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ABSTRACT
Collaborative Filtering (CF) is a widely used and effective tech-
nique for recommender systems. In recent decades, there have been
significant advancements in latent embedding-based CF methods
for improved accuracy, such as matrix factorization, neural col-
laborative filtering, and LightGCN. However, the explainability of
these models has not been fully explored. Adding explainability to
recommendation models can not only increase trust in the decision-
making process, but also have multiple benefits such as providing
persuasive explanations for item recommendations, creating ex-
plicit profiles for users and items, and assisting item producers in
design improvements.

In this paper, we propose a neat and effective Explainable Col-
laborative Filtering (ECF) model that leverages interpretable cluster
learning to achieve the two most demanding objectives: (1) Pre-
cise - the model should not compromise accuracy in the pursuit of
explainability; and (2) Self-explainable - the model’s explanations
should truly reflect its decision-making process, not generated from
post-hoc methods. The core of ECF is mining taste clusters from
user-item interactions and item profiles. Wemap each user and item
to a sparse set of taste clusters, and taste clusters are distinguished
by a few representative tags. The user-item preference, users/items’
cluster affiliations, and the generation of taste clusters are jointly
optimized in an end-to-end manner. Additionally, we introduce
a forest mechanism to ensure the model’s accuracy, explainabil-
ity, and diversity. To comprehensively evaluate the explainability
quality of taste clusters, we design several quantitative metrics,
including in-cluster item coverage, tag utilization, silhouette, and
informativeness. Ourmodel’s effectiveness is demonstrated through
extensive experiments on three real-world datasets.
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1 INTRODUCTION
Collaborative filtering (CF) is an effective andwidely used technique
for recommender systems. The rationale behind CF is that the user’s
potential interests can be inferred from a group of like-minded
users’ behaviors (e.g., user-based CF), or, a set of similar items to
the user’s behavior history (e.g., item-based CF). Existing methods
for CF can be roughly categorized into two types: memory-based CF
andmodel-based CF. Memory-based CFmethods [29] explicitly find
the neighborhood of users/items for preference inference. These
methods, although concise and effective, usually suffer from mem-
ory consumption, (inference) computational cost, and data sparsity
issues. In contrast, model-based CF uses machine learning methods
to help model the relationship between users and items. In the past
decades, the research trends have been mainly focusing on model-
based CF, with methods evolving from latent factorization-based
methods (such as MF [18] and SVD++ [17]) to neural embedding-
based methods (such as NCF [12] and CDAE [38]), and to recently
neural graph-based methods (such as LightGCN [11] and Ultra-
GCN [22]). The foundation model in this direction is to represent
users and items with high-quality latent factor embeddings, so that
users’ preference towards items can be decoded from the latent
embeddings.

A notable drawback of latent factor-based CF is the lack of
transparency and explainability. Knowing the decision logic of
recommender algorithms rather than using them as black boxes
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is important on multiple aspects, such as assisting developers in
model debugging and abnormal case studies or generating persua-
sive explanations to promote the recommended items and increase
conversion rates. Many prior attempts have been made to achieve
this goal. To name a few representative works, [23] combines a
latent matrix factorization model with a latent topic model, then
each dimension of user/item embeddings can be associated with a
textual topic mined from users’ reviews. [42] proposes the Explicit
Factor Model (EFM), which extracts aspect features from textual
reviews and makes predictions by combining scores from a latent
factor model and from aspect-level interest matching. [24] pro-
poses a feature mapping paradigm. By mapping latent embeddings
to interpretable aspect features, an uninterpretable model can now
provide explainability. However, we argue that explainable CF is
still an open question, because existing solutions fail to satisfy at
least one of the properties: (P1,flexibility) the dimension of latent
embeddings and the number of interpretable features/topics do not
necessarily match (e.g., [23] fails on this); (P2,coherence) a model’s
interpretable modules and predictive modules should be harmo-
niously integrated for decision making, instead of functioning as
isolated modules, which may lead to divergent outcomes (e.g., [42]
fails on this); (P3, intrinsic explainability) a model is inherently
understandable and interpretable, instead of relying on a post-hoc
model for explanations (e.g., [24] fails on this).

In this paper, we propose a neat yet effective Explainable Col-
laborative Filtering (ECF) framework with the goal of accurate and
explainable recommendations, while satisfying all three properties.
At the core of ECF is mining various taste clusters. We assume
that items have some explicit features such as tags or aspects (here-
inafter we will use tags for unification). A taste cluster is a group of
items which are not only similar in users’ latent interest space, but
also explicitly share some common tags, so that the overlapping
tags can be selected as descriptive interpretation for the taste clus-
ter. Both users and items are mapped to multiple taste clusters. On
the one hand, item recommendations can be made by measuring
the coherence between users’ and items’ taste cluster affiliations;
on the other hand, the descriptive tags interpret what determines
users’ preference towards items. We also design a new set of quan-
titative metrics to evaluate the quality of ECF beyond the accuracy,
covering: (1) In-cluster item coverage; (2) Tag utilization; (3) Sil-
houette; (4) Tag informativeness, with the goal of discovering the
discriminability of taste clusters as well as the exactitude, diversity,
and uniqueness of clusters interpretability in a holistic manner. The
ECF framework has many more application potentials beyond the
user-item prediction and interpretation. For example, the affiliation
of users to taste clusters can be used for user profiling, empowering
web-scale services like ads audience targeting and audience exten-
sion. The affiliation of items to taste clusters can help missing tags
discover for items, automatic item topic generation and theme-wise
item recommendations (such as the playlist recommendation in
online music service).

However, the implementation and optimization of ECF is a non-
trivial task. Main challenges include: (1) how to construct an end-
to-end model, so that taste cluster generation, tags selection, user-
and item-cluster affiliations can be optimized jointly; (2) how to
achieve good performance on both accuracy and explainability
simultaneously, instead of sacrificing one for the other; (3) how

to guarantee the diversity of generated taste clusters. To this end,
we design an embedding-based model to generate taste clusters
with discriminative tags and establish the sparse mapping between
users/items and clusters. We further devise the forest mechanism
for ECF, which can not only substantially lift the accuracy, but also
provides a diverse set of taste clusters. For each targetingmerit (such
as exactitude, diversity, and uniqueness of clusters interpretability)
we design a corresponding objective function, so that the whole
model can be trained in an end-to-end manner.

In summary, our main contributions include:
• We present a neat yet effective explainable collaborative filter-
ing framework, called ECF 1, which leverages interpretable taste
clusters and sparse user- and item-cluster affiliations for recom-
mendation in a flexible, coherent, and self-explainable way.

• We propose an optimization method for ECF to learn high qual-
ity taste clusters with informative tags and sparse affiliations
simultaneously in an end-to-end manner.

• We design a new set of quantitative metrics to evaluate the ex-
plainability quality of taste clusters comprehensively.

• We conduct extensive experiments on three real-world datasets
with various state-of-the-art methods to demonstrate the effec-
tiveness of ECF.

