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In light of the growing popularity of Exploratory Data Analysis (EDA), understanding the underlying causes
of the knowledge acquired by EDA is crucial. However, it remains under-researched. This study promotes
a transparent and explicable perspective on data analysis, called eXplainable Data Analysis (XDA). For this
reason, we present XInsight, a general framework for XDA. XInsight provides data analysis with qualitative
and quantitative explanations of causal and non-causal semantics. This way, it will significantly improve
human understanding and confidence in the outcomes of data analysis, facilitating accurate data interpretation
and decision making in the real world. XInsight is a three-module, end-to-end pipeline designed to extract
causal graphs, translate causal primitives into XDA semantics, and quantify the quantitative contribution
of each explanation to a data fact. XInsight uses a set of design concepts and optimizations to address the
inherent difficulties associated with integrating causality into XDA. Experiments on synthetic and real-world
datasets as well as a user study demonstrate the highly promising capabilities of XInsight.
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1 INTRODUCTION

Exploratory data analysis (EDA) is key to acquiring insight from data and facilitating analysis
towards decision making [Ma, Ding, Han, et al. 2021; Milo and Somech 2020]. With the advent
of the digital age, the information explosion phenomenon [Buckland 2017] makes it difficult for
users to justify and rely on knowledge and conclusions from EDA. To ease the cognitive process,
data explanations are proposed to deliberate data facts (e.g., query outcomes) and enhance user
comprehension [Glavic et al. 2021]. In this paper, we term such a process as eXplainable Data
Analysis (XDA), which advances data analysis by providing users with effective explanations.
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By suggesting and justifying choices to alter outcomes, XDA helps users comprehend and trust
phenomena emerging from data; as a result, it facilitates real-world decision making.

Explanations can be categorized as either causal or non-causal [Lange 2016]. Causal explanations
seek causal factors to explain an outcome. Fig. 1 depicts a hypothetical lung cancer dataset. Here,
a patient’s location (indicating regional tobacco control policy) and amount of stress have an
impact on whether they would smoke. Then, smoking influences lung cancer’s severity. The degree
of severity further affects whether they would undergo surgery and the five-year survival rate.
Here, smoking explains why a patient has high lung cancer severity (see Fig. 1(f)). In contrast, a
non-causal explanation shows the results merely by statistical correlations. For example, surgery
“explains” (more precisely, is relevant to) lung cancer severity (see Fig. 1(g)). Despite being helpful,
this is not a causal explanation [Povich and Craver 2018].

Existing data explanation tools (e.g., Tableau’s Explain Data [Discover Insights Faster with Explain
Data 2022] in industry, Scorpion [E. Wu and Madden 2013] and DIFF [Abuzaid et al. 2021] in
academia) often provide non-causal explanations [Glavic et al. 2021]. Although valuable for data
analysis, they may mislead users who want causal explanations. A well-known confusion, as
noted in [Law et al. 2021], is that Tableau’s Explain Data reports that Massachusetts’ low teenage
pregnancy rate may explain this state’s high ACT Math score. Such explanations are questionable.
In comparison, causal explanations play a central role in human cognition [Keil 2006; Murphy and
Medin 1985]. They enable users to make counterfactual thinking and actionable decisions. For
instance, quitting smoking reduces lung cancer severity whereas cancelling surgery does not.

Location Stress Smoking
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5Y 
Survival
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B Low (1) No (0) Mild (1) No (0) Yes (1)

(a) raw data

Location

Stress

Smoking Lung Cancer

Surgery

5Y Survival

(c) qualitative causal relations learned by XLEARNER

2
2.2

2.4

2.6
2.8

3

A B

AV
G

(L
un

g 
Ca

nc
er

)

(b) typical EDA output and the derived WHYQUERY
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(d) causal and non-causal semantics judged by XTRANSLATOR

Why Lung Cancer (Severity) in Location=A is 
notably higher than Location=B?

(e) explanations identified by XPLAINER
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(f) example of causal explanation
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Causal Explanation: “Factor=Smoking.
Smoking=Yes” explains the difference on Lung
Cancer between Location=A and Location=B.

Non-causal Explanation: “Factor=Surgery.
Surgery=Yes” is relevant to the difference on Lung
Cancer between Location=A and Location=B.

Three modules of XINSIGHT

Fig. 1. Illustrative example of XInsight.

According to Pearl’s general causality [Pearl 2009a], causal knowledge is typically represented by
causal graphs. Each node in a causal graph represents a random variable in data, and each directed
edge between parent and child nodes denotes a cause-effect relation. Causal knowledge primarily
conveys qualitative explanations [Scheines et al. 1991], such as smoking causes lung cancer. To
further enable quantitative explanations, it is necessary to quantify the contribution of each input
to the output. This way, we quantify smoking’s contribution to lung cancer and compare it with
other factors. Halpern’s actual causality [Halpern 2016; Halpern and Pearl 2005], and essentially its
adaptation, DB Causality [30], provide an elegant formulation of this concept.
This paper proposes XInsight as a unified, causality-based XDA framework that qualitatively

and quantitatively answers WhyQuery raised by users. Considering the following WhyQuery:
Example 1.1: The dataset in Fig. 1(a) depicts the patient information in a country. An analyst
observes an interesting data fact: “the average severity of lung cancer of patients in location A is
much higher than in location B” and then raises a WhyQuery (Fig. 1(b)).
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for which Fig. 1(f) and (g) illustrate two explanations provided by XInsight. Each explanation is
flagged as either a “causal” or “non-causal” explanation, and is composed of both qualitative and
quantitative sub-explanations.
Example 1.2: An explanation (Fig. 1(f)) deems “Smoking” to be a qualitative causal factor of
lung cancer severity and highlights “Smoking=Yes” and its responsibility as a quantitative sub-
explanation.
XInsight includes three modules, XLearner, XTranslator, and XPlainer to gradually form

explanations. XLearner first automatically discovers a causal graph G from data (Fig. 1(c)). Then,
given aWhyQuery (Fig. 1(b)) with the target (i.e., the measure “Lung Cancer”) and the context
(i.e., the breakdown dimension “Location”), XTranslator enumerates each remaining variable on
G and decides if it is causal or non-causal to the target under the context. Fig. 1(d) shows causal
variables (i.e., those that can potentially provide causal explanations) in green and non-causal
variables (i.e., those that can potentially provide non-causal explanations) in purple. Last, XPlainer
quantifies how well each variable answers Why Query by searching possible predicates on the
variables that are the most responsible, as shown in Fig. 1(e). Despite the promising capability of
XInsight, concretizing each module is challenging. We brief the challenges and our solutions in
the following.
XLearner.Most real-world datasets are collected irrespective of causal sufficiency [Peters, Janzing,
and Schölkopf 2017]. In other words, not all causally relevant variables are available in the dataset.
Furthermore, real-world datasets often contain deterministic relations in the form of Functional
Dependency (FD), especially when they have materialized from relational databases. These FDs
may violate the faithfulness assumption [Ding, Liu, et al. 2020], which is crucial for many causal
discovery algorithms. To address these challenges, we establish a theory to propose an FD-induced
graph GFD. XLearner uses GFD to select a subset of variables for standard causal discovery where
the selected variables do not trigger faithfulness violations induced by FDs. It adopts FCI [J. Zhang
2008] to address causal insufficiency and synergistically combine the result of FCI with the causal
relations entailed by GFD.
XTranslator. The translation from causal primitives (the structural relations in the causal graph)
into XDA semantics (e.g., whether a variable provides causal explanations) is under-explored. Given
a Why Query (with a target and a context), it is unclear how to determine if a variable 𝑋 can
explain the target given the context, and, moreover, if 𝑋 provides causal or non-causal explanations.
XTranslator characterizes various causal primitives (e.g., m-separation, ancestor/descendant
relations) from a causal graph and provides a taxonomy to translate them into XDA semantics.
XPlainer. DB causality is primarily designed for data provenance, which usually provides tuples
as explanations. Contrarily, we note that predicate-level explanations shall be more desirable for
XDA scenarios. Moreover, computing the responsibility of explanations with DB causality is NP-
complete in general [Meliou, Gatterbauer, Moore, et al. 2010]. XPlainer adapts DB causality to XDA
by using predicate-level explanations with the conciseness consideration and also significantly
reduces the computing cost with theoretical guarantees. In summary, we make the following
contributions:

• We propose XInsight, a unified and causality-based framework for XDA. XInsight features
adequate (by distinguishing causal from non-causal) and comprehensive (with qualitative and
quantitative) explanations.
• XInsight consists of three modules, XLearner, XTranslator and XPlainer, each of which is
meticulously designed to address technical challenges and deliver efficient analysis. XLearner
learns the causal graph from causally insufficient data in the presence of FD-induced faithfulness
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violations, XTranslator translates causal primitives into XDA semantics, and XPlainer effi-
ciently provides quantitative explanations via an adaptation of DB causality to meet the needs of
XDA scenarios.
• Empirically, we conduct thorough experiments on public data, production data, and synthetic
data via quantitative experiments and human evaluations. The results are very encouraging.

Open Source and Real-world Adoption.We release our code at [Microsoft 2022a]. XPlainer
has been integrated into Microsoft Power BI to explain increase/decrease in data [Microsoft 2022b].

2 PRELIMINARY

2.1 Data Model andQuery

Multi-Dimensional Data. Let 𝐷 B {𝑋1, · · · , 𝑋𝑛} represents multi-dimensional data comprising
𝑛 attributes. In XInsight, we assume that records of 𝐷 are drawn independently from an identical
distribution without selection biases (i.e, i.i.d. assumption) such that each attribute is a (random)
variable. Here, selection bias is a preferential selection of units in data analysis [Bareinboim and
Pearl 2012]. A variable is either categorical or numerical. In accordance with previous works [Ding,
Han, et al. 2019; Ma, Ding, Han, et al. 2021], we denote a categorical variable as dimension and a
numerical variable as measure. Multi-dimensional data is commonly represented as a spreadsheet
in our context. For relational data, we anticipate taking a materialized provenance table [C. Li et al.
2021] as input.
Aggregation andDiscretization onMeasure.Given ameasure𝑀 , usersmay perform aggregation
operations (such as SUM and AVG in SQL) over a set of realizations of𝑀 . In some cases, measures
are processed in the form of a dimension (e.g., use measures for explanations), which necessitates
discretization. It transforms numerical values into several discrete bins that form a categorical
variable.
Filter. In this paper, filter is the basic unit of data operations. Given a multi-dimensional data 𝐷
and a dimension 𝑋 , a filter 𝑝𝑖 = {𝑋 = 𝑥𝑖 } (e.g., “Smoking=Yes”) implies an equality assertion to 𝑋
such that the value of 𝑋 shall equal 𝑥𝑖 .
Predicate. The disjunction of filters applied on the same dimension is a predicate. Given the
dimension 𝑋 , the predicate 𝑃 (𝑥1, · · · , 𝑥𝑘 ) is a set containment assertion {𝑋 = 𝑥1 ∨ · · · ∨𝑋 = 𝑥𝑘 } ≡
{𝑝1, · · · , 𝑝𝑘 }. On a discretized measure, a predicate is an assertion on ranges. A filter is a special
case of a predicate. For clarity, we represent a general predicate with a capital 𝑃 and a filter with a
lower-case 𝑝 .
Subspace. A subspace is a conjunction of filters on disjointed dimensions. Given multi-dimensional
data 𝐷 , a subspace corresponds to a subset of rows satisfying the conditions of all filters. If two
subspaces only differ in one filter, they are regarded as siblings. The term Context refers to the
variables of two sibling subspaces, where the background variables are the variables with the shared
filters and the foreground variables are the variables with the different filters. In the following
example, we provide a simple instantiation.
Example 2.1: Consider the preceding dataset in Fig. 1(a). 𝑠 = {Location = A ∧ Lung Cancer =
Severe} represents the subspace denoting all patients in “Location=A” with severe lung cancer. All
patients in “Location=A” with severe lung cancer and all patients in “Location=B” with severe lung
cancer form a pair of sibling subspaces. Here, “Location” is the foreground variable and “Lung
Cancer” is the background variable.
Selection.Weuse the following notation to represent the selection procedure overmulti-dimensional
data 𝐷 . The subset of data after the selection operation is defined as 𝐷𝑝𝑖 , 𝐷𝑃 , or 𝐷𝑠 , where 𝑝𝑖 is
a filter, 𝑃 is a predicate, and 𝑠 is a subspace. We define 𝐷 − 𝐷 ′ as the rows remaining in 𝐷 after
removing those from 𝐷 ′.
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Why Query and Explanation. As illustrated in Fig. 1(b), the user would issue a Why Query to
XInsight for explanation. We formally defineWhyQuery as follows.

