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ABSTRACT
Graph neural networks (GNNs) have seen widespread usage across

multiple real-world applications, yet in transductive learning, they

still face challenges in accuracy, efficiency, and scalability, due to

the extensive number of trainable parameters in the embedding

table and the paradigm of stacking neighborhood aggregations.

This paper presents a novel model called xGCN for large-scale net-

work embedding, which is a practical solution for link predictions.

xGCN addresses these issues by encoding graph-structure data in

an extreme convolutional manner, and has the potential to push

the performance of network embedding-based link predictions to a

new record. Specifically, instead of assigning each node with a di-

rectly learnable embedding vector, xGCN regards node embeddings

as static features. It uses a propagation operation to smooth node

embeddings and relies on a Refinement neural Network (RefNet) to

transform the coarse embeddings derived from the unsupervised

propagation into new ones that optimize a training objective. The

output of RefNet, which are well-refined embeddings, will replace

the original node embeddings. This process is repeated iteratively

until the model converges to a satisfying status. Experiments on

three social network datasets with link prediction tasks show that

xGCN not only achieves the best accuracy compared with a series

of competitive baselines but also is highly efficient and scalable.
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1 INTRODUCTION
Graph structure data, such as social networks, knowledge graphs,

and molecular graphs, is prevalent in modern life. Graph embed-

ding [8] has been shown to be an effective technique for repre-

senting graph structure data by encoding each node with a low-

dimensional vector. In recent years, research interests have shifted

from shallow graph embeddings [9, 21, 23] towards graph neural
networks (GNNs) [29] due to their superior ability to explicitly en-

code useful patterns from the high-order neighborhood [26, 27].

In this paper, we examine the case of embedding social networks,

where a user’s neighborhood on the graph plays a crucial role in

representing the user, and its application in social link prediction.

In the inductive graph representation learning tasks [10], the

nodes are associated with attributes, and all trainable parameters

come from the graph neural networks: Θ = {Θ𝑊 }. However, in
classical network embedding tasks, each node is associated with a 𝑑-

dimensional embedding vector which is trainable, so the parameter

set becomes Θ = {Θ𝑊 ,Θ𝐸 }. Θ𝐸 is called the embedding table and

denoted by E hereinafter. Mainstream methods of GNNs usually

follow a general paradigm: aggregating messages from neighbors,

performing some transformation, stacking these two steps multiple

times to acquire high-order neighborhood information, and learn-

ing all the parameters by stochastic gradient descent (SGD). Potential

https://doi.org/10.1145/3543507.3583340
https://doi.org/10.1145/3543507.3583340
https://doi.org/10.1145/3543507.3583340
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Figure 1: An overview of the key components in xGCN

drawbacks of this paradigm are three-fold: (1) The neighborhood

size increases exponentially with the hop distance, which can easily

cause the over-smoothness problem and scalability issue; (2) For a

graph with 𝑁 nodes, the embedding table E alone has𝑂 (𝑁𝑑) learn-
able parameters, which makes GNNs hard to parallelize (because

the communication cost will dominate the computational cost); (3)

Parameters in Θ𝑊 and in Θ𝐸 have different properties (e.g., Θ𝑊
is dense while Θ𝐸 is sparse), however, both of them are updated

by gradient back-propagation in a unified framework. It together

with the existence of gradient vanishing and gradient explosion

issues, may lead to sub-optimal performance in both the training

efficiency and final accuracy of GNNs. Thus, in some prior studies,

researchers find that removing Θ𝑊 and retaining only Θ𝐸 can yield

better performance [12] for link predictions.

In this paper, we propose a brand-new GNN named xGCN, which

is short for extreme graph convolutional network, for social link pre-

dictions. Our motivations come from a series of prior studies: (1)

RandNE [34] demonstrates that the network structure information

can be preserved with iteratively embedding propagation without

any trainable parameters; (2) LightGCN [12] indicates that in the

embedding propagation framework, when the node embedding is

trainable with some supervised labels such as link predictions, the

quality of node embeddings can further be improved; (3) [6, 15]

demonstrate that the Feed Forward Network (FFN) plays a key role

in memorizing knowledge and performing essential information

transformation in the Transformer architecture. Thus, we aban-

don the classical paradigm of GNN, which is denoted as [neighbors
aggregation, transformation, stacking, SGD(Θ𝑊 ,Θ𝐸 )] for simplic-

ity. Instead, we propose a new paradigm of iterative [Propagation,
Refinement, SGD(Θ𝑊 ), Refresh], which integrates the motivations

of message propagation, controllable embeddings, and message

distillation. An overview of this process is illustrated in Figure 1.

Similar to RandNE, the node embeddings in xGCN are not train-

able, thus, we can get rid of the 𝑂 (𝑁𝑑) embedding table and the

model is feasible for parallelization. We first perform a step of em-

bedding propagation to encode the network structure information

into node embeddings (Figure 1-(i)). We argue that as long as a

node embedding carries a certain amount of graph structure infor-

mation, an FFN module can perform information transformation

so that node embeddings are refined to a better status (Figure 1-

(ii)). Trainable parameters are located only in the FFN module, and

they are updated by SGD. After the FFN is optimized, we refresh

the embedding table with the output of FFN (Figure 1-(iii)). In this

way, the embedding table gets updated in one shot rather than

in a slow, iterative manner with SGD (such as the mechanism in

LightGCN [12]).

We conduct link prediction experiments on three real-world

social network datasets. xGCN consistently outperforms a set of

competitive baselines such as GAMLP and PPRGo. This demon-

strates that the new GNN framework can learn high-quality embed-

dings for various social networks. Besides the accuracy advantage,

we also conduct training efficiency studies and verify that xGCN

converges much faster than classical GNN models. At last, to test

the scalability, we train xGCN on a 100 million Xbox graph with a

single machine, using only 92 GB RAM and 11 hours to converge,

and it can outperform node2vec by a large margin. To summarize,

• We propose a novel model xGCN for social link prediction, which

gets rid of the traditional GNN paradigm and achieves better ac-

curacy, efficiency, and scalability with less trainable parameters.

• We design three core components, including propagation, the

refinement network, and a refresh control mechanism, to make

xGCN effective and robust across different social networks.

• We conduct experiments on three datasets to demonstrate the

superiority of xGCN on effectiveness, efficiency, and scalability.

Our code is released at https://github.com/CGCL-codes/xGCN.