2 METHODOLOGIES
In this section, we first outlines the task definition for explainable
recommendations and introduces the framework of Explainable
Collaborative Filtering (ECF). We then delve into the methodology
of the end-to-end optimization process for training ECF and estab-
lish a comprehensive set of metrics to quantitatively evaluate the
effectiveness of explainability.

2.1 Problem Formulation
User-item Interactions and Item Tags. We focus on the implicit
feedback [27] in recommendation, where a user’s preferences are
inferred through implicit signals such as clicks or play actions. Let
U be a set of users and I a set of items. Let Y ∈ R |U |× |I | as the
user-item interaction matrix, where 𝑦𝑢𝑖 = 1 means that there is an
interaction between user 𝑢 and item 𝑖 , otherwise 𝑦𝑢𝑖 = 0. Besides,
we assume there is a set of tags T for items, and each item 𝑖 has a
subset of tags T𝑖 ⊂ T to describe its genre and features.
Task Description. Given the interactions data Y and items’ tags
T , the task of explainable recommendation is to (1) predict how
likely user 𝑢 adopts item 𝑖 , and (2) explain what determines the
recommendation of item 𝑖 to user 𝑢 with the descriptions from T .

2.2 The Proposed ECF framework
We propose an ECF framework for explainable recommendations
with collaborative filtering. The core of ECF is mining various taste
clusters which represent specific interest patterns. We first give
the definition of taste clusters and show how to leverage them
for recommendation and explanation. Then we detail the proposed
method to generate sparse affiliations between users/items and taste
clusters. The pseudocode of ECF is shown in the Appendix A.1.

1The codes are available at https://github.com/zealscott/ECF.

https://github.com/zealscott/ECF
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A Taste Cluster is a group of items 𝑐 = {𝑖1, 𝑖2, ..., 𝑖𝑐 } that un-
covers a certain type of underlying interest for users and can
be easily identified through shared tags among the items within
the cluster. So, each taste cluster is associated with a set of tags
T𝑐 = {𝑡1, 𝑡2, ..., 𝑡𝑘 }, which are derived from corresponding item sets
and acts as the descriptive interpretation for the cluster.

Assuming there is a set of taste clusters C = {𝑐}, we map
users/items to these taste clusters with sparse affiliation matrix.
To be specific, letA ∈ R |U |× | C | andX ∈ R | I |× | C | be the affiliation
matrices between users/items and taste clusters, respectively. Each
entry 𝑎𝑢𝑐 in A denotes the preference degree of user 𝑢 to taste
cluster 𝑐 , and each entry 𝑥𝑖𝑐 denotes the relatedness between item 𝑖

and taste cluster 𝑐 . To enhance the clarity and persuasiveness of the
explanation, the affiliation matrix should be kept sparse, meaning
only the most pertinent entries have non-zero values, making it
possible to clearly identify a user’s preferences and item affiliations
using only a few taste clusters.

After that, both users and items are mapped to multiple taste clus-
ters, and ECF can make user-item recommendation and explanation
with taste clusters and affiliations as follows.
Item recommendation.We assume that a user’s decision about
whether to make a purchase/click is based on her preference with
taste clusters, as well as the item’s relatedness with them. Thus, the
prediction score of user 𝑢 and item 𝑖 can be calculated by multiply-
ing their affiliations:

𝑦𝑢𝑖 = sparse_dot(a𝑢 , x𝑖 ), (1)
where sparse_dot(·) denotes sparse dot product for a𝑢 and x𝑖 .
Personalized explanation. For each prediction 𝑦𝑢𝑖 , ECF is able to
generate explanation by measuring the coherence between users’
and items’ taste cluster affiliations. Specifically, the overlapped taste
clusters are first derived from affiliation matrix:

C𝑢𝑖 = 𝑆 (a𝑢 ) ∩ 𝑆 (x𝑖 ), (2)
where 𝑆 (·) is an index selector to collect corresponding clusters
where the affiliation between users/items and taste clusters exists,
and C𝑢𝑖 denotes the set of overlapped taste clusters for user 𝑢
and item 𝑖 . Thus, the descriptive tags of taste clusters in C𝑢𝑖 are
used to interpret what determines user 𝑢 preference toward item
𝑖 . Moreover, importance score 𝑤𝑐

𝑢𝑖
is introduced to quantify the

contribution of each taste cluster in C𝑢𝑖 :
𝑤𝑐
𝑢𝑖 = 𝑎𝑢𝑐 × 𝑥𝑖𝑐 . (3)

Therefore, ECF is able to explain the prediction decision by us-
ing the descriptive tags of overlapped taste clusters C𝑢𝑖 and their
corresponding importance scores 𝑤𝑐

𝑢𝑖
. Due to the sparsity of af-

filiation matrix, the size of overlapped taste clusters is small, so
that we could easily derive the readable decision logic of ECF by
investigating only a few taste clusters. And the final explanation
results can be constructed by existing methods (e.g., template-based
explanation [42]) or explanation paths from user to taste clusters
and items (demonstrated in Section 3.5.2).

Despite the simplicity, it is still unclear how to obtain the desired
taste clusters and sparse affiliation matrix. This is a non-trivial
task since performing clustering algorithm (e.g., K-means) for items
or blindly collecting items with same tags would fail to encode
both user interest and item profiles simultaneously (see Section 3.3

for comparison). Besides, directly learning the affiliation matrix
from data is unable to train due to its sparsity nature. Instead, we
represent items and taste clusters as embeddings, and measure their
affiliations with cosine similarity:

𝑥𝑖𝑐 = cos(v𝑖 ,h𝑐 ), (4)

where v ∈ R𝑑 and h ∈ R𝑑 are the embeddings of items and clusters,
and 𝑑 is the embedding size. To clearly identify the belongings
between items and clusters, we only consider the Top-𝑚 clusters
for each item:

𝑚𝑖𝑐 =

{
1 if 𝑐 ∈ argTopm(x̃𝑖 )
0 otherwise (5)

x𝑖 = 𝜎 (x̃𝑖 ) ⊙ m𝑖 , (6)
where ⊙ denotes Hadamard product, 𝜎 (·) is the sigmoid function.
In the above equations, we first make Top-𝑚 selection for each item
according to the similarity scores, and apply the sigmoid function
to indicate the relatedness of items and clusters with none-zero
probabilities, then use a binary mask to filter other less relevant
clusters and obtain the final item-cluster affiliation matrix X. How-
ever, due to the non-differentiability and discrete nature of argTop
operation, the computation is intractable thus cannot be optimized
with gradients. Therefore, we relax it by tempered softmax:

𝑚𝑖𝑐 ≈ �̃�𝑖𝑐 =
exp(cos(v𝑖 ,h𝑐 )/𝑇 )∑
𝑐 exp(cos(v𝑖 ,h𝑐 )/𝑇 )