Definition 2.1 (Why Query). Given a multi-dimensional data 𝐷 , a user launches aggregate
query 𝑎𝑔𝑔() on a target measure 𝑀 under two sibling subspaces 𝑠1, 𝑠2. Why Query is defined as
Δ𝑠1,𝑠2,𝑀,𝑎𝑔𝑔 (𝐷) = 𝑎𝑔𝑔𝑀 (𝐷𝑠1 ) −𝑎𝑔𝑔𝑀 (𝐷𝑠2 ). For brevity, we use Δ(𝐷) as the shorthand of Δ𝑠1,𝑠2,𝑀,𝑎𝑔𝑔 (𝐷).
W.l.o.g., we assume Δ is always non-negative.

Example 2.2: As shown in Fig. 1(b), we concretize the Why Query Δ with the AVG aggregate on
the target “Lung Cancer” over two sibling subspaces 𝑠1 = {Location = A}, 𝑠2 = {Location = B},
denoting the difference in average lung cancer severity in “A” and “B”.

Indeed, explaining the difference between two aggregate queries is one prevalent data analysis
task. Identifying the cause in data difference constitutes the basis of many data explanation appli-
cations, such as outlier explanation and data debugging [Glavic et al. 2021]. In accordance with
prior works [Abuzaid et al. 2021; Glavic et al. 2021; E. Wu and Madden 2013], we concretize the
problem of XDA by concentrating on the explanation of data difference. The following form is used
to provide explanations in response to WhyQuery.

Definition 2.2 (Explanation). Given aWhyQuery, an explanation is represented by the following
triplet

explanation B ⟨type, predicate, responsibility⟩ (1)
where type ∈ {causal, non-causal} denotes whether the explanation is causal or non-causal, the
predicate is the content of the explanation, and responsibility, and a score ranging from 0 to 1 quantifies
the extent to which the explanation explains the given Why Query.

Example 2.3: Fig. 1(e) lists several explanations to theWhyQuery. Fig. 1(f)-(g) visualize two of
them. Fig. 1(f), as a causal explanation, depicts that “Smoking=Yes” causes the lung cancer severity
difference in Location A and B with a responsibility of 0.77.
Single- vs. Multi-Dimensional Explanation. For conciseness and clarity, we anticipate that each
explanation reflects one aspect contributing to the outcome when explaining the Why Query. We
recommend adopting a single-dimensional explanation in XInsight due to its unambiguous causal
semantics, although it is feasible to extend an explanation as multi-dimensional using the Cartesian
product. The joint causal semantics of several variables, however, could be obscure. Furthermore,
multiple single-dimensional explanations (e.g., Fig. 1(e)) suffice to represent a multi-dimensional
case.
Functional Dependency (FD). Functional dependency relations are common in multi-dimensional
data. In a relational database, among the attributes, there may exist primary keys and foreign
keys. Therefore, after materialization, the resulting multi-dimensional data may have functional
dependencies. A functional dependency between 𝑋 and 𝑌 is represented by 𝑋

FD−−→ 𝑌 . FD, as a
deterministic relation among two variables, deems a form of reliable knowledge. This research
focuses on one-to-one and one-to-many FDs. We present a simple exemplary dataset that contains
FDs.
Example 2.4: Let CityInfo be a dataset with three attributes (i.e., City, State, Country). It has
three FDs, namely, City

FD−−→ State, State
FD−−→ Country, and City

FD−−→ Country.
FD-Induced Graph. Given a multi-dimensional data 𝐷 and its functional dependencies, the FD-
induced Graph GFD B (𝑉 , 𝐸), where 𝑉 B {𝑋𝑖 | ∀𝑋𝑖 ∈ 𝐷} and 𝐸 B {(𝑋𝑖 , 𝑋 𝑗 ) | if 𝑋𝑖

FD−−→ 𝑋 𝑗 }. We
assume GFD to be acyclic. Cycles in GFD imply redundant attributes; in such cases, we retain only
one of them to ensure acyclicity.
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2.2 Causal Discovery with Latent Variables

This section presents terminology essential to causal discovery with latent variables, such as
the representation of causal graphs under causal insufficiency and typical assumptions in causal
discovery.
Causal Sufficiency. Causal discovery aims to learn the causal relations from the observational
data. Most causal discovery algorithms assume a sufficient observation of the underlying data
generating process [Spirtes et al. 2000]. Formally, a set of variables 𝑿 is said to be causally sufficient
if there is no hidden variable 𝑍 ∉ 𝑿 that is causing more than one variable in 𝑿 . In other words,
it assumes that latent confounders — the shared causes among two or multiple variables — do
not exist. However, the process used to acquire real-world data does not provide such guarantees,
thereby often yielding causally insufficient observations. Hence, the causal discovery procedure is
compromised by the spurious association between two variables sharing a latent confounder. We
present an example below.

(a) observable confounder (b) latent confounder

𝑋 𝑌

𝑍

𝑋 𝑌

𝑍
𝑋 𝑌

Socioeconomic 
Status

ACT Math 
Score

Teenage 
Pregnancy

Fig. 2. Examples of observable and latent confounders.

Example 2.5: Consider the hypothetical causal graph in Fig. 2(a) where the socioeconomic status
(𝑍 ) simultaneously causes teenage pregnancy (𝑋 ) and their ACTmath scores (𝑌 ). The socioeconomic
status, however, does not appear in the dataset. This absence yields an insufficient observation (the
left-side causal graph in Fig. 2(b)), which further results in a spurious association [Pearl 2009b] of
teenage pregnancy and ACT math scores (the bidirected edge in Fig. 2(b)).
Hence, popular directed acyclic graphs are not expressive enough to represent these subtle

relations. This necessitates the Maximum Ancestral Graph [Spirtes et al. 2000], which is introduced
shortly.
Notation and Terminology. Recall that we assume the dataset is i.i.d. with potential latent
confounders and does not contain selection bias. Maximal Ancestral Graph (MAG) forms the
standard representation of causal graphs in this setting. We now introduce important concepts of
graphical models and properties of MAG.
A directed mixed graph G is a graphical model that contains nodes 𝑿 and two types of edges,

including directed (→) and bidirected (↔). There is at most one edge between any two nodes. For
each directed edge 𝑋 → 𝑌 , 𝑋 is a parent of 𝑌 and 𝑌 is a child of 𝑋 . 𝑋 and 𝑌 are adjacent if there
is an edge (either directed or bidirected) between them. A path P is a sequence of distinct nodes
(𝑋1, . . . , 𝑋𝑘 ) where 𝑋𝑖 and 𝑋𝑖+1 are adjacent in G for all 1 ≤ 𝑖 < 𝑘 . A path P = (𝑋1, . . . , 𝑋𝑘 ) is
directed if 𝑋𝑖 is a parent of 𝑋𝑖+1 for all 1 ≤ 𝑖 < 𝑘 . 𝑋 is an ancestor of 𝑌 if there exists a directed path
from 𝑋 to 𝑌 and 𝑌 is a descendant of 𝑋 accordingly. Given a path (𝑋1, . . . , 𝑋𝑘 ), a non-endpoint
node 𝑋𝑖 is a collider if there are arrowheads pointing to 𝑋𝑖 from both 𝑋𝑖−1 and 𝑋𝑖+1. Below, we list
all possible cases of a collider.
Example 2.6: Given (𝑋𝑖−1, 𝑋𝑖 , 𝑋𝑖+1), 𝑋𝑖 is a collider if and only if a) 𝑋𝑖−1 → 𝑋𝑖 ← 𝑋𝑖+1, or b)
𝑋𝑖−1 ↔ 𝑋𝑖 ← 𝑋𝑖+1, or c) 𝑋𝑖−1 → 𝑋𝑖 ↔ 𝑋𝑖+1, or d) 𝑋𝑖−1 ↔ 𝑋𝑖 ↔ 𝑋𝑖+1. In Fig. 1(c), Smoking is a
collider of Location and Stress since “Location ◦→ Smoking←◦ Stress”, where ◦ represents an
undetermined edge endpoint.
A path (𝑋,𝑊1, · · · ,𝑊𝑘 , 𝑌 ) is said to be blocked by 𝑍 ⊆ 𝑿 \ {𝑋,𝑌 } if there exists a node𝑊𝑖 ∈
{𝑊1, · · · ,𝑊𝑘 } such that a)𝑊𝑖 is not a collider but a member of 𝑍 , or b)𝑊𝑖 is a collider but not an
ancestor of any nodes of 𝑍 . We now introduce m-separation and MAG.
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Definition 2.3 (m-separation [J. Zhang 2008]). 𝑋,𝑌 are m-separated by 𝑍 (denoted by 𝑋⫫G𝑌 |
𝑍 ) if all paths between 𝑋,𝑌 are blocked by 𝑍 .

Example 2.7: Consider the causal graph in Fig. 1(c) where “Smoking” blocks the only path
between “Location” and “Lung Cancer”. Hence, “Smoking” m-separates “Location” and “Lung
Cancer” (denoted by Lung Cancer⫫GLocation | Smoking).

Definition 2.4 (Maximal Ancestral Graph [J. Zhang 2008]). A directed mixed graph is called
a MAG if a) it contains no directed cycles or almost directed cycles and b) for each pair of non-adjacent
nodes, there exists a set of nodes that m-separates them. A directed cycle refers to the case where
𝑋 → 𝑌 → · · · → 𝑋 and an almost directed cycle refers to the case where 𝑋 → 𝑌 → · · · → 𝑍 ↔ 𝑋 .

Then, the Global Markov Property (GMP) is developed to provide a probabilistic interpretation
of m-separation.

Definition 2.5 (Global Markov Property [Spirtes et al. 2000]).

𝑋⫫G𝑌 | 𝑍 ⇒ 𝑋 ⫫ 𝑌 | 𝑍 (2)
As aforementioned, m-separation indicates that all paths between 𝑋 and 𝑌 are “blocked” by 𝑍 .