2 METHODOLOGIES
2.1 Task Definition
Graph embedding for link predictions. Given a graph G =

(V, E) containing |V| = 𝑁 nodes and |E | = 𝑀 edges. The edges

of G can also be formulated as an adjacency matrix A ∈ R𝑁×𝑁 ,

with A𝑢𝑣 = 1 indicating an edge from node 𝑢 to node 𝑣 . A diagonal

matrix D stores the degree of each node: D𝑢𝑢 =
∑𝑁
𝑘=1

A𝑢𝑘 . Our

goal is to learn an embedding model 𝑓 which can represent each

node 𝑣 ∈ V with a 𝑑-dimensional embedding vector x𝑣 = 𝑓 (𝑣 |G),
x𝑣 ∈ R𝑑 , so that the occurrence probability of an edge between two

nodes 𝑢 and 𝑣 can be measured by their dot-product 𝑦𝑢𝑣 = x𝑇𝑢 x𝑣 .

https://github.com/CGCL-codes/xGCN
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2.2 The Framework of xGCN
Mainstream graph embedding models usually allocate a learnable

embedding table E ∈ R𝑁×𝑑 . It together with some additional graph

neural network parametersΘ𝑊 , constitutes the trainable parameter

set of 𝑓 , i.e., Θ = {Θ𝑊 ,Θ𝐸 }. However, when the size of the graph

is large, which is the common case for real-world social networks,

the trainable embedding table E becomes the bottleneck causing

training efficiency and scalability problems. In xGCN, we propose a

totally different approach, in which there are three key operations,

including embedding propagation, embedding refinement, and em-
bedding refresh. These three operations are executed in a chain and

will be repeated for multiple iterations until convergence, with the

fundamental goal of learning graph-structure-aware node embed-

dings. In contrast to existing GNNs, the embedding table in xGCN

is not the trainable parameter, and all trainable parameters lie in a

refinement neural network, i.e., Θ = {Θ𝑊 }. To distinguish from a

trainable embedding table, we use Z to denote the base embedding

table of xGCN. We initialize Z randomly and then perform a graph

convolutional operation to smooth nearby nodes’ embedding as

well as propagate node information along the graph structure. Next,

we train a Refinement neural Network (denoted as RefNet) to trans-
form the current embeddings into new embeddings X, with the

goal to preserve useful signals and filter out noises. The parameters

of RefNet will be updated by normal gradient descent methods

such as SGD. Third, when the RefNet is well trained, which means

that it can output higher quality embeddings, we replace Z with X,

which we refer to as the embedding refresh operation. These three

operations are repeated with multiple iterations until the model

converges to a satisfying status. The overview of xGCN is illus-

trated in Figure 1 and Algorithm 1. Details for each key operation

are as follows.

2.3 Key Components
2.3.1 Embedding propagation. We assume that the unique in-

formation for each node is stored in the corresponding embedding

vector in Z. At the very beginning, Z is initialized as a random

matrix. Since the local neighborhood is important to depict a node,

we aggregate neighbors to derive the node’s new representation,

so that the network structure information is strengthened:

E← PZ (1)

where P is the propagation matrix of the graph, it stands for the

direction of information to be smoothed and can have different

implementations, such as the normalized adjacency matrix Ã of

G (i.e., information is propagated to the first order neighborhood):

Ã = D−1/2AD−1/2, or the top-𝑘 PPR neighbors matrix Π̃ (i.e., prop-

agate to the most influential neighbors for the center node), or

multiplication of normalized adjacency matrix: Ã2
(i.e., propagate

to the second order neighborhood). We empirically find that using

Ã can achieve the best performance.

2.3.2 RefNet learning. Embedding propagation is an unsuper-

vised operation. Although it can encode graph structure informa-

tion, unfortunately, it also brings a lot of noise. To extract use-

ful information and filter out noise, we design a RefNet compo-

nent to learn to transform relatively lower-quality embeddings into

ones that better encode the graph structure. RefNet is composed

of a Feed-Forward Network (FFN) and a Scaling Neural Network
(SNN). The last hidden layer of FFN does not include an activa-

tion function, while the rest of the hidden layers use Tanh as an

activation function. A design principle for FFN is that the middle

layers need a significantly larger dimension than the input vec-

tor. E.g., a 2-layer FFN with an input embedding size being 64 is

[𝐿𝑖𝑛𝑒𝑎𝑟 (64, 1024),𝑇𝑎𝑛ℎ, 𝐿𝑖𝑛𝑒𝑎𝑟 (1024, 64)], where 𝐿𝑖𝑛𝑒𝑎𝑟 indicates
multiplying a parameter matrix and then adding a bias vector. The

SNN is a smaller neural network that outputs a single scalar be-

tween (0, 1), which shapes the magnitude of FFN’s output vectors

to a proper level. We empirically find that the normalization of

the last layer of FFN is important and SNN performs much better

than others such as Tanh and L2-normalization. The SNN’s struc-

ture is [𝐿𝑖𝑛𝑒𝑎𝑟 (64, 32),𝑇𝑎𝑛ℎ, 𝐿𝑖𝑛𝑒𝑎𝑟 (32, 1), 𝑆𝑖𝑔𝑚𝑜𝑖𝑑]. The output of
RefNet is:

X = 𝑆𝑁𝑁 (E) · 𝐹𝐹𝑁 (E) (2)

We adopt the pair-wise ranking loss function – BPR [12] – to opti-

mize the parameters in the RefNet:

L =
1

|E |
∑︁

⟨𝑢,𝑣⟩∈E,⟨𝑢,𝑣⟩∉E
𝑠𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (𝑦𝑢,𝑣 − 𝑦𝑢,𝑣) (3)

where𝑦𝑢,𝑣 is the scorer to estimate edge probability according to the

node embeddings. Without loss of generality, in this paper, we use

dot product,𝑦𝑢,𝑣 = x𝑇𝑢 x𝑣 , as the scorer, but it can be easily extended

to other types of scorers such as Logistic Regression or Deep Neural

Networks. For each positive edge (𝑢, 𝑣) ∈ E, we randomly sample a

pair of nodes (𝑢, 𝑣) which does not exist in E as a negative instance.

2.3.3 Embedding refresh. Note that the embedding table E is not

trainable during the learning process of RefNet. After the RefNet is

well trained, the resulting embeddings can represent a better state

of the node representations, so we replace the embedding table

with RefNet’s output:

Z← X (4)

2.3.4 Training strategy. During the training of xGCN, the three

operations – embedding propagation, RefNet learning, and embed-

ding refresh – are repeatedly executed. One challenge is how to

coordinate between RefNet learning and embedding refresh. Since

these two components are not optimized with derivable parameters

under an end-to-end framework, if the refresh operation is per-

formed at an improper time, RefNet’s optimization may be severely

impacted (see experiments in Section 3.5, setting K=0 and K=Inf,

and Section 3.6). To address this challenge, we design a simple yet

effective refresh controlling mechanism: during a warm-up stage,

the representation refresh operation and propagation operation are

performed after the RefNet is updated for 𝑇 epochs; there are in

total 𝐾 times refresh/propagation operations in the warm-up stage,

where both𝑇 and 𝐾 are hyper-parameters; after the warm-up stage,

embeddings will not be refreshed at a regular frequency; instead,

we use the validation set to detect the best epoch of embeddings

up to now. If the RefNet can no longer improve the metrics on

the validation set for 𝑇𝑡𝑜𝑙 epochs, which means the refinement for

the current input embedding table is converged, we refresh the

embedding table with the current best state of the embedding table,
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and then perform propagation, with the hope that RefNet can con-

tinue to refine the embeddings at a new start. The detailed training

algorithm is shown in Algorithm 1.

Algorithm 1 xGCN Training Process

Input: Graph G = (V, E), Hyper-parameters 𝐾 , 𝑇 , 𝑇𝑡𝑜𝑙
Output: Node embeddings X
1: Randomly initialize E and RefNet.

