of LLMs is suggested to lie in their ability to
handle high-level texts [52], [53]. Therefore, as a follow-up experiment, we adjusted our instructions to focus on the desired
outcomes and objectives of the operation (e.g., “Let’s watch TV.” instead of “Turn on the TV.,” see Table V in Appendix B for
details). As a result, we observed a performance level consistent with that of the original instructions (Table VI in Appendix B).
Additionally, we tested the task planner with various instructions that contained similar intent but were worded differently for
a given scenario (e.g., “Take the book from the table and put it on the bookshelf.” and “Grab the book from the table and
place it on the bookshelf.”), and confirmed that the performance level remained consistent across variations in instruction (data
not shown2).

These results do not imply that our task planner can accommodate any forms of variation in expression, yet suggest
its effectiveness to a reasonable extent. Nevertheless, we reiterate that the robustness and soundness of the proposed task
planning can be supported more by the functionality allowing for necessary adjustments through user feedback, rather than
the performance of single-shot task planning.

D. Data privacy and security

In response to emerging concerns regarding data privacy and security, careful data handling is crucial for systems that rely
on LLMs. To address this issue, we operate ChatGPT via Azure OpenAI, a service provided by Microsoft. This service enables

2The results of the follow-up experiments can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts

https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts

Fig. 18. An example of leveraging an image description model and ChatGPT to obtain environmental information from a scene. (a) The employment of a
commercially-available image description model [38] to gain symbolic comprehension of the environment. (b) Utilizing ChatGPT to format the information
derived from the image description.

us to handle data in compliance with various legal regulations and standards related to data security and privacy, ensuring the
proper protection of user instructions and information [54]. Furthermore, Azure OpenAI includes features for content filtering
and abuse monitoring, which aid in mitigating risks associated with misuse. Thus, we believe that our task planning system can
operate while meeting industry standards for data privacy and security. However, it is essential for future work to continually
assess and improve these protective measures as our understanding of potential risks evolves.

E. Future directions

Among the pioneering studies for task planning from natural language, a significant advantage of utilizing the most recent
LLMs is their adaptability to various operational settings through few-shot learning and user feedback. These functionalities
not only remove the need for extensive data collection or model retraining but also enable user adjustments, thereby facilitating
safe and robust task planning.

While we use ChatGPT as an example of such an LLM, these capabilities are not confined to any specific model. The ability
to perform few-shot learning is considered a result of increased model sizes [1] and extended training on large datasets [55].
Furthermore, the capacity to effectively accommodate user feedback could be partially attributed to learning methods that align
model behavior with human intent, known as reinforcement learning from human feedback [56]. In fact, other models that
utilize similar training techniques, such as GPT-4 [57] and Llama2-chat [58], have been reported to possess these features.

Fig. 19. An example of integrating the proposed ChatGPT-empowered task planner into a robot teaching system. (a) A teaching system that incorporates
the task planner (indicated by the dashed box). Following task planning, the system asks the user to visually demonstrate the tasks in a step-by-step manner.
“How-to-do” parameters are then extracted from this visual demonstration. (b) (Top) The step-by-step demonstration corresponding to the planned tasks.
(Middle and Bottom) Execution of the tasks by two different types of robot hardware.

Future research will explore whether other models can yield results comparable to those found in this study when applied to
task planning.

Regarding the adjustment capability, our experiments suggested that the output of ChatGPT can be adjusted through a
reasonable amount of feedback. ChatGPT’s ability to reflect the semantic content of user feedback provides a means for users
to convey their intentions to the system. Thus, we consider that this aspect contributes to the foundation of a user-friendly
system. However, this study did not delve into how this adjustment capability directly contributes to user-friendliness of the
system. Future research areas include user studies focusing on usability and comparisons with other adjustment methods, such
as directly editing the output of ChatGPT.