Hence, it is intuitive that, if𝑋 and 𝑌 arem-separated, their statistical correlation is also “blocked” by
𝑍 . The term conditional independence (i.e., 𝑋 ⫫ 𝑌 | 𝑍 ) depicts this absence of statistical correlation.
Statistically, 𝑋 ⫫ 𝑌 | 𝑍 implies that 𝑃 (𝑋,𝑌 | 𝑍 ) = 𝑃 (𝑋 | 𝑍 )𝑃 (𝑌 | 𝑍 ), which can be empirically
examined using statistical hypothesis tests (e.g., 𝜒2 tests).
Example 2.8: Consider the dataset in Fig. 1(a). According to GMP, the m-separation in Ex. 2.7
implies that, for the dataset in Fig. 1(a), “Location” and “Lung Cancer” are conditionally independent
given “Smoking,” in a statistical sense.

With GMP, we can deduce statistical conditional independence in data from m-separations. Note
that only data is available when performing causal discovery. Hence, we need to invert GMP and
establish a connection from data distribution to the graphical structure. Faithfulness assumption
establishes such connection.

Definition 2.6 (Faithfulness [Spirtes et al. 2000]).

𝑋 ⫫ 𝑌 | 𝑍 ⇒ 𝑋⫫G𝑌 | 𝑍 (3)

According to faithfulness, if we observe that two variables are conditionally independent by a
set of variables in data, then they are m-separated by the same set of variables on the causal graph.
Faithfulness and GMP together establish the equivalence between conditional independence and
m-separation and they form the key to causal discovery. In addition, we define skeleton as follows.

Definition 2.7 (Skeleton). The skeleton S of a MAG G is the undirected graph obtained by
removing all arrowheads from G.

Constraint-based Causal Discovery. Constraint-based approaches are the standard solution
to causal discovery. With the faithfulness assumption, these methods exploit the conditional
independence derived from data and gradually establish a MAG G. G is consistent with all m-
separations entailed by conditional independence. However, there may exist multiple MAGs that
are equally consistent with the m-separations and not distinguishable, which is called Markov
equivalence class, denoted by [G]. It is worth noting that these feasible MAGs share the same
skeleton while differing in direction on certain edges. These MAGs are therefore summarized into
a compact representation called Partial Ancestral Graph (PAG) with some undetermined edge
endpoints.
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Table 1. Four types of edges in PAG. Circle represents undetermined edge endpoint (can be either an arrowhead

or tail).

Edge Causal Semantics

𝑋 → 𝑌 𝑋 is a cause of 𝑌 .
𝑋 ↔ 𝑌 neither 𝑋 nor 𝑌 is a cause of each other but they share a latent common cause.
𝑋◦→𝑌 1) 𝑋 is a cause of 𝑌 ; or 2) neither 𝑋 nor 𝑌 is a cause of each other but they share a latent common cause.

𝑋◦−◦𝑌 1) 𝑋 may be a cause of 𝑌 ; or 2) 𝑌 may be a cause of 𝑋 ; or 3) neither 𝑋 nor 𝑌 is a cause of each other but
they share a latent common cause.

Definition 2.8 (Partial Ancestral Graph [J. Zhang 2008]). Let [G] be a Markov equivalence
class of a MAG G. A PAG for [G] is a graph P with three possible edge endpoints (namely, tail,
circle and arrowhead; and hence four kinds of edges:→,↔, ◦→, ◦−◦) such that 1) P shares the same
adjacencies with G (and any member of [G]), and 2) every non-circle edge endpoint indicates an
invariant edge endpoint in [G].

The second condition in Def. 2.8 implies that an edge associates a tail “−” or arrowhead “→”
endpoint, if and only if it is invariant in all G ∈ [G]. Table 1 lists the semantics of edges.
Example 2.9: Location ◦→ Smoking in Fig. 1 (c) implies that “Location” is a cause of “Smoking”
or they share a latent confounder.
We clarify that the FCI algorithm [Spirtes et al. 2000], as a typical constraint-based approach,

consists of two phases. The skeleton of [G] is first learned by assuming faithfulness (i.e., the FCI-SL
phase of the FCI algorithm). Then, the undirected edges are subsequently oriented according to
a set of orientation rules (i.e., the FCI-Orient phase of the FCI algorithm). Finally, the PAG is
returned; see full details of the FCI algorithm in Supplementary Material. However, soon we will
show that the faithfulness assumption can be violated by FD relations. In this paper, we focus on
establishing a theory and proposing a solution to tackle this unique challenge that arises in data
analysis scenarios. That is, our XLearner calibrates the FCI algorithm to correctly handling FDs
(see details in Sec. 3.1).

3 XINSIGHT

Multi-dimensional 
Data

XLEARNER

FD Detection

Skeleton
Learning

Orientation

WHYQUERY
User

XTRANSLATOR & XPLAINER

Explanation
Search

Semantics
Translation

Qualitative Explanation

Quantitative Explanation

…

Qualitative Explanation

Quantitative Explanation

Fig. 3. Workflow of XInsight. Offline phase is marked in blue and online phase is marked in red.

XInsight delivers a unified framework for XDA with three modules. The workflow of XInsight
is shown in Fig. 3. First, given a multi-dimensional data 𝐷 , XLearner pre-learns a causal graph G
from data in the offline phase (blue-annotated in Fig. 3). Then, in the online phase (red-annotated in
Fig. 3), upon receiving a Why Query, XTranslator identifies variables that have the potential to
give either causal or non-causal explanations based on the causal primitives in G. Finally, XPlainer
examines each identified variable with potential and decides the optimal explanation for the given
Why Query. After applying XPlainer to all variables with potential, XInsight yields a set of
explanations (with qualitative sub-explanations and quantitative sub-explanations). By decoupling
XInsight into an offline phase and an online phase, heavy-weight computations are performed
beforehand, and only light-weight computations are needed in the online phase, allowing for a
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rapid response to a user’s query. In the following, we elaborate on the design of each module. Due
to page limits, we present proofs and theoretical discussion in the Supplementary Material.

3.1 XLearner

XLearner aims to learn a causal graph G from multi-dimensional data 𝐷 in the presence of latent
confounders. The primary obstacle is that learning the skeleton of G requires the faithfulness
assumption (see Sec. 2.2), which may be violated by FDs in 𝐷 . Below, we show how contradictory
causal structures can be induced when being agnostic to FDs.

(b) Skeleton under 
Faithfulness

𝑋

𝑌

𝑍

(c) Skeleton by 
XLearner

𝑋

𝑌

𝑍

(a) 𝒢ୈ

𝑋

𝑌

𝑍
FD

FD FD

(d) Orientation 
by XLearner

𝑋

𝑌

𝑍

Fig. 4. Illustration of FD-induced faithfulness violation.

Example 3.1: We first consider the CityInfo dataset described in Ex. 2.4 and the corresponding
FD-induced graph in Fig. 4(a), where 𝑋 denotes city, 𝑌 denotes state, and 𝑍 denotes country. By
definition of conditional independence (i.e., 𝑋 ⫫ 𝑌 | 𝑍 ⇐⇒ 𝑃 (𝑋,𝑌 | 𝑍 ) = 𝑃 (𝑋 | 𝑍 )𝑃 (𝑌 | 𝑍 )), we
have 𝑌 ⫫ 𝑍 | 𝑋 and 𝑋 ⫫ 𝑍 | 𝑌 . The definition of faithfulness implies 𝑌⫫G𝑍 | 𝑋 and 𝑋⫫G𝑍 | 𝑌 ,
given 𝑌 ⫫ 𝑍 | 𝑋 and 𝑋 ⫫ 𝑍 | 𝑌 . 𝑍 is non-adjacent to both 𝑋 and 𝑌 according to the m-separation
definition (see the induced graph in Fig. 4(b)). Consequently, 𝑍 is an isolated node in Fig. 4(b). We
have 𝑌⫫G𝑍 and GMP further implies that 𝑌 ⫫ 𝑍 , which contradicts 𝑌 ⫫∕ 𝑍 entailed by 𝑌

FD−−→ 𝑍 .
Indeed, the skeleton is not consistent with any MAGs that are on the top of it.

Table 2. Comparing different causal discovery algorithms. ✓ denotes “support” whereas ✗ denotes “no

support”.

Alg. Orientation FD-induced Faithfulness Violation Causal Insufficiency

PC [Spirtes et al. 2000] ✓ ✗ ✗

FCI [J. Zhang 2008] ✓ ✗ ✓

REAL [Ding, Liu, et al. 2020] ✗ ✓ ✗

XLearner ✓ ✓ ✓

As aforementioned in Sec. 2, the violations of causal sufficiency and faithfulness (induced by
FDs) are common in the data analysis scenarios. However, they are addressed separately in the
literature, as reviewed in Table 2. XLearner focuses on addressing both challenges simultaneously.
Fig. 4(c)-(d) show the skeleton and orientation by XLearner, which are compliant with intuition.

𝑋ଶ𝑋ଵ
…

𝑋

𝑍

FD-induced Graph Harmonious Skeleton

𝑋ଶ

𝑋ଵ

…

𝑋

𝑍

𝒮ଵ

𝒮ଶ

FD

FD

FD-augmented PAG

𝑋ଶ

𝑋ଵ

…

𝑋

𝑍

𝒢ଵ

𝒢ଶ

Fig. 5. Running example of XLearner.

Overall, XLearner tackles the problem in three stages. We outline the workflow of XLearner
in Alg. 1 and present an example. Then, we elaborate on the design of XLearner.
Example 3.2: Consider the FD-induced graph GFD shown in Fig. 5. In the first stage, XLearner
uses GFD to identify variables (e.g., 𝑋1 and 𝑍 in Fig. 5) that may trigger faithfulness violations. Then,
the skeleton S2 is built upon a harmonious assumption instead of faithfulness over 𝑋1 and 𝑍 . In
the second stage, the FCI algorithm (skeleton learning and orientation) is only conducted over
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Algorithm 1: XLearner procedure.
Input:Multi-dimensional Data 𝐷 , FD-induced graph GFD
Output: FD-augmented PAG 𝐺

1 // stage 1: detect and preclude 𝑿FD (Sec. 3.1.1)
2 S2 ← (𝑉 , ∅);
3 Topologically sorting nodes in GFD and record depth as 𝑑 (𝑋𝑖 );
4 while GFD has non-root nodes do
5 𝑋 ← argmax𝑋 ∈GFD .𝑉 𝑑 (𝑋 );
6 𝑌 ← argmin𝑌 ∈𝑃𝑎 (GFD,𝑋 ) |𝑌 |;
7 add edge (𝑋,𝑌 ) in S2;
8 remove 𝑋 and all connected edges from GFD;
9 end

10 // stage 2: standard PAG learning
11 S1 ← FCI-SL(𝐷,GFD .𝑉 );
12 G1 ← FCI-Orient(𝑆1);
13 // stage 3: orient S1 and generate G (Sec. 3.1.2)

14 foreach (𝑋 FD−−→ 𝑌 ) ∈ GFD .𝐸 do

15 if 𝑋,𝑌 is adjacent in S then orient 𝑋 → 𝑌 on G2 ;
16 end

17 generate G concatenating G1 and G2;
18 return G;

variables that comply with the faithfulness assumption. Hence, the skeleton S1 and the PAG G1 are
identified accordingly. In the third stage, we orient S2 to generate an FD-augmented PAG G2. By
concatenating G1 and G2, the resultant (FD-augmented) PAG G is obtained.
Comparison with FCI. Comparing with the FCI algorithm [Spirtes et al. 2000; J. Zhang 2008],
XLearner for the first time reconciles functional dependency (FD) and the faithfulness assumption
for causally insufficient data within the harmonious skeleton framework. In that sense, it can learn
causal graphs from real-world data adequately. As validated in Sec. 4.3, XLearner learns more
accurate causal graphs than the FCI algorithm. Second, it uses FDs to provide a more complete
orientation to the underlying causal graph. Hence, compared to the FCI algorithm, it leverages the
knowledge from FDs to enforce a more precise causal graph with less undetermined edges. In sum,
we deem that XLearner enhances the FCI algorithm from the theoretical perspective, and also
addresses obstacles in the real-life adoption of the FCI algorithm.