, (7)

where 𝑇 is a hyperparameter called temperature, which controls
the entropy of the distribution. Thus, for back-propagation, the
continuous relaxation �̃�𝑖𝑐 is used to approximate𝑚𝑖𝑐 . However,
when calculating the probability of taste clusters, we should directly
use 𝑚𝑖𝑐 instead of �̃�𝑖𝑐 , to be consistent with the real affiliation
relationship. To close the gap between forward pass and backward
pass, we follow a similar idea to reparameterized trick [15, 40], and
rewrite𝑚𝑖𝑐 as follows:

�̂�𝑖𝑐 = �̃�𝑖𝑐 + detach_gradient(𝑚𝑖𝑐 − �̃�𝑖𝑐 ), (8)
where the detach_gradient will prevent the gradient from back-
propagating through it. In the forward pass, detach_gradient has
no effect, thus the affiliated clusters can be directly computed by
argTop operation. In the backward pass, detach_gradient takes
effect, so ∇�̂�𝑖𝑐

L = ∇�̃�𝑖𝑐
L. So the whole computation is fully dif-

ferentiable and can be smoothly optimized with the model.
We use the same mechanism to obtain the affiliations between

users and clusters. Specifically, the user-cluster similarity matrix
can be computed as Ã = Y× X̃, where Y is the user-item interaction
matrix. Then, we also force each user to connect with Top-𝑛 taste
clusters to derive the user-cluster affiliation matrix A.
Forest Mechanism. Preference sparsification with taste clusters is
an approximation of latent factor-based collaborative filtering. As
a result, ECF inevitably suffers from sub-optimal performance and
limited diversity.To overcome these two challenges, we introduce a
straightforward yet impactful ensemble approach that improves the
expressiveness of taste clusters and preserves its interpretability.
Specifically, for each individual ECF model, we randomly select |C|
items as the initial taste clusters and use different random seeds for
model training. Then we train 𝐹 different ECF instances to form
the final ECF model, and the final prediction is based on the sum-
mation of all 𝐹 models. We find this simple random mechanism can
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boost the performance of ECF and provide a comprehensive expla-
nation for predictions (the impact of different number of models is
discussed in Section 3.4.3).

2.3 Optimization of ECF
Next, we introduce an end-to-end optimization method to train
ECF, with the aim of constraining the taste cluster from different
perspectives to meet its definition. First, since taste clusters can
reveal both the user’s interests and the similarity between items, it
is reasonable to directly predict user preference for an item through
their common taste clusters (as described in Equation (1)). Therefore,
the cluster-based predictions can be optimized with BPR loss [27]:

LCS =
∑︁

(𝑢,𝑖, 𝑗 ) ∈O − ln𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ), (9)

where O = {(𝑢, 𝑖, 𝑗) |𝑦𝑢𝑖 = 1, 𝑦𝑢 𝑗 = 0} denotes the training set of
user-item interactions. Then we consider the informativeness of
tags. We first calculate the tag distribution of taste clusters:

D̃ = X⊤E, (10)

where E ∈ R | I |× |T | is the multi-hot matrix where each entry 𝑒𝑖𝑡
denotes whether item 𝑖 has the tag 𝑡 , and D̃ represents the tag
frequency of each taste cluster. Intuitively, we can directly select
the most frequent tags as the description of taste clusters. How-
ever, this naive approach would result in the indistinguishability
between different clusters, since some tags are commonly shared
by most items, and they would dominate the tag distribution across
different taste clusters. Take the game genres at Xbox dataset as an
example. Most of the games are online and allow for mutiplayer,
thus selecting the “Multiplayer-Online” tag fails to provide infor-
mative description for taste clusters. To tackle this problem, we
first reweight each tag according to its frequency of occurrence in
items, and then compute the weighted distribution:

𝑑𝑐𝑡 = 𝑑𝑐𝑡 × log( 𝑁

𝑓𝑡 + 𝜖
), (11)

where 𝑁 is the number of items, 𝑓𝑡 is the frequency of tag 𝑡 across
all items, and 𝜖 is a small fraction (we set it as 10−6) to avoid
numerical overflow. Thus, the above equation considers both tag
frequency and items’ affiliations for tag informativeness: the more
frequently the distinctive tag appears, the more informative it is
for interpreting the taste cluster.

To improve the understanding of taste clusters, we advocate
for an appropriate number of tags, not too few or too many. An
excessive or inadequate number of tags makes it difficult to identify
users’ true interests and results in a complex or abstract interpreta-
tion of the taste cluster." To achieve that, we first normalize their
frequencies as:

𝛽𝑐𝑡 =
exp(𝑑𝑐𝑡/𝜏)∑

𝑗∈T exp(𝑑𝑐 𝑗/𝜏)
, (12)

where 𝜏 is the is the temperature hyperparameter. At low temper-
atures, the distribution sharpens, causing only the tag with the
highest score to stand out. As the temperature increases, the dis-
tribution becomes more even and the distinctiveness between tags
will decrease. Then, we consider maximizing the likelihood of the
probabilities of Top-𝑃 tags so that the taste clusters can be easily

interpreted by those tags:

LTS =
∑︁

𝑐∈C

∑︁
𝑡 ∈argTopP(𝛽𝑐 )

− log 𝛽𝑐𝑡 , (13)

where C denotes the set of taste clusters. We fix the number of tags
𝑃 = 4 for all experiments, since it achieves a good balance between
informativeness and readability.

Moreover, different taste clusters should contain different items
and reveal different user preferences, so that the latent interest
space could be better preserved. Hence, for better model capacity
and diversity, we encourage the embeddings of taste clusters to
differ from each other’s. There are many methods for independence
modeling, such as distance correlation [30], orthogonality [20], and
mutual information [2, 36]. Here we opt for mutual information for
all experiments due to its simplicity and effectiveness:

LIND =
∑︁

𝑐∈𝐶 − log
exp(𝑠 (h𝑐 ,h𝑐 ))∑

𝑐′∈𝐶 exp(𝑠 (h𝑐 ,h𝑐′ ))
, (14)

where 𝑠 (·) is the similarity function to measure the associations of
any two taste clusters, which is set as cosine function here. Finally,
we consider learning taste clusters by putting the above objective
functions together: LTC = LCS +LTS +LIND. For simplicity we do
not need to tune any weighting coefficients for each loss. However,
due to the argTop operations in affiliation selections, the supervised
signals are sparse and hard to converge. Thus, we add auxiliary
supervised signals from user-item predictions:

LCF =
∑︁

(𝑢,𝑖, 𝑗 ) ∈O − ln𝜎 (u⊤𝑢 v𝑖 − u⊤𝑢 v𝑗 ), (15)

where u𝑢 denotes the embeddings of user 𝑢. We choose inner prod-
uct of embeddings to measure the similarity between users and
items for simplicity, but more sophisticated embedding-based mod-
els (e.g., LightGCN [11]) can also be applied, which will be discussed
in Section 3.4.4. By combing the taste clusters loss and collaborative
loss, we minimize the following objective function to learn the
model parameters:

LECF = LTC + 𝜆LCF, (16)
where 𝜆 a hyperparameter to control the impact of auxiliary collab-
orative signals.