VI. CONCLUSION

This paper presented a practical application of OpenAI’s ChatGPT for translating multi-step instructions into executable
robot actions. We designed input prompts to meet the common requirements in practical applications, specifically encouraging
ChatGPT to output a sequence of robot actions in a readable format and explicitly handle the environmental information
before and after executing the actions. Through experiments, we tested the effectiveness of our proposed prompts in various
environments. Additionally, we observed that the conversational capability of ChatGPT allows users to adjust the output through
natural-language feedback, which is crucial for safe and robust task planning. Our prompts and source code are open-source

and publicly available. We hope that this study will provide practical resources to the robotics research community and inspire
further developments in this research area.

ACKNOWLEDGMENT

This study was conceptualized, conducted, and written by the authors, and an AI (OpenAI’s GPT-4 model) was used for
proofreading.

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are
few-shot learners,” 2020 Advances in neural information processing systems (NeurIPS), vol. 33, pp. 1877–1901, 2020.

[2] OpenAI, “Chatgpt.” https://openai.com/blog/chatgpt. Accessed: 2023-08-05.
[3] P. Pramanick, H. B. Barua, and C. Sarkar, “Decomplex: Task planning from complex natural instructions by a collocating robot,” in 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 6894–6901, IEEE, 2020.
[4] S. G. Venkatesh, R. Upadrashta, and B. Amrutur, “Translating natural language instructions to computer programs for robot manipulation,” in 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1919–1926, IEEE, 2021.
[5] I. Yanaokura, N. Wake, K. Sasabuchi, R. Arakawa, K. Okada, J. Takamatsu, M. Inaba, and K. Ikeuchi, “A multimodal learning-from-observation towards

all-at-once robot teaching using task cohesion,” in 2022 IEEE/SICE International Symposium on System Integration (SII), pp. 367–374, IEEE, 2022.
[6] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu, and L. Fan, “Vima: General robot manipulation with

multimodal prompts,” arXiv preprint arXiv:2210.03094, 2022.
[7] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task transformer for robotic manipulation,” in Conference on Robot Learning, pp. 785–

799, PMLR, 2023.
[8] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang, R. Julian, et al., “Do as i can, not as i say: Grounding

language in robotic affordances,” in Conference on Robot Learning, pp. 287–318, PMLR, 2023.
[9] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar, et al., “Inner monologue: Embodied reasoning

through planning with language models,” arXiv preprint arXiv:2207.05608, 2022.
[10] Y. Ding, X. Zhang, C. Paxton, and S. Zhang, “Task and motion planning with large language models for object rearrangement,” arXiv preprint

arXiv:2303.06247, 2023.
[11] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated robot task plans

using large language models,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11523–11530, IEEE, 2023.
[12] K. Namasivayam, H. Singh, V. Bindal, A. Tuli, V. Agrawal, R. Jain, P. Singla, and R. Paul, “Learning neuro-symbolic programs for language guided

robot manipulation,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 7973–7980, IEEE, 2023.
[13] Z. Zhao, W. S. Lee, and D. Hsu, “Differentiable parsing and visual grounding of natural language instructions for object placement,” in 2023 IEEE

International Conference on Robotics and Automation (ICRA), pp. 11546–11553, IEEE, 2023.
[14] Y. Ding, X. Zhang, S. Amiri, N. Cao, H. Yang, C. Esselink, and S. Zhang, “Robot task planning and situation handling in open worlds,” arXiv preprint

arXiv:2210.01287, 2022.
[15] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani, et al., “Socratic models:

Composing zero-shot multimodal reasoning with language,” arXiv preprint arXiv:2204.00598, 2022.
[16] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng, “Code as policies: Language model programs for embodied control,”

in 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 9493–9500, IEEE, 2023.
[17] S. S. Raman, V. Cohen, E. Rosen, I. Idrees, D. Paulius, and S. Tellex, “Planning with large language models via corrective re-prompting,” arXiv preprint

arXiv:2211.09935, 2022.
[18] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh, “Translating natural language to planning goals with large-language models,” arXiv preprint

arXiv:2302.05128, 2023.
[19] A. K. Kovalev and A. I. Panov, “Application of pretrained large language models in embodied artificial intelligence,” Doklady Mathematics, vol. 106,

pp. S85 – S90, 2022.
[20] M. A. Khan, M. Kenney, J. Painter, D. Kamale, R. Batista-Navarro, and A. Ghalamzan-E, “Natural language robot programming: Nlp integrated with

autonomous robotic grasping,” arXiv preprint arXiv:2304.02993, 2023.
[21] F. Kaynar, S. Rajagopalan, S. Zhou, and E. Steinbach, “Remote task-oriented grasp area teaching by non-experts through interactive segmentation and

few-shot learning,” arXiv preprint arXiv:2303.10195, 2023.
[22] M. Skreta, N. Yoshikawa, S. Arellano-Rubach, Z. Ji, L. B. Kristensen, K. Darvish, A. Aspuru-Guzik, F. Shkurti, and A. Garg, “Errors are useful prompts:

Instruction guided task programming with verifier-assisted iterative prompting,” arXiv preprint arXiv:2303.14100, 2023.
[23] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models as zero-shot planners: Extracting actionable knowledge for embodied agents,” in

International Conference on Machine Learning, pp. 9118–9147, PMLR, 2022.
[24] C. Lynch and P. Sermanet, “Language conditioned imitation learning over unstructured data,” arXiv preprint arXiv:2005.07648, 2020.
[25] J. Pan, G. Chou, and D. Berenson, “Data-efficient learning of natural language to linear temporal logic translators for robot task specification,” arXiv

preprint arXiv:2303.08006, 2023.
[26] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion: From natural language instructions to feasible plans,” arXiv preprint

arXiv:2303.12153, 2023.
[27] C. Zhao, S. Yuan, C. Jiang, J. Cai, H. Yu, M. Y. Wang, and Q. Chen, “Erra: An embodied representation and reasoning architecture for long-horizon

language-conditioned manipulation tasks,” IEEE Robotics and Automation Letters, 2023.
[28] H. Liu, L. Lee, K. Lee, and P. Abbeel, “Instruction-following agents with multimodal transformer,” arXiv preprint arXiv:2210.13431, 2022.
[29] O. Mees, J. Borja-Diaz, and W. Burgard, “Grounding language with visual affordances over unstructured data,” in 2023 IEEE International Conference

on Robotics and Automation (ICRA), pp. 11576–11582, IEEE, 2023.
[30] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for robotics: Design principles and model abilities,” Microsoft Auton. Syst. Robot. Res,

vol. 2, p. 20, 2023.
[31] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba, “Virtualhome: Simulating household activities via programs,” in 2018 IEEE

International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8494–8502, 2018.
[32] N. Wake, R. Arakawa, I. Yanokura, T. Kiyokawa, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi, “A learning-from-observation framework: One-shot robot

teaching for grasp-manipulation-release household operations,” in 2021 IEEE/SICE International Symposium on System Integration (SII), IEEE, 2021.
[33] K. Ikeuchi, N. Wake, R. Arakawa, K. Sasabuchi, and J. Takamatsu, “Semantic constraints to represent common sense required in household actions for

multi-modal learning-from-observation robot,” arXiv preprint arXiv:2103.02201, 2021.
[34] H. T. Kuhn and W. L. Inequalities, “Related systems,” Annals of Mathematic Studies, Princeton Univ. Press. EEUU, 1956.

https://openai.com/blog/chatgpt

[35] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al., “Evaluating large language
models trained on code,” arXiv preprint arXiv:2107.03374, 2021.

[36] M. L. Minsky, “Minsky’s frame system theory,” in Proceedings of the 1975 Workshop on Theoretical Issues in Natural Language Processing, TINLAP
’75, (USA), p. 104–116, Association for Computational Linguistics, 1975.