3.1.1 Skeleton Learning with FD (lines 1–9 of Alg. 1). Ding et al. point out that in the presence of
FD relations, faithfulness assumption can be violated thus we can at most obtain a harmonious
skeleton [Ding, Liu, et al. 2020]. However, the original theory of harmonious skeletons is established
under causal sufficiency. Here, we further generalize the harmonious skeleton for causally insufficient
systems:

Definition 3.1 (Harmonious Skeleton). A skeleton S is said to be harmonious w.r.t. a joint
probability distribution 𝑃 if 1) there exists a MAG G sharing the same adjacencies of S, 2) 𝑃 satisfies
GMP to G, and 3) any subgraph of S does not satisfy the previous two conditions.

Def. 3.1 entails three properties of S. First, since there exists a MAG G on top of the skeleton S,
there exists a set of nodes that m-separates any non-adjacent nodes. Second, if two nodes (e.g., 𝑋,𝑌 )
are m-separated by 𝑍 , then 𝑋 ⫫ 𝑌 | 𝑍 . These two conditions imply that 𝑋 and 𝑌 are non-adjacent
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in S, if and only if there exists a set of nodes 𝑍 such that 𝑋 ⫫ 𝑌 | 𝑍 . The last condition implies the
minimality of S, which is commonly assumed [Peters, Janzing, and Schölkopf 2017]. When two
graphs G,G′ are equally compatible with the data, we would prefer the simpler one. We now show
the construction of S, which begins with a basic case and generalizes to arbitrary structures.
Theorem 3.1. Let 𝑍 be a sink node (i.e., all edges of 𝑍 are oriented to 𝑍 ) in GFD. S = S1 ∪ S2 is a

harmonious skeleton if 1) 𝑆1 is a harmonious skeleton over 𝑿 \𝑍 and S2 contains only one edge 𝑋𝑖 −𝑍
where 𝑋𝑖 can be any node connected to 𝑍 in GFD.

Example 3.3: Fig. 5 presents an example of Thm. 3.1. Connecting the sink node 𝑍 with one of
its parents 𝑋1 in the GFD yields a skeleton S2. If we can learn a harmonious skeleton S1 on the
remaining nodes (𝑋1, · · · , 𝑋𝑛), Thm. 3.1 ensures that concatenating S1,S2 produces a harmonious
skeleton over all variables.

According to Thm. 3.1, if 𝑍 has more than one parent, multiple harmonious skeletons exist (note
that 𝑍 can connect to any one of its parents). In practice, we connect 𝑍 to the parent node with the
lowest cardinality. Given a FD-induced graph, we recursively apply Thm. 3.1 to identify sink nodes
and derive the corresponding harmonious skeleton S2 until all FDs are properly resolved. Then,
we can apply the standard skeleton learning algorithm over the remaining nodes. The procedure is
shown in lines 1–9 in Alg. 1.

Theorem 3.2. The skeleton of Alg. 1 is harmonious.

Alg. 1 first constructs an empty skeleton S that shares the same nodes as GFD (line 2). At line 3,
we topologically sort the GFD nodes (note that GFD is a DAG). In each iteration (lines 5–8), we pick
the deepest node and apply Thm. 3.1 to connect 𝑋 to one of its parents (in GFD) 𝑌 in the skeleton.
We use the parent node with the lowest cardinality as 𝑌 (line 6), as it usually aligns with human
intuition.
Example 3.4: Consider the CityInfo dataset in Ex. 2.4. Alg. 1 identifies the correct skeleton as
City − State − Country in Fig. 4(c).
For root nodes, since there are no FDs and thus the faithfulness assumption holds, we employ

the standard FCI algorithm (lines 10–12) to infer the PAG G1. After S2 being oriented to G2 (see
Sec. 3.1.2), we concatenate them to form G (line 17). Thm. 3.2 proves that the skeleton of G is also
harmonious after the concatenation.

3.1.2 Orientation (lines 13–16 of Alg. 1). Classical constraint-based causal discovery algorithms
decide the direction of edges based on a set of orientation rules. These rules orient undirected edges
on skeletons (i.e., ◦−◦) based on a set of criteria, including conditional independence and some
graphical structural relations (e.g., discriminating path) [J. Zhang 2008]. These rules are applied
iteratively until no more orientations can be made. However, we argue that an FD itself reflects a
causal relation to a good extent, of which the reason is twofold.
ANM Perspective on FD-related Edges. We anticipate incorporating the discrete additive noise
model (ANM) [Peters, Janzing, and Scholkopf 2011] for orienting FD-related edges. The main
theory of ANM implies that if an asymmetric ANM 𝑌 = 𝑓 (𝑋 ) + 𝑁𝑌 exists from 𝑋 to 𝑌 and 𝑁𝑌 is
independent of 𝑋 , then 𝑋 causes 𝑌 . By FD, we note that, if 𝑋

FD−−→ 𝑌 in GFD, an ANM construction
from X to Y naturally exist with noise term 𝑁𝑌 = 0. On the other hand, an ANM construction from
𝑌 to 𝑋 exists only in very rare cases, as determined by the identifiability of the discrete ANM (see
Thm. 4.6 in [Peters, Janzing, and Schölkopf 2017]). In light of this, we hypothesize that 𝑋

FD−−→ 𝑌 in
GFD implies causation of 𝑋 → 𝑌 .
FCI Perspective on FD-related Edges. The rules in FCI may be unreliable due to the faithfulness
violations by FDs. However, an FD itself is generally more reliable, which describes deterministic
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relations. More importantly, the directions from the FDs are compatible with the result of the FCI
on the variables excluding FD-related variables. That is, incorporating ANM would not violate
GMP.
We implement the above hypothesis in our orientation algorithm (lines 13–16 in Alg. 1). We

examine, for each FD relation that is also adjacent inS2, whether the edge is oriented as→ (lines 13–
15). We note that, by incorporating ANM, the augmented graph is more informative and represents
an overcomplete graph w.r.t. the ground-truth MAG’s Markov equivalence class, exhibiting greater
precision than causal graphs learned only by rules.

3.2 XTranslator

A causal graph does not directly reveal if a variable adequately explains a Why Query, nor does it
directly reflect if the variable features a causal or non-causal explanation. Bridging this gap requires
a translation from causal primitives to XDA semantics. To illustrate, we start with aWhyQuery
under AVG. We then show how to generalize the main result into SUM and other aggregates.
Principle of Explainability. Given aWhyQuery Δ where 𝑎𝑔𝑔 = AVG, a variable 𝑋 is said to have
No Explainability if𝑋 ⫫ 𝑀 | 𝐹 ∪𝑩, where𝑀 is the target measure, 𝐹 is the foreground variable, and
𝑩 are background variable(s). In the subsequent discussion, we omit 𝑩 for the ease of presentation
without loss of generality.

AWhyQuery in XDA requires us to observe the difference between aggregates on𝑀 within
two subspaces. The conditional independence of 𝑋 ⫫ 𝑀 | 𝐹 implies that E(𝑀 | 𝐹, 𝑋 ) = E(𝑀 | 𝐹 ).
Hence, Δ(𝐷) = Δ(𝐷𝑋=𝑥 ) in the large sample limit for all feasible filters in 𝑋 . If 𝑋 is conditionally
independent of𝑀 given 𝐹 ,𝑋 is simply impossible to offer explanations to theWhyQuery. Thus, this
principle imposes a restriction on possible variables that have the potential to provide explanations.
In particular, we derive the following restriction.

Proposition 3.1. If 𝑋 has explainability,𝑀,𝑋 are not m-separated by 𝐹 in the causal graph 𝐺 .

Proposition 3.1 illustrates the chance of pruning variables for which it is impossible to provide
explanations. Table 3 further depicts the translation from causal primitives to XDA semantics. In
XTranslator, a variable 𝑋 is first confirmed to have explainability if 𝑋,𝑀 are not m-separated
by 𝐹 in 𝐺 (1st row in Table 3). In addition, XTranslator also categorizes whether 𝑋 is causal or
non-causal according to Table 3. Overall, 𝑋 provides a causal explanation if it is explainable and a
cause (➀ and ➁ in Table 3) or a possible cause (➂ and ➃ rows in Table 3) of𝑀 . We show how the
causal graph identified by XLearner is translated.
Example 3.5: Given the dataset in Fig. 1(a), XLearner identifies the corresponding causal graph
in Fig. 1(c). With theWhyQuery in Fig. 1(b), XTranslator translates the causal graph into the
XDA semantics in Fig. 1(d). “Smoking” and “Stress Level” can be used to causally explain “Lung
Cancer”. And, other variables (e.g., “Surgery”) are deemed non-causal explanations (last row in
Table 3).

Table 3. Translating causal primitives to XDA semantics.

Rule Path Causal Primitive XDA Semantics

➀ 𝑋 → 𝐹 → 𝑀, · · · m-separated no explainability
➁ 𝑋 → 𝑀 parent causal explanation
➂ 𝑋 → · · · → 𝑀 ancestor causal explanation
➃ 𝑋◦→𝑀 almost parent causal explanation
➄ 𝑋◦→ · · · ◦→𝑀 almost ancestor causal explanation
➅ others N/A non-causal explanation

Extension to SUM. The above formulation over explainability is established on AVG aggregates.
In the following, we discuss the implications of our formulation on SUM aggregates. If 𝑋 has no
explainability, 𝑋 ⫫ 𝑀 | 𝐹 . When we enforce 𝑋 = 𝑥 , Δ(𝐷𝑋=𝑥 ) can merely be affected by the number
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of rows where 𝑋 = 𝑥 in two sibling subspaces (namely a COUNT-based explanation) instead of a
causal relation between 𝑋 and𝑀 (see detailed formulation in Supplementary Material). This may
be valid for explanations; nevertheless, it is typically inconsistent with the common intuition of
data analysis and may not align user expectations regarding explanations (i.e., a variable explains
the target). Such COUNT-based explanation is unconventional and is thus less of a concern.
Semantics Consistency. Following the above discussion, we clarify that a variable may play dif-
ferent roles in various aggregates. However, in our current design, XTranslator focuses primarily
on variables with strong connections to𝑀 , which are more likely to provide desirable explanations.
Therefore, the semantics of a variable are consistent across different aggregates. As clarified in
Principle of Explainability above, it is appropriate for pruning uninformative variables from
general aggregates, and we do not observe notable issues in practice. We leave designing more
comprehensive translation rules for future research.