2.4 New Metrics for Explainability
Here we aim to design a holistic set of quantitative metrics to qualify
the effectiveness of explanation w.r.t. taste clusters:

• In-cluster item coverage denotes the average proportion of
items in a taste cluster that the selected tags can cover. With a
slight abuse of notation, we use T𝑖 to denote the tags of item 𝑖

and T𝑐 to denote the tags of cluster 𝑐:

Cov. =
1
|C|

∑︁
𝑐∈C

∑︁
𝑖∈𝑐

1( |T𝑖 ∩ T𝑐 |)
|𝑐 | , (17)

where 1(𝑥) = 1 if and only if 𝑥 > 0, otherwise 0. When the item
coverage ratio is high, we deem that these tags can be properly
used as the descriptive interpretation for the taste cluster.

• Tag utilization represents how many unique tags are used for
interpreting taste clusters:

Util. =
1
|T |

⋃
𝑐∈C

T𝑐 , (18)
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where we union all the selected tags from each taste cluster, and
a higher tag utilization indicates a more diverse interpretation of
interest patterns.

• Silhouette [28] is a clustering metric which measures the simi-
larity difference between intra-cluster and inter-cluster items:

Sil. =
1

|C|2
∑︁

𝑐1∈C

∑︁
𝑐2∈C

𝑏 (𝑐1, 𝑐2) − 𝑎(𝑐1)
max{𝑎(𝑐1), 𝑏 (𝑐1, 𝑐2)}

, (19)

where 𝑏 (𝑐1, 𝑐2) is the mean cosine similarity between all disjoint
items in 𝑐1 and 𝑐2, and 𝑎(𝑐1) is the mean cosine similarity of
items in taste cluster 𝑐1. The high silhouette indicates the items
are similar in the same taste clusters.

• Informativeness measures the distinctiveness of selected tags
to represent the items in the taste cluster:

Info. =
1
|C|

∑︁
𝑐𝑖 ∈C

|𝑅(T𝑐 ) ∩ 𝑐 |
|𝑐 | , (20)

where 𝑅(T𝑐 ) is an post-hoc discriminator that predicts the most
likely top |𝑐 | items given the tags of taste cluster 𝑐 . We detail the
implementation of the function 𝑅(·) in Appendix A.9. A greater
informativeness score implies that those tags more accurately
characterize the items within the taste clusters.
The above four metrics measure the quality of taste clusters

from different aspects. Since ECF depends on taste clusters to make
recommendation and explanation, these metrics can be also viewed
as the evaluation of explanation. We further provide an overall
metric by normalizing each metric with a random approach. In
addition, since explainability is a human notion and cannot be fully
evaluated computationally without input from human users, we
also included two user studies as complementary to the metrics,
which will be detailed in Section 3.3.

2.5 Complexity Analysis
2.5.1 Model Size. We analyze the size of ECF from both train-
ing and inference perspectives. During the training, the model
parameters of single ECF consist of (1) ID embedding of users and
items {U,V|U ∈ R |U |×𝑑 ,V ∈ R | I |×𝑑 }, which are also used by all
embedding-based methods; and (2) ID embedding of taste clusters
{H|H ∈ R | C |×𝑑 }. We utilize 𝐹 different ECF models for training, so
that the overall parameters are 𝐹 times of the single model parame-
ters. During the inference, different from other embedding-based
methods, ECF only needs the sparse affiliations between users/items
and clusters for prediction, and the parameters are 𝐹 (𝑚 |I | +𝑛 |U|),
where𝑚 and 𝑛 are the number of affiliations. The size of ECF is
similar or even less than typical embedding-based methods (i.e.,MF
need 𝑑 ( |I| + |U|) parameters) when selected affiliations𝑚,𝑛 ≪ 𝑑 .

2.5.2 TimeComplexity. Time cost of ECFmainly comes from the
taste clusters learning. For collaborative similarity learning of taste
clusters, the computational complexity of calculating the affiliations
is𝑂 ( |C|(𝑑 |I | + |Y|), where |C|, |I |, |Y| and 𝑑 denote the number of
taste clusters, items, interactions, and the embedding size. For tag
similarity learning, the computational complexity of tag distribution
is 𝑂 ( |C| |I| |𝑡 |), where |𝑡 | is the average number of tags that items
have. As for independence modeling, the cost of mutual information
is 𝑂 (𝑑 |C|2). Besides, computing the auxiliary collaborative signals
would cost 𝑂 (𝑑 |I | |U|). Thus, the time complexity of the whole
training epoch is 𝑂 ( |C| |Y| + 𝑑 |I | |U|) when the number of taste

Table 1: Statistics of the datasets used in our experiments.
Dataset #Users #Items #Interactions #Tags
Xbox 465,258 330 6,240,251 115

MovieLens 6,033 3,378 836,434 18
Last-FM 53,486 2,062 2,228,949 54

clusters is far more less than the number of users/items. Under
the same experimental settings (i.e., same embeddings size and
same number of tags), ECF has comparable complexity to EFM and
AMCF, two representative explainable methods.

3 EXPERIMENTS
We design experiments to answer the following research questions:
(1) How does ECF perform in accuracy, compared with related com-
petitive methods? (2) What is the quality of ECF’s interpretability?
(3) What is the impact of various components and hyperparame-
ters on the effectiveness of ECF? (4) What do the generated taste
clusters resemble and what are the potential uses for ECF?

3.1 Experimental Settings
We use three real-world datasets for experiments: Xbox, MovieLens
and Last-FM, which vary in domain, size, tag numbers, and sparsity.
The Xbox dataset is provided by Microsoft Gaming and collected
from the GamePass scenario 2. GamePass is a popular membership-
based service offered by Xbox, with which users can freely play a
few hundreds of high-quality games (that is why in Table 1 Xbox has
only 330 items). MovieLens is a widely used dataset which contains
user rating history and the types of movies, we follow [24] to get 18
neat tags for movie description. Last-FM is a public music listening
dataset. We use the official APIs 3 of Last.fm to obtain the tags for
each track and discard rare tags which are annotated by less than
50 people. Besides, to reduce noise, we adopt the 10-core setting, i.e.,
retaining users and items with at least ten interactions. We use the
same data partition with previous study [24] for comparison (i.e.,
the proportions of training, validation, and testing set are 80%, 10%,
and 10% for all datasets). Table 1 summarizes the basic statistics of
the three datasets.

3.2 Evaluation of Accuracy (RQ1)
3.2.1 Baselines. We compare ECF with two groups of models:
• MF [27], NCF [12], CDAE [38] and LightGCN [11] are four
strong and representative embedding-based CF methods which
learn users’ hidden preference from interactions. But they suffer
from poor explainability.

• EFM [42] and AMCF [24] are two strong explainable recommen-
dation models, but they fail to satisfy all three explanation merits.
We adapt EFM model slightly to make it fit for our scenario (see
Appendix A.2 for details).

We also add the single model version of ECF for variant comparison,
denoted as “ECF𝑠𝑖𝑛𝑔𝑙𝑒 ”.

3.2.2 Evaluation Metrics. We adopt two widely used evaluation
protocols [27, 36, 42] for top-𝐾 recommendation: Recall@K and
NDCG@K. Hyper-parameters are reported in Appendix A.3.