2: Do Propagation according to Eq.(1)

3: 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ 𝑡𝑖𝑚𝑒𝑠 ← 0

4: for 𝑒𝑝𝑜𝑐ℎ = 1 to𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ do
5: update RefNet with SGD to minimize Eq.(3)

6: if 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ 𝑡𝑖𝑚𝑒𝑠 < 𝐾 then
7: /* In the warm-up stage */

8: if epoch % T == 0 then
9: Do Refresh according to Eq.(4)

10: Do Propagation according to Eq.(1)

11: 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ 𝑡𝑖𝑚𝑒𝑠 += 1

12: end if
13: else
14: if no improvement for 𝑇𝑡𝑜𝑙 epochs then
15: Do Refresh according to Eq.(4)

16: Do Propagation according to Eq.(1)

17: end if
18: end if
19: end for

2.4 Discussions
xGCN is a new style of GNN, which includes two decoupled steps:

step-1 is to conduct message propagation, so the graph-structure

signals can be distributed to node embeddings. There are two pur-

poses designed for this step: providing graph signals and reducing

repeated subgraph computation cost. Step-2 is designed for infor-

mation refinement (RefNet) since both useful and useless signals

will be passed in step-1. Prior works such as [1] reveal that the bot-

tleneck of message-passing style GNNs lies in the over-squashing

issues, especially for long-range dependencies, which motivates us

to leverage a more powerful refinement network (RefNet) to distill

useful information from the squashed embedding.

Classical models allocate a learnable embedding vector for each

node, which will result in massive learnable parameters (for exam-

ple, 100 million nodes with 32-dimensional embedding vectors). Too

many learnable parameters usually make models hard to optimize,

prone to overfitting, and poor in generalization. xGCN puts all the

learnable parameters in RefNet, which contains fewer parameters

than the embedding table; meanwhile, RefNet is shared by all the

nodes, and its parameters do not belong to sparse parameters, so

the generalization ability is better.

2.5 Theoretical Analysis
The framework and optimization of xGCN can be formulated and

explained by the EM algorithm [20]. For notation simplicity, let

𝑥 (𝑘 ) denote the 𝑘-th data sample (which represents a pair of nodes)

and 𝑧 (𝑘 ) denote the latent variables associated with 𝑥 (𝑘 ) . Let 𝜃 (𝑡)
denote the learned parameters at time step 𝑡 . The EM algorithm

takes the following form:

Table 1: Basic statistics of datasets

# nodes # edges ave. degree density

Pokec 1,632,803 27,560,308 16.9 2.06𝑒−5
LiveJournal 4,847,571 62,094,395 12.8 5.28𝑒−6
Xbox-3m 3,000,000 80,194,576 26.7 1.78𝑒−5

E-step: Given the estimated parameter 𝜃 (𝑡) at iteration 𝑡 , compute

the expectation of latent variables:

𝑄 (𝑧 (𝑘 ) ) = 𝑝 (𝑧 (𝑘 ) |𝑥 (𝑘 ) ;𝜃 (𝑡)) (5)

M-step: Update 𝜃 to maximize the expected likelihood of the ob-

served data (which is also called the 𝑄-function):

𝑄 (𝜃 |𝜃 (𝑡)) = argmax

𝜃

E𝑧 (𝑘 )∼𝑄 (𝑧 (𝑘 ) ) [𝑙𝑜𝑔 𝑝 (𝑥 (𝑘 ) , 𝑧 (𝑘 ) |𝜃 )] (6)

The M-step is represented by Line 5 in Algorithm 1 which opti-

mizes model parameters to maximize a value function, while the

E-step is represented by Lines 6 to 18 with an implementation trick

- the probability mass function𝑄 (𝑧 (𝑘 ) ) follows a sharp distribution,
allowing us to find the maximum value instead of calculating expec-

tations. Detailed theoretical analysis can be found in Appendix A.1.

As a result, both the feasibility of the model and convergence of

the optimizer can be guaranteed by leveraging the theory of the

EM algorithm.

3 EXPERIMENTS
3.1 Experiment Setup
3.1.1 Datasets. We use two biggest social network datasets from

SNAP
1
, Pokec and LiveJournal, and one industrial dataset, Xbox,

which is a gaming social network provided by Xbox Gaming Corp.

The complete Xbox dataset contains about 100 million nodes, for a

comprehensive comparison with baselines, we sample a medium-

size subgraph including 3 million nodes and denote it as Xbox-3m.

Basic statistics are listed in Table 1. We evaluate model performance

on the node recommendation task, with details on task settings

introduced in Appendix A.2.

3.1.2 Evaluation metrics. Two widely used evaluation metrics

are adopted - Recall and Normalized Discounted Cumulative Gain
(NDCG) [12, 33]. Recall@𝐾 measures the ability to retrieve positive

target nodes among top 𝐾 recommendations, which is defined as

the number of retrieved positive nodes divided by the number of

total ground-truth positive nodes. We average all users’ individ-

ual Recall@𝐾 as the overall Recall@𝐾 indicator. NDCG measures

how well positive target nodes can be ranked to the top positions

compared with an ideal ranking order. In the experiments, for con-

ciseness, we report Recall@50, Recall@100, and NDCG@100, which

are abbreviated as R@50, R@100, and N@100, respectively.

3.1.3 Baselines. We compare xGCN against a variety of methods,

including pure propagation method RandNE [34]; shallow graph

embedding methods: node2vec [9], SimpleX [17], and UltraGCN

[18] (though named after "GCN", it does not perform graph convolu-

tion operation explicitly); competitive GNNs: GraphSAGE [10], GAT

1
http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html
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[25] and GIN [30], LightGCN [12], SGC [28], S
2
GC [35], SIGN [7],

GBP [3], GAMLP [32], and PPRGo [2]. Detailed hyper-parameters

can be found in Appendix A.3.

3.2 Overall Performance
The overall accuracy performance comparison is summarized in

Table 2. For all the datasets, we repeat each model 5 times and report

the average scores with standard deviations. We have the following

observations: (1) On all three datasets, xGCN outperforms baseline

models by a large margin. E.g., when compared with the best base-

line in terms of Recall@100, xGCN achieves a performance gain of

15.34% on Pokec, 16.20% on LiveJournal, and 48.18% on Xbox-3m.

(2) GNNmethods, such as GraphSAGE, GAT, and GIN, are generally

better than shallow graph embedding methods, which is in line

with the intuition. GNNs explicitly encode meaningful information

from the neighborhood to strengthen a node’s representation, in

theory, they have stronger expressiveness than shallow embedding

methods. (3) In most cases, simplified GNNs (such as LightGCN and

PPRGo) outperform non-simplified ones (GraphSAGE, GAT, and

GIN). On Pokec and LiveJournal, the performance of non-simplified

GNNs is significantly much worse than PPRGo, even when their

base embedding tables are warmed-up with a well-trained node2vec

model, while PPRGo is trained from scratch. These observations

are consistent with some related works [12, 28]. In the scenario of

node recommendations, embedding transformation, and nonlinear

activation may bring difficulty for model training, and thus, de-

grade models’ performance. Different from GraphSAGE, GAT, and

GIN, xGCN moves embedding transformation and nonlinear acti-

vation from graph convolutions to a refinement network, leaving

the message propagation process parameter-free.