3.3 XPlainer

XLearner and XTranslator together provide a coarse-grained, variable-level qualitative explana-
tion to aWhyQuery. For instance, “Smoking” is a causal explanation for the differences in severity
of “Lung Cancer” in Locations A and B. To go one step further, XPlainer provides predicate-level
quantitative explanations to answer Why Query (e.g., “Smoking=Yes” explains the difference with
the responsibility of 0.77 in Fig. 1(f)). XPlainer is on the basis of a well-establish framework, DB
causality [Meliou, Gatterbauer, Halpern, et al. 2010] (an extension of actual causality). To ease
reading, below we first provide a recap of the notations defined in Sec. 2.1. We then rewrite the
formulation of DB causality in the context of XInsight in Sec. 3.3.1.
Recap of Notations. We refer to a dataset as 𝐷 , a filter as a lowercase 𝑝 , and a set of filters as
an uppercase 𝑃 . The subset of 𝐷 satisfying 𝑝 (or 𝑃 ) is represented by 𝐷𝑝 (or 𝐷𝑃 , respectively). We
use 𝐷 − 𝐷𝑃 as the complement of 𝐷𝑃 in 𝐷 . By default, Δ(𝐷) represents theWhyQuery over the
dataset 𝐷 . Likewise, for arbitrary 𝐷 ′ ⊆ 𝐷 , Δ(𝐷 ′) represents the difference between the aggregated
values of two sibling subspaces inside 𝐷 ′.

Definition 3.2 (DB Causality [Meliou, Gatterbauer, Halpern, et al. 2010]). Given a multi-
dimensional data 𝐷 and Why Query Δ, let 𝑡 be a tuple in 𝐷 . 𝑡 is called a counterfactual cause
to Δ, if Δ(𝐷) > 𝜖 and Δ(𝐷 − {𝑡}) ≤ 𝜖 , where 𝜖 is a user-defined threshold. 𝑡 is called an actual
cause to Δ, if there exists a contingency Γ ⊆ 𝐷 such that 𝑡 is a counterfactual cause for 𝐷 − Γ (i.e.,
Δ(𝐷 − Γ − {𝑡}) ≤ 𝜖 < Δ(𝐷 − Γ)).

Definition 3.3 (DB Responsibility [Meliou, Gatterbauer, Halpern, et al. 2010]). Suppose 𝑃
is an actual cause to Why Query Δ and Γ ranges over all valid contingencies for 𝑃 . The responsibility
of 𝑃 is defined as 𝜌𝑃 = 1

1+minΓ |Γ | , where |Γ | denotes the number of tuples in the contingency.

DB causality is appealing as it offers both a normalized measure (responsibility ∈ (0, 1]) and a
contingency. First, when the responsibility is close to 1, it implies that the tuple is more accountable
for the outcome, and when it hits 1, it is totally responsible. Second, the minimal contingency
reflects the additional influential factors that, together with the tuple, are fully responsible for the
outcome. The two elements form a quantitative explanation and it is useful for users to understand
why the difference exists.

3.3.1 Adaption. DB causality was originally designed for data provenance. As pointed out in [Me-
liou, Roy, et al. 2014], tuple-level explanations are usually too fine-grained for data analysis scenarios.
An individual tuple usually has too little effect on the highly aggregated outcome of a large dataset.
Recalling the example in Fig. 1, users would expect to know that “Smoking=Yes” causes high
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“Lung Cancer” severity rather than an individual patient being the cause of the high “Lung Can-
cer” severity. This necessitates predicate-level explanations which are easier to understand and
frequently used in data analysis scenarios, and by many data explanation tools [Abuzaid et al. 2021;
E. Wu and Madden 2013]. Motivated by this, we make three adaptions over DB causality (namely,
W-Causality,W-Responsibility and conciseness) to support XDA. We formulateW-Causality
as follows.

Definition 3.4 (W-Causality). Given a multi-dimensional data 𝐷 , an attribute of interest 𝑋 and
Why Query Δ, let 𝑃 ⊆ ⋃

𝑝𝑖 be a predicate in 𝐷 , where
⋃
𝑝𝑖 denotes the set of all possible filters on 𝑋 .

𝑃 is called a counterfactual cause of Δ, if Δ(𝐷) > 𝜖 and Δ(𝐷 − 𝐷𝑃 ) ≤ 𝜖 , where 𝜖 is a user-defined
threshold. 𝑃 is deemed to be an actual cause of Δ, if there is a contingency Γ ⊆ ⋃

𝑝𝑖 such that 𝑃 is a
counterfactual cause for 𝐷 − 𝐷Γ (i.e., Δ(𝐷 − 𝐷Γ − 𝐷𝑃 ) ≤ 𝜖 < Δ(𝐷 − 𝐷Γ)), where 𝑃 ∩ Γ = ∅.

From Tuples to Predicates. Def. 3.4 transforms the tuple and contingency into two predicates.
This way, explanations as well as contingencies constitute a form of intervention over the multi-
dimensional data. When a contingency Γ is applied, it indicates that, if the events related to Γ do
not happen, then the events related to 𝑃 are fully responsible for Δ. This adaption in turn entails
another adaption to the responsibility for predicate-level explanations.

Definition 3.5 (W-Responsibility). Suppose 𝑃 is an actual cause to Why Query Δ and Γ range
over all valid contingencies for 𝑃 . The responsibility of 𝑃 is defined as 𝜌𝑃 = 1

1+minΓ |Γ |𝑊 , where |Γ |𝑊 is

defined as max( Δ(𝐷−𝐷𝑃 )−Δ(𝐷−𝐷𝑃 −𝐷Γ )
Δ(𝐷 ) , 0). We let 𝜌𝑃 = 0 if 𝑃 is not an actual cause.

W-Responsibility. Instead of using the number of rows in 𝐷Γ as |Γ |𝑊 , Def. 3.5 employs the
truncated difference in Γ over Δ to measure the importance of 𝑃 . In particular, Δ(𝐷 −𝐷𝑃 ) − Δ(𝐷 −
𝐷𝑃 − 𝐷Γ) can be deemed as first-order finite backward difference to the function Δ(·) at the point
of 𝐷 − 𝐷𝑃 and Γ is the step size. This supplies a simple and intuitive way to understand to what
extent Γ plays an important role in reducing the difference. The large difference imposed by Γ
implies a low importance of explanation 𝑃 to Δ; because the reduction in Δ is primarily caused by
Γ instead of 𝑃 itself. Therefore, the responsibility of 𝑃 is measured by a valid contingency Γ∗ (such
that Δ(𝐷 − 𝐷𝑃 − 𝐷Γ) ≤ 𝜖 and Δ(𝐷 − 𝐷Γ) > 𝜖) with minimal difference on Δ.
Conciseness. Using responsibility as the sole criterion is not sufficient in practical data analysis
scenarios [Glavic et al. 2021]. Typically, a concise explanation is preferable. Therefore, given an
attribute of interest 𝑋 , we formulate the optimal explanation of 𝑋 as follows.

argmax
𝑃⊆⋃𝑝𝑖

𝜌𝑃 − 𝜎 |𝑃 | (4)

where
⋃
𝑝𝑖 is the set of all possible filters in 𝑋 , |𝑃 | is the number of filters in 𝑃 , and 𝜎 |𝑃 | (𝜎 > 0)

forms a conciseness regularization. In practice, we would prefer 𝜎 = 1/𝑚 such that when all filters
are picked, the score is zero.

Table 4. Different search solutions in XPlainer. FP is false positive and FN is false negative.

Solution Complexity Optimality

Brute-force Search 𝑂 (2𝑚) Optimal
Approx. Search (SUM) 𝑂 (𝑚 log𝑚) Moderated FP; Negligible FN
Approx. Search (AVG) 𝑂 (𝑚2) Moderated FP&FN

3.3.2 Optimization. As pointed out in [Bertossi 2020; Bertossi et al. 2020], computing responsibility
(i.e., 𝜌𝑃 ) is intractable. Furthermore, solving the optimization problem in Eqn. 4 is itself difficult
given 2𝑚 search space (𝑚 is the number of filters in𝑋 ). We characterize the performance of different
solutions in Table 4. First, the brute-force search is the most accurate and general method for
arbitrary aggregates, despite being very slow. The explanation discovered by brute-force search is
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exactly the optimal explanation. In this paper, we design two approximate solutions for SUM and AVG,
respectively. In particular, we first show the existence of a linearithmic approximated solution when
the aggregation is SUM. This solution also has negligible false negatives, as theoretically guaranteed
by a lemma on the completeness. Furthermore, we present a heuristics-based solution for AVG with
quadratic complexity. Moreover, this solution should be applicable for other aggregate functions
with a mild downgrade in optimality. Our evaluation (Sec. 4.4) shows that both approximations are
tight and efficient in comparison to brute-force search.
Optimization for SUM. Given the additive property of SUM (i.e., Δ(𝐷𝑃1 + 𝐷𝑃2 ) = Δ(𝐷𝑃1 ) + Δ(𝐷𝑃2 )),
we obtain the following proposition to prune the search space.

Proposition 3.2. If 𝑃∗ is the optimal explanation of Eqn. 4, ∀𝑝 ∈ 𝑃∗,Δ(𝐷𝑝 ) > 0.

According to Proposition 3.2, the search algorithm can omit filters with a non-positive Δ𝑖 (i.e.,
Δ(𝐷𝑝𝑖 )). Recall that Eqn. 4 seeks the optimal explanation. When the aggregate function is SUM, we
only need to focus on filters with a reasonably high Δ𝑖 without losing optimality and we define
such filters as canonical filters.

Definition 3.6 (Canonical Filter and Predicate). Without loss of generality (w.l.o.g.), given
a Why Query Δ and an attribute of interest 𝑋 , let filters {𝑝1, · · · , 𝑝𝑚} of 𝑋 be ordered by Δ𝑖 (i.e.,
Δ(𝐷𝑝𝑖 )) such that Δ1 ≥ · · · ≥ Δ𝑚 . We let 𝑝1, · · · , 𝑝 𝑗 be canonical filters if

Δ(𝐷) −
𝑗∑︁

𝑖=1
Δ𝑖 ≤ 𝜖 < Δ(𝐷) −

𝑗−1∑︁
𝑖=1

Δ𝑖 (5)

𝑃𝐶 = {𝑝1, · · · , 𝑝 𝑗 } is called a canonical predicate and 𝜏 =
∑𝑗

𝑖=1 Δ𝑖 .

With canonical filters and a corresponding canonical predicate 𝑃𝐶 , we observe that 𝑃𝐶 manifests
good properties. First, 𝑃𝐶 is the minimal counterfactual cause entailed by Eqn. 5. Our construction
of canonical predicates guarantees completeness.

Proposition 3.3 (Completeness). For SUM, given a Why Query Δ, an attribute of interest 𝑋 and
corresponding canonical predicate 𝑃𝐶 , there exists an optimal explanation 𝑃∗ ⊆ 𝑃𝐶 .

The completeness proposition (Proposition 3.3) allows us to only focus on canonical filters
when searching for the optimal explanation without loss of optimality. More importantly, the
canonical predicate also allows us to efficiently identify actual causes and the corresponding valid
contingencies.

Theorem 3.3. For SUM, given aWhyQuery Δ, an attribute of interest𝑋 and corresponding canonical
predicate 𝑃𝐶 , ∀𝑃 ⊂ 𝑃𝐶 , 𝑃 is an actual cause and 𝑃 = 𝑃𝐶 − 𝑃 is a valid contingency.

The advantages of Thm. 3.3 are twofold. First, we can directly confirm valid explanations without
exhaustive enumerations. Second, by the property of 𝑃 , we bound 𝑃 ’s responsibility (𝜌𝑃 ).