[37] M. Gramopadhye and D. Szafir, “Generating executable action plans with environmentally-aware language models,” arXiv preprint arXiv:2210.04964,
2022.

[38] Microsoft, “Microsoft azure.” https://azure.microsoft.com/. Accessed: 2023-08-05.
[39] N. Wake, K. Sasabuchi, and K. Ikeuchi, “Grasp-type recognition leveraging object affordance,” HOBI–RO-MAN Workshop, 2020.
[40] N. Wake, D. Saito, K. Sasabuchi, H. Koike, and K. Ikeuchi, “Text-driven object affordance for guiding grasp-type recognition in multimodal robot

teaching,” Machine Vision and Applications, vol. 34, no. 4, p. 58, 2023.
[41] D. Saito, N. Wake, K. Sasabuchi, H. Koike, and K. Ikeuchi, “Contact web status presentation for freehand grasping in mr-based robot-teaching,” in

Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, pp. 167–171, 2021.
[42] N. Wake, I. Yanokura, K. Sasabuchi, and K. Ikeuchi, “Verbal focus-of-attention system for learning-from-demonstration,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA), pp. 10377–10384, IEEE, 2021.
[43] K. Sasabuchi, N. Wake, and K. Ikeuchi, “Task-oriented motion mapping on robots of various configuration using body role division,” IEEE Robotics

and Automation Letters, vol. 6, no. 2, pp. 413–420, 2020.
[44] K. Ikeuchi, J. Takamatsu, K. Sasabuchi, N. Wake, and A. Kanehira, “Applying learning-from-observation to household service robots: three common-sense

formulations,” arXiv preprint, 2023.
[45] N. Wake, M. Fukumoto, H. Takahashi, and K. Ikeuchi, “Enhancing listening capability of humanoid robot by reduction of stationary ego-noise,” IEEJ

Transactions on Electrical and Electronic Engineering, vol. 14, no. 12, pp. 1815–1822, 2019.
[46] J. Jaroslavceva, N. Wake, K. Sasabuchi, and K. Ikeuchi, “Robot ego-noise suppression with labanotation-template subtraction,” IEEJ Transactions on

Electrical and Electronic Engineering, vol. 17, no. 3, pp. 407–415, 2022.
[47] N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi, “Interactive task encoding system for learning-from-observation,” in 2023 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1061–1066, 2023.
[48] J. Takamatsu, K. Sasabuchi, N. Wake, A. Kanehira, and K. Ikeuchi, “Learning-from-observation system considering hardware-level reusability,” arXiv

preprint arXiv:2212.09242, 2022.
[49] D. Saito, K. Sasabuchi, N. Wake, J. Takamatsu, H. Koike, and K. Ikeuchi, “Task-grasping from a demonstrated human strategy,” in 2022 IEEE-RAS 21st

International Conference on Humanoid Robots (Humanoids), pp. 880–887, IEEE, 2022.
[50] K. Sasabuchi, D. Saito, A. Kanehira, N. Wake, J. Takamatsu, and K. Ikeuchi, “Task-sequencing simulator: Integrated machine learning to execution

simulation for robot manipulation,” arXiv preprint arXiv:2301.01382, 2023.
[51] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, “Robots that use language,” Annual Review of Control, Robotics, and Autonomous Systems,

vol. 3, pp. 25–55, 2020.
[52] Y. Ye, H. You, and J. Du, “Improved trust in human-robot collaboration with chatgpt,” IEEE Access, vol. 11, pp. 55748–55754, 2023.
[53] Z. G. Cai, D. A. Haslett, X. Duan, S. Wang, and M. J. Pickering, “Does chatgpt resemble humans in language use?,” arXiv preprint arXiv:2303.08014,

2023.
[54] Microsoft, “Azure openai - data privacy.” https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy. Accessed: 2023-08-05.
[55] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark, et al., “Training

compute-optimal large language models,” arXiv preprint arXiv:2203.15556, 2022.
[56] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., “Training language models to

follow instructions with human feedback,” 2022 Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 27730–27744, 2022.
[57] OpenAI, “Gpt-4.” https://openai.com/research/gpt-4. Accessed: 2023-08-05.
[58] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama 2: Open foundation

and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.