To investigatewhether xGCN exhibits unfairness, such as its high

overall accuracy being achieved by diminishing the performance

of some nodes to greatly enhance the performance of others, we

plot the accuracy by group in Figure 2. We compare node2vec and

PPRGo since node2vec is themost classical node embeddingmethod

and PPRGo is the best baseline method on Pokec and LiveJournal.

We sort nodes by their degree in ascending order and then split

nodes into 10 percentiles. E.g., 0 on the x-axis in Figure 2 means

the nodes whose degree belongs to the 0 − 10% percentile. We can

observe that xGCN consistently outperforms baselines in all the

node groups, which demonstrates that the superiority of xGCN

comes from its true power rather than playing some distribution

tricks. Another interesting observation is that nodes with lower

degrees have higher accuracy values. This phenomenon indicates

that users’ earlier social relationships are easier to predict.

3.3 Training Efficiency
Next, we examine the training efficiency of xGCN, compared with

LightGCN and PPRGo. All models are run with 100 epochs using

the same hardware configuration: GPU is Tesla P100, 16GB and CPU

is Intel Xeon CPU E5-2690 v4 @ 2.60GHz. For each epoch, we print

the Recall@100 score on the validation set. Figure 3 depicts the

training curves of the three models. On all three datasets, xGCN

uses far less time to converge to a satisfying status. Since xGCN

is much more lightweight than LightGCN and PPRGo, training

one epoch of xGCN takes less time than the other two GNNs. For
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Figure 2: Group-level performance of xGCN, PPRGo, and
node2vec. Nodes are evenly split into 10 groups according to
the degree in ascending order.
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Figure 3: Training efficiency study. The curves are Re-
call@100 scores on the validation set.

example, on the Xbox-3m dataset, training one epoch costs around

50 seconds for xGCN, 2000 seconds for LightGCN, and 1800 seconds

for PPRGo. Besides, on Pokec and LiveJournal, xGCN converges

with fewer epochs, thus, the total training time of xGCN is much

less than PPRGo and LightGCN. On the Xbox-3m dataset, although

xGCN takes a few more epochs to converge, the absolute time cost

of xGCN is still much less than the other two models.

3.4 Large-scale Graph with 100 Million Nodes
We test the scalability of xGCN with a real-world Xbox social net-

work that contains 100 million nodes. Our goal is to explore how

we can learn large-scale graph embeddings easily with a single

normal machine, so in this section, all the models in comparison

are run on a CPU device with large RAM. Due to the time limit, we

allow all the models to run for at most 72 hours. If a model does not

converge after 72 hours, we stop it and use its best model snapshot

to perform an evaluation. We tune a few key parameters such as
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Table 2: Overall performance comparison of different models on three datasets. Numbers are in percentage (%).

Pokec LiveJournal Xbox-3m

R@50 R@100 N@100 R@50 R@100 N@100 R@50 R@100 N@100

RandNE [34] 1.04±0.05 1.69±0.08 0.44±0.02 0.30±0.02 0.37±0.02 0.14±0.01 0.60±0.01 0.76±0.02 0.26±0.01
node2vec [9] 4.51±0.06 7.45±0.10 1.74±0.04 12.89±0.25 16.93±0.29 5.26±0.09 8.52±0.23 10.56±0.26 3.39±0.10
UltraGCN [18] 5.62±0.42 7.74±0.49 2.16±0.15 11.14±0.65 14.27±0.74 4.39±0.26 2.30±0.13 3.04±0.15 0.89±0.05
SimpleX [17] 1.01±0.06 1.53±0.10 0.44±0.03 6.82±0.32 8.70±0.34 2.64±0.12 0.77±0.01 1.01±0.06 0.30±0.01
GraphSAGE [10] 7.22±0.11 10.87±0.16 2.76±0.05 19.84±0.25 24.63±0.30 8.17±0.08 10.26±0.39 12.39±0.49 4.14±0.18
GAT [25] 4.65±0.27 7.60±0.35 1.72±0.08 17.59±0.44 22.66±0.47 6.87±0.18 5.17±0.17 7.04±0.16 1.83±0.05
GIN [30] 7.62±0.13 11.24±0.18 2.92±0.04 21.44±0.20 25.79±0.18 8.99±0.10 10.24±0.08 12.00±0.11 4.38±0.04
SGC [28] 6.01±0.00 10.24±0.00 2.18±0.00 12.43±0.10 16.52±0.10 473±0.07 5.18±0.04 7.20±0.05 2.03±0.02
S
2
GC [35] 7.15±0.00 10.72±0.00 2.59±0.00 14.67±0.34 20.30±0.26 4.82±0.13 7.64±0.07 10.21±0.06 2.89±0.03

SIGN [7] 5.58±0.76 9.38±0.99 2.00±0.24 15.84±0.40 19.09±0.55 6.55±0.14 7.64±0.06 9.12±0.11 3.25±0.04
GBP [3] 9.24±0.15 13.23±0.20 3.49±0.04 22.65±0.32 27.36±0.27 9.55±0.09 12.07±0.24 14.30±0.26 4.92±0.11
GAMLP [32] 12.50±0.25 17.22±0.33 4.58±0.11 24.77±0.39 30.01±0.35 10.22±0.19 11.39±0.26 13.48±0.26 4.68±0.12
LightGCN [12] 12.26±0.63 17.55±0.72 4.78±0.23 21.74±0.35 27.49±0.39 8.26±0.14 5.91±0.11 7.98±0.11 2.21±0.05
PPRGo [2] 13.99±0.19 18.58±0.20 5.30±0.08 25.48±0.58 31.30±0.59 9.54±0.16 10.64±0.08 12.27±0.09 4.22±0.04
xGCN [ours] 16.07±0.21 21.43±0.24 6.25±0.06 31.44±0.09 36.37±0.14 13.41±0.09 18.52±0.18 21.19±0.09 7.61±0.09
Improv. +14.87% +15.34% +17.92% +23.39% +16.20% +31.21% +53.43% +48.18% +54.67%

Table 3: Results of training on 100m Xbox social graph

R@100 N@100 #. param Training Time

RandNE 0.18 0.09 0 16 minutes

node2vec 2.50 0.54 3.2𝑒9 72 hours

LightGCN 0.42 0.14 3.2𝑒9 72 hours

PPRGo 3.68 1.19 3.2𝑒9 72 hours

GraphSAGE 4.54 1.43 3.2𝑒9 + 1𝑒4 72 + 30 hours

GBP 4.54 1.48 3.2𝑒9 + 6.7𝑒4 72 + 15 hours

xGCN 6.10 1.85 1.1𝑒6 11 hours

the learning rate and GCN layers so that each model can achieve

its best performance with the hard 72 hours time constraint. For

node2vec, the traditional implementations cannot scale to large

graphs due to the existence of the transition probability matrix.