Theorem 3.4. For SUM, given aWhyQuery Δ, an attribute of interest𝑋 and corresponding canonical
predicate 𝑃𝐶 , theW-Responsibility 𝜌𝑃 of 𝑃 ⊂ 𝑃𝐶 satisfies

1
1 + 𝜏−Δ(𝐷𝑃 )

Δ(𝐷 )
≤ 𝜌𝑃 ≤

1
2 − Δ(𝐷𝑃 )+𝜖

Δ(𝐷 )
(6)

When Δ(𝐷𝑃 ) ≪ 𝜏 and 0 < 𝜏 ≤ Δ(𝐷), 1
1+𝜏−Δ(𝐷𝑃 ) ≈

1+𝜏+Δ(𝐷𝑃 )
(1+𝜏 )2 and the corresponding approximation

error rate 𝐸 < 0.25.
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Thm. 3.4 provides a way to efficiently approximate responsibility with theoretical guarantees.
In that sense, we can compute responsibility immediately and alleviate searching the minimal
contingency. Let 𝜌𝑃 =

1+𝜏+Δ(𝐷𝑃 )
(1+𝜏 )2 , we can rewrite the objective function in the following form.

𝜌𝑃 − 𝜎 |𝑃 | = 𝐶1 +𝐶2 ×
∑︁
𝑝𝑖 ∈𝑃
(Δ𝑖 −𝐶3) (7)

Here, 𝐶1,𝐶2,𝐶3 are constants. Then, the optimal explanation to Eqn. 7 is straightforward:

𝑃∗ = {𝑝𝑖 | Δ𝑖 > 𝐶3} (8)

where 𝐶3 =
𝜎Δ(𝐷 )
(1+ 𝜏

Δ(𝐷 ) )2
. The complexity is O(𝑚 log(𝑚)) (primarily in sorting filters for generating

canonical predicates).
Optimization for AVG. In terms of AVG, it is generally much more challenging due to the absence
of the additive characteristics on Δ(𝐷𝑃 ). Therefore, the majority of the preceding propositions are
not applicable. Having said that, we find the causal graph gives considerable opportunities to prune
unnecessary computations.

Definition 3.7 (Homogeneous Sibling Subspace). Given sibling subspaces 𝑠1, 𝑠2 (with foreground
variable 𝐹 and background variables 𝑩), an attribute𝑋 and the causal graph𝐺 , 𝑠1, 𝑠2 are homogeneous
on 𝑋 if 𝑋, 𝐹 are m-separated given 𝑩 on 𝐺 .

Proposition 3.4. For a homogeneous AVG, given a Why Query Δ, an attribute of interest 𝑋 , a
predicate 𝑃 ⊆ ⋃

𝑝𝑖 and a filter 𝑝 ∈ 𝑃 , if Δ(𝐷𝑝 ) > Δ(𝐷𝑃 ), then Δ(𝐷𝑃 − 𝐷𝑝 ) < Δ(𝐷𝑃 ).

To practically address the search problem of AVG (Eqn. 4), we rely on greedy-based heuristics
with a pruning strategy enabled by Proposition 3.4. The algorithm is outlined in Alg. 2.

The high-level idea behind Alg. 2 is similar to the one for SUM, which attempts to construct
a canonical predicate 𝑃𝐶 such that 𝑃𝐶 forms a counterfactual cause, each subset 𝑃 ⊂ 𝑃𝐶 of the
canonical predicate constitutes an actual cause, and the complement set 𝑃𝐶−𝑃 is a valid contingency.
Unlike SUM, however, Alg. 2 does not ensure the optimality of the resulting explanation, primarily
due to the incompleteness of the canonical predicate (Proposition 3.3) under AVG. Recall that
𝜌𝑃 ranges from 0 to 1 in Eqn. 4. The optimal explanation contains at most 1/𝜎 filters (otherwise,
𝜌𝑃 − 𝜎 |𝑃 | < 0). Hence, the canonical predicate 𝑃𝐶 shall contain at most 1/𝜎 or𝑚 (i.e., the number of
filters in the attribute).

Alg. 2 employs a greedy strategy to construct 𝑃𝐶 progressively. It starts with an empty canonical
predicate (line 1) and inserts one filter in each iteration (lines 2–13). Before insertion, it checks
whether 𝑃𝐶 is a canonical predicate (line 3) and terminates the loop if 𝑃𝐶 is already valid. Otherwise,
it picks the remaining filters that were not chosen in earlier iterations as candidates (line 5) and
inserts the filter that minimizes the difference Δ(𝐷 − 𝐷𝑃𝐶 − 𝐷𝑝𝑖 ) at the highest magnitude into
𝑃𝐶 (lines 6–12). When homogeneity holds and Δ𝑖 ≤ Δ(𝐷 − 𝐷𝑃𝐶 ), Alg. 2 prunes 𝑝𝑖 according to
Proposition 3.4 (lines 7–8). Note that Δ𝑖 is invariant throughout the loop; thus it only needs to
be queried once. In general cases where homogeneity does not hold, Alg. 2 has to enumerate all
possible filters in 𝑃 (line 10). If we cannot obtain a valid canonical predicate (i.e., a counterfactual
cause to Δ) after the loop, Alg. 2 terminates and outputs ⊥, indicating that it fails to find the optimal
explanation within the attribute (line 15). Empirically, we do not observe such rare cases. When the
canonical predicate 𝑃𝐶 is obtained, ∀𝑘 = 1, · · · , |𝑃𝐶 | − 1, the top-k filters of 𝑃𝑘 ⊆ 𝑃𝐶 is a valid actual
cause and the complement set Γ𝑘 = 𝑃𝐶 − 𝑃𝑘 is a valid contingency. According to the termination
condition in the above loop (line 3), Δ(𝐷 − 𝐷𝑃𝑘 ) > 𝜖 . In addition, according to the definition of
canonical predicate Δ(𝐷 −𝐷𝑃𝐶 ) = Δ(𝐷 −𝐷𝑃𝑘 −𝐷Γ𝑘 ) ≤ 𝜖 , Γ𝑘 is a valid contingency to 𝑃𝑘 . Therefore,
we compute the approximated responsibility ˆ𝜌𝑃𝑘 by using its lower bound deduced by Γ𝑘 (line
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Algorithm 2: XPlainer For AVG
Input:WhyQuery Δ, threshold 𝜖 , consiseness parameter 𝜎
Output: (near) optimal explanation 𝑃∗

1 𝑃𝐶 ← ∅;
2 foreach 𝑟 = 1, · · · ,min(𝑚, 1𝜎 ) do
3 if Δ(𝐷 − 𝐷𝑃𝐶 ) ≤ 𝜖 then break ;
4 else

5 𝑃 ← {𝑝1, · · · , 𝑝𝑚} − 𝑃𝐶 ;
6 if homogeneous then
7 𝑆 ← {𝑝𝑖 | 𝑝𝑖 ∈ 𝑃,Δ𝑖 > Δ(𝐷 − 𝐷𝑃𝐶 )};
8 𝑝∗ ← argmin𝑝∈𝑆 Δ(𝐷 − 𝐷𝑃𝐶 − 𝐷𝑝 );
9 else

10 𝑝∗ ← argmin
𝑝∈𝑃 Δ(𝐷 − 𝐷𝑃𝐶 − 𝐷𝑝 );

11 end

12 𝑃𝐶 ← 𝑃𝐶 ∪ {𝑝∗};
13 end

14 end

15 if Δ(𝐷 − 𝐷𝑃𝐶 ) > 𝜖 then return ⊥;
16 foreach 𝑘 ∈ 1, · · · , |𝑃𝐶 | do
17 𝑃𝑘 ← top-k filters of 𝑃𝐶 ;
18 Γ𝑘 ← 𝑃𝐶 − 𝑃𝑘 ;
19 compute ˆ𝜌𝑃𝑘 with Γ𝑘 .
20 end

21 return argmax𝑘 ˆ𝜌𝑃𝑘 − 𝜎 |𝑃𝑘 |;

19). After enumerating each 𝑘 , Alg. 2 returns 𝑃𝑘 such that ˆ𝜌𝑃𝑘 − 𝜎 |𝑃𝑘 | is maximized (line 21). In
summary, the first loop (lines 2–14) is of quadratic complexity regardless of homogeneity and the
second loop is linear (lines 16–20). The total complexity is O(𝑚2).

4 EVALUATION

In this section, we evaluate XInsight to answer the following three research questions (RQs):
(1) RQ1: End-To-End Performance. How can XInsight facilitate end users in explainable data

analysis?
(2) RQ2: XLearner Evaluation. Does XLearner effectively recover causal relations from obser-

vational data?
(3) RQ3: XPlainer Evaluation. Does XPlainer accurately and efficiently yield explanations?1

4.1 Datasets & User Study Setup

To the best of our knowledge, there is no real-world benchmark with manually labeled query/ex-
planation pairs. To deliver a scientific evaluation, we conduct experiments on ① public datasets
collected from previous works, ② real-world data collected from a production environment for user
study and human evaluation, and ③ synthetic data with ground-truth explanations. The detailed
steps for generating synthetic datasets are given in the Supplementary Material. We make necessary
preprocessing before feeding to XInsight (e.g., remove missing values).
① Flight Delay (FLIGHT).We use the flight delay dataset from [Salimi, Cole, et al. 2017] to explore
the causes of flight delays in US airports. After preprocessing, the resulting dataset contains 17
1The correctness of XTranslator has been rigorously discussed in Sec. 3.2.
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variables, including the weather conditions of departure airports (temperature, humidity, visibility,
rain, etc.), flight carrier, flight time (month, quarter, year, day of week and hour) and two variables
indicating flight delays, DelayMinute (continuous) and Delay>15min (binary).
① Hotel Booking (HOTEL). The hotel booking dataset [Antonio et al. 2019] is frequently used
for demonstrating data analysis methods. It contains 119,390 observations from two hotels. Each
observation depicts the booking status (e.g., “room type”, “reservation status”, and “is canceled”) of
a guest.
② Web Service Behavior Dataset (WEB). The dataset is collected from a web service’s production
environment. It contains 29 columns and 764 rows, where each row is a list of binary values. The
first 28 columns describe user behaviors on the web service (e.g., whether he clicks a specific button),
which are collected by a logging module. The last column indicates whether the user was blocked
for publishing malicious content (i.e., “IsBlocked”), which is annotated by cybersecurity experts.
These behaviors are known to exhibit strong and clear causal relations, making it appropriate for
testing XInsight in real-world scenarios.
③ Synthetic Data A (SYN-A). Ground-truth causal graphs are unattainable in practice and it
is common to generate random graphs and then sample observational data from this graphical
model. We generate MAGs with 10 to 150 variables (141 distinct scales in total). For each scale, we
synthesize five random graphs and the associated datasets, resulting in 705 (141 × 5) datasets. Each
dataset is injected with different amount of FDs.
③ Synthetic Data B (SYN-B). We follow the approach in Scorpion [E. Wu and Madden 2013]
to synthesize datasets for assessing XPlainer. Each dataset includes a valid Why Query and a
ground-truth explanation to this difference. We generate 18 datasets with different difficulties.
User Study Setup. In addition to the experiments that will be launched shortly, we intend to
determine the extent to which the results onWEB is correct and reasonable. Nonetheless, rendering
professional judgments on explanations and causal claims require sufficient expertise in this domain,
which makes gathering a large number of participants difficult. In this study, we recruit six domain
experts for the WEB dataset; we confirm each expert can evaluate the explanations and causal
claims with professionalism and high confidence. We organize the user study as follows:

(1) Participant Education. We organize an education session for participants and demonstrate
how to discern between causation and correlation. Then, a pilot study is conducted to confirm
that participants have an adequate sense of causality.