2https://www.xbox.com/en-US/xbox-game-pass
3https://www.last.fm/api

https://www.xbox.com/en-US/xbox-game-pass
https://www.last.fm/api
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Table 2: Top-20 recommendation results. “†” indicates the
improvement of the ECF over the baseline is significant at
the level of 0.05.

Xbox MovieLens Last-FM
Recall NDCG Recall NDCG Recall NDCG

MF 0.5048 0.3268 0.1603 0.2416 0.0658 0.0506
NCF 0.4746 0.2931 0.1606 0.2406 0.0618 0.0401
CDAE 0.5192 0.3286 0.1627 0.2499 0.0589 0.0534

LightGCN 0.4933 0.3261 0.1854 0.2698 0.0788 0.0675
EFM 0.5070 0.3312 0.1702 0.2525 0.0703 0.0549
AMCF 0.5036 0.3217 0.1604 0.2405 0.0675 0.0516

ECF𝑠𝑖𝑛𝑔𝑙𝑒 0.4231 0.2331 0.1068 0.1501 0.0467 0.0380
ECF 0.5922† 0.3721† 0.2124† 0.2903† 0.0851† 0.0773†

3.2.3 Performance Comparison. The performance w.r.t. Re-
call@20 and NDCG@20 is reported in Table 2. More experiments
with different 𝐾 can be found in Appendix A.4. In comparison,
embedding-based methods achieve competitive performance on all
datasets. LightGCN outperforms all other baselines on MovieLens
and Last-FM datasets, we contribute this to the ability of capturing
the high-order user-item relationship in bipartite graph. On the
other hand, explainable methods - EFM and AMCF - only show a
slight improvement over MF. As for the ECF𝑠𝑖𝑛𝑔𝑙𝑒 , we can see the
performance drops compared with MF, due to the sparsity design
of taste clusters affiliations for interpretability. However, the forest
mechanism in ECF makes up for its shortcomings in accuracy and
outperforms all the baselines by a large margin (including the forest
version of MF, see Appendix A.4 for details). This demonstrates that
ECF is not taking a trade-off between accuracy and interpretabil-
ity, instead, it can achieve excellent accuracy performance while
providing interpretability.

3.3 Evaluation of Explainability (RQ2)
Then we evaluate the explainability of ECF. As elaborated in Sec-
tion 2.4, we utilize four metrics to evaluate the explainability of
our model: in-cluster item coverage, tag utilization, silhouette and
informativeness. Since ECF is a cluster-based CF method, for com-
parison, we use three strong competitors to construct the clusters
from different perspectives as baselines. Specifically, TagCluster is
a tag-oriented method which groups items with the same tags into
clusters; K-means is a similarity-oriented method which utilizes
item embedding from MF to perform K-means algorithm; Random
is a baseline method by randomly selecting items into clusters. The
detailed implementation of baselines is reported in Appendix A.5.

To have an overall understanding of the explainability, we in-
troduce an aggregated metric denoted as Overall in Table 3. To
overcome the scale inconsistency issue in different metrics, we first
normalize each metric by calculating the relative gain over the
Random baseline, then sum up the normalized four scores as the
Overall metric. In terms of the overall metric, ECF outperforms all
competitors by a large margin. Specifically, all the baselines can
only preserve a certain aspect while ignoring the rest three aspects.
For instance, since TagCluster only considers the explicit tags for
clustering, it fails to preserve the collaborative filtering-related sim-
ilarity in the cluster. Furthermore, traditional clustering methods
like K-means suffer from low coverage ratio and poor informative-
ness, revealing their inability to form significant taste clusters with
descriptive tags. In contrast, ECF considers all relevant factors, thus
preventing significant shortcomings in any one metric.

Table 3: Explainability Evaluation of ECF.
Method Cov. Util. Sil. Info. Overall

Xbox
ECF 0.8002 0.7052 0.2604 0.3162 1.7463

TagCluster 0.9950 0.2878 -0.1788 0.1579 0.9262
K-means 0.5710 0.3739 0.4286 0.0185 1.0563
Random 0.5396 0.1450 -0.3614 0.0125 0.0000

MovieLens
ECF 0.7992 0.7778 0.1964 0.3131 1.5651

TagCluster 0.991 0.5259 -0.2573 0.1517 0.8898
K-means 0.6877 0.4478 0.3265 0.0168 0.9573
Random 0.5933 0.3672 -0.4452 0.0061 0.0000

Last-FM
ECF 0.7648 0.6259 0.1584 0.2996 1.5352

TagCluster 0.9880 0.3703 -0.2511 0.1206 0.9143
K-means 0.5667 0.4841 0.3197 0.0182 1.0752
Random 0.5385 0.2275 -0.4673 0.0148 0.0000
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Figure 1: Impact of affiliation number on items (Top-𝑚) and
on users (Top-𝑛).

Besides, we have included two user studies on the LastFM dataset
as complementary to Table 3. These studies involved 30 volunteers
evaluating the explainability of both taste clusters and user-item
recommendations. Volunteers were asked to participate two tasks
as human evaluation. The task description and results are detailed
in Appendix A.6, and ECF also achieved the best among baselines
from human judgements.

3.4 Study of ECF (RQ3)
3.4.1 Impact of Top-𝑚 and Top-𝑛. As described in Section 2.2,
we use Top-𝑚 and Top-𝑛 to select the most relevant taste clusters
for items/users. The experimental results of different𝑚 and 𝑛 on
Xbox and Last-FM dataset are reported in Figure 1, while the re-
sults on MovieLens dataset is omitted due to similar trend and
limited space. We observe that the recommendation performance
boosts dramatically when𝑚 and 𝑛 increase, especially from 10 to
20. This is because when the affiliations between taste clusters and
users/items are sparse, it is unable to model the complex and latent
users’ preference, as well as the multi-faceted semantics of items.
However, large𝑚 and 𝑛 would make the explanation results hard
to understand because of the excessive number of reachable paths
between users, taste clusters and items. Therefore, to balance the
readability and accuracy, we set𝑚 and 𝑛 to 20 for all datasets.

3.4.2 Impact of 𝜆. We then verify the effectiveness of the auxil-
iary collaborative signals. The results on Last-FM dataset is illus-
trated in the left of Figure 3, and the results on other two datasets
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Taste Cluster 

• Kiss Me

• How Do I Live

• I Will Be

• It Will Rain

• He Won't Go       ...

c1

pop|love|chill|soul

Taste Cluster 

• Juice Box

• Lose Yourself

• Stronger

• Men in Black

• The Way I Are           ...

c2

rap|hip-pop|pop|dance

Taste Cluster 

• Panoramic

• Hand Covers Bruise

• Penetration

• You Never Can Tell

• Only Hope                                        ...

c3

soundtrack|ambient|alternative|epic
Taste Cluster 

• Bubbly                

• Hometown Glory

• Daydreamer

• Broken-Hearted Girl

• Don't Be A Stranger                 ...

c4

female_vocalists|soul|pop|indie
Taste Cluster 

• Forever Young

• Sensing Owls

• Bubbly

• The Kid

• Honeymoon Child                           ...

c5

folk|singer_songwriter|acoustic|pop   ...