To address issues, we especially implement a highly efficient and

scalable version of node2vec by ourselves. Technical details can

be referred to in Appendix A.4. Now one epoch of node2vec costs

about 24 hours. We find that directly training GraphSAGEwith each

node assigning a learnable embedding vector will lead to very poor

performance. Thus, we use node2vec’s results to initialize Graph-

SAGE’s embedding table, and we denote the Total Training Time of
GraphSAGE as 72+30 hours, with 72 hours of node2vec training and

30 hours of GraphSAGE training. For xGCN, one epoch costs about

51 minutes, and it converges at the 9th epoch, so the total training

time is less than 11 hours (because we spare some tolerance epochs

before early stopping). The CPU memory consumption of xGCN is

92 GB. The accuracy comparison is shown in Table 3, from which
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Figure 4: Comparisons of learning curves of xGCN with dif-
ferent propagation times. Each red point signifies the epoch
time at which propagation is initiated.

we can see that xGCN uses less time than all the learnable baselines

and achieves much better accuracy performance.

3.5 Ablation Study
We perform ablation studies to justify the necessity of some key

components: (1) the iterative refresh-then-propagate training frame-

work, (2) the scaling neural network (SNN) in the RefNet, and (3) the

warm-up training stage. The results are reported in Table 4 (due

to the space limitation, we move the results on the Pokec dataset

to the appendix), where we can have the following conclusions:

(i) shows that purely propagating on the randomly initialized em-

beddings is hard to encode any useful information. (ii.a) and (ii.b)

indicate that RefNet has a certain ability to transform relatively

low-quality embeddings into more representative ones, however,
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Table 4: Ablation studies for xGCN. Notation explanations:
(i) Pure-prop: only do propagation for multiple times. (ii.a)
Random-RefNet: randomly initialize the embedding table,
then learn RefNet, do not perform refresh or do propagation.
(ii.b) Prop-RefNet: first do propagation (based on (i)), then
learn RefNet. (ii.c) Prop-RefNet-refresh: first do propagation
(based on (i)), then learn RefNet, perform refresh but do no
more propagation. (iii.a) Full K=0: set 𝐾 = 0, which means re-
moving the warm-up training stage. (iii.b) Full K=Inf: set
𝐾 = ∞, which means the training process only contains
the warm-up stage. Group (iv) analyses the effectiveness of
SSN. For example, "2L-FFN-SSN" denotes the RefNet is com-
posed of a 2-layer FFN and an SSN. "Res" means replacing
the SSN with a common residual connection. "3L-FFN-SSN
(Full)" equals to the final xGCN.

LiveJournal Xbox-3m

R@50 R@100 N@100 R@50 R@100 N@100

(i) Pure-prop 0.13 0.26 0.05 0.04 0.06 0.01

(ii.a) Random-RefNet 0.19 0.32 0.07 0.59 0.73 0.21

(ii.b) Prop-RefNet 24.28 28.29 9.61 7.11 9.16 2.37

(ii.c) Prop-RefNet-refresh 24.36 28.35 9.45 9.32 10.53 3.70

(iii.a) Full K=0 29.07 32.47 12.32 14.55 16.65 5.95

(iii.b) Full K=Inf 28.96 34.61 12.24 18.05 20.81 7.29

(iv.a) 2L-FFN-Res 23.46 29.96 7.55 13.86 17.77 4.89

(iv.b) 2L-FFN-SSN 24.65 30.05 8.75 16.88 19.93 6.10

(iv.c) 3L-FFN-Res 18.93 24.17 6.47 9.95 13.67 3.30

(iv.d) 3L-FFN-SSN (Full) 31.44 36.37 13.41 18.52 21.19 7.61

only learning a RefNet is still far from achieving satisfying perfor-

mance. The comparison of (iv.d) and (ii.c) suggests that without the

propagation operation, the iterative refresh-then-training process

cannot continuously improve the quality of the embeddings. (iii.a)

and (iii.b) indicate the necessity of the two-stage training strategy

as well as the refresh controlling mechanism. (iv.a) - (iv.d) demon-

strate the necessity of the SNN, when it is replaced with a classical

ResNet [11], the performance is greatly affected, and the impact of

SNN on the 3-layer FFN is greater than it on the 2-layer FFN.

To gain a clearer understanding of the benefits of propagation

for xGCN, we fixed the maximum propagation times to 1, 3, 5, and

10 and plotted the accuracy curves on the validation set in Figure 4.

E.g., prop3means that when the propagation time reaches 3, we stop

further propagation of xGCN and only train the RefNet in the sub-

sequent epochs. full indicates a normal setting of xGCN. Each red

point in the figure indicates an epoch time when propagation is trig-

gered. Figure 4 demonstrates that propagation is critical for xGCN

to converge to a satisfying state. Inadequate times of propagation

lead to poor performance. On the other hand, the required maxi-

mum number of propagations is not large, i.e., usually, 10 is close

to the best performance. Propagation and RefNet learning should

be placed under the iterative learning framework, as a counter-

example, in Figure 4, the transverse line RandNE(10)+RefNet means

that we directly propagate the embedding for 10 times and then

start training the RefNet until it converges. Its performance is much

worse than the corresponding prop10 version, which indicates the

necessity of iterative update of propagation and RefNet.
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Figure 5: Hyper-parameter study on 𝑇 and 𝐾

Table 5: Hyper-parameter studies: comparisons of FFN struc-
tures and graph propagation methods

LiveJournal Xbox-3m

R@50 R@100 N@100 R@50 R@100 N@100

Results of different FFN structures

2-128 18.01 26.25 5.50 14.03 16.87 5.25

2-1024 24.65 30.05 8.75 16.88 19.93 6.10

3-128 20.66 28.13 6.26 13.79 16.88 4.96

3-1024 31.44 36.37 13.41 18.52 21.19 7.61

Results of different graph propagation methods

Ã 31.44 36.37 13.41 18.52 21.19 7.61
Ã2

29.26 34.86 11.84 16.97 19.83 6.63

Π̃ 23.15 29.50 8.33 15.83 18.32 6.16

3.6 Hyper-parameter Sensitivity
Here we study how xGCN is impacted by key hyper-parameters

(we report the results on the Pokec dataset in the appendix). First,

in Figure 5 we can observe that a proper setting of𝑇 and𝐾 in the re-

fresh controller is important, and the best setting differs in different

datasets. On Pokec and Xbox-3m, the model is more sensitive with

𝑇 , while on LiveJournal, the model is more sensitive with 𝐾 . In gen-

eral, a setting of [𝑇 = 3, 𝐾 = 10] can lead to a decent performance.

Moreover, Table 5 shows the impact of the FFN structure in RefNet

and graph propagation methods. As in expectation, a larger dimen-

sion size for the middle layers leads to better performance, which is

verified by comparing 2-1024 with 2-128 and comparing 3-1024 with
3-128. Meanwhile, a deeper structure can boost the performance,

e.g., 3-1024 can consistently outperform 2-1024 on three datasets.

As for graph propagation methods, we compare three candidates

for the propagation matrix P in the embedding propagation step:

first-order neighborhood Ã, second-order neighborhood Ã2
, and

the top-𝑘 PPR neighbors Π̃. The simplest one, Ã, achieves the best

performance consistently. A possible reason is that the recurrent

[propagation, refinement, refresh] process already conveys messages

from the high-order neighborhood.