APPENDIX A
DETAILED PROMPT FOR DEFINING ROBOT ACTIONS

Fig. 20 provides the unabridged prompt that is exemplified in Section II-B. It includes the list of robot actions and their
definitions.

Necessary and sufficient robot actions are defined as follows:
"""
"ROBOT ACTION LIST"
- move_hand(): Move the robot hand from one position to another with/without grasping an object.
- grasp_object(): Grab an object.
- release_object(): Release an object in the robot hand.
- move_object(): Move the object grabbed by the robot hand from one position to another. move_object() is allowed only when the object is not physically constrained by
the environment. For example, if the robot hand moves an object on the floor to another location, move_object() is not allowed because the object is constrained by the floor.
- detach_from_plane(): This action can only be performed if an object is grabbed. Move the grabbed object from a state in which it is constrained by a plane to a state in
which it is not constrained by any plane. For example, detach_from_plane() is used when a robot hand picks up an object on a table.
- attach_to_plane(): This action can only be performed if an object is grabbed. The opposite operation of detach_from_plane().
- open_by_rotate(): This action can only be performed if an object is grabbed. Open something by rotating an object that is rotationally constrained by its environment along
its rotation. For example, when opening a refrigerator, the refrigerator handle makes this motion. Also, when opening the lid of a plastic bottle, the lid makes this motion.
- adjust_by_rotate(): This action can only be performed if an object is grabbed. Rotate an object that is rotationally constrained by its environment along its rotation. For
example, when adjusting the temperature of a refrigerator, the temperature knob makes this motion.
- close_by_rotate(): This action can only be performed if an object is grabbed. The opposite operation of open_by_rotate().
- open_by_slide(): This action can only be performed if an object is grabbed. Moves an object that is translationally constrained in two axes from its environment along
one unbounded axis. For example, when opening a sliding door or drawer, the handle makes this movement.
- adjust_by_slide(): This action can only be performed if an object is grabbed. Slide an object that is translationally constrained in two axes from its environment along one
unbounded axis. For example, when widen the gap between a sliding door and the wall, the handle makes this movement.
- close_by_slide(): This action can only be performed if an object is grabbed. The opposite operation of open_by_slide().
- wipe_on_plane(): This action can only be performed if an object is grabbed. Move an object landing on a plane along two axes along that plane. For example, when
wiping a window with a sponge, the sponge makes this motion.
"""

Fig. 20. The prompt explaining the robotic functions.

https://azure.microsoft.com/
https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy
https://openai.com/research/gpt-4

APPENDIX B
SUPPLEMENTARY INFORMATION FOR VIRTUALHOME EXPERIMENT

This section provides supplementary information for the VirtualHome experiment discussed in Section III-C. Table IV
displays a list of pre-defined atomic actions in VirtualHome, which represent the smallest units of action. Table V illustrates
fourteen scenarios used for the experiment. The “Textual instruction” column indicates instructions that were fed into the
task planner. The “Action sequence” column shows the manually identified action sequences to achieve the scenarios. The
“Higher-level textual instruction” column displays instructions that have been adjusted to emphasize desired outcomes and
objectives of the operation. These instructions were used in a follow-up experiment that tested ChatGPT’s ability to understand
and respond to higher-level texts (See Section V-C). Table VI shows the results.

TABLE IV
THE ACTION LIST DEFINED FOR THE EXPERIMENT IN SECTION III-C

Action Description
Walktowards(arg1) Walks some distance towards a room or object.

Grab(arg1) Grabs an object.
Open(arg1) Opens an object.
Close(arg1) Closes an object.