...

...

Figure 2: 5 real examples of learned taste clusters on Last-FM dataset.
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Figure 3: Hyperparameter study on Last-FM dataset. Left:
impact of 𝜆 in Eq.(16). Right: impact of the forest mechanism.

are reported in Appendix A.8. We observe that a small 𝜆 value re-
sults in a significant decline in the performance of ECF, due to the
insufficient supervised signals for the learning of taste clusters. On
the other hand, when 𝜆 exceeds 0.6, the improvement is minimal,
indicating that ECF can be optimized with adequate collaborative
signals. Thus, we fix 𝜆 to 0.6 for all of our experiments.

3.4.3 Impact of Forest Mechanism. To analyze the effect of the
ensemble version of ECF, we gradually increase the size of forest,
and the performance results are reported in the right of Figure 3. We
find that there is a notable performance gain of ECF, compared with
the single ECFmodel.We contribute the improvement to the holistic
modeling of users’ latent interest space with diverse taste clusters.
Besides, we also find that the performance of ECF is even better
than the forest version of MF (see Figure 3 and Appendix A1 for
details), which indicates the effectiveness of taste cluster learning.

3.4.4 Flexibility of ECF. Since the ECF framework only relies
on embeddings to learn explainable taste clusters, it can be viewed
as a model-independent explainable paradigm, which is easily ap-
plied with other popular embedding-based methods. Thus, we also
incorporate ECF with LightGCN [11], a competitive graph-based
embedding method, to investigate its flexibility. The results in Fig-
ure A.10 indicate that the performance and explainability of ECF
would also benefit from more complex embedding-based methods,
which demonstrates the superiority and universality of ECF (see
Appendix A.10 for details).

3.5 Case Study and Applications (RQ4)
In this section, we present examples from the Last-FM dataset to
provide an intuitive understanding of taste clusters and demon-
strate the explainability of ECF. Additionally, we showcase the
versatility of ECF by highlighting useful scenarios beyond item
recommendations.

3.5.1 Learned Taste Clusters. We first illustrate the generated
five taste clusters in Figure 2. Each taste cluster is interpreted with
four tags, which are the best description of the tracks within. For

• Penetration  
• Hand Covers Bruise
• In My Place
• Homwtown Glory
• He Won't  Go
• My Hear Will Go On
• Laura                           ...

    Listening History of u71

• Penetration  
• Hand Covers Bruise
• In My Place
• Homwtown Glory
• He Won't  Go
• My Hear Will Go On
• Laura                           ...

    Listening History of u71

     Item:  i77414 (“Bubbly”)

u71

c5c3c1 c2 c4

0.644

0.6720.585

0.751

u71

c5c3c1 c2 c4

0.644

0.6720.585

0.751

    Tags: female_vocalists|pop|folk...

Figure 4: Explanations of the recommendation of user 𝑢71 to
track 𝑖77414 (“Bubbly”) on Last-FM dataset. 𝑐 denotes the taste
cluster which shows in Figure 2. The tags of the track 𝑖77414
are “female_vocalists|pop|folk|acoustic|love”.

instance, all the tracks in taste cluster 𝑐3 are soundtrack, while some
are ambient music (e.g., “Hand Covers Bruise”), and some are tagged
with “alternative” (e.g., “Only Hope”). Besides, each taste cluster
is able to explicitly represent certain users’ preference. Taking the
taste cluster 𝑐2 as an example, users who have a high affiliation
score with it tend to favor rap and hip-pop music, especially these
tracks that are accompanied with dancing. Moreover, different taste
clusters have different tags (e.g., pop music in 𝑐1 and folk music in
𝑐5), indicating the diversity of users’ preference.

As for the relationship between taste clusters and items, we
find taste clusters have the ability to serve as complementary in-
formation to the tagging of items, which we call tag discovery.
For instance, folk song “Bubbly” in taste cluster 𝑐5 is tagged with
“female_vocalists|pop|folk|acoustic|love” by Last.fm. Thus, we can
suspect whether “Bubbly” has the missing tag “singer_songwriter”
since other tags in the taste cluster 𝑐5 (i.e., “folk|acoustic|pop”) are
perfectly to describe the track. In fact, the singer of the song, Colbie
Caillat, is also a songwriter who wrote the song. Therefore, taste
clusters can be useful for automatic tag completion.

3.5.2 Recommendation Explanation. Next, we demonstrate
the explanation ability of ECF. Taking the recommendation of user
𝑢71 to track 𝑖77414 (“Bubbly”) as an example, Figure 4 shows the
listening history of 𝑢71 as well as the recommendation logic of ECF,
where we have the following observations.

First, ECF maps users as well as items with their corresponding
taste clusters. For user 𝑢71, since he/she has listened different kinds
of songs from soundtrack to pop and soul music, three different
taste clusters (i.e., 𝑐1, 𝑐3 and 𝑐4.) have been affiliated to reveal his
interest. Similarly, track 𝑖77414 is also connected with three taste
clusters (i.e., 𝑐1, 𝑐4 and 𝑐5), which is able to describe the song from
different aspects. Besides, the weights of affiliation matrix indicate
the relatedness between users/items with taste clusters.

Second, to recommend track 𝑖77414 to user 𝑢71, ECF first finds
their interactions of taste clusters according to the affiliations (i.e.,
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𝑐1, 𝑐4), which are depicted as red circles in Figure 4. These taste
clusters serve as a bridge to explicitly connect user’s preference
and items’ semantics. Then two explanation paths (𝑖71 → 𝑐1 →
𝑖77414 and 𝑖71 → 𝑐4 → 𝑖77414) are constructed for recommendation.
For each path, we multiply their affiliation weight to generate the
importance score of the taste cluster, according to Equation (3). At
last, by summarizing all the scores over intersected taste clusters,
we can calculate the final prediction score, as well as the explanation
paths from user 𝑢71 to 𝑖77414.

3.5.3 Taste Cluster Recommendation. Here we propose a new
recommendation scenario, called taste cluster recommendation, which
means users are recommended with a bundle of similar items, and
these items can be described with few tags (or features). We find this
task is ubiquitous in real-world applications, like playlist recom-
mendation in Spotify [14]. Current solutions to tackle this problem
typically rely on manual selection by editors to guarantee the se-
lected items are similar in tags (or other explicit features). However,
this approach suffers from tedious selection process and poor per-
sonality. Our method could be a substitution for labor selections by
learning taste clusters in an end-to-end manner. To be specific, since
each learned taste cluster is a collection of items with descriptive
tags, it can be naturally viewed as a playlist or game set. Thus, we
can directly recommend taste clusters to users according to their
affiliation weights. Taking user 𝑢71 in Figure 4 as an example, ECF
could recommend him/her with a pop song playlist which is sung
by female artists, since he/she used to listen lots of pop music by
female artists, like Colbie Caillat, Adele and Celine Dion.