3.7 Visualization of Node Embeddings
At last, we visualize node embeddings with the t-SNE package [24]

to see if the learned embeddings have community patterns. We

first partition a social graph into 100 clusters with METIS, then
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(a) node2vec (b) LightGCN (c) PPRGo (d) xGCN

Figure 6: Visualization of embeddings on the Pokec dataset. Embeddings are mapped to a 2-D space with the t-SNE toolkit. We
partition the Pokec graph by metis, then sample 8 clusters and assign each of them a dedicated color. Each point represents a
node sampled from a cluster.

tag each node with its affiliated cluster ID as its label. For better

conciseness, we randomly select 8 clusters and assign each cluster

a dedicated color. Figure 6 shows the t-SNE plots on the Pokec

dataset of four embedding models. Just like other classical models,

xGCN can also generate meaningful embeddings from which the

community information can be distinguished and the graph layout

can be clearly displayed.

4 RELATEDWORK
Shallow graph embedding. Factorization-based methods, such

as Word2Vec [19] and Matrix Factorization [14], have been suc-

cessfully applied for sparse high-dimensional data. Motivated by

them, researchers try to factorize nodes on a graph with embedding

vectors. Perozzi et al. [21] introduce the method DeepWalk, which

draws random walks over a graph and learns embedding vectors

to measure co-occurring nodes within a window size. Grover et

al. [9] argue that the random walk process should consider the

second order of graph structure, instead of only randomly select-

ing a next step from the first order neighborhood. Yao et al. [31]

propose a unified framework for random walk-based graph embed-

ding models with an efficient Metropolis-Hasting sampling method.

Instead of using random walks, Tang et al. [23] design some objec-

tive functions to encode both first-order and second-order graph

proximities. As for scalable implementations for shallow graph em-

bedding methods, PBG [16] divides nodes into 𝑛 buckets, so that the

adjacency matrix is decomposed into 𝑛 ×𝑛 non-overlapping blocks.

Multiple processes can simultaneously train edges from different

blocks with minimum data synchronization. GraphVite [36] uses a

similar approach to partition the graph, and it further introduces

some efficient collaboration strategies for acceleration with GPUs.

Graph neural networks. GNNs explicitly model a node’s neigh-

borhood information into its embedding vector with neural net-

works, they demonstrate superior performance compared with

shallow graph embedding models. Kipf and Welling [13] propose

the graph convolutional network (GCN) for semi-supervised classifi-

cation. Velickovic et al. [25] propose the graph attention networks
(GATs), which use self-attentional layers for specifying different

weights to different neighbors. Xu et al. [30] introduce a theoret-

ical framework to help analyze the expressive power of GNNs,

especially on what types of graph structures can or cannot be dis-

tinguished by some popular GNNs. He et al. [12] observe that for

the link prediction task in recommender systems, feature transfor-

mation, and nonlinear activation are useless and even reduce the

performance. Thus, they propose LightGCN, a simplified structure

of GCN. The aggregation of the neighborhood in GNNs makes them

hard to scale to large graphs. To address this issue, Hamilton et al.

[10] sample a fixed size of nodes in each hop of the neighborhood,

so that computational cost will not grow exponentially with the

number of hops. Chiang et al. [5] partition an original big graph

into subgraphs. At each mini-batch training step, the neighborhood

for convolutional operations is restricted in a selected subgraph.

Bojchevski et al. [2] introduce PPRGo, which breaks the classical

message-passing scheme of GNNs. PPRGo uses approximated Per-
sonalized Page Rank (PPR) to simplify the information diffusion

on the graph. It can bring significant speed gains while achiev-

ing competitive accuracy performance, and particularly achieves

state-of-the-art performance on social-network-related tasks.

5 CONCLUSIONS
In this paper, we present xGCN, a novel GNN model that improves

the accuracy, efficiency, and scalability of graph-based embeddings

for link prediction tasks. Unlike traditional GNNs that stack multi-

ple layers of neighborhood aggregation and optimize all parameters

through end-to-end gradient back-propagation, xGCN learns graph

structure information in a progressive [propagation, refinement,
refresh] manner, reducing the bottleneck caused by heavy train-

able embedding tables. Our experiments on three large-scale social

network datasets demonstrate the superiority of xGCN for link

predictions. This research opens up new possibilities for large-scale

graph-based embeddings in various applications such as recom-

mendation systems, social network analysis, and knowledge graph

embeddings. Future work will focus on extending xGCN to other

tasks such as node classification and designing mechanisms that

can steer the dynamics and diversity of link recommendations to

mitigate radicalization and polarization [22] in social networks.
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A APPENDIX
A.1 Theoretical Analysis
A.1.1 EM Formulation. The framework and optimization of xGCN

can be formulated and explained by the EM algorithm [20]. As

a generative process, each node 𝑖’s base embedding vector z𝑖 is
sampled from a standard Gaussian prior N(0, I𝑑 ). The base em-

bedding vector z𝑖 is transformed via a decoder 𝐷𝑒𝑐 (·) to generate

a distribution probability 𝝅 (z𝑖 ) over 𝑁 nodes indicating the edge

existence probability. In this paper, we consider the task of dense

link prediction, so we first transform z𝑖 with the refinement net-

work, denoted by z′
𝑖
= 𝑓 (z𝑖 ;𝜃,G), then use the similarity (such

as dot product or cosine similarity) of refined representations to

determine the likelihood of an edge 𝐴𝑖, 𝑗 :

𝝅 (z𝑖 ) 𝑗 ∝ 𝑒𝑥𝑝 (𝐷𝑒𝑐 (z𝑖 ;𝜃,G) 𝑗 ) = 𝑒𝑥𝑝 (𝑓 (z𝑖 ;𝜃,G) · 𝑓 (z𝑗 ;𝜃,G)) (7)

𝐴𝑖, 𝑗 ∼ 𝐵𝑒𝑟𝑛(𝝅 (z𝑖 ) 𝑗 ) (8)

where G denotes the graph structure, 𝑒𝑥𝑝 denotes a softmax trans-

formation and 𝐵𝑒𝑟𝑛 is the Bernoulli distribution. Unlike traditional

models which usually make z∗ as learnable embedding parameters

or use another graph encoder 𝐸𝑛𝑐 (·) to derive z∗ then train all

the parameters in an end-to-end manner, in xGCN, we take z∗ as
unobserved latent variables and use the EM algorithm to optimize

the model.

For notation simplicity, let 𝑥 (𝑘 ) denote the 𝑘-th data sample

(which is a pair of nodes such as 𝐴𝑖, 𝑗 ) and 𝑧 (𝑘 ) denote the latent
variables associated with 𝑥 (𝑘 ) (which is z𝑖 and z𝑗 ). Let 𝜃 (𝑡) denote
the learned parameters at time step 𝑡 . The EM algorithm takes the

following form:

E-step: Given the estimated parameter 𝜃 (𝑡) at iteration 𝑡 , compute

the expectation of latent variables:

𝑄 (𝑧 (𝑘 ) ) = 𝑝 (𝑧 (𝑘 ) |𝑥 (𝑘 ) ;𝜃 (𝑡)) (9)

M-step: Update 𝜃 to maximize the expected likelihood of the ob-

served data (which is also called the 𝑄-function):

𝑄 (𝜃 |𝜃 (𝑡)) = argmax

𝜃

E𝑧 (𝑘 )∼𝑄 (𝑧 (𝑘 ) ) [𝑙𝑜𝑔 𝑝 (𝑥 (𝑘 ) , 𝑧 (𝑘 ) |𝜃 )] (10)

We assume the probability mass function𝑄 (𝑧 (𝑘 ) ) follows a sharp
distribution, such as N(𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡)), 𝜎2I), where 𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡)) =
argmax

𝑧 (𝑘 )
𝑝 (𝑧 (𝑘 ) |𝑥 (𝑘 ) ;𝜃 (𝑡)) and 𝜎 → 0. Then, Eq. (10) can be simpli-

fied to:

𝑄 (𝜃 |𝜃 (𝑡)) = argmax

𝜃

𝑙𝑜𝑔 [ 𝑝 (𝑥 (𝑘 ) |𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡)), 𝜃 )·𝑝 (𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡)) ]

(11)

The next question is how to determine 𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡)). Here, we
use the proof by contradiction to demonstrate that 𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡))
equals to the output of the refinement network.