Put(arg1, arg2) Puts an object on another object.
PutIn(arg1, arg2) Puts an object inside another container.

SwitchOn(arg1) Turns an object on.
SwitchOff(arg1) Turns an object off.

Drink(arg1) Drinks from an object.

APPENDIX C
AN EXAMPLE OF A ROBOT SYSTEM EXPANDING THE PROPOSED TASK PLANNER

In this supplementary section, we present an overview of our in-house robot teaching system, which serves as an illustrative
example of the proposed task planner. Importantly, our system is designed for use under the guidance of experts familiar with
robot operations and action definitions, rather than being an automatic solution for non-experts. The system’s main objective is to
simplify the robot teaching process, eliminating the need for complex coding by incorporating a method of robot programming
that uses multimodal demonstrations and language feedback.

Prerequisite: The representation of the initial environment and the sequence of instructions are assumed to have been
prepared manually.

The robot teaching system operates through the following three steps (Fig. 21):
1) Task planning (the scope of this paper): The user creates a task plan up to a desired instruction step using the proposed

task planner. If any deficiencies are found in the output sequence, the user can provide feedback to the task planner as
necessary.

2) Demonstration: The user visually demonstrates the action sequence to provide information needed for robot operation.
Specifically, the system asks the user to demonstrate each task step-by-step in front of an RGB-D camera. The vision
system then analyzes the visual demonstration and extracts the parameters needed for the robot to perform each task.

3) Robot execution: The user first simulates the action sequence and checks the results. The simulation environment is
designed to replicate the actual one [50]. If execution fails or leads to an unexpected result, the task planning and
demonstration steps are revisited as necessary. Only when safe operation is confirmed in the simulation does the user
test the action sequence in the real setup. For safety, the robot operation is tested under a condition where the user can
press the robot’s emergency stop switch at any time.

Examples of the parameters required for the robot to execute each task are provided in Table VII. In step 2, the vision system
identifies the parameters listed in the table’s second column by utilizing third-party pose recognizers and object recognizers. For
example, parameters such as the center of rotation, rotation axis, and rotation radius are estimated from the hand’s trajectory.
To represent arm postures, we have prepared 26 unit vectors that indicate 3D directions. These vectors are used to represent
the discrete orientation of upper and lower arms. Specifically, we choose the vector closest to the direction in which each
part of the arm is pointing, using it to represent that part’s direction [32]. More detailed methods for acquiring parameters are
explained in other papers [32], [42].

In Step 3, besides the aforementioned parameters, the robot system controls the robot using data from an RGB-D camera
and force sensors mounted on it (see the third column of Table VII). It is assumed that the environment at the start of the
demonstration and execution will be identical to the extent that neither the action sequence nor the discrete representation of the
posture would be affected. The robot’s vision system looks for objects again during execution and corrects slight misalignments.
For some tasks, the value of the force sensors attached to and near the end effector is used as force feedback.

The robot system computes the robot’s physical movements for tasks such as move_hand(), move_object(), and release_object()
by using inverse kinematics with postural constraint [43], following the parameters recognized by the vision system. For other

tasks, the movements are computed by pre-trained reinforcement learning policies [48], [49]. Notably, the post-operation
environment output by ChatGPT is used only as a hint for subsequent task planning but is not used during robot execution in
our robot system. It is worth reiterating that task definitions and execution methods differ depending on the design philosophy,
and this table merely illustrates one example of the implementation.

Fig. 21. Overview of the robot teaching system that integrates the proposed task planner. The process involves three main steps: Task planning, where the
user employs the task planner to create an action sequence and adjusts the result through feedback as necessary; Demonstration, where the user visually
demonstrates the action sequence to provide information needed for robot operation; and Robot Execution, where the action sequence is first simulated and
then tested. If any step fails or shows deficiencies, the previous steps can be revisited as necessary.