3.5.4 User Profiling. The user-cluster affiliations discovered by
ECF can also be used as user profiles directly. Take Figure 4 for
example, ECF assigns user 𝑢71 to three clusters: 𝑐1, 𝑐3 and 𝑐4. Then
we can use the tag summary of these clusters as (part of) her pro-
file. Such kind of clusters as user profiles can benefit various web
applications, including (1) user-level predictive tasks, such as user
demographic attributes prediction and user churn/uplift prediction
[6, 13], where cluster profiles can be consumed as auxiliary features;
(2) ad audience targeting [26, 32], where ad platforms or advertisers
can leverage user clusters to reach a certain segment of users that
have targeted interests and habits in an interpretable manner; (3)
look-alike audience extension [19, 21], where the task is to reach
users similar to a given set of seed users, especially with the goal
of enhancing the performance of cold-start and long tail items and
improving the recommendation diversity. User clusters are natu-
rally suitable for this task because similar users have already been
indexed in the same clusters.

4 RELATEDWORKS
Collaborative filtering techniques, especially model-based CF meth-
ods, have achieved great success in personalized recommender
systems. Most (if not all) of those methods rely on the latent factor
embeddings to generate rating predictions, which makes it difficult
to give explanations for the predictions. However, explaining why a
user likes an item can be as important as the accuracy of the predic-
tion itself [41], since it can not only enhance the transparency and
trustworthiness of the system, but also significantly improve user

satisfaction. Therefore, varieties of strategies for rendering explain-
able recommendations have been proposed. We first review explain-
able collaborative filtering methods [1, 5, 10, 23, 24, 31, 33, 39, 42],
then we discuss other recent explainable recommendation works.

Explainable collaborative filtering methods. EMF [1] adds
an explainability regularizer into the objective function of MF to
force user/item hidden vectors to be close if a lot of the user’s neigh-
bors also purchased the item. HFT [23] leverages the topic model
to obtain interpretable textual labels for latent rating dimensions.
EFM [42] factorizes a rating matrix in terms of both explicit phases
from textual reviews as well as latent factors, and makes predictions
by combing the scores of both explicit and implicit features. Tri-
Rank [10] models user-item-tag ternary relation as a heterogeneous
tripartite graph and performs vertex ranking for recommendation.
ATM [5] utilizes latent factors to estimate tag importance of a user
towards an item, and makes predictions via a linear combination
of tag ratings. More recently, AMCF [24] maps uninterpretable em-
beddings into the interpretable aspect features by minimizing both
ranking loss and interpretation loss. Nonetheless, those methods
are unable to satisfy all three important explanation properties:
flexible, coherence and self-explainable, resulting in ineffectiveness
to boost the transparency of recommender systems.

Other directions of explainable recommendation. There is
also a large literature that considers other auxiliary information
or other methods to explain recommendations [1, 3, 4, 8, 9, 25, 34–
37]. For example, NARRE [3] designs an attention mechanism over
the user and item reviews for rating prediction, and leverages the
attention weight for explanation. VECF [4] proposes visually ex-
plainable recommendation based on personalized region-of-interest
highlights by a multimodal attention network. PLM-Rec [9] learns
a language model over knowledge graph to generate explainable
paths. Those methods leverage more expressive data for explana-
tion, which can be the future direction of our ECF framework.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a neat yet effective explainable collabora-
tive filtering framework, called ECF, which is able to learn infor-
mative taste clusters in an end-to-end manner, and perform both
recommendation and explanation by measuring the intersection be-
tween user-/item- cluster affiliations. ECF is flexible, coherent and
self-explainable. Meanwhile, we design four quantitative metrics
and conduct human studies to evaluate the explainability quality of
taste clusters in a comprehensive manner. Extensive experiments
conducted on three real-world datasets demonstrate the superior-
ity of ECF from both recommendation accuracy and explanation
quality. In the future, we aim to apply ECF to real-world recommen-
dation scenarios with millions of users and items to improve its
scalability. Besides, we plan to incorporate ECF with more expres-
sive data beyond tags, such as reviews [3], knowledge graphs [7, 36]
to fully exploit the power of this framework.
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A APPENDIX
A.1 Pseudocode of ECF
To help readers get an intuitive sense of the framework, we provide
a pseudocode in Algorithm 1.

Algorithm 1: Training Pipeline for an individual ECF
Input: a set of users U and items I; user-item interactions Y; tags

T for items
Output: Learned user embeddings U; item embeddings V; taste

cluster embeddings H; sparse affiliation matrix A and X
1 Randomly initialize all parameters
2 Randomly select | C | items as the initial taste clusters
3 while not converge do
4 for each pair (𝑢, 𝑖, 𝑗 ) in Y do
5 Calculate the sparse affiliations a𝑢 , x𝑖 and x𝑗 with Eq.(6)
6 Perform cluster-based predictions with Eq. (9)
7 Calculate tags distribution for taste clusters with Eq.(13)
8 Calculate independence of taste clusters with Eq.(14)
9 Update model parameters with Eq.(16)

A.2 Adaptation of EFM
Since EFM relies on the phase-level reviews for prediction and expla-
nation, we make a few modifications to fit our settings where only
tags of items are available. First, we generate the user-feature ma-
trix by counting all the features of items that users have interacted
with, which means that all the mentioned features are considered
as positive. Second, the negative opinions of item’s features are
discarded because no auxiliary information is available. Third, the
item-feature quality matrix is simplified as a 0-1 matrix where 1
denotes the item has the tag in attributes, while 0 denotes other-
wise. After reconstructing the user-feature matrix and item-feature
quality matrix, we run the EFM model as it describes in the paper.

A.3 Hyper-Parameter Settings
We optimize all models with Adam [16], where the batch size is
fixed at 1024. For CDAE, the hidden size is 100, and the dropout ratio
is set to 0.5. For LightGCN, we set the number of layers to 3, and
the dropout ratio is also set to 0.5. For EFM, we fix the percentage
of explicit factors to 40%, and tune the coefficient of feature-based
score for best performance. For AMCF, we use their official codes
(https://github.com/pd90506/AMCF) for implementation and set
the hyperparameter of feature mapping as 0.05. For ECF, we set
𝑚 = 20 and 𝑛 = 20, which means that we restrict that each item
and item are associated with only 20 clusters. The temperature
hyperparameters𝑇 and 𝜏 are all set as 2. We also set |C| = 64 for all
datasets, which indicates each ECF model could generate 64 taste
clusters. Besides, the number of single ECF model 𝐹 is set as 9 for
all experiments. Moreover, early stopping strategy is performed for
all methods, i.e., premature stopping if recall@20 on the test set
does not increase for 10 successive epochs. We report the average
metrics for all the users in the testing set.

Besides, since ECF utilize sparse affiliations between users/items
and taste clusters instead of embeddings to perform recommen-
dation, we choose two options for fair comparison: (1) we fix the

size of ID embeddings (users, items and taste clusters) as 64 for all
methods; (2) since the affiliation size of ECF is 180 (top 20 affiliated
taste clusters for each users/items, and we use 9 single ECF model),
we align it with the embedding size of all other methods, and set
the size of embeddings as 180. We conduct both experiments for all
baselines and select the best performance for the report.