(2) Explanation Assessment. We raise four Why Query and ask XInsight to generate two
explanations for each Why Query. We then ask participants to give each explanation a score
(between 0 to 5) based on their domain knowledge.

(3) Causal Claim Assessment. Following [Law et al. 2021], we collect eight edges connected to
“IsBlocked”, transform these causal relations into human-comprehensible causal claims and ask
participants to independently evaluate them (by labeling them as “reasonable,” “not reasonable,”
or “unsure”).

(4) Follow-up Discussion. Participants explain their decision and discuss the aggregated results.

4.2 RQ1: End-To-End Performance

We show thatXInsight generates plausible and intuitive explanations for diverse datasets (FLIGHT,
HOTEL andWEB) and invite experts to assess the quality of explanations generated forWEB.
In this experiment, we manually discover noticeable differences to form Why Query, and ask
XInsight to supply the explanations. We also compare XInsight’s outputs with naive correlation-
based explanations. To ease presentation, we describe aWhyQuery in human-readable natural
language in the following paragraphs.
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Fig. 6. Explanation of Why Query on the FLIGHT dataset.

FLIGHT & HOTEL. We ask the following WhyQuery on ①:
(1) FLIGHT: why AVG(DelayMinute) in May (24.95 min) is notably higher than the one in No-

vember (21.28 min)?
(2) HOTEL: why AVG(IsCanceled) (cancellation rate) in July (0.37) is notably higher than the

one in January (0.30)?
For the firstWhyQuery, we observe that the duration of flight delay differs bymonth, particularly

for May and November, which motivates us to ask XInsight for explanations — what the cause of
the flight delay difference is. XInsight first learns a causal graph from data and identifies “rain” as
a direct cause of DelayMinute. Then, XPlainer finds that the difference is reversed (Δ = 3.674 vs.
Δ′ = −2.068) when the condition “rain=Yes” is enforced (Fig. 6). Thus, it returns “rain=Yes” as an
explanation. We interpret the explanation as correct because 1) rain is a typical reason for flight
delay, and 2) for most states, monthly precipitation in May is usually higher than in November.
Hence, when only counting the rainy cases (by enforcing “rain=Yes”), the difference is eliminated.

For the secondWhyQuery, we observe that the cancellation rate varies by month of arrival. For
instance, the cancellation rate in July is 0.37, which is higher than in January. Thus, we ask XInsight
for explanations. XInsight identifies “LeadTime” (number of days between booking data and arrival
date) as an indirect cause of “IsCanceled”. It also discovers that when enforcing “LeadTime≤ 133”,
the difference is reduced. This is intuitive. A longer “LeadTime” results in greater uncertainty
about guests’ future schedules, leading to a higher cancellation rate. In January, LeadTime of most
reservations is less than 133 days (91%). In contrast, there are far more early reservations (> 133
days) in July (48%), resulting in a higher cancellation rate. When these early reservations are
excluded, the difference becomes much smaller.
Table 5. Results of explanation assessment. E𝑖 and P𝑖 stand for the 𝑖th explanation and the 𝑖th participant,

respectively.

E1 E2 E3 E4 E5 E6 E7 E8
P1 4 4 5 4 4 4 5 3
P2 4 4 4 4 3 4 3 4
P3 5 3 4 5 3 5 5 5
P4 3 4 5 4 4 3 3 4
P5 4 2 5 3 5 4 3 3
P6 5 4 5 5 5 4 5 5
mean 4.16 3.50 4.67 4.17 4.00 4.00 4.00 4.00
std 0.69 0.76 0.47 0.69 0.82 0.58 1.00 0.82

WEB. We report the results of the second phase in the user study (i.e., Explanation Assessment in
Sec. 4.1) in Table 5. We view the results as encouraging, since nearly all responses are positive (≥ 3).
Moreover, the average scores for seven out of eight explanations are ≥ 4. We also investigated the
explanation with the lowest score (E2 in Table 5). We find this is counter-intuitive but reasonable in
retrospect. In the follow-up session, the discussion among participants also confirmed our finding.
During the assessments, experts find many explanations inspiring and insightful, despite their
familiarity with the dataset. It continuously increases their knowledge and help them design a
better criteria for detecting malicious behavior.
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Answer to RQ1: XInsight shows a promising end-to-end performance in explaining data differences.
The user study validates that XInsight achieves a respectable level of agreement with experts.

4.3 RQ2: XLearner Evaluation

As a cornerstone of XInsight, XLearner is crucial to the effectiveness of the entire pipeline.
To answer RQ2, we run XLearner on SYN-A which has ground truth causal graphs and on a
real-world datasetWEB. SinceWEB does not associate a ground-truth causal graph, we assess the
quality of causal relations by the user study.

Table 6. Overall comparison between XLearner and FCI.

Algo. F1-Score Precision Recall

XLearner 0.88 ± 0.04 0.95 ± 0.03 0.82 ± 0.06
FCI 0.72 ± 0.05 0.92 ± 0.04 0.59 ± 0.06

Table 6 provides an overall comparison between XLearner and FCI on SYN-A datasets. We
find that XLearner is more accurate than FCI in the presence of FDs. In particular, while FCI
has comparable precision, XLearner has a much higher recall. This confirms our discussion on
the implications of FDs in Sec. 3.1. The faithfulness violations mislead FCI to incorrectly refute
true edges (thus yield a lower recall) while XLearner is aware of such faithfulness violations and
handles them with the procedure in Sec. 3.1.
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Fig. 7. Comparison by FD Proportion. The x-axis is the proportion of FDs in the causal graph. The y-axis is

the superiority (determined by subtracting the FCI’s score from the XLearner’s score) of XLearner over FCI.

Since XLearner focuses primarily on FDs as the opposite of FCI, we further study how varying
proportions of FDs in the causal graph affect XLearner’s performance. We report the superiority
in terms of varied amounts of FDs in Fig. 7. Overall, we observe an increasing trend in XLearner
performance (particularly for F1 and recall) as the FD proportion increases. More importantly,
we observe that “superiority” increases as FDs increase. Recall, as noted in the caption of Fig. 7,
that the superiority is computed by subtracting the FCI’s score from the XLearner’s score. Thus,
we interpret that XLearner gradually outperforms the FCI algorithm with greater degree as the
proportion of FDs grows.

In addition to the experiments on synthetic datasets, we also evaluate XLearner with the WEB

dataset (Sec. 4.1). As aforementioned, this real-world dataset lacks a ground-truth causal graph.
Evaluating the accuracy of an estimated causal graph is thus challenging, if not impossible. At this
step, we involve human experts to assess the correctness of the identified causal relations in the
third phase of our user study (i.e., Causal Claim Assessment in Sec. 4.1).

We report the results of our user study in Table 7: first, out of 48 responses (6 participants× 8 questions),
only three (6.3%) suggest that the causal claims are “Not Reasonable,” while 40 responses (83.3%)
mark the causal claims as “Reasonable.” It indicates that the causal relations identified by XLearner
correspond with expert knowledge in the majority of instances. Second, we investigate the claims
that have been deemed “Not Reasonable” or “Unsure.” Encouragingly, we find that a notable pro-
portion of causal claims are counter-intuitive yet correct. For instance, one causal claim states
that “malicious intent would lead to more frequent configuration changes than benign intent.” In
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Table 7. User study. C𝑖 stands for the 𝑖th causal claim.

C1 C2 C3 C4 C5 C6 C7 C8
# Reasonable 6 4 4 6 6 4 5 5
# Not Sure 0 2 1 0 0 0 1 1
# Not Reasonable 0 0 1 0 0 2 0 0

the causal claim assessment phase, one expert deemed it “Not Reasonable” and presumed that
malicious users would keep a default configuration. In the follow-up session where they shared
the independent assessments, this participant was persuaded and confirmed this causal relation as
“Reasonable.”
Answer to RQ2: As reflected by the carefully-designed quantitative experiments and the user study,
XLearner generates plausible causal graphs that are consistent with expert knowledge.

4.4 RQ3: XPlainer Evaluation

Recall the descriptions of SYN-B in which different parameters result in datasets with varying
degrees of difficulty. In this experiment, we explore the accuracy of XPlainer on SYN-B.
Baseline.We compare XPlainer with three baselines, namely, Scorpion [E. Wu and Madden 2013],
RSExplain [Roy and Suciu 2014] and BOExplain [Lockhart et al. 2021], which use predicates as
explanations. Scorpion is an explanation engine for explaining outliers. It uses a metric called
influence score to rank explanations, which considers the effect of the explanation between the
outlier region and the hold-out region. RSExplain uses the concept of intervention to measure
the effectiveness of an explanation. BOExplain is originally designed for explaining black-box
machine learning models. When explainingWhyQuery, it employs the inference score and the
Bayesian optimization to find the optimal explanation. To launch an apple-to-apple comparison, all
baselines are enforced to search over a set of pre-defined causal filters {𝑝1, · · · , 𝑝𝑚} derived from
the generation procedure of SYN-B (see details in Supplementary Material); all these filters have
been confirmed to constitute legitimate causal explanations.
Metric. We use the top-ranked explanation of each baseline as its optimal explanation. We mark a
method as “N/A” denoting timeouts (more than one hour to process). We report the F1 Score of
filters in the explanation over the ground-truth explanation.
Different Dataset Sizes. To study the scalability of XPlainer, we generate datasets of varying
sizes and report the results in Table 8. Overall, we observe that XPlainer is more accurate and
efficient than all baselines across all the studied settings. This is encouraging and also reasonable, as
XPlainer uses many distinct characteristics of aggregation functions to optimize the search process,
while other methods primarily treat them as a “black-box.” Scorpion and BOExplain often produce
incomplete explanations, while RSExplain may frequently find extra spurious filters. We presume
that this is because the objective function of Scorpion (and also BOExplain) is for explaining
anomalies instead of WhyQuery, whereas RSExplain is primarily designed for data provenance.
In contrast, explanations provided by XPlainer are seen as consistent with the ground truth.
XPlainer is highly efficient particularly for high cardinality regimes, while both Scorpion

and RSExplain run out of time when the cardinality exceeds 30 (see the bottom half of Table 8).
BOExplain uses Bayesian optimization to search for explanations, and its accuracy downgrades as
cardinality increases. Similarly, when iterating different #Rows (the top half of Table 8), XPlainer
also exhibits highly encouraging efficiency: XPlainer takes on average 0.06 seconds to explain
WhyQuery whereas BOExplain (the second best) takes 13.17 seconds. In sum, we interpret from
Table 8 that XPlainer delivers highly encouraging accuracy and efficiency across different settings
in comparison with the baseline methods.
Different 𝜇∗−𝜇. The difference between 𝜇∗, 𝜇 indicates the magnitude of Δ. To study the sensitivity
of XPlainer, we study how well XPlainer performs under varying differences and compare it with
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Table 8. XPlainer and baselines under various settings. ✓ denotes that F1=1.0 and the best metric is high-

lighted.