TABLE V
THE LIST OF SCENARIOS AND THEIR ACTION SEQUENCES USED IN THE EXPERIMENT

Scenario Textual instruction Action sequence Higher-level textual instruction
Scenario1 Take the bread from the toaster on the kitchen

counter and place it on the plate on the table.
WalkTowards(toaster),
Grab(breadslice),
WalkTowards(kitchentable),
Put(breadslice, plate)

Serve the toast on the table.

Scenario2 Take the frying pan from the counter and place
it in the sink.

WalkTowards(stove),
Grab(fryingpan),
WalkTowards(sink),
Put(fryingpan, sink)

Put away the frying pan into the sink.

Scenario3 Take the pie from the table and put it in the
microwave.

WalkTowards(kitchentable),
Grab(pie),
WalkTowards(microwave),
Open(microwave),
Putin(pie, microwave),
Close(microwave),
SwitchOn(microwave)

Heat up the pie using the microwave.

Scenario4 Take the condiment shaker from the bookshelf
and place it on the table.

WalkTowards(bookshelf),
Grab(condimentshaker),
WalkTowards(kitchentable),
Put(condimentshaker, kitchentable)

Set out the condiment shaker on the table.

Scenario5 Take the book from the table and put it on the
bookshelf.

WalkTowards(kitchentable),
Grab(book),
WalkTowards(bookshelf),
Put(book, bookshelf)

Store the book on the shelf.

Scenario6 Take the water glass from the table and drink
from it.

WalkTowards(kitchentable),
Grab(waterglass),
Drink(waterglass),
Put(waterglass, kitchentable)

Drink the water from the grass.

Scenario7 Take the salmon on top of the microwave and
put it in the fridge.

WalkTowards(microwave),
Grab(salmon),
WalkTowards(fridge),
Open(fridge),
Putin(salmon, fridge),
Close(fridge)

Chill the salmon in the fridge.

Scenario8 Turn on the TV. WalkTowards(tvstand),
SwitchOn(tv)

Let’s watch TV.

Scenario9 Put a plate that is on the table into the sink. WalkTowards(kitchentable),
Grab(plate),
WalkTowards(sink),
Put(plate, sink)

Clear away that plate into the sink.

Scenario10 Take the pie on the table and warm it using the
stove.

WalkTowards(kitchentable),
Grab(pie),
WalkTowards(stove),
Open(stove),
Putin(pie, stove),
Close(stove)
SwitchOn(stove)

Warm the pie using the stove.

Scenario11 Put the sponge in the sink and wet it with water. WalkTowards(kitchencounter),
Grab(washingsponge),
WalkTowards(sink),
Put(washingsponge, sink),
SwitchOn(faucet)

Wet the sponge.

Scenario12 Take the knife from the table and move it to
another place on the table.

WalkTowards(kitchentable),
Grab(cutleryknife),
WalkTowards(kitchentable),
Put(cutleryknife, kitchentable)

Find another place for the knife.

Scenario13 Take the plate from the table and move it to
another place on the table.

WalkTowards(kitchentable),
Grab(plate),
WalkTowards(kitchentable),
Put(plate, kitchentable)

Reposition that plate.

Scenario14 Take the condiment bottle from the bookshelf
and put it on the table.

WalkTowards(bookshelf),
Grab(condimentbottle),
WalkTowards(kitchentable),
Put(condimentbottle, kitchentable)

Place the condiment bottle on the table.

TABLE VI
EXECUTABILITY OF THE OUTPUT ACTION SEQUENCE ACROSS TRIALS (HIGHER-LEVEL TEXTUAL INSTRUCTION). “1” INDICATES SUCCESS, AND “0”

INDICATES FAILURE.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Trial 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1
Trial 2 1 0 0 0 1 1 0 1 0 0 0 1 1 1
Trial 3 1 0 0 0 1 1 0 1 0 0 0 1 1 1
Trial 4 0 0 0 0 1 1 0 1 0 0 0 0 0 1
Trial 5 0 0 0 0 1 1 0 1 0 0 0 1 1 1

TABLE VII
ROBOT ACTIONS AND THE PARAMETERS OBTAINED FROM VISUAL DEMONSTRATIONS AND DURING ON-SITE ROBOT EXECUTION

Robot action Parameters obtained from corresponding visual demonstra-
tions (RGB-D images)

Parameters obtained during on-site robot execution (RGB-
D images and force sensors)

move_hand()
• The 3D positions of the manipulating hand at the first

and the last video frames.
• Whether the manipulating hand is left or right.
• The arm postures at the first and the last video frames.