Proof. Assume that𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡)) does not equal to the output of
the refinement networkwhich is denoted as 𝑧′(𝑘 ) = 𝑓 (𝑧 (𝑘 ) (𝑡);𝜃 (𝑡),G).
Then, there exists another 𝑧′′(𝑘 ) = 𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡)) and 𝑧

′
(𝑘 ) ≠ 𝑧

′′
(𝑘 ) . Ac-

cording to Bayes’ theorem,

𝑝 (𝑧 (𝑘 ) |𝑥 (𝑘 ) ;𝜃 (𝑡)) =
𝑝 (𝑥 (𝑘 ) |𝑧 (𝑘 ) ;𝜃 (𝑡)) · 𝑝 (𝑧 (𝑘 ) ;𝜃 (𝑡))

𝑝 (𝑥 (𝑘 ) ;𝜃 (𝑡))
∝ 𝑝 (𝑥 (𝑘 ) |𝑧 (𝑘 ) ;𝜃 (𝑡)) · 𝑝 (𝑧 (𝑘 ) ) (12)

which indicates that 𝑝 (𝑥 (𝑘 ) |𝑧′′(𝑘 ) ;𝜃 (𝑡))·𝑝 (𝑧
′′
(𝑘 ) ) > 𝑝 (𝑥 (𝑘 ) |𝑧

′
(𝑘 ) ;𝜃 (𝑡))·

𝑝 (𝑧′(𝑘 ) ). But this cannot be true, because the purpose of the M-

step is via optimizing the parameters 𝜃 (𝑡), so that the refinement

network 𝑓 (𝑧 (𝑘 ) (𝑡);𝜃 (𝑡),G) can output a value 𝑧′(𝑘 ) to maximize

Eq.(12). Hence we have a contradiction and so 𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡)) equals
to the output of the refinement network. □

Once 𝑔(𝑥 (𝑘 ) ;𝜃 (𝑡)) is determined, Eq. (11) can be directly opti-

mized by SGD.

A.1.2 Analysis of Convergence. The convergence of xGCN can be

easily proved by leveraging the convergence theory of the EM

algorithm. Here we follow the theoretical derivations in [4].

Proof. Let 𝐿(𝜃 ) denote the log-likelihood of data 𝑥 (for notation
simplicity, we drop the subscript in 𝑥 (𝑘 ) ) modeled with parameter

𝜃 . Convergence can be guaranteed as long as we can prove that

𝐿(𝜃 (𝑡 + 1)) > 𝐿(𝜃 (𝑡)). To this end, we start by

𝐿(𝜃 ) = 𝑙𝑜𝑔 𝑝 (𝑥 |𝜃 )

= 𝑙𝑜𝑔

∫
X(𝑧 )

𝑝 (𝑥, 𝑧 |𝜃 )𝑑𝑧

= 𝑙𝑜𝑔

∫
X(𝑧 )

𝑝 (𝑥, 𝑧 |𝜃 )
𝑝 (𝑧 |𝑥, 𝜃 (𝑡)) 𝑝 (𝑧 |𝑥, 𝜃 (𝑡))𝑑𝑧

= 𝑙𝑜𝑔 E𝑧∼𝑝 (𝑧 |𝑥,𝜃 (𝑡 ) )

[
𝑝 (𝑥, 𝑧 |𝜃 )
𝑝 (𝑧 |𝑥, 𝜃 (𝑡))

]
(13)

≥ E𝑧∼𝑝 (𝑧 |𝑥,𝜃 (𝑡 ) )
[
𝑙𝑜𝑔

𝑝 (𝑥, 𝑧 |𝜃 )
𝑝 (𝑧 |𝑥, 𝜃 (𝑡))

]
(14)

= 𝑄 (𝜃 |𝜃 (𝑡)) + E𝑧∼𝑝 (𝑧 |𝑥,𝜃 (𝑡 ) ) [−𝑙𝑜𝑔 𝑝 (𝑧 |𝑥, 𝜃 (𝑡))]

where X(𝑧) denotes the support of 𝑧. From Eq.(13) to Eq.(14) we

apply Jensen’s inequality because 𝑙𝑜𝑔(·) is a concave function. Let
𝐻 (𝑧 |𝑥, 𝜃 (𝑡)) denote E𝑧∼𝑝 (𝑧 |𝑥,𝜃 (𝑡 ) ) [−𝑙𝑜𝑔 𝑝 (𝑧 |𝑥, 𝜃 (𝑡))]. Then,

𝐿(𝜃 ) ≥ 𝑄 (𝜃 |𝜃 (𝑡)) + 𝐻 (𝑧 |𝑥, 𝜃 (𝑡))

Note that 𝐻 (𝑧 |𝑥, 𝜃 (𝑡)) does not depends on 𝜃 .

𝑄 (𝜃 (𝑡) |𝜃 (𝑡)) + 𝐻 (𝑧 |𝑥, 𝜃 (𝑡))
= E𝑧∼𝑝 (𝑧 |𝑥,𝜃 (𝑡 ) ) [𝑙𝑜𝑔 𝑝 (𝑥, 𝑧 |𝜃 (𝑡))] + E𝑧∼𝑝 (𝑧 |𝑥,𝜃 (𝑡 ) ) [−𝑙𝑜𝑔 𝑝 (𝑧 |𝑥, 𝜃 (𝑡))]
= 𝐸𝑧∼𝑝 (𝑧 |𝑥,𝜃 (𝑡 ) )𝑙𝑜𝑔 𝑝 (𝑥 |𝑧, 𝜃 (𝑡))
= 𝑙𝑜𝑔 𝑝 (𝑥 |𝜃 (𝑡)
≜ 𝐿(𝜃 (𝑡))

By definition of𝑄 (𝜃 |𝜃 (𝑡)) from Eq.(10), we have𝑄 (𝜃 (𝑡 +1) |𝜃 (𝑡)) ≥
𝑄 (𝜃 (𝑡) |𝜃 (𝑡)), thus we can conclude that:

𝐿(𝜃 (𝑡 + 1)) − 𝐿(𝜃 (𝑡))
≥ [𝑄 (𝜃 (𝑡 + 1) |𝜃 (𝑡)) + 𝐻 (𝑧 |𝑥, 𝜃 (𝑡))] − [𝑄 (𝜃 (𝑡) |𝜃 (𝑡)) + 𝐻 (𝑧 |𝑥, 𝜃 (𝑡))]
= 𝑄 (𝜃 (𝑡 + 1) |𝜃 (𝑡)) −𝑄 (𝜃 (𝑡) |𝜃 (𝑡))
≥ 0

□
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A.1.3 Explanation of Eq.(9). Although Eq.(9) is intuitively under-

standable, here we provide some theoretical descriptions. The like-

lihood of a data sample is defined by

𝐿(𝜃 ) = 𝑙𝑜𝑔 𝑝 (𝑥 |𝜃 )

= 𝑙𝑜𝑔

∫
X(𝑧 )

𝑝 (𝑥, 𝑧 |𝜃 )𝑑𝑧

= 𝑙𝑜𝑔

∫
X(𝑧 )

𝑄 (𝑧) 𝑝 (𝑥, 𝑧 |𝜃 )
𝑄 (𝑧) 𝑑𝑧

≥ E𝑧∼𝑄 (𝑧 ) 𝑙𝑜𝑔
𝑝 (𝑥, 𝑧 |𝜃 )
𝑄 (𝑧) (15)

Since the 𝑙𝑜𝑔(·) function is not linear, the equality of 15 holds if

and only if value inside 𝑙𝑜𝑔(·) is a constant 𝑐 , i.e.,
𝑝 (𝑥, 𝑧 |𝜃 ) = 𝑐 ·𝑄 (𝑧)

𝑝 (𝑥 |𝜃 ) =
∫
𝑧

𝑝 (𝑥, 𝑧 |𝜃 ) =
∫
𝑧

𝑐 ·𝑄 (𝑧)𝑑𝑧 = 𝑐

So, we can have

𝑄 (𝑧) = 𝑝 (𝑥, 𝑧 |𝜃 )
𝑐

=
𝑝 (𝑥, 𝑧 |𝜃 )
𝑝 (𝑥 |𝜃 ) = 𝑝 (𝑧 |𝑥 ;𝜃 )

A.2 Task Settings and Datasets
We use two biggest social network datasets from SNAP

2
, Pokec

and LiveJournal, and one industrial social network dataset, Xbox,
which is provided by Xbox Gaming Corp., and it is a gaming social

network. The complete Xbox dataset contains about 100 million

nodes, for a comprehensive comparison with baselines, we sample

a medium-size subgraph including 3 million nodes and denote it as

Xbox-3m. Some basic statistics are listed in Table 1. We evaluate

model performance on the node recommendation task. Nodes in

these graphs are users and edges are the follow relation between

users. We evaluate model performance on the node recommenda-

tion task, i.e., given a user 𝑢, the task is to find related users that 𝑢

will follow from the whole social graph. Specifically, a small portion

of edges is removed from the original graph to construct the valida-

tion set and the test set. Given an edge (𝑢, 𝑣), 𝑣 is considered as a

positive node, and the users that are not followed by 𝑢 are treated

as negative nodes. The validation set and the test set contain 1000

and 50000 positive edges respectively (the number of users may

be less than the number of edges since a user can have multiple

positive nodes). During training, we sample an edge (𝑢, 𝑣) from the

graph and sample a negative pair (𝑢, 𝑣) to calculate loss by Eq.( 3).

During the evaluation, we do not perform candidate sampling, the

purpose is to retrieve positive nodes from the whole graph.

A.3 Baseline Settings
The embedding dimensions are set to 64 for all models (except

for the Xbox-100m dataset, the dimension is set to 32). For Graph-

SAGE, GAT, GIN, SGC, S
2
GC, SIGN, GBP, and GAMLP, we find

they are hard to train from scratch, so we initialize their base

embedding tables with a well-trained node2vec model. In most

cases, we find it is better to freeze the base embedding table for

the GNNs as static features, and only learn the weight parame-

ters of GCN layers. We use the BPR loss [12] for GraphSAGE,

2
http://snap.stanford.edu/data/index.html

Table A1: Efficiency (training time per epoch, in second) and
memory (in GB) comparisons of different node2vec imple-
mentations. For PyG-GPU version, we list both its CPUmem-
ory and GPU memory consumption (CPU memory + GPU
memory).

Pokec LiveJournal Xbox-3m

time memory time memory time memory

SNAP 385 50.49 - OOM - OOM

PyG-CPU 5100 4.62 10, 440 7.26 16, 560 8.03

PyG-GPU 56 3.85 + 6.77 217 5.39 + 6.65 165 4.62 + 8.23

Ours 292 1.65 650 2.75 955 3.74

GAT, GIN, SGC, S
2
GC, SIGN, GBP, GAMLP, LightGCN, PPRGo,

and xGCN. For UltraGCN and SimpleX, we use the loss functions in

their original papers. In xGCN, the neural architecture of RefNet is:

[𝐿𝑖𝑛𝑒𝑎𝑟 (64, 1024),𝑇𝑎𝑛ℎ, 𝐿𝑖𝑛𝑒𝑎𝑟 (1024, 1024),𝑇𝑎𝑛ℎ, 𝐿𝑖𝑛𝑒𝑎𝑟 (1024, 64)].
The structure of SNN is [𝐿𝑖𝑛𝑒𝑎𝑟 (64, 32),𝑇𝑎𝑛ℎ, 𝐿𝑖𝑛𝑒𝑎𝑟 (32, 1), 𝑆𝑖𝑔𝑚𝑜𝑖𝑑].
𝑇𝑡𝑜𝑙 is set to 3. We search the hyper-parameters for each baseline

model, and the code and detailed configurations to reproduce the

results can be found at https://github.com/CGCL-codes/xGCN.

A.4 Scalable Implementation of node2vec
The traditional implementation of node2vec cannot scale to large

graphs due to the existence of the transition probability matrix

(including the C-implemented version
3
released by the SNAP and

the implementation in PyG
4
). So in Table 3 we report the node2vec

results by our own implementation, where there are mainly two

key components: the graph walking trajectories and word2vec em-

bedding. For the first component, we adopt the rejection sampling

method to generate node2vec trajectories (please refer to [31] for

detailed theory) without maintaining a transition probability matrix.

We accelerate the trajectories generation process with Numba
5
,

which is an open-source JIT compiler that translates a subset of

Python and NumPy code into fast machine code. For the second

part, we adopt Gensim’s word2vec module, because it is already

accelerated with c/c++ through Cython. The two components are

chained under the producer-consumer pipeline, so parallelism is

guaranteed. Table A1 is a training efficiency comparison between

our node2vec implementation with SNAP’s C-implementation and

PyG. We strictly make both implementations share the same hyper-

parameters for training epochs. SNAP implementation cannot even

scale to LiveJournal and Xbox-3m datasets. Although PyG-GPU is

the fastest one, it cannot scale to the 100m graph dataset.

3
https://github.com/snap-stanford/snap/tree/master/examples/node2vec

4
https://www.pyg.org

5
https://numba.pydata.org

http://snap.stanford.edu/data/index.html
https://github.com/CGCL-codes/xGCN
https://github.com/snap-stanford/snap/tree/master/examples/node2vec
https://www.pyg.org
https://numba.pydata.org
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