#Rows (Cardinality=10) 10K 20K 50K 100K 500K 1M
XPlainer F1 Score ✓ ✓ ✓ ✓ ✓ ✓
(SUM) Time (sec.) 0.004 0.005 0.007 0.010 0.017 0.019

Scorpion F1 Score 0.5 0.5 0.5 0.5 0.5 0.8
(SUM) Time (sec.) 0.68 0.82 1.25 1.93 2.45 2.93

RSExplain F1 Score 0.75 0.75 0.75 0.75 0.75 0.75
(SUM) Time (sec.) 0.68 0.83 1.25 1.94 2.44 2.90

BOExplain F1 Score 0.8 0.8 0.5 0.5 0.5 0.8
(SUM) Time (sec.) 5.24 5.32 5.62 6.38 9.80 13.53

XPlainer F1 Score ✓ ✓ ✓ ✓ ✓ ✓
(AVG) Time (sec.) 0.016 0.019 0.026 0.038 0.052 0.063

Scorpion F1 Score ✓ ✓ ✓ ✓ ✓ ✓
(AVG) Time (sec.) 0.59 0.67 0.90 1.29 1.69 2.01

RSExplain F1 Score 0.75 0.75 0.75 0.75 0.75 0.75
(AVG) Time (sec.) 0.58 0.66 0.90 1.28 1.68 1.95

BOExplain F1 Score 0.86 ✓ 0.86 ✓ ✓ 0.8
(AVG) Time (sec.) 5.33 5.37 5.56 6.56 8.67 12.62

Cardinality (#Rows=100k) 10 15 20 30 50 100
XPlainer F1 Score ✓ ✓ ✓ ✓ ✓ 0.8

(SUM) Time (sec.) 0.010 0.014 0.018 0.025 0.040 0.077

Scorpion F1 Score 0.5 0.5 0.5 N/A N/A N/A
(SUM) Time (sec.) 1.96 16.50 75.72 N/A N/A N/A

RSExplain F1 Score 0.75 0.75 0.75 N/A N/A N/A
(SUM) Time (sec.) 1.95 16.61 75.82 N/A N/A N/A

BOExplain F1 Score ✓ 0.86 0.86 0.46 0.27 0.15
(SUM) Time (sec.) 6.28 8.71 11.17 15.44 25.44 48.73

XPlainer F1 Score ✓ ✓ ✓ ✓ ✓ ✓
(AVG) Time (sec.) 0.038 0.060 0.082 0.124 0.211 0.426

Scorpion F1 Score ✓ ✓ ✓ N/A N/A N/A
(AVG) Time (sec.) 1.27 10.58 47.90 N/A N/A N/A

RSExplain F1 Score 0.75 0.75 0.75 N/A N/A N/A
(AVG) Time (sec.) 1.28 10.59 47.91 N/A N/A N/A

BOExplain F1 Score ✓ 0.86 0.5 0.5 0.27 0.14
(AVG) Time (sec.) 5.87 8.23 10.44 15.00 24.35 46.35

Table 9. XPlainer and baselines with different 𝜇∗ − 𝜇. ✓ denotes that the result is identical to the ground

truth (F1=1.0).

𝜇 − 𝜇∗ 5 10 15 30 50 100
XPlainer (SUM) 0.86 ✓ ✓ ✓ ✓ ✓

Scorpion (SUM) 0.50 0.50 0.50 0.50 0.50 0.50
RSExplain (SUM) 0.75 0.75 0.75 0.75 0.75 0.75
BOExplain (SUM) 0.50 0.86 0.80 0.80 0.80 ✓

XPlainer (AVG) ✓ ✓ ✓ ✓ ✓ ✓

Scorpion (AVG) 0.80 ✓ ✓ ✓ ✓ ✓

RSExplain (AVG) 0.75 0.75 0.75 0.75 0.75 0.75
BOExplain (AVG) 0.80 ✓ 0.86 0.86 0.80 ✓

baselines in Table 9. To clarify, 𝜇∗ − 𝜇 = 5 and 𝜇∗ − 𝜇 = 10 denote two relatively more challenging
settings in Table 9, given the very subtle differences. On SUM aggregates, we find that all methods
have difficulties in identifying explanations in those two challenging settings; still, XPlainer yields
the best results for both settings. Even on the most challenging setting (𝜇∗ − 𝜇 = 5), XPlainer finds
highly accurate explanations whereas RSExplain is less accurate.

On AVG aggregates, XPlainer and Scorpion both perform well on identifying the ground-truth
explanations; XPlainer is slightly better particularly for the most challenging setting when 𝜇∗−𝜇 =

5. Nevertheless, RSExplain and BOExplain are less accurate on AVG. Overall, we conclude that
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XPlainer is more robust to subtle data differences while all other methods have difficulties in
such challenging settings. We omit reporting the processing time here, since it has already been
evidently explored in Table 8.
Tightness of Approximation. In Sec. 3.3, we show the approximation of minimal contingency
for computing responsibilities under SUM and AVG. In the following, we compare the tightness of
the responsibility 𝜌 computed by 𝑃 = 𝑃𝐶 − 𝑃 to the true responsibility 𝜌 computed by the minimal
contingency 𝑃min via brute-force search. The approximation error is computed as 𝐸 =

|𝜌−𝜌 |
𝜌

. Recall
that we craft three filters that form the counterfactual cause in each dataset. In SUM, we can craft six
(
(3
2
)
) actual causes from the three filters. In AVG, since the canonical predicate of AVG only supports

the first 𝑘 filters as actual causes and the rest as contingencies, we pick the top-1 and top-2 filters
as two actual causes and repeat the experiments on three datasets (2 × 3 in total). On the six
actual causes of SUM aggregates, we find that the brute-force algorithm is 253.3× slower than our
approximated solution. More importantly, the approximation error is highly negligible with an
average of 0.007. We also observe that the approximation error on AVG is slightly higher (0.066) and
that our heuristics-based solution is 27.3× faster. This result is reasonable, as the heuristics-based
solution does not provide guarantees of accuracy and requires more queries than SUM.
Answer to RQ3: XPlainer shows high scalability to large datasets and also accurately generates
explanations in very difficult settings. On a mild cost of precision, two approximation solutions of
XPlainer substantially improve efficiency.

5 DISCUSSION

FD in Noisy Data. XInsight only considers deterministic FDs. As illustrated in Ex. 3.1, taking
deterministic FDs into account eliminates faithfulness violations. However, when the data is noisy,
the FDs may be stochastic (e.g., probabilistic interpretation of FDs [Y. Zhang et al. 2020]), which is
currently not considered in XInsight. We clarify that considering only deterministic FDs deems a
common setup shared by relevant works in this field [Ding, Liu, et al. 2020; Mabrouk et al. 2014]. It
remains unclear how noisy FDs may impact faithfulness. We leave this for future exploration.
Acquiring Causal Knowledge. Inferring causal relations is difficult. Typically, it needs a combi-
nation of domain knowledge [Andrews et al. 2020], randomized experiments [Triantafillou and
Tsamardinos 2015] and causal discovery [Dai et al. 2021; Ding, Liu, et al. 2020; Ma, Ding, Dai, et al.
2022; Spirtes et al. 2000; J. Zhang 2008].XInsight performs causal discovery from observational data
due to its simplicity. Nevertheless, we envision users of XInsight can combine additional sources
for acquiring more accurate causal knowledge. In this paper, we explain several key obstacles of
applying causal discovery to real-world data, including causal insufficiency [J. Zhang 2008] and
FD-induced faithfulness violations [Ding, Liu, et al. 2020; Mabrouk et al. 2014]. XLearner, for the
first time, simultaneously addresses all of them.
Other Forms of Explanations. Currently, XInsight employs predicates as the content of expla-
nations, which is general enough for common data analysis scenarios. However, in some cases,
explanations may be formed by the number of records in a database [Discover Insights Faster with
Explain Data 2022] or counterbalances [Miao et al. 2019]. Furthermore, when explaining changes in
a whole time series [Chen and Huang 2021], XInsight may be not applicable. We leave integrating
XInsight into these scenarios for future work.

6 RELATEDWORK

Data Explanation. Explaining an unexpected query outcome in database is a crucial phase in the
lifecycle of data analysis. In general, an explanation aims to provide certain forms of patterns that
lead to the unexpected query outcome. Such patterns may be a set of predicates [Abuzaid et al. 2021;
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Bailis et al. 2017; Roy and Suciu 2014; E. Wu and Madden 2013], tuples [Meliou, Roy, et al. 2014], or
counterbalances [Miao et al. 2019]. Scorpion is the most relevant work for XInsight, which also
provides explanations to aggregated queries [E. Wu and Madden 2013]. In particular, it employs an
influence score to quantify explanations and features a set of optimizations to reduce the cost of
explanation search. Recently, many tools have attempted to enhance explanations with additional
knowledge (e.g., join tables) about the underlying data. However, such additional knowledge does
not imply causation — top ranked explanations could be rated low by human participants due to
a lack of causal semantics [C. Li et al. 2021]. These observations evidently show the necessity of
integrating causality into XDA.
Causality in Database. Most works related to causality analysis in the database is on the basis of
Halpern’s seminal framework on actual causality [Halpern 2016; Halpern and Pearl 2005]. It provides
an elegant and natural way to reason about input-output relations. Its results not only highlight
the output’s cause, but also provide a contingency describing how it is triggered. The adaption
of actual causality in the database (i.e., DB causality) is widely used for data provenance [Meliou,
Gatterbauer, Moore, et al. 2010], data explanation [Roy and Suciu 2014] and debugging [Fariha
et al. 2020; Ji et al. 2022; Meliou, Gatterbauer, Nath, et al. 2011; Yoon et al. 2016]. However, it has
limitations when applied alone. On the one hand, as noted in [Glavic et al. 2021], DB causality does
not necessarily imply true causation. Indeed, it assumes that causal knowledge is already known,
and focuses solely on quantitative explanations. On the other hand, considerable adaptions are
required to make it applicable to XDA scenarios, as discussed in Sec. 3.3. We also notice other
methods for quantifying explanations, such as sufficient score, necessity score, and average causal
effect [Salimi, Parikh, et al. 2020; Watson et al. 2021]. Despite their usefulness, we design XPlainer
on top of actual causality because it is more understandable and general. Furthermore, without
prior causal knowledge, none of these methods can imply true causation.
XDA vs. XAI. We note that XAI (explainable artificial intelligence) is parallel and complementary
to XDA. Through the lens of data analysis, XAI aims to explain a prediction or model [Galhotra
et al. 2021; Pradhan et al. 2022], while XDA enhances EDA for understanding data facts. In addition,
we also observe a line of research [Flokas et al. 2022; Y. Li et al. 2022; Lin et al. 2022; W. Wu et al.
2020] that identifies a subset of (training) data that is responsible for a prediction. While this line
of research shares similar output format with XInsight, it is essentially for explaining how model
predictions are influenced by training/test data, a scenario that is orthogonal to our research.

7 CONCLUSION

This paper advocates XDA, a concept that ships comprehensive and in-depth explainability toward
EDA. XDA offers either causal or non-causal explanations for EDA outcomes, from both quantita-
tive and qualitative perspectives. We have also presented the design of XInsight, a production
framework for XDA over databases. Experiments and human evaluations reveal that XInsight
manifests highly encouraging explanation capabilities. XPlainer has been integrated into Microsoft
Power BI to explain increase/decrease in data.
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