NA

grasp_object()
• The 3D position of the object.
• Whether the manipulating hand is left or right.
• The arm postures at the first and the last video frames.
• The approach direction of the hand to the object.
• The grasp type according to a grasping taxonomy.

• The 3D position of the contact points where the robot’s
end effectors should engage, as determined by the grasp
type.

• The value of the force sensor attached to the robot’s end
effectors.

release_object()
• The retreat direction of the hand from the object.
• Whether the manipulating hand is left or right.
• The arm postures at the first and the last video frames.

NA

move_object()
• The 3D positions of the manipulating hand at the first

and the last video frames.
• Whether the manipulating hand is left or right.
• The arm postures at the first and the last video frames.

NA

detach_from_plane()
• The displacement when the object in hand detaches from

the plane.
• The 3D position of the manipulating hand at the last video

frame.
• Whether the manipulating hand is left or right.
• The arm postures at the first and the last video frames.

• The value of the force sensor attached to the wrist area
near the robot’s end effector.

attach_to_plane()
• The displacement when the object in hand attaches to the

plane.
• The 3D position of the manipulating hand at the first

video frame.
• Whether the manipulating hand is left or right.
• The arm postures at the first and the last video frames.

• The value of the force sensor attached to the wrist area
near the robot’s end effector.

open_by_rotate(),
adjust_by_rotate(),
close_by_rotate()

• The 3D positions of the manipulating hand across all the
video frames.

• The direction of the rotation axis.
• The position of the rotation center.
• The angle rotation.
• Whether the manipulating hand is left or right.
• The arm postures at the first and the last video frames.

• The value of the force sensor attached to the wrist area
near the robot’s end effector.

open_by_slide(),
adjust_by_slide(),
close_by_slide()

• The 3D positions of the manipulating hand across all the
video frames.

• The displacement of the sliding motion.
• Whether the manipulating hand is left or right.
• The arm postures at the first and the last video frames.

• The value of the force sensor attached to the wrist area
near the robot’s end effector.

wipe_on_plane()
• The 3D positions of the manipulating hand across all the

video frames.
• The axis that is vertical to the wiping plane.
• Whether the manipulating hand is left or right.
• The arm postures at the first and the last video frames.

• The value of the force sensor attached to the wrist area
near the robot’s end effector.

	Introduction
	ChatGPT prompts
	The role of ChatGPT
	The definition of robot actions
	Representation of the environments
	The format of the output produced by ChatGPT
	Examples of input and output
	Specific instruction from the user

	Experiments
	Multi-step manipulation of the environment
	Relocation of objects on a table
	Open a fridge/drawer door
	Wipe a window with a sponge, and throw it away

	Adjustment of the output produced by ChatGPT through user feedback
	Quantitative evaluation of task decomposition performance of ChatGPT
	Experimental setup
	Results

	Discussion: towards more general robotic applications
	Handling of conditional branching
	Collaboration of multiple arms and robots
	Managing environmental changes
	Connection with vision systems and robot controllers

	Methodological considerations
	Token limit
	Optimal prompting strategies
	Variations in the expression of instructions
	Data privacy and security
	Future directions

	Conclusion
	References
	Appendix A: Detailed prompt for defining robot actions
	Appendix B: Supplementary information for VirtualHome Experiment
	Appendix C: An example of a robot system expanding the proposed task planner