A.4 Complete Recommendation Performance
We report the comprehensive recommendation performance in
Table A1, where 𝐾 = 20 is omitted since the results are already
reported in Table 2. From the results we see a similar trend as
we discussed in Section 3.2: embedding-based methods (e.g., MF
and LightGCN) show strong performance across different datasets
yet suffer from poor explanation; explainable methods can only
slightly outperform MF, since they need to balance the trade-off
between accuracy and transparency. However, ECF achieves the
best performance in all rankingmetrics (including the forest version
of MF). Therefore, our model is able to not only provide accurate
recommendation results, but also intuitive and clear explanations
for each prediction with taste clusters.

A.5 Baselines for Explanation Evaluation
• TagCluster is a tag-oriented method which collects items ac-
cording to their tags. To be specific, we first randomly sample
|C| items as the seed of clusters, and search for the items which
have the same tags with them. When there is no item that has
the exactly the same tags as the seed, we relax it by randomly
discarding one tag and continue to search. We iteratively conduct
the operations until the size of clusters meets threshold 𝑍 . And
we choose the 4 most frequent tags in the clusters as the tags of
taste clusters.

• K-means is a similarity-oriented method which leverages the
item embeddings from FM to perform K-means clustering algo-
rithm. The result clusters are as directly used as the taste clusters.
And we also select the top-4 most common tags as the descriptive
tags for taste clusters.

• Random is a baseline method which randomly select 𝐾 items to
construct the clusters. The procedure is repeated until all items
are allocated in at least one cluster. We use the same mechanism
as above methods to generate tags for each clusters.

A.6 Human Evaluation
We conducted two task to evaluate the explanability of ECF from
human perspective. Task(1) is to rank the quality of the clusters’
tags generated by ECF and three baselines; and Task(2) is to rank
the quality of user-item explanations, with rank 1 representing
the best and rank 4 representing the worst. We randomly select
10 generated clusters for evaluation, and the mean ranking results
of these two tasks are shown in Table A2. We can see that ECF
achieved the best from human judgements, which ranks 1.73 and
1.3 for clusters’ tags and recommendation explanation, respectively.
Since human evaluation can be time-consuming, expensive, and
not scalable, our proposed computational metrics are important for
automatic evaluation.

https://github.com/pd90506/AMCF
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Table A1: Complete Top-𝐾 recommendation results. “†” indicates the improvement of the ECF over the baseline is significant
at the level of 0.05. R and N refer to Recall and NDCG, respectively.

Xbox MovieLen Last-FM
R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10

MF 0.2615 0.3686 0.2383 0.2824 0.0601 0.0975 0.2738 0.2511 0.0289 0.0446 0.0428 0.0443
NCF 0.2372 0.3433 0.2065 0.2503 0.0594 0.0985 0.2701 0.2517 0.0269 0.0456 0.0396 0.0383
CDAE 0.2604 0.3738 0.2346 0.2813 0.0609 0.0946 0.2671 0.2534 0.0286 0.0402 0.0431 0.0518

LightGCN 0.2684 0.3625 0.2382 0.2837 0.0699 0.1163 0.2979 0.2752 0.0398 0.0578 0.0605 0.0634
EFM 0.2647 0.3652 0.2368 0.2873 0.0657 0.1027 0.2866 0.2635 0.0319 0.0482 0.0471 0.0484
AMCF 0.2601 0.3613 0.2355 0.2806 0.0603 0.0986 0.2719 0.2498 0.0295 0.0488 0.0456 0.0457

MF𝑓 𝑜𝑟𝑒𝑠𝑡 0.2907 0.3983 0.2615 0.3159 0.0787 0.1276 0.3122 0.2911 0.0374 0.0548 0.0562 0.0594
ECF𝑠𝑖𝑛𝑔𝑙𝑒 0.1714 0.2763 0.1423 0.1854 0.0352 0.0608 0.1584 0.1505 0.0205 0.0315 0.0339 0.0345

ECF 0.2970† 0.4299† 0.2644† 0.3193† 0.0788 0.1325† 0.3183† 0.2952† 0.0455† 0.0635† 0.0782† 0.0749†
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Figure A2: Impact of forest mechanism on Xbox and Movie-
Lens datasets.

Table A3: The recommendation performance and explain-
ability of ECF and ECF𝐿𝐺𝑁 on Last-FM dataset.

Performance Explainability
R@20 N@20 Cov. Util. Sil. Info. Overall

ECF 0.0851 0.0773 0.7648 0.6259 0.1584 0.2996 1.5352
ECF𝐿𝐺𝑁 0.0876 0.0792 0.7831 0.6430 0.1590 0.3042 1.5758

Table A2: The human evaluation results on Last-FM dataset.
ECF TagCluster K-means Random

RankOfTask(1) 1.73 2 2.73 3.63
RankOfTask(2) 1.3 2.5 2.23 3.93

A.7 Ablation Study w.r.t. 𝜆
We also investigate the impact of different 𝜆 on other two datasets,
and the results are shown in Figure A1. We find that as the increase
of auxiliary collaborative signals, the performance of ECF improves
gradually. However, when the weighting coefficient 𝜆 reaches be-
yond 0.6, the improvement becomes marginal. Thus, we set 𝜆 = 0.6
for all experiments.

A.8 Ablation Study w.r.t. Forest Mechanism
We briefly discuss how the number of single ECF model influences
the performance. Since the single ECF model is unable to model the
complex and hidden users’ interest space at once, more learned taste
clusters may help to alleviate this issue. We confirm this assumption

by adding more single ECF model for ensemble prediction, and the
results on Xbox and MovieLens dataset are illustrated in Figure A2.
We can see the huge performance gains when we increase the
number of ECF models, especially from a single model to three
models. However, as the number of single models continuously
increases, the improvements become negligible. We set the number
of ECF models to 9 for all experiments.
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Figure A1: Impact of 𝜆 on Xbox and MovieLens datsets.

A.9 Implementation of Discriminator
We opt for a simple Multi-Layer Perceptron (MLPs) as the post-hoc
discriminator. Specifically, it is a three-layer MLP (hidden size is
64) with ReLU as the activate function, cross-entropy as the loss
function. We utilize the tags of items as the input data, and feed
them into the MLPs to predict the item it belongs with. To improve
the robustness of the model, we randomly mask 50% of the item’s
tags for training. After training, we use the tags of taste clusters
as the input, and collect top |𝑐𝑖 | items as 𝑅(T𝑐𝑖 ) by ranking their
prediction probabilities.

A.10 Implementation of ECF with LightGCN
We use the item embeddings of the last layer in LightGCN for
taste clusters learning, and the auxiliary collaborative signal is
also replaced with the prediction loss from LightGCN. We denote
this variant as ECF𝐿𝐺𝑁 and the results of both performance and
explainability on Last-FM dataset are shown in Table A3.
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